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Abstract

For a given nonnegative integer α, a matrix An of size n is called α-Toeplitz if its entries
obey the rule An = [ar−αs]

n−1
r,s=0. Analogously, a matrix An again of size n is called α-circulant

if An =
[
a(r−αs) modn

]n−1

r,s=0
. Such kind of matrices arises in wavelet analysis, subdivision

algorithms and more generally when dealing with multigrid/multilevel methods for structured
matrices and approximations of boundary value problems. In this paper we study the singular
values of α-circulants and we provide an asymptotic analysis of the distribution results for the
singular values of α-Toeplitz sequences in the case where {ak} can be interpreted as the sequence
of Fourier coefficients of an integrable function f over the domain (−π, π). Some generalizations
to the block, multilevel case, amounting to choose f multivariate and matrix valued, are briefly
considered.

Keywords: circulants, Toeplitz, α-circulants, α-Toeplitz, spectral distributions, multigrid meth-
ods.
AMS SC: 65F10, 15A18.

1 Introduction

A matrix An of size n is called α-Toeplitz if its entries obey the rule An = [ar−αs]
n−1
r,s=0, where α is

a nonnegative integer. As an example, if n = 5 and α = 3 then

An ≡ Tn,α =




a0 a−3 a−6 a−9 a−12

a1 a−2 a−5 a−8 a−11

a2 a−1 a−4 a−7 a−10

a3 a0 a−3 a−6 a−9

a4 a1 a−2 a−5 a−8



.

Along the same lines, a matrix An of size n is called α-circulant if An =
[
a(r−αs) modn

]n−1

r,s=0
.

For instance if n = 5 and α = 3 then we have

An ≡ Cn,α =




a0 a2 a4 a1 a3
a1 a3 a0 a2 a4
a2 a4 a1 a3 a0
a3 a0 a2 a4 a1
a4 a1 a3 a0 a2



.
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Such kind of matrices arises in wavelet analysis [6] and subdivision algorithms or, equivalently,
in the associated refinement equations, see [5] and references therein. Furthermore, it is interesting
to remind that Gilbert Strang [22] has shown rich connections between dilation equations in the
wavelets context and multigrid methods [12, 29], when constructing the restriction/prolongation
operators [9, 1] with various boundary conditions. It is worth noticing that the use of differ-
ent boundary conditions is quite natural when dealing with signal/image restoration problems or
differential equations, see [18, 15].

In this paper we address the problem of characterizing the singular values of α-circulants and
of providing an asymptotic analysis of the distribution results for the singular values of α-Toeplitz
sequences, in the case where the sequence of values {ak}, defining the entries of the matrices, can
be interpreted as the sequence of Fourier coefficients of an integrable function f over the domain
(−π, π). As a byproduct, we will show interesting relations with the analysis of convergence of
multigrid methods given, e.g., in [21, 1]. Finally we generalize the analysis to the block, multilevel
case, amounting to choose the symbol f multivariate, i.e., defined on the set (−π, π)d for some
d > 1, and matrix valued, i.e., such that f(x) is a matrix of given size p× q.

The paper is organized as follows. In Section 2 we report useful definitions, well-known results
in the standard case of circulants and Toeplitz that is when α = 1 (or α = e, e = (1, . . . , 1),
in the multilevel setting), and a preliminary analysis of some special cases. Section 3 deals with
the singular value analysis of α-circulants while in Section 4 we treat the α-Toeplitz case in an
asymptotic setting, and more precisely in the sense of the Weyl spectral distributions. Section 5
is devoted to sketch useful connections with multigrid methods, while in Section 6 we report the
generalization of the results when we deal the multilevel block case. Section 7 is aimed to draw
conclusions and to indicate future lines of research.

2 General definitions and tools

For any n × n matrix A with eigenvalues λj(A), j = 1, . . . , n, and for any m × n matrix B with
singular values σj(B), j = 1, . . . , l, l = min{m,n}, we set

Eig(A) = {λ1(A), λ2(A), . . . , λn(A)}, Sgval(B) = {σ1(B), σ2(B), . . . , σl(B)}.

The matrix B∗B is positive semidefinite, since x∗(B∗B)x = ‖Bx‖22 ≥ 0 for all x ∈ Cn, with ∗

denoting the transpose conjugate operator. Moreover, it is clear that the eigenvalues λ1(B
∗B) ≥

λ2(B
∗B) ≥ · · · ≥ λn(B

∗B) ≥ 0 are nonnegative and can therefore be written in the form

λj(B
∗B) = σ2

j , (1)

with σj ≥ 0, j = 1, . . . , n. The numbers σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0, l = min{m,n}, are called singular
values of B, i.e., σj = σj(B) and if n > l then λj(B

∗B) = 0, j = l + 1, . . . , n. A more general
statement is contained in the singular value decomposition theorem (see e.g. [11]).

Theorem 2.1. Let B be an arbitrary (complex) m× n matrix. Then:

(a) There exists a unitary m×m matrix U and a unitary n × n matrix V such that U∗BV = Σ
is an m× n “diagonal matrix” of the following form:

Σ =

[
D 0
0 0

]
, D := diag(σ1, . . . , σr), σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Here σ1, . . . , σr are the nonvanishing singular values of B, and r is the rank of B.
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(b) The nonvanishing singular values of B∗ are also precisely the number σ1, . . . , σr.
The decomposition B = UΣV ∗ is called “the singular value decomposition of B”.

For any function F defined on R+
0 and for any m×n matrix A, the symbol Σσ(F,A) stands for

the mean

Σσ(F,A) :=
1

min{n,m}

min{n,m}∑

j=1

F (σj(A)) =
1

min{n,m}
∑

σ∈Sgval(A)

F (σ). (2)

Throughout this paper we speak also of matrix sequences as sequences {Ak} where Ak is an
n(k) × m(k) matrix with min{n(k),m(k)} → ∞ as k → ∞. When n(k) = m(k) that is all the
involved matrices are square, and this will occur often in the paper, we will not need the extra
parameter k and we will consider simply matrix sequences of the form {An}.

Concerning the case of matrix-sequences an important notion is that of spectral distribution in
the eigenvalue or singular value sense, linking the collective behavior of the eigenvalues or singular
values of all the matrices in the sequence to a given function (or to a measure). The notion goes
back to Weyl and has been investigated by many authors in the Toeplitz and Locally Toeplitz
context (see the book by Böttcher and Silbermann [4] where many classical results by the authors,
Szegö, Avram, Parter, Widom Tyrtyshnikov, and many other can be found, and more recent results
in [10, 13, 23, 28, 26, 27]). Here we report the definition of spectral distribution only in the singular
value sense since our analysis is devoted to singular values. The case of eigenvalues will be the
subject of future investigations.

Definition 2.1. Let C0(R+
0 ) be the set of continuous functions with bounded support defined over

the nonnegative real numbers, d a positive integer, and θ a complex-valued measurable function
defined on a set G ⊂ Rd of finite and positive Lebesgue measure µ(G). Here G will be often equal to

(−π, π)d so that eiG = Td with T denoting the complex unit circle. A matrix sequence {Ak} is said
to be distributed (in the sense of the singular values) as the pair (θ,G), or to have the distribution
function θ ({Ak} ∼σ (θ,G)), if, ∀F ∈ C0(R+

0 ), the following limit relation holds

lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫

G
F (|θ(t)|) dt, t = (t1, . . . , td). (3)

When considering θ taking values inMpq, whereMpq is the space of p×q matrices with complex
entries and a function is considered to be measurable if and only if the component functions are,
we say that {Ak} ∼σ (θ,G) when for every F ∈ C0(R+

0 ) we have

lim
k→∞

Σσ(F,Ak) =
1

µ(G)

∫

G

∑min{p,q}
j=1 (F (σj(θ(t))))

min{p, q} dt, t = (t1, . . . , td),

with σj(θ(t)) =
√

λj(θ(t)θ∗(t)) = λj(
√

θ(t)θ∗(t)). Finally we say that two sequences {Ak} and
{Bk} are equally distributed in the sense of singular values (σ) if, ∀F ∈ C0(R+

0 ), we have

lim
k→∞

[Σσ(F,Bk)− Σσ(F,Ak)] = 0.

Here we are interested in explicit formulae for the singular values of α-circulants and in distri-
bution results for α-Toeplitz sequences. In the latter case, following what is known in the standard
case of α = 1 (or α = e in the multilevel setting), we need to link the coefficients of the α-Toeplitz
sequence to a certain symbol.
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Let f be a Lebesgue integrable function defined on (−π, π)d and taking values in Mpq, for given
positive integers p and q. Then, for d-indices r = (r1, . . . , rd), j = (j1, . . . , jd), n = (n1, . . . , nd),
e = (1, . . . , 1), 0 = (0, . . . , 0), the Toeplitz matrix Tn(f) of size pn̂× qn̂, n̂ = n1 ·n2 · · · nd, is defined
as follows

Tn(f) = [f̃r−j]
n−e
r,j=0,

where f̃k are the Fourier coefficients of f defined by equation

f̃j = f̃(j1,...,jd)(f) =
1

(2π)d

∫

[−π,π]d
f(t1, . . . , td)e

−i(j1t1+···+jdtd) dt1 · · · dtd, i2 = −1, (4)

for integers jℓ such that −∞ < jℓ < ∞ for 1 ≤ ℓ ≤ d. Since f is a matrix-valued function of d
variables whose component functions are all integrable, then the (j1, . . . , jd)-th Fourier coefficient
is considered to be the matrix whose (u, v)-th entry is the (j1, . . . , jd)-th Fourier coefficient of the
function (f(t1, . . . , td))u,v.

According to this multi-index block notation we can define general multi-level block α-Toeplitz
and α-circulants. Of course, in this multidimensional setting, α denotes a d-dimensional vector of
nonnegative integers that is α = (α1, . . . , αd). In that case An = [ar−α◦s]

n−e
r,s=0 where the ◦ operation

is the componentwise Hadamard product between vectors or matrices of the same size. A matrix
An of size pn̂× qn̂ is called α-circulant if An =

[
a(r−α◦s) modn

]n−e

r,s=0
, where

(r − α ◦ s) mod n = ((r1 − α1s1) mod n1, (r2 − α2s2) mod n2, . . . , (rd − αdsd) mod nd) .

2.1 The extremal cases where α = 0 or α = e, and the intermediate cases

We consider a d-level setting and we analyze in detail the case where 0 ≤ α ≤ e and with ≤ denoting
the componentwise partial ordering between real vectors. When α has at least a zero component,
the analysis can be reduced to the positive one as studied in Subsection 2.1.3.

2.1.1 α = e

In the literature the only case deeply studied is the case of α = e (standard shift in every level).
Here for multilevel block circulants An = [a(r−α◦s) mod n]

n−e
r,s=0 the singular values are given by those

of

σk(An) =

n−e∑

j=0

aje
i2π(j1k1/n1+···+jdkd/nd), k = (k1, . . . , kd),

for any kℓ such that 0 ≤ kℓ ≤ nℓ−1, ℓ = 1, . . . , d. Of course when the coefficients aj comes from the
Fourier coefficients of a given Lebesgue integrable function f , i.e. f̃j = aj modn, j = −n/2, . . . , n/2
(n/2 = (n1/2, n2/2, . . . , nd/2)), the singular values are those of n/2-th Fourier sum of f evaluated
at the grid points

2πk/n = 2π (k1/n1, . . . , kd/nd) ,

0 ≤ kj ≤ nj − 1, j = 1, . . . , d. Moreover the explicit Schur decomposition is known. For d = p =
q = 1 any standard circulant matrix can be written in the form

An ≡ Cn = FnDnF
∗
n , (5)
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where

Fn =
1√
n

[
e−

2πijk

n

]n−1

j,k=0
, Fourier matrix,

Dn = diag(
√
nF ∗

na), (6)

a = [a0, a1, . . . , an−1]
T , first column of the matrix An.

Of course for general d, p, q the formula generalizes as

An = (Fn ⊗ Ip)Dn(F
∗
n ⊗ Iq),

with Fn = Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd
Dn = diag(

√
n̂(F ∗

n ⊗ Ip)a), where n̂ = n1 · n2 · · ·nd and a being
the first “column” of An whose entries aj , j = (j1, . . . , jd), ordered lexicographically, are blocks of
size p× q.

For multilevel block Toeplitz sequences {Tn(f)} generated by an integrable d variate and matrix
valued symbol f the singular values are not explicitly known but we know the distribution in the
sense of Definition 2.1; see [26]. More precisely we have

{Tn(f)} ∼σ (f,Qd), Q = (−π, π). (7)

2.1.2 α = 0

The other extreme is represented by the case where α is the zero vector. Here the multilevel block
α-circulant and α-Toeplitz coincide when α = 0 and are both given by

An = [a(r−0◦s) mod n]
n−e
r,s=0 = [ar mod n]

n−e
r,s=0 = [ar]

n−e
r,s=0 =




a0 · · · a0
...

...
an−e · · · an−e


 .

A simple computation shows that all the singular values are zero except for few of them given
by

√
n̂σ, where n̂ = n1 · n2 · · · nd and σ is any singular value of the matrix (

∑n−e
j=0 a

∗
jaj)

1/2. Of
course in the scalar case where p = q = 1 the choice of σ is unique and by the above formula it
coincides with the Euclidean norm of the first column a of the original matrix. In that case it is
evident that

{An} ∼σ (0, G),

for any domain G satisfying the requirements of Definition 2.1.

2.1.3 When some of the entries of α vanish

The content of this subsection reduces to the following remark: the case of a nonnegative α can
be reduced to the case of a positive vector so that we are motivated to treat in detail the latter in
the next section. Let α be a d-dimensional vector of nonnegative integers and let N ⊂ {1, . . . , d}
be the set of indices such that j ∈ N if and only if αj = 0. Assume that N is nonempty, let t ≥ 1
be its cardinality and d+ = d− t. Then a simple calculation shows that the singular values of the
corresponding α-circulant matrix An = [a(r−α◦s) mod n]

n−e
r,s=0 are zero except for few of them given

by
√

n̂[0]σ where

n̂[0] =
∏

j∈N

nj, n[0] = (nj1 , . . . , njt), N = {j1, . . . , jt},
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and σ is any singular value of the matrix




n[0]−e∑

j=0

C∗
jCj




1/2

. (8)

Here Cj is a d+-level α+-circulant matrix with α+ = (αk1 , . . . , αk
d+

) and of partial sizes n[>

0] = (nk1 , . . . , nk
d+

), NC = {k1, . . . , kd+}, and whose expression is

Cj =
[
a(r−α◦s) modn

]n[>0]−e

r′,s′=0
,

where (r − α ◦ s)k = jk for αk = 0 and r′i = rki , s
′
i = ski , i = 1, . . . , d+. Taking into account

the above notation, for the α-Toeplitz An = [ar−α◦s]
n−e
r,s=0 the same computation shows that all the

singular values are zero except for few of them given by
√

n̂[0]σ where σ is any singular value of
the matrix 


n[0]−e∑

j=0

T ∗
j Tj




1/2

. (9)

Here Tj is a d+-level α+-Toeplitz matrix with α+ = (αk1 , . . . , αk
d+

) and of partial sizes n[>

0] = (nk1 , . . . , nk
d+

), NC = {k1, . . . , kd+}, and whose expression is

Tj =
[
a(r−α◦s)

]n[>0]−e

r′,s′=0
,

where (r − α ◦ s)k = jk for αk = 0 and r′i = rki , s
′
i = ski , i = 1, . . . , d+. Also in this case, since

most of the singular values are identically zero, we infer that

{An} ∼σ (0, G),

for any domain G satisfying the requirements of Definition 2.1.

3 Singular values of α-circulant matrices

Of course the aim of this paper is to give the general picture for any nonnegative vector α. Since the
notations can become quite heavy, for the sake of simplicity, we start with the case d = p = q = 1.
Several generalizations, including also the degenerate case in which α has some zero entries is
treated in Section 6 via the observations in Subsection 2.1.3, which imply that the general analysis
can be reduced to the case where all the entries of α are positive, that is αj > 0, j = 1, . . . , d.

In the following, we denote by (n, α) the greater common divisor of n and α. i.e., (n, α) =
gcd(n, α), by nα = n

(n,α) , by α̌ = α
(n,α) , and by It the identity matrix of order t.

If we denote by Cn the classical circulant matrix (i.e. with α = 1) and by Cn,α the α-circulant
matrix generated by its elements, for generic n and α one verifies immediately that

Cn,α = CnZn,α, (10)

where

Zn,α = [δr−αs]
n−1
r,s=0 , δk =

{
1 if k ≡ 0 (mod n),
0 otherwise.

(11)
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Lemma 3.1. Let n be any integer greater than 2 then

Zn,α =
[
Z̃n,α|Z̃n,α| · · · |Z̃n,α

]

︸ ︷︷ ︸
(n,α) times

, (12)

where Zn,α is the matrix defined in (11) and Z̃n,α ∈ Cn×nα is the submatrix of Zn,α obtained by
considering only its first nα columns, that is

Z̃n,α = Zn,α

[
Inα

0

]
. (13)

Proof. Setting Z̃
(0)
n,α = Z̃n,α and denoting by Z̃

(j)
n,α ∈ Cn×nα the (j+1)-th block-column of the matrix

Zn,α for j = 0, . . . , (n, α) − 1, we find

Zn,α =


Z̃(0)

n,α︸︷︷︸
n×nα

| Z̃(1)
n,α︸︷︷︸

n×nα

| · · · | Z̃((n,α)−1)
n,α︸ ︷︷ ︸
n×nα


 .

For r = 0, 1, . . . , n − 1 and s = 0, 1, . . . , nα − 1, we observe that

(Z̃(j)
n,α)r,s = (Zn,α)r,jnα+s,

and

(Zn,α)r,jnα+s = δr−α(jnα+s)

= δr−jαnα−αs

=
(a)

δr−αs

= (Z̃(0)
n,α)r,s = (Z̃n,α)r,s,

where nα = n
(n,α) and (a) is a consequence of the fact that α

(n,α) is an integer greater than zero

and so jαnα = j α
(n,α)n ≡ 0 (mod n). Thus we conclude that Z̃

(j)
n,α = Z̃

(0)
n,α = Z̃n,α for j =

0, . . . , (n, α)− 1.

Another useful fact is represented by the following equation

Z̃n,α = Z̃n,(n,α)Znα,α̌, (14)

where Znα,α̌ is the matrix defined in (11) of dimension nα × nα. Therefore

Znα,α̌ =
[
δ̂r−α̌s

]nα−1

r,s=0
, δ̂k =

{
1 if k ≡ 0 (mod nα),
0 otherwise.

(15)

Relation (14) will be used later.

Proof. (of relation (14).) For r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , nα − 1, we find

(Z̃n,α)r,s = δr−αs

= δ(r−αs) mod n,

7



and

(Z̃n,(n,α)Znα,α̌)r,s =

nα−1∑

l=0

(Z̃n,(n,α))r,l(Znα,α̌)l,s

=

nα−1∑

l=0

δr−(n,α)lδ̂l−α̌s

=
(a)

δr−(n,α)·(α̌s) mod nα

= δ
r−(n,α)·

“

α
(n,α)

s
”

mod nα

=
(b)

δr−(αs) mod n

= δ(r−(αs) mod n) mod n

= δ(r−αs) mod n,

where

(a) holds true since there exists a unique l ∈ {0, 1, . . . , nα − 1} such that l − α̌s ≡ 0 (mod nα),
that is, l ≡ α̌s (mod nα) and hence δr−(n,α)l = δr−(n,α)·(α̌s) mod nα

;

(b) is due to the following property: if we have three integer numbers ρ, θ, and γ, then

ρ(θ mod γ) = (ρθ) mod ργ.

Lemma 3.2. If α ≥ n then Zn,α = Zn,α◦ where α◦ is the unique integer which satisfies α = tn+α◦

with 0 ≤ α◦ < n and t ∈ N; Zn,α is defined in (11).

Remark 3.1. One can define α◦ by: α◦ := αmod n.

Proof. From (11) we know that

Zn,α = [δr−αc]
n−1
r,c=0 , δk =

{
1 if k ≡ 0 (mod n),
0 otherwise.

For r, s = 0, 1, . . . , n − 1, one has

(Zn,α)r,s = δr−αs = δr−(tn+α◦)s = δr−α◦s = (Zn,α◦)r,s,

since tns ≡ 0 (mod n). Whence Zn,α = Zn,α◦ .

The previous lemma tells us that, for α-circulant matrices, we can consider only the case where
0 ≤ α < n. In fact, if α ≥ n, from (10) we infer that

Cn,α = CnZn,α = CnZn,α◦ = Cn,α◦ .

Finally, it is worth noticing that the use of (5) and (10) implies that

Cn,α = FnDnF
∗
nZn,α. (16)

Formula (16) plays an important role for studying the singular values of the α-circulant matrices.
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3.1 A characterization of Zn,α in terms of Fourier matrices

Lemma 3.3. Let Fn be the Fourier matrix of order n defined in (6) and let Z̃n,α ∈ Cn×nα be the
matrix represented in (13). Then

FnZ̃n,α =
1√
(n, α)

In,αFnαZnα,α̌, (17)

where In,α ∈ Cn×nα and

In,α =




Inα

Inα

...

Inα








(n, α) times,

with Inα being the identity matrix of size nα and Znα,α̌ as in (15).

Remark 3.2. n = nα · (n, α).

Proof. (of Lemma 3.3.) Rewrite the Fourier matrix as

Fn =
1√
n

[
f0 f1 f2 · · · fn−1

]
,

where fk, k = 0, 1, 2, . . . , n − 1, is the k − th column of the Fourier matrix of order n:

fk =
[
e−

2πikj

n

]n−1

j=0
=




e−
2πik·0

n

e−
2πik·1

n

e−
2πik·2

n

...

e−
2πik·(n−1)

n



. (18)

From (14), we find

FnZ̃n,α = FnZ̃n,(n,α)Znα,α̌ =
1√
n

[
f0 f1·(n,α) f2·(n,α) · · · f(nα−1)·(n,α)

]
Znα,α̌ ∈ Cn×nα. (19)

Indeed, for k = 0, 1, . . . , nα − 1, j = 0, 1, . . . , n− 1, one has

(
FnZ̃n,(n,α)

)
j,k

=

n−1∑

l=0

(Fn)j,l(Z̃n,(n,α))l,k =

n−1∑

l=0

δl−(n,α)ke
− 2πijl

n , (20)

and, since 0 ≤ (n, α)k ≤ n − (n, α), there exists a unique lk ∈ {0, 1, 2, . . . , n − 1} such that
lk − (n, α)k ≡ 0 (mod n), so lk = (n, α)k. Consequently relation (20) implies

(
FnZ̃n,(n,α)

)
j,k

= δlk−(n,α)ke
−

2πijlk
n = e−

2πij(n,α)k
n =

(
f(n,α)k

)
j
,

for all 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ nα − 1, and hence

FnZ̃n,(n,α) =
1√
n

[
f0 f1·(n,α) f2·(n,α) · · · f(nα−1)·(n,α)

]
.
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For k = 0, 1, 2, . . . , nα − 1, we deduce

f(n,α)k =
[
e−

2πij(n,α)k
n

]n−1

j=0
=
[
e−

2πijk

nα

]n−1

j=0
,

and then, taking into account the equalities n = (n, α) n
(n,α) = (n, α)nα, we can write

f(n,α)k =




[
e−

2πikj

nα

]nα−1

j=0[
e−

2πikj

nα

]2nα−1

j=nα

...[
e−

2πikj

nα

](n,α)nα−1

j=((n,α)−1)nα




, (21)

where

[
e−

2πikj

nα

]nα−1

j=0
=




e−
2πik·0
nα

e−
2πik·1
nα

e−
2πik·2
nα

...

e−
2πik·(nα−1)

nα




. (22)

According to formula (18), one observes that the vector in (22) is the k − th column of the
Fourier matrix Fnα . Furthermore, for l = 0, 1, 2, . . . , (n, α) − 1, we find

[
e−

2πikj

nα

](l+1)nα−1

j=lnα

=




e−
2πiklnα

nα

e−
2πik(lnα+1)

nα

e−
2πik(lnα+2)

nα

...

e−
2πik(lnα+nα−1)

nα




= e−2πikl




e−
2πik·0
nα

e−
2πik·1
nα

e−
2πik·2
nα

...

e−
2πik·(nα−1)

nα




=
[
e−

2πikj

nα

]nα−1

j=0
. (23)

Using (23), the expression of the vector in (21) becomes

f(n,α)k =




[
e−

2πikj

nα

]nα−1

j=0[
e−

2πikj

nα

]nα−1

j=0
...[

e−
2πikj

nα

]nα−1

j=0








(n, α) times. (24)

Setting f̃r =
[
e−

2πirj

nα

]nα−1

j=0
, for 0 ≤ r ≤ nα − 1, the Fourier matrix Fnα of size nα takes the

form

Fnα =
1√
nα

[
f̃0 f̃1 f̃2 · · · f̃nα−1

]
. (25)
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From formula (22), the relation (24) can be expressed as

f(n,α)k =




f̃k
f̃k
...

f̃k








(n, α) times, k = 0, . . . , nα − 1,

and, as a consequence, formula (19) can be rewritten as

FnZ̃n,α = FnZ̃n,(n,α)Znα,α̌ =
1√
n




f̃0 f̃1 f̃2 · · · f̃nα−1

f̃0 f̃1 f̃2 · · · f̃nα−1
...

...
...

...
...

f̃0 f̃1 f̃2 · · · f̃nα−1


Znα,α̌

=
1√

(n, α)nα




√
nαFnα√
nαFnα

...√
nαFnα


Znα,α̌

=
1√
(n, α)




Fnα

Fnα

...

Fnα


Znα,α̌

=
1√
(n, α)




Inα

Inα

...

Inα


FnαZnα,α̌

=
1√
(n, α)

In,αFnαZnα,α̌.

In the subsequent subsection, we will exploit Lemma 3.3 in order to characterize the singular
values of the α-circulant matrices Cn,α. Here we conclude the subsection with the following simple
observations.

Remark 3.3. In Lemma 3.3, if (n, α) = α, we have nα = n
(n,α) = n

α and α̌ = α
(n,α) = 1; so the

matrix Znα,α̌ = Znα,1, appearing in (17), is the identity matrix of dimension n
α × n

α . The relation
(17) becomes

FnZ̃n,α =
1√
α
In,αFnα .

The latter equation with α = 2 and even n appear (and is crucial) in the multigrid literature;
see [21], equation (3.2), page 59 and, in slightly different form for the sine algebra of type I, see
[8], Section 2.1.
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Remark 3.4. If (n, α) = 1, Lemma 3.3 is trivial, because nα = n
(n,α) = n, α̌ = α

(n,α) = α, and so

Z̃n,α = Zn,α. The relation (17) becomes

FnZ̃n,α = FnZn,α = In,αFnαZnα,α̌

= FnZn,α,

since the matrix In,α reduces by its definition to the identity matrix of order n.

Remark 3.5. Lemma 3.3 is true also if, instead of Fn and Fnα , we put F ∗
n and F ∗

nα
, respectively,

because F ∗
n = Fn. In fact there is no transposition, but only conjugation.

3.2 Characterization of the singular values of the α-circulant matrices

Now we link the singular values of α-circulant matrices with the eigenvalues of its circulant coun-
terpart Cn. This is nontrivial given the multiplicative relation Cn,α = CnZn,α.

Having in mind the definition of the diagonal matrix Dn given in (6), we start by setting

D∗
nDn = diag(|Dn|2s,s; s = 0, 1, . . . , n− 1) = diag(ds; s = 0, 1, . . . , n− 1) =

(n,α)
⊕
l=1

∆l,

J(n,α) ⊗ Inα = [In,α|In,α| · · · |In,α]︸ ︷︷ ︸
(n,α) times

=




Inα Inα · · · Inα

Inα Inα · · · Inα

...
...

...
...

Inα Inα · · · Inα








(n, α) times, (26)

where

ds = |Dn|2s,s = (Dn)s,s · (Dn)s,s, Dn defined in (6), s = 0, 1, . . . , n− 1, (27)

∆l =




d(l−1)nα

d(l−1)nα+1

. . .

d(l−1)nα+nα−1


 ∈ Cnα×nα ; l = 1, 2, . . . , (n, α),

J(n,α) =




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1








(n, α) times. (28)

We now exploit relation (12) and Lemma 3.3, and we obtain that

FnZn,α = Fn

[
Z̃n,α|Z̃n,α| · · · |Z̃n,α

]

=
[
FnZ̃n,α|FnZ̃n,α| · · · |FnZ̃n,α

]

=
1√
(n, α)

[In,αFnαZnα,α̌|In,αFnαZnα,α̌| · · · |In,αFnαZnα,α̌]

=
1√
(n, α)

[In,α|In,α| · · · |In,α]




FnαZnα,α̌

FnαZnα,α̌

. . .

FnαZnα,α̌








(n, α) times

=
1√
(n, α)

[In,α|In,α| · · · |In,α]
(
I(n,α) ⊗ FnαZnα,α̌

)
, (29)
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where I(n,α) is the identity matrix of order (n, α). Furthermore,

C∗
n,αCn,α = (FnDnF

∗
nZn,α)

∗(FnDnF
∗
nZn,α)

= Z∗
n,αFnD

∗
nF

∗
nFnDnF

∗
nZn,α

= Z∗
n,αFnD

∗
nDnF

∗
nZn,α

= (F ∗
nZn,α)

∗D∗
nDnF

∗
nZn,α. (30)

From (29) and (26), we plainly infer the following relations

(F ∗
nZn,α)

∗ =

(
1√
(n, α)

[In,α|In,α| · · · |In,α]
(
I(n,α) ⊗ F ∗

nα
Znα,α̌

)
)∗

=
1√
(n, α)

(
I(n,α) ⊗ F ∗

nα
Znα,α̌

)∗ (
J(n,α) ⊗ Inα

)

=
1√
(n, α)

(
I(n,α) ⊗ Z∗

nα,α̌Fnα

) (
J(n,α) ⊗ Inα

)
,

F ∗
nZn,α =

1√
(n, α)

[In,α|In,α| · · · |In,α]
(
I(n,α) ⊗ F ∗

nα
Znα,α̌

)

=
1√
(n, α)

(
J(n,α) ⊗ Inα

) (
I(n,α) ⊗ F ∗

nα
Znα,α̌

)
.

Hence

C∗
n,αCn,α =

(
I(n,α) ⊗ Z∗

nα,α̌Fnα

)(
J(n,α) ⊗ Inα

) 1

(n, α)
D∗

nDn

(
J(n,α) ⊗ Inα

)(
I(n,α) ⊗ F ∗

nα
Znα,α̌

)
.

Now using the properties of the tensorial product

(I(n,α) ⊗ Z∗
nα,α̌Fnα)(I(n,α) ⊗ F ∗

nα
Znα,α̌)

= I(n,α)I(n,α) ⊗ Z∗
nα,α̌FnαF

∗
nα

Znα,α̌

= I(n,α)I(n,α) ⊗ Z∗
nα,α̌Znα,α̌

= I(n,α)I(n,α) ⊗ Inα = In,

and from a similarity argument, one deduces that the eigenvalues of C∗
n,αCn,α are the eigenvalues
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of the matrix

(
J(n,α) ⊗ Inα

) 1

(n, α)
D∗

nDn

(
J(n,α) ⊗ Inα

)

=
1

(n, α)




Inα Inα · · · Inα

Inα Inα · · · Inα

...
...

...
...

Inα Inα · · · Inα







∆1

∆2

. . .

∆(n,α)







Inα Inα · · · Inα

Inα Inα · · · Inα

...
...

...
...

Inα Inα · · · Inα




=
1

(n, α)




Inα Inα · · · Inα

Inα Inα · · · Inα

...
...

...
...

Inα Inα · · · Inα







∆1 ∆1 · · · ∆1

∆2 ∆2 · · · ∆2
...

...
...

...

∆(n,α) ∆(n,α) · · · ∆(n,α)




=
1

(n, α)




(n,α)∑
l=1

∆l

(n,α)∑
l=1

∆l · · ·
(n,α)∑
l=1

∆l

(n,α)∑
l=1

∆l

(n,α)∑
l=1

∆l · · ·
(n,α)∑
l=1

∆l

...
...

...
...

(n,α)∑
l=1

∆l

(n,α)∑
l=1

∆l · · ·
(n,α)∑
l=1

∆l




=
1

(n, α)




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
(n, α) times

⊗




(n,α)∑

l=1

∆l


 .

Therefore, from (28), we infer that

Eig(C∗
n,αCn,α) =

1

(n, α)
Eig


J(n,α) ⊗

(n,α)∑

l=1

∆l


 , (31)

where

1

(n, α)
Eig(J(n,α)) = {0, 1}. (32)

Here we must observe that 1
(n,α)J(n,α) is a matrix of rank 1, so it has all eigenvalues equal to

zero except one eigenvalue equal to 1. In fact note that the trace of a matrix is, by definition,
the sum of its eigenvalues: in our case the trace is (n, α) · 1

(n,α) = 1 and hence the only nonzero
eigenvalue is necessarily equal to 1. Moreover

(n,α)∑

l=1

∆l =

(n,α)∑

l=1

diag(d(l−1)nα+j; j = 0, 1, . . . , nα − 1)

= diag




(n,α)∑

l=1

d(l−1)nα+j ; j = 0, 1, . . . , nα − 1


 .
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Consequently, since
(n,α)∑
l=1

∆l is a diagonal matrix, we have

Eig




(n,α)∑

l=1

∆l


 =





(n,α)∑

l=1

d(l−1)nα+j; j = 0, 1, . . . , nα − 1



 , (33)

where dk are defined in (27).
Finally, by exploiting basic properties of the tensor product, we know that the eigenvalues of a

tensor product of two square matrices A⊗B are given by all possible products of eigenvalues of A
of order p and of eigenvalues of B of order q, that is λ(A⊗ B) = λj(A)λk(B) for j = 1, . . . , p and
k = 1, . . . , q. Therefore, by taking into consideration (31), (32), and (33), we find

λj(C
∗
n,αCn,α) =

(n,α)∑

l=1

d(l−1)nα+j , j = 0, 1, . . . , nα − 1, (34)

λj(C
∗
n,αCn,α) = 0, j = nα, . . . , n− 1. (35)

From (34), (35) and (1), one obtains that the singular values of an α-circulant matrix Cn,α are
given by

σj(Cn,α) =

√√√√
(n,α)∑

l=1

d(l−1)nα+j , j = 0, 1, . . . , nα − 1, (36)

σj(Cn,α) = 0, j = nα, . . . , n− 1,

where the values dk, k = 0, . . . , n− 1, are defined in (27).

3.3 Special cases and observations

In this subsection we consider some special cases and we furnish a further link between the eigen-
values of circulant matrices and the singular values of α-circulants. In the case where (n, α) = 1,
we have nα = n

(n,α) = n. Hence the formula (36) becomes

σj(Cn,α) =
√

dj , j = 0, 1, . . . , n− 1.

In other words the singular values of Cn,α coincide with those of Cn (this is expected since Zn,α

is a permutation matrix) and in particular with the moduli of the eigenvalues of Cn.
Concerning the eigenvalues of circulant matrices it should be observed that formula (6) can be

interpreted in function terms as the evaluation of a polynomial at the grid points given by the n-th
roots of the unity. This is a standard observation because the Fourier matrix is a special instance
of the classical Vandermonde matrices when the knots are exactly all the n-th roots of the unity.

Therefore, defining the polynomial p(t) =
∑n−1

k=0 ake
ikt, it is trivial to observe that the eigenval-

ues of Cn = FnDnF
∗
n are given by

λj(Cn) = p

(
2πj

n

)
, j = 0, . . . , n− 1.

The question that naturally arises is how to connect the expression in (36) of the nontrivial
singular values of Cn,α with the polynomial p. The answer is somehow intriguing and can be resumed
in the following formula which could be of interest in the multigrid community (see Section 5)

σj(Cn,α) =

√√√√
(n,α)−1∑

l=0

|p|2
(
xj + 2πl

(n, α)

)
, xj =

2πj

nα
, j = 0, 1, . . . , nα − 1. (37)
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In addition if α is fixed and a sequence of integers n is chosen so that (n, α) > 1 for n large
enough, then {Cn,α} ∼σ (0, G) for a proper set G. If the sequence of n is chosen so that n and α are
coprime for all n large enough, then the existence of the distribution is related to the smoothness
properties of a function f such that {ak} can be interpreted as the sequence of its Fourier coefficients
(see e.g. [20]). From the above reasoning it is clear that, if n is allowed to be vary among all the
positive integer numbers, then {Cn,α} does not possess a joint singular value distribution.

4 Singular values of α-Toeplitz matrices

For p = q = d = 1, we recall that the α-Toeplitz matrices of dimension n× n are defined as

Tn,α = [ar−αc]
n−1
r,c=0, (38)

where the quantities r − αs are not reduced modulus n. In analogy with the case of α = 1, the
elements aj are the Fourier coefficients of some function f in L1(Q), with Q = (−π, π), i.e., aj = f̃j
as in (4) with d = 1. If we denote by Tn the classical Toeplitz matrix generated by the function
f ∈ L1(Q), Tn = [ar−c]

n−1
r,c=0, aj = f̃j defined as in (4), and by Tn,α the α-Toeplitz matrix generated

by the same function, one verifies immediately for n and α generic that

Tn,α =
[
T̂n,α|Tn,α

]
=
[
TnẐn,α|Tn,α

]
, (39)

where T̂n,α ∈ Cn×µα , µα =
⌈
n
α

⌉
, is the matrix Tn,α defined in (38) by considering only the µα first

columns, Tn,α ∈ Cn×(n−µα) is the matrix Tn,α defined in (38) by considering only the n − µα last

columns, and Ẑn,α is the matrix defined in (11) by considering only the µα first columns.

Proof. (of relation (39).) For r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , µα − 1, one has

(T̂n,α)r,s = (Tn)r,αs,

(Ẑn,α)r,s = δr−αs,

and

(TnẐn,α)r,s =

n−1∑

l=0

(Tn)r,l(Ẑn,α)l,s

=

n−1∑

l=0

δl−αs(Tn)r,l

=
(a)

(Tn)r,αs

= (T̂n,α)r,s,

where (a) follows because there exists a unique l ∈ {0, 1, . . . , n− 1} such that l − αs ≡ 0 (mod n),
that is, l ≡ αs (mod n), and, since 0 ≤ αs ≤ n− 1, we obtain l = αs.

If we take the matrix T̂n,α of size n × (µα + 1), then relation (39) is no longer true. In reality,
looking at the (µα + 1)-th column of the α-Toeplitz we observe Fourier coefficients with indices
which are not present (less or equal to −n) in the Toeplitz matrix Tn. More precisely,

(Tn,α)0,µα = a0−αµα = a−αµα , and −αµα ≤ −n.

It follows that µα is the maximum number of columns for which relation (39) is true.
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4.1 Some preparatory results

We begin with some preliminary notations and definitions.

Definition 4.1. Suppose a sequence of matrices {An}n of size dn is given. We say that {{Bn,m}n :
m ≥ 0}, Bn,m of size dn, m ∈ N, is an approximating class of sequences (a.c.s.) for {An}n if, for
all sufficiently large m ∈ N, the following splitting holds:

An = Bn,m +Rn,m +Nn,m for all n > nm, (40)

with
Rank(Rn,m) ≤ dn c(m), ‖Nn,m‖ ≤ ω(m), (41)

where ‖ · ‖ is the spectral norm (largest singular value), nm, c(m) and ω(m) depend only on m and,
moreover,

lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0. (42)

Proposition 4.1. [14] Let {dn}n be an increasing sequence of natural numbers. Suppose a sequence
formed by matrices {An}n of size dn is given such that {{Bn,m}n : m ≥ 0}, m ∈ N̂ ⊂ N, #N̂ = ∞,
is an a.c.s. for {An}n in the sense of Definition 4.1. Suppose that {Bn,m}n ∼σ (θm, G) and that
θm converges in measure to the measurable function θ over G. Then necessarily

{An}n ∼σ (θ,G), (43)

(see Definition 2.1).

Proposition 4.2. [14, 17] If {An}n and {Bn}n are two sequences of matrices of strictly increasing
dimension, such that {An}n ∼σ (θ,G) and {Bn}n ∼σ (0, G), then

{An +Bn}n ∼σ (θ,G).

Proposition 4.3. [14] Let f, g ∈ L1(Qd), Q = (−π, π), and let {Tn(f)}n and {Tn(g)}n be the two
sequences of Toeplitz matrices generated by f and g, respectively. The following distribution result
is true

{Tn(f)Tn(g)}n ∼σ (fg,Qd).

Lemma 4.1. Let f be a measurable complex-valued function on a set K, and consider the mea-
surable function

√
|f | : K → R+. Let {An,m}, with An,m ∈ Cdn×d′n , d′n ≤ dn, be a sequence of

matrices of strictly increasing dimension: d′n < d′n+1 and dn ≤ dn+1. If the sequence of matrices

{A∗
n,mAn,m}, with A∗

n,mAn,m ∈ Cd′n×d′n and d′n < d′n+1, is distributed in the singular value sense as
the function f over a proper set G ⊂ K in the sense of Definition 2.1, then the sequence {An,m} is
distributed in the singular value sense as the function

√
|f | over the same G.

Proof. From the singular value decomposition (SV D), we can write An,m as

An,m = UΣV ∗ = U




σ1
σ2

. . .

σd′n
0



V ∗,

17



with U and V unitary matrices U ∈ Cdn×dn , V ∈ Cd′n×d′n and Σ ∈ Rdn×d′n , σj ≥ 0; by multiplying
A∗

n,mAn,m we obtain:

A∗
n,mAn,m = V ΣTU∗UΣV ∗ = V ΣTΣV ∗ = V Σ(2)V ∗

= V




σ2
1

σ2
2

. . .

σ2
d′n


V ∗, (44)

with V unitary matrix V ∈ Cd′n×d′n and Σ(2) ∈ Rd′n×d′n , σ2
j ≥ 0; we observe that (44) is an SV D for

A∗
n,mAn,m, that is, the singular values σj(A

∗
n,mAn,m) of A∗

n,mAn,m are the square of singular values

σj(An,m) of An,m. Since {A∗
n,mAn,m} ∼σ (f,G), by definition it hold that for every F ∈ C0(R+

0 )

lim
n→∞

1

d′n

d′n∑

i=1

F
(
σi(A

∗
n,mAn,m)

)
=

1

µ(G)

∫

G
F (|f(t)|) dt

=
1

µ(G)

∫

G
H
(√

|f(t)|
)
dt, (45)

where H is such that F = H ◦ √·; but, owing to σj(An,m) =
√

σj(A∗
n,mAn,m) we obtain

lim
n→∞

1

d′n

d′n∑

i=1

F
(
σi(A

∗
n,mAn,m)

)
= lim

n→∞

1

d′n

d′n∑

i=1

F
(
σ2
i (An,m)

)

= lim
n→∞

1

d′n

d′n∑

i=1

H (σi(An,m)) . (46)

From (45) and (46) we obtain

lim
n→∞

1

d′n

d′n∑

i=1

H (σi(An,m)) =
1

µ(G)

∫

G
H
(√

|f(t)|
)
dt, (47)

for every H ∈ C0(R+
0 ), so {An,m} ∼σ (

√
|f(t)|, G).

Lemma 4.2. Let {An}n and {Qn}n be two sequences of matrices of strictly increasing dimension
(An, Qn ∈ Cdn×dn , dn < dn+1), where Qn are all unitary matrices (QnQ

∗
n = I). If {An}n ∼σ (0, G)

then {AnQn}n ∼σ (0, G) and {QnAn}n ∼σ (0, G).

Proof. Putting Bn = AnQn, assuming that

An = UnΣnVn,

is an SV D for An, and taking into account that the product of two unitary matrices is still a
unitary matrix, we deduce that the writing

Bn = AnQn = UnΣnVnQn = UnΣnV̂n,

is an SV D for Bn. The latter implies that An and Bn have exactly the same singular values, so
that the two sequences {An}n and {Bn}n are distributed in the same way.
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Lemma 4.3. Let {An}n and {Qn}n be two sequences of matrices of strictly increasing dimension
(An, Qn ∈ Cdn×dn , dn < dn+1). If {An}n ∼σ (0, G) and ‖Qn‖ ≤ M for some nonnegative constant
M independent of n, then {AnQn}n ∼σ (0, G) and {QnAn}n ∼σ (0, G).

Proof. Since {An}n ∼σ (0, G), then {0n}n (sequence of zero matrices) is an a.c.s. for {An}n; this
means (by Definition (4.1)) that we can write, for every m sufficiently large, m ∈ N

An = 0n +Rn,m +Nn,m, ∀n > nm, (48)

with

Rank(Rn,m) ≤ dnc(m), ‖Nn,m‖ ≤ ω(m),

where nm ≥ 0, c(m) and ω(m) depend only on m and, moreover

lim
m→∞

c(m) = 0, lim
m→∞

ω(m) = 0.

Now consider the matrix AnQn; from (48) we obtain

AnQn = 0n +Rn,mQn +Nn,mQn, ∀n > nm,

with

Rank(Rn,mQn) ≤ min{Rank(Rn,m),Rank(Qn)} ≤ Rank(Rn,m) ≤ dnc(m),

‖Nn,mQn‖ ≤ ‖Nn,m‖‖Qn‖ ≤ Mω(m),

where

lim
m→∞

c(m) = 0, lim
m→∞

Mω(m) = 0,

then {0n}n is an a.c.s. for the sequence {AnQn}n and, by Proposition 4.1, {AnQn}n ∼σ (0, G).

4.2 Singular value distribution for the α-Toeplitz sequences

As stated in formula (39), the matrix Tn,α can be written as

Tn,α =
[
TnẐn,α|Tn,α

]

=
[
TnẐn,α 0

]
+
[
0 Tn,α

]
. (49)

To find the distribution in the singular value sense of the sequence {Tn,α}n, the idea is to

study separately the distribution of the two sequences {[TnẐn,α|0]}n and {[0|Tn,α]}n, to prove
{[0|Tn,α]}n ∼ (0, G), and then apply Proposition 4.2.

4.2.1 Singular value distribution for the sequence {[TnẐn,α|0]}n
Since TnẐn,α ∈ Cn×µα and [TnẐn,α|0] ∈ Cn×n, the matrix [TnẐn,α|0] has n−µα singular values equal

to zero and the remaining µα equal to those of TnẐn,α; to study the distribution in the singular value
sense of this sequence of non-square matrices, we use Lemma 4.1: consider the α-Toeplitz matrix
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“truncated” T̂n,α = Tn(f)Ẑn,α, where the elements of the Toeplitz matrix Tn(f) = [ar−c]
n−1
r,c=0 are

the Fourier coefficients of a function f in L1(Q), Q = (−π, π), then we have

T̂ ∗
n,αT̂n,α = (Tn(f)Ẑn,α)

∗Tn(f)Ẑn,α = Ẑ∗
n,αTn(f)

∗Tn(f)Ẑn,α

= Ẑ∗
n,αTn(f)Tn(f)Ẑn,α. (50)

We provide in detail the analysis in the case where f ∈ L2(Q). The general setting in which
f ∈ L1(Q) can be obtained by approximation and density arguments as done in [14]. From
Proposition 4.3 if f ∈ L2(Q) ⊂ L1(Q) (that is |f |2 ∈ L1(Q)), then {Tn(f)Tn(f)}n ∼σ (|f |2, Q).
Consequently, for every m sufficiently large, m ∈ N, the use of Proposition 4.1 implies

Tn(f)Tn(f) = Tn(|f |2) +Rn,m +Nn,m, ∀n > nm,

with

Rank(Rn,m) ≤ nc(m), ‖Nn,m‖ ≤ ω(m),

where nm ≥ 0, c(m) and ω(m) depend only on m and, moreover

lim
m→∞

c(m) = 0, lim
m→∞

ω(m) = 0.

Therefore (50) becomes

T̂ ∗
n,αT̂n,α = Ẑ∗

n,α(Tn(|f |2) +Rn,m +Nn,m)Ẑn,α

= Ẑ∗
n,αTn(|f |2)Ẑn,α + Ẑ∗

n,αRn,mẐn,α + Ẑ∗
n,αNn,mẐn,α

= Ẑ∗
n,αTn(|f |2)Ẑn,α + R̂n,m,α + N̂n,m,α, (51)

with

Rank(R̂n,m,α) ≤ min{Rank(Z̆n,α),Rank(Rn,m)} ≤ Rank(Rn,m) ≤ nc(m), (52)

‖N̂n,m,α‖ ≤ 2‖Z̆n,α‖‖Nn,m‖ ≤ 2ω(m), (53)

and

lim
m→∞

c(m) = 0, lim
m→∞

2ω(m) = 0,

where in (52) and (53), Z̆n,α = [Ẑn,α|0] ∈ Cn×n. In other words Z̆n,α is the matrix Ẑn,α supple-
mented by an appropriate number of zero columns in order to make it square. Furthermore, it is
worth noticing that ‖Ẑn,α‖ = ‖Ẑ∗

n,α‖ = 1, because Ẑn,α is a submatrix of the identity: we have
used the latter relations in (53).

Now, consider the matrix Ẑ∗
n,αTn(|f |2)Ẑn,α ∈ Cµα×µα , with µα =

⌈
n
α

⌉
, f ∈ L2(Q) ⊂ L1(Q) (so

|f |2 ∈ L1(Q)). From (39), setting Tn = Tn(|f |2) = [ãr−c]
n−1
r,c=0, with ãj being the Fourier coefficients

of |f |2, and setting Tn,α the α-Toeplitz generated by the same function |f |2, it is immediate to
observe

TnẐn,α = T̂n,α ∈ Cn×µα , with (T̂n,α)r,c = ãr−αc, (54)
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for r = 0, . . . , n − 1 and c = 0, . . . , µα − 1. If we compute Ẑ∗
n,αT̂n,α ∈ Cµα×µα , where Z∗

n,α =

[δc−αr]
n−1
r,c=0 (δk defined as in (11)) and Ẑ∗

n,α ∈ Cµα×n is the submatrix of Z∗
n,α obtained by consid-

ering only the µα first rows, for r, c = 0, . . . , µα − 1, we obtain

(Ẑ∗
n,αTn(|f |2)Ẑn,α)r,c = (Ẑ∗

n,αT̂n,α)r,c

=

n−1∑

ℓ=0

(Ẑ∗
n,α)r,ℓ(T̂n,α)ℓ,c

=
(a)

(T̂n,α)αr,c

=
from (54)

âαr−αc,

where (a) follows from the existence of a unique ℓ ∈ {0, 1, . . . , n− 1} such that ℓ−αr ≡ 0 (mod n),
that is, ℓ ≡ αr (mod n), and, since 0 ≤ αr ≤ n− 1, we find ℓ = αr.

Therefore

Ẑ∗
n,αTn(|f |2)Ẑn,α = [ãαr−αc]

µα−1
r,c=0

= Tµα(|̂f |(2)),

where |̂f |(2) ∈ L1(Q) is given by

|̂f |(2)(x) =
1

α

α−1∑

j=0

|f |2
(
x+ 2πj

α

)
, (55)

|f |2(x) =
+∞∑

k=−∞

ãke
ikx. (56)

Proof. (of relation (55).) We denote by aj the Fourier coefficients of |̂f |(2). We want to show that
for r, c = 0, . . . , µα − 1, ar−c = ãαr−αc, where ãk are the Fourier coefficients of |f |2. From (4), (55)
and (56), we have

ar−c =
1

2π

∫ π

−π

1

α

α−1∑

j=0

+∞∑

k=−∞

ãke
ik(x+2πj

α )e−i(r−c)xdx

=
1

2πα

∫ π

−π

+∞∑

k=−∞

ãk




α−1∑

j=0

e
i2πkj

α


 e

ikx
α e−i(r−c)xdx.

Some remarks are in order:

- if k is a multiple of α, k = αt for some value of t, then we have that
α−1∑
j=0

e
i2πkj

α =
α−1∑
j=0

e
i2παtj

α =

α−1∑
j=0

ei2πtj =
α−1∑
j=0

1 = α.

- if k is not a multiple of α, then e
i2πk
α 6= 1 and therefore

α−1∑
j=0

e
i2πkj

α =
α−1∑
j=0

(
e

i2πk
α

)j
is a finite

geometric series whose sum is given by

α−1∑

j=0

(
e

i2πk
α

)j
=

1− e
i2πkα

α

1− e
i2πk
α

=
1− ei2πk

1− e
i2πk
α

=
1− 1

1− e
i2πk
α

= 0.
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Finally, taking into account the latter statements and recalling that 1
2π

∫ π
−π e

iℓxdx =
{

1 if ℓ = 0
0 otherwise ,

we find

ar−c =
1

2πα

∫ π

−π

+∞∑

t=−∞

ãαtαe
iαtx
α e−i(r−c)xdx

=
+∞∑

t=−∞

ãαt
1

2π

∫ π

−π
eix(t−(r−c))dx

= ãα(r−c).

In summary, from (51) we have

T̂ ∗
n,αT̂n,α = Tµα(|̂f |(2)) + R̂n,m,α + N̂n,m,α,

with {Tµα(|̂f |(2))}n ∼σ (|̂f |(2), Q). We recall that, owing to (55), the relation |f |2 ∈ L1(Q) implies

|̂f |(2) ∈ L1(Q). Consequently Proposition 4.1 implies that {T̂ ∗
n,αT̂n,α}n ∼σ (|̂f |(2), Q). Clearly

|̂f |(2) ∈ L1(Q) is equivalent to write

√
|̂f |(2) ∈ L2(Q): therefore, from Lemma 4.1, we infer

{T̂n,α}n ∼σ (

√
|̂f |(2), Q).

Now, as mentioned at the beginning of this section, by Definition 2.1, we have

lim
n→∞

1

n

n∑

j=1

F
(
σj([T̂n,α|0])

)
= lim

n→∞

1

n

µα∑

j=1

F
(
σj([T̂n,α|0])

)
+ lim

n→∞

1

n

n∑

j=µα+1

F (0)

= lim
n→∞

µα

n

µα∑

j=1

F
(
σj([T̂n,α|0])

)

µα
+ lim

n→∞

n− µα

n
F (0)

=
1

α

1

2π

∫ π

−π
F

(√
|̂f |(2)(x)

)
dx+

(
1− 1

α

)
F (0),

which results to be equivalent to the following distribution formula

{[TnẐn,α|0]}n ∼σ (θ,Q× [0, 1]), (57)

where

θ(x, t) =

{ √
|̂f |(2)(x) for t ∈

[
0, 1

α

]
,

0 for t ∈
(
1
α , 1
]
.

(58)

4.2.2 Singular value distribution for the sequence {[0|Tn,α]}n
In perfect analogy with the case of the matrix [TnẐn,α|0], we can observe that Tn,α ∈ Cn×(n−µα)

and [0|Tn,α] ∈ Cn×n. Therefore the matrix [0|Tn,α] has µα singular values equal to zero and the
remaining n − µα equal to those of Tn,α. However, in this case we have additional difficulties

with respect to the matrix T̂n,α = TnẐn,α, because it is not always true that Tn,α can be written
as TnZn,α, where Zn,α is the matrix obtained by considering the n − µα last columns of Zn,α.
Indeed, in Tn,α there are Fourier coefficients with index, in modulus, greater than n: the Toeplitz
matrix Tn = [ar−c]

n−1
r,c=0 has coefficients aj with j ranging from 1− n to n− 1, while the α-Toeplitz
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matrix Tn,α = [ar−αc]
n−1
r,c=0 has an−1 as coefficient of maximum index and a−α(n−1) as coefficient of

minimum index, and, if α ≥ 2, we have −α(n− 1) < −(n− 1).
Even if we take the Toeplitz matrix Tn, which has as its first column the first column of

Tn,α and the other generated according to the rule (Tn)j,k = aj−k, it is not always true that
we can write Tn,α = TnP for a suitable submatrix P of a permutation matrix, indeed, if the
matrix Tn = [βr−c]

n−1
r,c=0 has as first column the first column of Tn,α, we find that β0 = (Tn,α)0,0 =

(Tn,α)0,µα = a−αµα . As a consequence, Tn has β−(n−1) = a−(n−1)−αµα
as coefficient of minimum

index, while Tn,α has a−α(n−1) as coefficient of minimum index. Therefore

−(n− 1)α − (−(n− 1)− αµα) = (1− α)(n − 1) + αµα n ≤ αµα = α
⌈n
α

⌉
≤ (n+ α− 1)

≤ (1− α)(n − 1) + (n+ α− 1)

= (1− α)(n − 1) + (n− 1) + α

= (n− 1)(1 − α+ 1) + α

= (2− α)(n − 1) + α < 0 for α > 2 and n > 4.

Thus, if α > 2 and n > 4 we have −(n− 1)α < −(n− 1)−αµα and the coefficient of minimum
index a−α(n−1) of Tn,α is not contained in the matrix Tn that has a−(n−1)−αµα

as coefficient of
minimum index.

Then we proceed in another way: in the first column of Tn,α ∈ Cn×(n−µα) (and consequently
throughout the matrix) there are only coefficients with index < 0, indeed coefficient with the largest
index of Tn,α is (Tn,α)n−1,0 = (Tn,α)n−1,µα = an−1−αµα and n − 1 − αµα ≤ n − 1 − n < 0 and the
coefficient with smallest index is (Tn,α)0,n−µα−1 = (Tn,α)0,n−µα−1+µα = (Tn,α)0,n−1 = a−α(n−1).

Consider therefore a Toeplitz matrix Tdn,α
of dimension dn,α with dn,α > α(n−1)

2 +1, defined in this
way:

Tdn,α
=




a−dn,α+1 a−dn,α
a−dn,α−1 · · · a−2dn,α+2

a−dn,α+2 a−dn,α+1
. . .

. . . a−2dn,α+3
...

. . .
. . .

. . .
...

a−1 a−2
. . .

. . . a−dn,α

a0 a−1 a−2 · · · a−dn,α+1




=
[
ar−c−dn,α+1

]dn,α−1

r,c=0
. (59)

Since the coefficient with smallest index is a−2dn,α+2, we find

−2dn,α + 2 < −2

(
α(n − 1)

2
+ 1

)
+ 2 = −α(n− 1)− 2 + 2 = −α(n − 1).

As a consequence, we obtain that all the coefficients of Tn,α are “contained” in the matrix Tdn,α
.

In particular, if

dn,α > (α− 1)(n − 1) + 2,

(this condition ensures dn,α > α(n−1)
2 +1, that all the subsequent inequalities are correct, and that

the size of all the matrices involved are non-negative), then it can be shown that

Tn,α = [01|In|02]Tdn,α
Zdn,α,α, (60)

where Zdn,α,α ∈ Cdn,α×(n−µα) is the matrix defined in (11), of dimension dn,α× dn,α, by considering

only the n− µα first columns and [01|In|02] ∈ Cn×dn,α is a block matrix with 01 ∈ Cn×(dn,α−αµα−1)

and 02 ∈ Cn×(αµα−n+1).
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Proof. (of relation (60).) First we observe that:

for r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , n− µα − 1 we have

(Tn,α)r,s = (Tn,α)r,s+µα = ar−αs−αµα ; (61)

for r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , dn,α − 1 we have

([01|In|02])r,s =
{

1 if s = r + dn,α − αµα − 1,
0 otherwise;

(62)

for r, s = 0, 1, . . . , dn,α − 1 we have

(Tdn,α
)r,s = ar−s−dn,α+1;

for r = 0, 1, . . . , dn,α − 1 and s = 0, 1, . . . , n− µα − 1, we have

(Zdn,α,α)r,s = δr−αs.

Since Tdn,α
Zdn,α,α ∈ Cdn,α×(n−µα), for r = 0, 1, . . . , dn,α− 1 and s = 0, 1, . . . , n−µα− 1, it holds

(Tdn,α
Zdn,α,α)r,s =

dn,α−1∑

l=0

(Tdn,α
)r,l(Zdn,α,α)l,s

=

dn,α−1∑

l=0

δl−αsar−l−dn,α+1

=
(a)

ar−αs−dn,α+1, (63)

where (a) follows from the existence of a unique l ∈ {0, 1, . . . , dn,α − 1} such that l − αs ≡
0 (mod dn,α), that is, l ≡ αs (mod dn,α), and, since 0 ≤ αs ≤ dn,α − 1, we have l = αs. Since
[01|In|02]Tdn,α

Zdn,α,α ∈ Cn×(n−µα), for r = 0, 1, . . . , n− 1 and s = 0, 1, . . . , n− µα − 1, we find

([01|In|02]Tdn,α
Zdn,α,α)r,s =

dn,α−1∑

l=0

([01|In|02])r,l(Tdn,α
Zdn,α,α)l,s

=
(d)

ar+dn,α−αµα−1−αs−dn,α+1

= ar−αµα−αs

=
from(61)

(Tn,α)r,s,

where (d) follows from (63), (Tdn,α
Zdn,α,α)l,s = al−αs−dn,α+1, and from the following fact: using

(62), we find ([01|In|02])r,l = 1 if and only if l = r + dn,α − αµα − 1.

We can now observe immediately that the matrix Tdn,α
defined in (59) can be written as

Tdn,α
= JHdn,α

, (64)

where J is the “flip” matrix of dimension dn,α × dn,α:

J =




1
1

···

1


 ,
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and Hdn,α
is the Hankel matrix of dimension dn,α × dn,α:

Hdn,α
=




a0 a−1 a−2 · · · a−dn,α+1

a−1 a−2 ··· ··· a−dn,α

... ··· ··· ··· ...

a−dn,α+2 a−dn,α+1 ··· ··· a−2dn,α+3

a−dn,α+1 a−dn,α
a−dn,α−1 · · · a−2dn,α+2



.

If f(x) ∈ L1(Q), Q = (−π, π), is the generating function of the Toeplitz matrix Tn = Tn(f) =
[ar−c]

n−1
r,c=0 in (39), where the k-th Fourier coefficient of f is ak, then f(−x) ∈ L1(Q) is the generating

function of the Hankel matrix Hdn,α
= [a−r−c]

dn,α−1
r,c=0 ; by invoking Theorem 6, page 161 of [7],

the sequence of matrices {Hdn,α
} is distributed in the singular value sense as the zero function:

{Hdn,α
} ∼σ (0, Q). From Lemma 4.2, by (64), since J is a unitary matrix, we have {Tdn,α

} ∼σ (0, Q)
as well.

Consider the decomposition in (60):

Tn,α = [01|In|02]Tdn,α
Zdn,α,α = Qdn,α

Tdn,α
Zdn,α,α.

If we complete the matrices Qdn,α
∈ Cn×dn,α and Zdn,α,α ∈ Cdn,α×(n−µα) by adding an appro-

priate number of zero rows and columns, respectively, in order to make it square

Qdn,α
=

[
Qdn,α

0

]
∈ Cdn,α×dn,α ,

Zdn,α,α =
[
Zdn,α,α 0

]
∈ Cdn,α×dn,α ,

then it is immediate to note that

Qdn,α
Tdn,α

Zdn,α,α =

[ Tn,α 0

0 0

]
= Tn,α ∈ Cdn,α×dn,α .

From Lemma 4.3, since ‖Qdn,α
‖ = ‖Zdn,α,α‖ = 1 (indeed they are both “incomplete” permuta-

tion matrices), and since {Tdn,α
} ∼σ (0, Q), we infer that {Tn,α} ∼σ (0, Q).

Recall that Tn,α ∈ Cdn,α×dn,α with dn,α > (α − 1)(n − 1) + 2; then we can always choose dn,α
such that αn = dn,α > (α− 1)(n − 1) + 2 (if n, α ≥ 2). Now, since {Tn,α} ∼σ (0, Q), it holds that
the sequence {Tn,α} is weakly clustered at zero in the singular value sense, i.e., ∀ǫ > 0,

♯{j : σj(Tn,α) > ǫ} = o(dn,α) = o(αn) = o(n). (65)

The matrix Tn,α is a block matrix that can be written as

Tn,α =

[ Tn,α 0

0 0

]
=

[
[Tn,α|0] 0

0 0

]
,

where Tn,α ∈ Cn×(n−µα) and [Tn,α|0] ∈ Cn×n. By the singular value decomposition we obtain

Tn,α =

[
[Tn,α|0] 0

0 0

]
=

[
U1Σ1V

∗
1 0

0 U20V
∗
2

]
=

[
U1 0

0 U2

] [
Σ1 0

0 0

] [
V1 0

0 V2

]∗
,

that is, the singular values of Tn,α that are different from zero are the singular values of [Tn,α|0] ∈
Cn×n. Thus (65) can be written as follows: ∀ǫ > 0,

♯{j : σj([Tn,α|0]) > ǫ} = o(dn,α) = o(αn) = o(n).
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The latter relation means that the sequence {[Tn,α|0]}n is weakly clustered at zero in the singular
value sense, and hence {[Tn,α|0]}n ∼σ (0, Q). If we now consider the matrix

Ĝ =

[
0 In−µα

0 0

]
∈ Cn×n,

where In−µα is the identity matrix of dimension (n−µα)× (n−µα), then [Tn,α|0]Ĝ = [0|Tn,α], and
since ‖Ĝ‖ = 1 and {[Tn,α|0]}n ∼σ (0, Q), from Lemma 4.3 we find

{[0|Tn,α]}n ∼σ (0, Q). (66)

In conclusion: from the relations (49), (57) and (66), using Proposition 4.2 with G = Q× [0, 1],
we obtain that

{Tn,α}n ∼σ (θ,Q× [0, 1]),

where θ is defined in (58). Notice that for α = 1 the symbol θ(x, t) coincides with |f |(x) on the
extended domain Q× [0, 1]. Hence the Szegö-Tilli-Tyrtyshnikov-Zamarashkin result is found as a
particular case. Indeed θ(x, t) = |f |(x) does not depend on t and therefore this additional variable
can be suppressed i.e. {Tn,α}n ∼σ (f,Q) with Tn,α = Tn(f). The fact that the distribution formula
is not unique should not surprise since this phenomenon is inherent to the measure theory because
any measure-preserving exchange function is a distribution function if one representative of the
class is.

5 Some remarks on multigrid methods

In the design of multigrid methods for large positive definite linear systems one of the key points
is to maintain the structure (if any) of the original matrix in the lower levels. This means that
at every recursion level the new projected linear system should retain the main properties of the
original matrix (e.g. bandedness, the same level of conditioning, the same algebra/Toeplitz/graph
structure etc.). Here for the sake of simplicity the example that has to be considered is the one-level
circulant case. Following [1, 21], if An = Cn is a positive circulant matrix of size n with n power of
2, then the projected matrix Ak with k = n/2 is defined as

Ak = Z̃T
n,2P

∗
nAnPnZ̃n,2, (67)

where Pn is an additional circulant matrix. It is worth noticing that the structure is kept since for
every circulant Pn the matrix Ak is a circulant matrix of size k = n/2. The features of the specific
Pn have to be designed in such a way that the convergence speed of the related multigrid is as high
as possible (see [9, 1] for a general strategy). We observe that the eigenvalues of Ak are given by

1

2

1∑

l=0

g

(
xj + 2πl

2

)
, xj =

2πj

k
, j = 0, 1, . . . , k − 1, k = n/2, (68)

where g is the polynomial associated with the circulant matrix P ∗
nAnPn in the sense of Subsection

3.3. Therefore the singular values of (P ∗
nAnPn)

1/2Z̃n,2 are given by

1√
2

√√√√
1∑

l=0

g

(
xj + 2πl

2

)
, xj =

2πj

k
, j = 0, 1, . . . , k − 1, k = n/2. (69)
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Notice that the latter formula is a special instance of (37) for |p|2 = g (g is necessarily non-
negative since it can be written a |q|2f where q is the polynomial associated with Pn and f the
nonnegative polynomial associated with An), for α = 2 and n even number so that (n, 2) = 2.
Therefore, according to (37), the numbers in (69) identify the nontrivial singular values of the 2-
circulant matrix (P ∗

nAnPn)
1/2Zn,2 up to a scaling factor. In other words α-circulant matrices arise

naturally in the design of fast multigrid solvers for circulant linear systems and, along the same
lines, α-Toeplitz matrices arise naturally in the design of fast multigrid solvers for Toeplitz linear
systems; see [9, 1, 15].

Conversely, we now can see clearly that formula (37) furnishes a wide generalization of the
spectral analysis of the projected matrices, by allowing a higher degree of freedom: we can choose
n divisible by α with α 6= 2, we can choose n not divisible by α. Such a degree of freedom is not
just academic, but could be exploited for devising optimally convergent multigrid solvers also in
critical cases emphasized e.g. in [1, 15]. In particular, if x0 is an isolated zero of f (the nonnegative
polynomial related to An = Cn) and also π+x0 is a zero for the same function, then due to special
symmetries, the associated multigrid (or even two-grid) method cannot be optimal. In other words,
for reaching a preassigned accuracy, we cannot expect a number of iterations independent of the
order n. However these pathological symmetries are due to the choice of α = 2, so that a choice of
a projector as PnZ̃n,α for a different α 6= 2 and a different n could completely overcome the latter
drawback.

6 Generalizations

First of all we observe that the requirement that the symbol f is square integrable can be removed.
In [14] it is proven that the singular value distribution of {Tn(f)Tn(g)}n is given by h = fg with
f, g being just Lebesgue integrable and with h that is only measurable and therefore may fail to
be Lebesgue integrable. This fact is sufficient for extending the proof of the relation {Tn,α}n ∼σ

(θ,Q× [0, 1]) to the case where θ(x, t) is defined as in (58) with the original symbol f ∈ L1.
Now we consider the general multilevel case. When α is a positive vector, we have

{Tn,α}n ∼σ (θ,Qd × [0, 1]d), (70)

where

θ(x, t) =

{ √
|̂f |(2)(x) for t ∈

[
0, 1

α

]
,

0 for t ∈
(
1
α , e
]
,

(71)

with

|̂f |(2)(x) =
1

α̂

α−e∑

j=0

|f |2
(
x+ 2πj

α

)
, (72)

and where all the arguments are modulus 2π and all the operations are intended componentwise
that is t ∈

[
0, 1

α

]
means that tk ∈ [0, 1/αk ], k = 1, . . . , d, t ∈

(
1
α , e
]
means that tk ∈ (1/αk, 1], k =

1, . . . , d, the writing x+2πj
α defines the d-dimensional vector whose k-th component is (xj+2πjk)/αk,

k = 1, . . . , d, and α̂ = α1α2 · · ·αd.

6.0.3 Examples of α-circulant and α-Toeplitz matrices when some of the entries of α
vanish

We start this subsection with a brief digression on multilevel matrices. A d-level matrix A of
dimension n̂ × n̂ with n = (n1, n2, . . . , nd) and n̂ = n1n2 · · ·nd can be viewed as a matrix of
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dimension n1 × n1 in which each element is a block of dimension n2n3 · · · nd × n2n3 · · ·nd; in turn,
each block of dimension n2n3 · · ·nd × n2n3 · · ·nd can be viewed as a matrix of dimension n2 × n2

in which each element is a block of dimension n3n4 · · ·nd × n3n4 · · ·nd, and so on. So we can say
that n1 is the most “outer” dimension of the matrix A and nd is the most “inner” dimension. If
we multiply by an appropriate permutation matrix P the d-level matrix A, we can exchange the
“order of dimensions” of A, namely P TAP becomes a matrix again of dimension n̂ × n̂ but with
n = (np(1), np(2), . . . , np(d)) and n̂ = np(1)np(2) · · ·np(d) = n1n2 · · ·nd (where p is a permutation of d
elements) and np(1) is the most “outer” dimension of the matrix A and np(d) is the most “inner”
dimension.

This trick helps us to understand what happens to the singular values of α-circulant and α-
Toeplitz d-level matrices, especially when some of the entries of the vector α are zero; indeed,
as we observed in Subsection 2.1.2, if α = 0, the d-level α-circulant (or α-Toeplitz) matrix A is
a block matrix with constant blocks on each row, so if we order the vector α (which has some
components equal to zero) so that the components equal to zero are in the top positions, α =
(0, . . . , 0, αk, . . . , αd), the matrix P TAP (where P is the permutation matrix associated with p)
becomes a block matrix with constant blocks on each row and with blocks of dimension nk · · ·nd×
nk · · ·nd; with this “new” structure, formulas (8) and (9) are even more intuitively understandable,
as we shall see later in the examples.

Lemma 6.1. Let A be a 2-level Toeplitz matrix of dimension n̂× n̂ with n = (n1, n2) and n̂ = n1n2,

A =
[[
a(j1−k1,j2−k2)

]n2−1

j2,k2=0

]n1−1

j1,k1=0
.

There exists a permutation matrix P such that

P TAP =
[[
a(j1−k1,j2−k2)

]n1−1

j1,k1=0

]n2−1

j2,k2=0
.

Example: Let n = (n1, n2) = (2, 3) and consider the 2-level Toeplitz matrix A of dimension 6× 6

A =




a(0,0) a(0,−1) a(0,−2) a(−1,0) a(−1,−1) a(−1,−2)

a(0,1) a(0,0) a(0,−1) a(−1,1) a(−1,0) a(−1,−1)

a(0,2) a(0,1) a(0,0) a(−1,2) a(−1,1) a(−1,0)

a(1,0) a(1,−1) a(1,−2) a(0,0) a(0,−1) a(0,−2)

a(1,1) a(1,0) a(1,−1) a(0,1) a(0,0) a(0,−1)

a(1,2) a(1,1) a(1,0) a(0,2) a(0,1) a(0,0)



.

This matrix can be viewed as a matrix of dimension 2 × 2 in which each element is a block
of dimension 3× 3. If we take the permutation matrix

P =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



,
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then it is plain to see that

P TAP =




a(0,0) a(−1,0) a(0,−1) a(−1,−1) a(0,−2) a(−1,−2)

a(1,0) a(0,0) a(1,−1) a(0,−1) a(1,−2) a(0,−2)

a(0,1) a(−1,1) a(0,0) a(−1,0) a(0,−1) a(−1,−1)

a(1,1) a(0,1) a(1,0) a(0,0) a(1,−1) a(0,−1)

a(0,2) a(−1,2) a(0,1) a(−1,1) a(0,0) a(−1,0)

a(1,2) a(0,2) a(1,1) a(0,1) a(1,0) a(0,0)



,

and now P TAP can be naturally viewed as a matrix of dimension 3×3 in which each element
is a block of dimension 2× 2.

Corollary 6.1. Let A be a d-level Toeplitz matrix of dimension n̂ × n̂ with n = (n1, n2, . . . , nd)
and n̂ = n1n2 · · ·nd,

A =

[[
· · ·
[
a(j1−k1,j2−k2,...,jd−kd)

]nd−1

jd,kd=0
· · ·
]n2−1

j2,k2=0

]n1−1

j1,k1=0

.

For every permutation p of d elements, there exists a permutation matrix P such that

P TAP =

[[
· · ·
[
a(j1−k1,j2−k2,...,jd−kd)

]np(d)−1

jp(d),kp(d)=0
· · ·
]np(2)−1

jp(2),kp(2)=0

]np(1)−1

jp(1),kp(1)=0

.

Remark 6.1. Lemma 6.1 and Corollary 6.1 also apply to d-level α-circulant and α-Toeplitz ma-
trices.

Now, let α = (α1, α2, . . . , αd) be a d-dimensional vector of nonnegative integers and t =
♯{j : αj = 0} be the number of zero entries of α. If we take a permutation p of d elements
such that αp(1) = αp(2) = . . . = αp(t) = 0, (that is, p is a permutation that moves all the
zero components of the vector α in the top positions), then it is easy to prove that formulas
(8) and (9) remain the same for the matrix P TAP (where P is the permutation matrix asso-
ciated with p) but with n[0] = (np(1), np(2), . . . , np(t)) and where Cj and Tj are a d+-level α+-
circulant and α+-Toeplitz matrix, respectively, with α+ = (αp(t+1), αp(t+2), . . . , αp(d)), of partial
sizes n[> 0] = (np(t+1), np(t+2), . . . , np(d)), and whose expressions are

Cj =

[[
· · ·
[
a(r−α◦s) modn

]np(d)−1

rp(d),sp(d)=0
· · ·
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

Tj =

[[
· · ·
[
a(r−α◦s)

]np(d)−1

rp(d),sp(d)=0
· · ·
]np(t+2)−1

rp(t+2),sp(t+2)=0

]np(t+1)−1

rp(t+1),sp(t+1)=0

,

with (rp(1), rp(2), . . . , rp(t)) = j. Obviously Sgval(A) = Sgval(P TAP ).
We recall that if B is a matrix of size n×n positive semidefinite, that is B∗ = B and x∗Bx ≥ 0

∀x 6= 0, then Eig(B) = Sgval(B). Moreover, if B = UΣU∗ is a SV D for B (which coincides with
the Schur decomposition of B) with Σ = diag

j=1,...,n
(σj), then

B1/2 = UΣ1/2U∗, (73)

where Σ1/2 = diag
j=1,...,n

(
√
σj).

We proceed with two detailed examples: a 3-level α-circulant matrix with α = (α1, α2, α3) =
(1, 2, 0), and a 3-level α-Toeplitz with α = (α1, α2, α3) = (0, 1, 2), which helps us to understand
what happens if the vector α is not strictly positive. Finally we will propose the explicit calculation
of the singular values of a d-level α-circulant matrix in the particular case where the vector α has
only one component different from zero.
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Example: Consider a 3-level α-circulant matrix A where α = (α1, α2, α3) = (1, 2, 0)

A =

[[[
a((r1−1·s1) mod n1,(r2−2·s2) mod n2,(r3−0·s3) mod n3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=

[[[
a((r1−s1) mod n1,(r2−2s2) mod n2,r3)

]n3−1

r3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

.

If we choose a permutation p of 3 elements such that

(p(1), p(2), p(3)) = (3, 2, 1),

(αp(1), αp(2), αp(3)) = (0, 2, 1),

(np(1), np(2), np(3)) = (n3, n2, n1),

and if we take the permutation matrix P related to p, then

P TAP ≡ Â =

[[[
a((r1−s1) mod n1,(r2−2s2) mod n2,r3)

]n1−1

r1,s1=0

]n2−1

r2,s2=0

]n3−1

r3=0

.

Now, for r3 = 0, 1, ..., n3 − 1, let us set

Cr3 =
[[
a((r1−s1) mod n1,(r2−2s2) mod n2,r3)

]n1−1

r1,s1=0

]n2−1

r2,s2=0
.

As a consequence, Cr3 is a 2-level α+-circulant matrix with α+ = (2, 1) and of partial sizes
n[> 0] = (n2, n1) and the matrix Â can be rewritten as

Â =




C0 C0 · · · C0

C1 C1 · · · C1
...

...
...

...
Cn3−1 Cn3−1 · · · Cn3−1


 ,

and this is a block matrix with constant blocks on each row. From formula (1), the singular
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values of Â are the square root of the eigenvalues of Â∗Â:

Â∗Â =




C∗
0 C∗

1 · · · C∗
n3−1

C∗
0 C∗

1 · · · C∗
n3−1

...
...

...
...

C∗
0 C∗

1 · · · C∗
n3−1







C0 C0 · · · C0

C1 C1 · · · C1
...

...
...

...
Cn3−1 Cn3−1 · · · Cn3−1




=




n3−1∑
j=0

C∗
jCj

n3−1∑
j=0

C∗
jCj · · ·

n3−1∑
j=0

C∗
jCj

n3−1∑
j=0

C∗
jCj

n3−1∑
j=0

C∗
jCj · · ·

n3−1∑
j=0

C∗
jCj

...
...

...
...

n3−1∑
j=0

C∗
jCj

n3−1∑
j=0

C∗
jCj · · ·

n3−1∑
j=0

C∗
jCj




=




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
n3 times

⊗
n3−1∑

j=0

C∗
jCj

= Jn3 ⊗
n3−1∑

j=0

C∗
jCj.

Therefore

Eig(Â∗Â) = Eig


Jn3 ⊗

n3−1∑

j=0

C∗
jCj


 , (74)

where

Eig(Jn3) = {0, n3}, (75)

because Jn3 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to tr(Jn3) = n3 (tr is the trace of a matrix). If we put

λk = λk




n3−1∑

j=0

C∗
jCj


 , k = 0, . . . , n1n2 − 1,

by exploiting basic properties of the tensor product and taking into consideration (74) and
(75) we find

λk(Â
∗Â) = n3λk, k = 0, . . . , n1n2 − 1, (76)

λk(Â
∗Â) = 0, k = n1n2, . . . , n1n2n3 − 1. (77)

From (76), (77) and (1), and recalling that Sgval(Â) = Sgval(A), one obtains that the singular
values of A are given by

σk(A) =
√

n3λk, k = 0, . . . , n1n2 − 1,

σk(A) = 0, k = n1n2, . . . , n1n2n3 − 1,
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and, since
n3−1∑
j=0

C∗
jCj is a positive semidefinite matrix, from (73) we can write

σk(A) =
√
n3σ̃k, k = 0, . . . , n1n2 − 1,

σk(A) = 0, k = n1n2, . . . , n1n2n3 − 1,

where σ̃k are the singular values of

(
n3−1∑
j=0

C∗
jCj

)1/2

.

Regarding the distribution in the sense of singular values, let F ∈ C0(R
+
0 ), continuous function

over R+
0 with bounded support, then there exists a ∈ R+ such that

|F (x)| ≤ a ∀x ∈ R+
0 . (78)

From formula (2) we have

Σσ(F,An) =
1

n1n2n3

n1n2n3−1∑

k=0

F (
√
n3σ̃k)

=
n1n2(n3 − 1)F (0)

n1n2n3
+

1

n1n2n3

n1n2−1∑

k=0

F (
√
n3σ̃k)

=

(
1− 1

n3

)
F (0) +

1

n1n2n3

n1n2−1∑

k=0

F (
√
n3σ̃k).

According to (78), we find

−an1n2 ≤
n1n2−1∑

k=0

F (
√
n3σ̃k) ≤ an1n2.

Therefore

− a

n3
≤ 1

n1n2n3

n1n2−1∑

k=0

F (
√
n3σ̃k) ≤

a

n3
,

so that (
1− 1

n3

)
F (0)− a

n3
≤ Σσ(F,An) ≤

(
1− 1

n3

)
F (0) +

a

n3
.

Now, recalling that the writing n → ∞ means min1≤j≤3 nj → ∞, we obtain

F (0) ≤ lim
n→∞

Σσ(F,An) ≤ F (0),

which implies
lim
n→∞

Σσ(F,An) = F (0).

Whence
{An} ∼σ (0, G),

for any domain G satisfying the requirements of Definition 2.1.
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Example: Consider a 3-level α-Toeplitz matrix A where α = (α1, α2, α3) = (0, 1, 2)

A =

[[[
a(r1−0·s1,r2−1·s2,r3−2·s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1,s1=0

=

[[[
a(r1,r2−s2,r3−2s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0

]n1−1

r1=0

.

The procedure is the same as in the previous example of an α-circulant matrix, but in this
case we do not need to permute the vector α since the only component equal to zero is already
in first position. For r1 = 0, 1, ..., n1 − 1, let us set

Tr1 =
[[
a(r1,r2−s2,r3−2s3)

]n3−1

r3,s3=0

]n2−1

r2,s2=0
,

then Tr1 is a 2-level α+-Toeplitz matrix with α+ = (1, 2) and of partial sizes n[> 0] = (n2, n3)
and

A =




T0 T0 · · · T0

T1 T1 · · · T1
...

...
...

...
Tn1−1 Tn1−1 · · · Tn1−1


 .

The latter is a block matrix with constant blocks on each row. From formula (1), the singular
values of A are the square root of the eigenvalues of A∗A:

A∗A =




T ∗
0 T ∗

1 · · · T ∗
n1−1

T ∗
0 T ∗

1 · · · T ∗
n1−1

...
...

...
...

T ∗
0 T ∗

1 · · · T ∗
n1−1







T0 T0 · · · T0

T1 T1 · · · T1
...

...
...

...
Tn1−1 Tn1−1 · · · Tn1−1




=




n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj

...
...

...
...

n1−1∑
j=0

T ∗
j Tj

n1−1∑
j=0

T ∗
j Tj · · ·

n1−1∑
j=0

T ∗
j Tj




=




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
n1 times

⊗
n1−1∑

j=0

T ∗
j Tj

= Jn1 ⊗
n1−1∑

j=0

T ∗
j Tj.

Therefore

Eig(A∗A) = Eig


Jn1 ⊗

n1−1∑

j=0

T ∗
j Tj


 , (79)
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where

Eig(Jn1) = {0, n1}, (80)

because Jn1 is a matrix of rank 1, so it has all eigenvalues equal to zero except one eigenvalue
equal to tr(Jn1) = n1 (tr is the trace of a matrix). If we put

λk = λk




n1−1∑

j=0

T ∗
j Tj


 , k = 0, . . . , n3n2 − 1,

by exploiting basic properties of the tensor product and taking into consideration (79) and
(80) we find

λk(A
∗A) = n1λk, k = 0, . . . , n3n2 − 1, (81)

λk(A
∗A) = 0, k = n3n2, . . . , n3n2n1 − 1. (82)

From (81), (82) and (1), one obtains that the singular values of A are given by

σk(A) =
√

n1λk, k = 0, . . . , n3n2 − 1, (83)

σk(A) = 0, k = n3n2, . . . , n3n2n1 − 1. (84)

and, since
n1−1∑
j=0

T ∗
j Tj is a positive semidefinite matrix, from (73) we can write

σk(A) =
√
n1σ̃k, k = 0, . . . , n3n2 − 1,

σk(A) = 0, k = n3n2, . . . , n3n2n1 − 1,

where σ̃k denotes the generic singular value of

(
n1−1∑
j=0

T ∗
j Tj

)1/2

.

Regarding the distribution in the sense of singular values, by invoking exactly the same
argument as in the above example for α-circulant matrix, we deduce that

{An} ∼σ (0, G),

for any domain G satisfying the requirements of Definition 2.1.

Example: Let us see what happens when the vector α has only one component different from zero.
Let n = (n1, n2, . . . , nd) and α = (0, . . . , 0, αk, 0, . . . , 0), αk > 0; in this case we can give an
explicit formula for the singular values of the d-level α-circulant matrix. For convenience and
without loss of generality we take α = (0, . . . , 0, αd) (with all zero components in top positions,
otherwise we use a permutation). From 2.1.3, the singular values of An = [a(r−α◦s) mod n]

n−e
r,s=0

are zero except for few of them given by
√

n̂[0]σ where, in our case, n̂[0] = n1n2 · · ·nd−1,
n[0] = (n1, n2, . . . , nd−1), and σ is any singular value of the matrix




n[0]−e∑

j=0

C∗
jCj




1/2

,
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where Cj is an αd-circulant matrix of dimension nd × nd whose expression is

Cj =
[
a(r−α◦s) modn

]nd−1

rd,sd=0
=

[
a(r1,r2,...,rd−1,(rd−αdsd) modnd)

]nd−1

rd,sd=0

=
[
a(j,(rd−αdsd) modnd)

]nd−1

rd,sd=0
,

with (r1, r2, . . . , rd−1) = j. For j = 0, . . . , n[0]− e, if C
(j)
nd

is the circulant matrix which has as
its first column the vector a(j) = [a(j,0), a(j,1), . . . , a(j,nd−1)]

T (which is the first column of the

matrix Cj), C
(j)
nd

= [a(j,(r−s) mod nd)]
nd−1
r,s=0 = Fnd

D
(j)
nd

F ∗
nd
, with D

(j)
nd

= diag(
√
ndF

∗
nd
a(j)), then,

from (30), (10), and (16), it is immediate to verify that

n[0]−e∑

j=0

C∗
jCj =

n[0]−e∑

j=0

(Fnd
D(j)

nd
F ∗
nd
Znd,αd

)∗(Fnd
D(j)

nd
F ∗
nd
Znd,αd

)

=

n[0]−e∑

j=0

(F ∗
nd
Znd,αd

)∗(D(j)
nd

)∗D(j)
nd

(F ∗
nd
Znd,αd

)

= (F ∗
nd
Znd,αd

)∗




n[0]−e∑

j=0

(D(j)
nd

)∗D(j)
nd


 (F ∗

nd
Znd,αd

).

Now, if we put nd,α = nd

(nd,αd)
and

q(j)s = |D(j)
nd

|2s,s = (D(j)
nd

)s,s · (D(j)
nd

)s,s, s = 0, 1, . . . , nd − 1,

∆l =




n[0]−e∑
j=0

q
(j)
(l−1)nd,α

n[0]−e∑
j=0

q
(j)
(l−1)nd,α+1

. . .
n[0]−e∑
j=0

q
(j)
(l−1)nd,α+nd,α−1




∈ Cnd,α×nd,α ,

for l = 1, 2, . . . , (nd, αd), then, following the same reasoning employed for proving formula
(31), we infer

Eig




n[0]−e∑

j=0

C∗
jCj


 =

1

(nd, αd)
Eig


J(nd,αd) ⊗

(nd,αd)∑

l=1

∆l


 ,

where

J(nd,αd) =




1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1




︸ ︷︷ ︸
(nd, αd) times

,

1

(nd, αd)
Eig(J(nd,αd)) = {0, 1},
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and

(nd,αd)∑

l=1

∆l =

(nd,αd)∑

l=1

diag




n[0]−e∑

j=0

q
(j)
(l−1)nd,α+k; k = 0, 1, . . . , nd,α − 1




= diag




(nd,αd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,α+k; k = 0, 1, . . . , nd,α − 1


 .

Consequently, since
(nd,αd)∑
l=1

∆l is a diagonal matrix, and by exploiting basic properties of the

tensor product, we find

λk




n[0]−e∑

j=0

C∗
jCj


 =

(nd,αd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,α+k, k = 0, 1, . . . , nd,α − 1,

λk




n[0]−e∑

j=0

C∗
jCj


 = 0, k = nd,α, . . . , nd − 1.

Now, since
∑n[0]−e

j=0 C∗
jCj is a positive semidefinite matrix, from (73) we finally have

σk







n[0]−e∑

j=0

C∗
jCj




1/2

 =

√√√√√
(nd,αd)∑

l=1

n[0]−e∑

j=0

q
(j)
(l−1)nd,α+k, k = 0, 1, . . . , nd,α − 1,

σk







n[0]−e∑

j=0

C∗
jCj




1/2

 = 0, k = nd,α, . . . , nd − 1.

7 Conclusions and future work

In this paper we have studied in detail the singular values of α-circulant matrices and we have iden-
tified the joint asymptotic distribution of α-Toeplitz sequences associated with a given integrable
symbol. The generalization to the multilevel block setting has been sketched together with some
intriguing relationships with the design of multigrid procedures for structured linear systems. The
latter point deserves more attention and will be the subject of future researches. We also would
like to study the more involved eigenvalue/eigenvector behavior both for α-circulant and α-Toeplitz
structures.
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