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Abstract. In this paper we consider boundary control problems associated to a semilinear
elliptic equation defined in a curved domain 2. The Dirichlet and Neumann cases are analyzed.
To deal with the numerical analysis of these problems, the approximation of 2 by an appropriate
domain €, (typically polygonal) is required. Here we do not consider the numerical approximation of
the control problems. Instead, we formulate the corresponding infinite dimensional control problems
in Qp, and we study the influence of the replacement of Q by €2; on the solutions of the control
problems. Our goal is to compare the optimal controls defined on I' = 9Q with those defined on
T'), = 09 and to derive some error estimates. The use of a convenient parametrization of the
boundary is needed for such estimates.
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1. Introduction. In this paper we study boundary control problems defined on
a curved domain Q. We start with the Neumann problem (NP) and consider the
Dirichlet problem (DP) afterward. To numerically solve these problems, usually it is
convenient to approximate 2 by a polygonal domain €2, e.g., if finite elements are
used for computations. Our goal is to analyze the effect of the domain change on the
optimal controls. More precisely, two new optimal control problems (NP) and (DPy,)
in Qy, are defined. The convergence of global or local solutions of problems (NP},) and
(DPy,) to the corresponding local or global solutions of (NP) and (DP), respectively,
is investigated for the limit passage h — 0. The error estimates for the difference of
optimal controls obtained for both problems in an appropriate norm are derived in
a function of the parameter h. We restrict ourselves to the case of a convex domain
Q) C R? approximated by a polygonal domain j,; h is the maximal length of the edges
of Qp. A family of infinite dimensional control problems (NP;) and (DP}) defined
in Qj, is considered, and the solutions of (NP;) and (DP},) are compared with the
solutions of (NP) and (DP), respectively. In this way, the influence of small changes
in the domain on the solutions of the control problems is analyzed.

The numerical computation of the solution of (NP) and (DP) requires the dis-
cretization of the respective state equations, typically by using finite elements. If €2 is
a polygonal domain, then it is covered by the union of the triangles of the mesh, and I"
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remains invariable. Then problems (NP) and (DP) are approximated by some discrete
problems, and it is possible to estimate the differences |4 — tp || z2(r) between the dif-
ferent solutions of (NP) and (DP) and the corresponding discrete approximations; see
[3] or [4] for the Neumann case and [5] for the Dirichlet case. In the problems that we
are considering here, the situation is more complicated because the numerical analysis
with finite elements requires the approximation of Q by a new (typically polygonal)
domain €2, so that the comparison between the solutions # and %, is more involved
because @ € L*(T') and @y, € L*(I'y), where T'j, is the boundary of . This difficulty
can be overcome by using convenient parametrizations of I' and I', but there are
still some technical difficulties for the error analysis. In this paper we do not consider
the numerical approximations of (NP) or (DP); we just analyze what happens if € is
approximated by a polygonal domain €, and (NP) and (DP) are transformed into
two new infinite dimensional control problem (NPj,) and (DPy,).

In section 6 we prove that the order of the approximation for the Neumann control
problem is h%/3. This order has an interesting consequence. Indeed, to numerically
solve a Neumann control problem, piecewise constant or piecewise linear functions
are typically taken to approximate the controls. In both cases, the maximal order of
the error estimates is h or h%/2, respectively; see [3]. A consequence of our estimate
is that we also have error estimates of order h or h%/2, depending on the type of
approximation used for the controls, for a fully discretized control problem using
piecewise linear approximation of the states on a polygonal domain. Order h3/2 is
also obtained if we follow the procedure suggested by Hinze in [8], where no control
discretization is considered; only the state and adjoint states are discretized.

For the Dirichlet control problem we prove in section 9 that the order of the
approximation is h. This is better than the estimate derived in [5] for the numerical
discretization of the control problem for polygonal domains. Order h'~'/P  with
2 < p < 400, was proved in [5]. There p depends on the angles of 5, and p \, 2 when
the angles of ©, approximate 7; this is the case when h — 0. Therefore, order h'/? can
be deduced from our result in section 9 and the result of [5] for a full discretization of
the control problem. However, in the linear-quadratic case a superconvergence result
was recently obtained in [6] under some assumptions on the triangulation of . They
obtained the order h?/2 for the numerical approximation of Dirichlet control problems
defined on curved domains, where no control discretization is considered. We believe
that the order h'/? can be improved to order h without restrictive assumptions on
the triangulation. The low convergence order proved in [5] is a consequence of the
low regularity of the optimal control due to the lack of the regularity of the polygonal
boundary. For a smooth domain 2 we have more regularity of the optimal controls
which can lead to better error estimates. This was the case in [6].

Though the analysis of the Dirichlet control problem follows the same steps given
for the analysis of the Neumann case, the arguments are different, and it is not evident
how to change the arguments; in fact, the results obtained are not the same for the
Neumann and Dirichlet cases, respectively.

The plan of the paper is as follows. In section 2 we introduce the Neumann control
problem, and we study the existence, uniqueness, and regularity of the state equation
(2.1) as well as the existence of a solution for problem (NP). In section 3 the first and
second order optimality conditions for (NP) are established, which are the essential
tools for deriving the error estimates. The domains €, h > 0, are introduced in
section 4. Additionally, in section 4 we define a one-to-one mapping g : I'y, — T
that allows us to compare the solutions 4 of (NP) and @, of (NP) in the norm
@ — a@n o g; || r2r)- In section 5 we prove that problems (NPj,) realize a correct
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approximation of (NP) in the sense that global solutions of (NP},) converge strongly
to global solutions of (NP) and the strict local solutions of (NP) can be approximated
by local solutions of problems (NP). A crucial result in this section is the derivation
of the estimates for the differences of states and of adjoint states defined in  and
Qp,, respectively. The reader is referred to Theorems 5.1 and 5.2 for the estimates
in the spaces H*()p,), with 0 < s < 3/2. One key point in this proof is the use of
a modification of the Aubin-Nitsche argument to derive error estimates in the LZ2-
norm for finite element approximations. This approach used in the case of linear
equations can be adapted to semilinear problems, as is shown. Finally, in section 6 we
derive the error estimates for the controls and the corresponding states and adjoint
states. In section 7 we define the Dirichlet control problem and we establish the
first and second order optimality conditions. In this case, the second order sufficient
optimality conditions are not so simple to get in the Neumann case because the cost
functional is not of class C? in L*(T"). Moreover, we improve the result given in [5]
in the sense that we get that the feasible controls satisfying the sufficient optimality
conditions are strict local minima of (DP) in the sense of the L2-topology. In [5], the
local optimality in the sense of the L*°-topology was proved. In section 8 we define
the control problems (DPj) and we prove that they properly approximate problem
(DP). We finish by deriving the error estimates in section 9.

2. Neumann control problem. Let us introduce the Neumann control prob-
lem

min J(u) = /Q L(x,yu(x))dx+% /F W2(z) do(z)
subject to (yu,u) € (L°(Q) N HY(Q)) x L*(T),

a<u(x)<pB forae xzel,

(NP)

where I' is a smooth manifold and y,, is the state associated to the control u given by
a solution of the Neumann problem

0 in Q,
u on .

(21) { “Aurelny)

The following hypotheses are imposed on the data of problem (NP).

(N1) Q is an open, convex, and bounded domain in R?, with the boundary I' of
class C?. Moreover, we assume that N > 0 and —co < o < 8 < +00.

(N2) L: QxR — Rand a: QxR — R are Carathéodory functions of class C?
with respect to the second variable, L(-,0) € L*(Q), a(-,0) € L*°(Q), and for
every M > 0 there exists a constant C; such that for almost all z € Q and
all |y, |y:] < M, i = 1,2, the following inequalities hold:

2 . .
'L da
Zl{ 8—yj(9€7y)‘ + ‘@(x,y)}} < Cwu,
(2.2) J=
0%L 0%L 0%a 0%a
a—yg(%yz) - a—yg(l’,yl) + ‘a_yg(xva) - a_yg(xvyl) < Cumly2 — 1.
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We also assume

@(x,y) >0 foraa xze€Q andVyeR,
dy
(2.3) 5
JE C Q and A > 0 such that |E| > 0 and 8—Z(x,y) > AV(z,y) € ExR.

We observe that, by our assumptions (N1) and (N2), for every u € L?(T") the state
equation (2.1) has a unique solution y,, € L*>(Q) N H'(2). The proof is standard,
and some estimates can be derived:

(2.4) vl @) + WllLe@) < Ce (lla-, 0l L2y + lullL2(ry) -

Moreover, if u € H'/?(T), then y,, € H?(), and we have an analogous estimate with
the L?(T')-norm of u replaced by the H'/?(I')-norm.
To ensure the existence of a global optimal solution of problem (NP), we need an
additional hypothesis.
(N3) Either «, 8 € R or the following assumption holds:
(2.5)
L(x,y) > p(x) + Apy?®, with ¢ € LY(Q) and N + 4C% min{0, AL} > 0,

where Cp is as in (2.4).
Indeed, if we take a minimizing sequence {ux}3>, of problem (NP), then either
a, 8 € R and consequently {ux}3, is bounded in L>(T") or

N
J(ug) > / () do + Ag / V(@) dz + 2 gl 2o ey
Q Q 2
. 2 2 2 N 2
> [ u(a) o+ 2mind0.AL}CE (ol 0) e + luelFaqe)) + el
N : 2 2
= C + E + 2m1n{0, AL}CE ||uk||L2(F),

which allows us to conclude again that {us}?°, is bounded in L?(I"). The remaining
part of the proof is classical.

3. First and second order optimality conditions for (NP). In this section
we establish the first and second order optimality conditions for the local minimum
of (NP), which are necessary for deriving error estimates when approximating (NP)
by (NPj). Since problem (NP) is not necessarily convex, it may have more than one
global solution as well as some local solutions which are not global. The optimality
system for a local solution is stated in the following theorem, where we also establish
the regularity of the local minima.

THEOREM 3.1. Let u be a local minimum of (NP). Then u € C%Y(T"), and there
exist elements y,p € W2P(Q) for every 1 < p < +oo such that

R HE
(3.2) —Ap+ g—cyl(x,ﬂ)eé = Z—j(x,y) in Q,

e = 0 on T,
(33 [ (#@) + V@) (v(a) @) dota) 20 Va<v< s
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Sketch of the proof. First, we note that J : L?(I') — R is of class C* (in fact, it
is of class C?) and

T = [ (@le) + Ni@)o(a) dotz).

where ¢ € L*°(Q) N H'(Q) is the solution of (3.2) and ¥ is the state associated to
@ and consequently the unique solution of (3.1) in L>°(Q) N H(Q). The well-known
optimality condition

J(@w—-u)>0 Va<v<p

along with the expression of J’ lead to (3.3). Now (3.3) implies

(34)  a(x) = Proj, 4 (-%W;)) ~ max {a, min {—%(p(x), ﬁ}} .

From our assumption (N2) and the boundedness of § we have that

L a

G50, 5o o) € ().
Therefore, we can use the elliptic regularity results (see Grisvard [7, Chapter 2]) to
deduce that @ € W2P(Q) for every 1 < p < +o00. Moreover, since W2?(Q) C C1(Q)
for every p > 2, we get from (3.4) that @ is Lipschitz in I". Finally, from (3.1) and
using again the elliptic regularity results, we conclude that § € W2?(Q) for every
1 <p < +o0.

Let us observe that (3.3) is equivalent to @ + Nau = 0 on I' if @« = —o0 and
B = +oo. In this case &t = —@g/N € W2~1/PP(T) for all 1 < p < +o0.

We finish this section by stating the second order optimality conditions. Given a
local minimum u, the associated cone of critical directions is defined by

Cy = {v € L*(I') satisfying (3.5) and such that v(z) = 0 if |¢(z) + Na(z)| > 0},

2 0 lf u(x) = «,
(3.5) (@) = { <0 ifagx§ = B.

Then we have the following result.

THEOREM 3.2. If i is a local minimum of problem (NP), then J"(iw)v? > 0 for
all v € Cz. Reciprocally, if u is a feasible control for problem (NP) satisfying the first
order optimality conditions (3.1)~(3.3) and the coercivity condition

(3.6) J"(@)v* >0 Vv e Cy\ {0},
then there exist € > 0 and § > 0 such that

)
(3.7) J(u) + 5”“ — |2y < J(u)

for every a < u < B such that ||u — al[z2r) < e.
For the details, the reader is referred to [2] and [4]. An important fact is that
condition (3.6) holds if and only if

(3.8) Jpu > 0 and 9 > 0 such that J” (@)o? > pl|v[|72p) Yo € CF,
where

CY = {v € L*(T) satistying (3.5) and v(x) = 0 if |@(z) + Na(z)| > 9}.
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t;x41 C I =00

[[L’j,ﬁl)j+1] crly = 89}1

Fic. 4.1. Polygonal domain €, C Q and its boundary I'y,.

4. Control problem (NPp). In order to define the control problem (NPy), we
consider a polygonal approximation of Q. We fix a set of points {z; };V:(?) C T, the

nodes being ordered clockwise. We set

1
h; =|rviz1 —x;|, h= max h;, 7= —(Tizt1 —x;
i = lzj+ ils L<yenmy T hj( J+ i)

where we denote 2 ()41 = 1. I', is the polygonal line defined by the nodes {z; };V:(il),
and 2y, is the polygon delimited by I'y; see Figure 4.1. Since 2 is convex, it is clear
that Qp, C Q. For every 1 < j < N(h), #;x;41 denotes the arc of I' delimited by the
points z; and z;41. Then we have that I' = U;y:(f)fﬁjjl and T, = Uj»v:(f) [z, 2j41].
For every 1 < j < N(h), v; represents the unit outward normal vector to 25 on the
boundary edge (x;,2j41).

Now we introduce a parametrization of I" as follows:

¥; 1 [0,hj] — @iz 41 C T is defined by ¥;(t) = x; + tj + ¢;(t)v;,

where ¢; : [0,h;] — [0,400) is chosen such that ¢;(t) € I'. It is evident that ¢;
is uniquely defined. Since € is convex and I is of class C2, the following properties
hold:
1. ¢; is of class C? and ¢;(0) = ¢;(h;) = 0.
2. There exists a constant Cr > 0 such that ¢;(t) + h|¢}(t)| < Cph? < Crh? for
all t € [0, hy].
Finally, we define

9n:Th — T, gnlie;a;00(T) = nlie; a0 (T +175) = 25 + 15 + ¢5(H)v; = ¥;(1).

Clearly g is one-to-one. We denote by v(z) the unit outward normal vector to I
at the point « and by 7(z) the unit tangent vector such that {7(z),v(z)} is a direct
reference system in R?. We can obtain the expressions for these vectors from the
parametrization. If z is a point of the arc #;x,;1, then

1 1

7(2) = ————=(1j + ¢ (t);) and v(z) = ——=(v; — ¢}(t)7)).
1+ (1) 1+ (1)
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From these expressions and the properties of ¢; we deduce that

[v(gn(z)) — vj| < Crhy/CER? +1 Va € [zj,2541];

the same inequality holds true for |7(gx(x)) — 7;|. Since we are interested in the case
of h = 0, we can assume that A < 1 and then

(4.1) max{|7(gn(x)) = h(@)], [V(gn () — v ()|} < (CE+1)h Yz €T,

where 7,(z) = 7; and vy (x) = v; if © € (x5, xj41).
Given a function v € L!(T'), we have

o

N(h)

Z/ o (W5 ()1 + ()2 dt

and
N o, N o,
/ anto) o) = 3 | vtanta +m )y - > | vty
From these expressions we deduce that
(4.2) l0(gn(2))| don (x /|v )| do(z) Yo € LY(T)
I'n
and
N(h) - hy,
/Fv(a:)da(a:)—/Fhv(gh(:r:))dah(x) < ;/O o(ws )| |1~ 1+ 002 at
N(h)

(4.3) < Crh? Z/ v(y;(t))] dt < cph2/ |v(z)|do(z) Yo e LY(T).

We also have
(4.4) /F o(z) do(z) = /F (gn(@)| Dgn(x) - a(x)] dow(x) Vo € LL(T).

In the domain ) defined above we consider the state equation

—Ay+a(z,y) 0 in Qp,
(4.5) { Dy — u onTy

and the associated control problem

min J (u) = /Q L(z,ynu(x)) de + g A u?(z) doy, ()

subject to (yn.u,u) € (L=(Qn) N HY(Q)) x L*(Th),

a<u(x)<f forae zely.

(NPp)
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Since we are interested in the behavior of the solutions of (NP,) when h — 0, we
can assume without any loss of generality that there exists hg > 0 such that the set
E C Q, introduced in assumption (N2), is also contained in €, for every h < hy.
Then assumptions (N1) and (N2) imply the existence of a unique solution yp, ., of
(4.5) in H'(Qp,) N L>(y,) for every u € L*(I'y). Moreover, the inequality (2.4) can
be rewritten as follows:

(4.6) lynull 1) + 1WllL= @) < Cr (la(-, 0)llL2) + lullL2r,)) VR < ho.

Since Q, is a convex polygonal domain, we have that y,., € H?(,) whenever u €
H'Y?(T},); see, for instance, Grisvard [7, Chapter 4].

Arguing as in section 2, we can prove that problem (NP},) has at least one global
minimum for every h < hg. Furthermore, we have the optimality system analogous
to (3.1)—(3.3).

THEOREM 4.1. Let 1y, be a local minimum of (NPy). Then iy € HY(TI'y) and
there exist elements gy, pn, € H*(Q,) such that

—Ayn +alx,yn) = 0 in Qy,
(4.7) { oyn = an onTy,
_ oa, _ . _ oL '
(4.8) —Agn + a_y(x’ Un)pn = 6—y(a:, gn) in Qp,
O on = 0 on Ty,

(4.9) /F (pn(x) + Nup(z))(vp () — ap(z)) dop(z) >0 Va <wv, <f.

The proof of this theorem is the same as that of Theorem 3.1 with the only
difference concerning the regularity of (up, Jn, @n). This difference is due to the lack
of the regularity of I'y,, which is not C'!, and thus the regularity results used in
Theorem 3.1 are not valid. However, taking into account that 2 is convex, we can
deduce that ¢y, € H?(,); see Grisvard [7, Chapter 3]. Moreover, we have

L2(Qh)> 7

where C' is independent of h. Hence from (4.6) and assumption (N2) it follows that

da oL
5 2 <C||=(x,7 + H— T,y
I2lscau (H gy, g

(4.10) lenllee () < Ma,,

where Mz, is a constant depending on ||/ z2(r,). Using (4.9) we get

. 1 ) 1
(4.11) up(z) = Proji, g | —5¢n(®) | = max {a,min ¢ ——@n(z),B ¢ ¢,
N N
which implies that 4, € H'(I'y,); hence 3, € H%(€,) and

(412) th||H2(Qh) + ||ﬂh||H1(Fh) < Kﬁha

where once again Ky, is a constant depending only on ||| z2(r,) and independent
of h.
If —oco < a < f < 400, then

a2,y < max{lal, |84 < max{lal, |B}T]2.
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If @« = —00 or 8 = 400, then by (2.5) and the same argument as that used at the end
of section 2 we get for all uj, € L?(T'},) with a < uy, < 3

N . _ _
o (5 T 2mm{o,AL}c%) lin 32,y < i) < Jn(un).

If @y is a global solution of (NPp,), then we can take up = co,5, with a constant
a < ¢q,3 < B, and deduce from the above inequality, in view of (4.6), the boundedness
of {||tn||2(r,) th<h,o- In any case, by (4.10) and (4.12) there is a constant K > 0 such
that

(4.13) 1]l 2 (2) + (|20l 2 (00) + N80l E1 () < K VR < ho.

When {ap}r<n, are just local minima of problems (NP},), the inequality (4.13)
remains valid for —oo < @ < < +00 or for a bounded sequence {J5(@n)}h<n,, which
is true provided { ||| L2(r,) }h<n, is bounded (cf. (4.6)).

5. Convergence analysis. The goal of this section is to prove the convergence,
in a sense to be defined later, of the solutions u;, of (NP;) to the solutions @ of
(NP). We also analyze the approximation of local minima of (NP) by local minima of
problems (NP},). In order to carry out this analysis, first we compare the solutions of
(2.1) and (4.5).

THEOREM 5.1. Let u € HY2(T') and uj, € L*(Ty), with

(5.1) max{|[ul| L2(r), [lunllL2r,) b < M.
Let y, € H*(Q) and yn., € H3/?(Q) be the corresponding solutions of (2.1) and

(4.5), respectively. Then there exists a constant Cpy > 0 independent of h such that
forall0 <s < % the following estimate holds:

_ 6=2s
(5:2) Ny = v llreo) < Car (lu = wn 0 g7 lnay + T+ ful oo

Proof. Let us introduce the intermediate problem

(5.3) —Ayp +alz,y,) = 0 in Qp,
’ Ov,yn = wogy only.
Then we have
(54) ”yu - yh7uh||HS(Qh) < Hyu - yh”HS(Qh) + ”yh — Yh,uy, ”HS(Qh)'

Let us estimate the second term of the right-hand side in (5.4). We set ¢, = yn—Ynu), -
By subtraction of the equations satisfied by y; and yj ., and using the mean value
theorem, we get

da

—Adp + 9y

(x,wh)¢h = 0 in Qh,

Op®dn = wogp—up only,

(5.5)
where wi, = yp + On(Yn,u, — yn) and 0 < 0 < 1. From (5.5) and assumption (2.3) it
follows that

@nll ) + [1nllLe (@) < lwo gn — unll2r,)-
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In view of (5.1), we can apply (2.4) and (4.6) to obtain that

<Cy
L= (Qn)

H— Z, ’LUh

for some constant C; depending on M (cf. assumption (N2)). Then we get
6l 272 () < Co (1AGRIIL2(0) + w0 gh — unllz2(r,))
< Cy (Crl¢nllz2an) + llwo gn — unllLar,)) < Cslluo gn — unllL2(r,);

see (10, page 121] for the first estimate. Now (4.2) combined with the above inequality
leads to

w

(5.6) lyn = Yn,un || s () <C3|\U—Uh°9h (P2 F)V0<S

l\.')

The remaining part of the proof is dedicated to the derivation of the inequality

325 [HUHHU?(F) + 1] v 0 <s< g
where C' depends on the constant M given in (5.1). Thus (5.6) and (5.7) imply (5.2).
The proof follows some steps. First, we consider the case s = 3/2. Then by using
the Aubin—Nitsche duality method we deduce the estimate for s = 0. Finally, an
appropriate interpolation inequality completes the proof.

Case 1: s = 3/2. Let us use again the letter ¢, to denote ¢, = y, — yn. By
subtraction of the equations satisfied by ¥, and y; and by an application of the mean
value theorem we get

(5.7) 1Yu — ynll s

0
_A¢h+ _a

oy (xﬂwh)(bh = 0 in Qp,

(5.8)
Ov,®n = Ou,Yu —uogp on .
Using [10] once again, we get
onll 3202,y < C3llOu,Yu — wo gnllLz(ry)
< C5{|IVyu - v — (Vyu o gn) - vall2(ry)
+ [[(Vyw o gn) - vh — (Vyuogn) - (v o gn)llL2r, }
< C3 {IVyu — Vyu o gnllzr,y + VY © gnllL2@wnllvn — v o gnllaa) } -

From [1, Lemma 1] we have
(59) ||w —wo gh”L?(Fh) < ChTHU}”HT(Q) V1 <r<2.

Using this inequality with » = 1 and w = Vy in the above estimate for ¢, along with
(4.1), we get

(5.10) 9w = ynllaz2(0,) < Cabllyullmz@) < Cshll|ull gz + 1],

where C5 depends on the L?(Q2)-norm of g—;(x, Yu)Yu- By using (2.4) and assumption
(N2) we get that the norm can be estimated by a constant depending on M, which
implies that C5 depends on M as well.
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Case 2: s = 0. Let us define the function py, € L () by

a(@,yu(x)) — a(z,yn(x) .
if yu(z) # yn(),
() =0 @) ) )7 )
A otherwise;
see (2.3) for the definition of A. Observe that up, > A > 01in E C Q. Let f € L?(Qy)

be arbitrary. We extend f and pj to Q by zero, and we define z € H?(Q) and
2, € H?(Q,) as the solutions of the problems

—Az+pup(x)z = f inQ,
(5.11) { O,z = 0 onl
and
—Azp 4 pp(x)zn, = f inQp,
(512) { Op,zn, = 0 onlYy.

Taking the difference of (5.11) and (5.12) and arguing as above, we get

(B zhll 32 (a,) < Col|0u, 2l L2(ry,) = Col|Vz - v — (Vzogn) - (v o gn)llL2(ry)

< Cs {IIVz=Vzogulz,) + V2o gl llvn —vognllaw,)}

Now multiplying (5.12) by y,, — yn, integrating by parts, and using the equations
satisfied by y,, and yp, we get

F o — ) dx = / (Ve (Vi — V) + [a(z, ya) — a(z, yn)]en} da
Qn Qp

= , {(Vzn, = V2)(Vyu — Vyn) + [a(z, yu) — a(x,ypn)](zn — 2)} dx

[ VeV +ale,ga)2) de— / (V=Yg + ale,yn)2} de
Qh Qh

< Nz — 2l a1 oy 19 — vl s oy — /Q o, (T2 b)) do
h

(5.14) +/u2da—/ (wogp)zdoy,.
r T,

From (5.10) and (5.13) we obtain

(5.15) 20 = 2l @) |9 =yl (2n) < CsCsh?[[|ull grave ey + 111 fl L2(n)-

To estimate the second term on the right-hand side of (5.14), we use the inequality
(see [1, Lemma 2])

(5.16) lwll2@@\0n) < Chllw|| g (q)-

On the other hand, recalling that 0 < ¢;(t) < Crh? for every 1 < j < N(h), we get
the well-known estimate

(5.17) 12\ Q| < Ch%
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From (5.16) and (5.17) we get

/ (V¥ + ale,ya)) do
Q\Qy,

< Vel o I Vyull L2 van) + llal@, yu)ll L2 vam 121 22 @\00)
< CR?(|2]l 2o lwull 20y + VI Qulllalz, yu) | @) Chl 2l 110
(5.18) < Col®[llyullzz) + Ul fllz2n) < CroP?[ull gz + LI f [l 2(@n),

where C1o depends on the constant M given by (5.1).
Finally, we estimate the last term of (5.14) by using (4.2), (4.3), (5.1), and (5.9):

/uzdo—/ (uogp)zdoy,
r T

S/ I(uogh)(zogh—z)ldoh+cph2/|uz|da
Ty I8

<uo thL2(Fh)”Z ©gn — Z|\L2(Fh) + CFhQHuHL2(F)||ZHL2(F)
(5.19) < Cuh?(|ull 2121l m2 ) < CraMP?|| fll2q)-

Now, from (5.14), (5.15), (5.18), and (5.19), we deduce
(5.20) lyu — ynll2(n) < CR2{lJull /ey + 1,

where C' depends on M but is independent of h.
Case 3: 0 < s < 3/2. This case can be obtained from Case 1 combined with Case
2 and the interpolation inequality

__2s
(5.21) Wm0, < ellwllmsrq,) + Ke 37

w||L2(Qh)7

which holds for any £ > 0; see [7, Theorem 1.4.3.3]. By setting ¢ = h(3=29)/3 in (5.21)
and using (5.10) and (5.20), we deduce (5.7). O

The next step in our analysis is comparing the adjoint state equations correspond-
ing to y, and yp, 4, . More precisely, we introduce the adjoint states ¢, € H*(Q) and
©Oh.u, € H*(Q) as the solutions of the equations

da oL .
(5.22) ~Aput g @y)en = Fo(@ya) DO
Oppy = 0 onT
and
9a oL .
(5.23) ~Ahan + a_y(x’ Ynun)Phur, = a—y(%ymuh) in Qp,
Ovn Phyun = 0 on I'y,.

Then we have the following estimates.

THEOREM 5.2. Let (u,yy) and (up, Ynu,) be as in Theorem 5.1. Let o, € H*(Q)
and pp.u, € H*(Q) be the corresponding solutions of (5.22) and (5.23), respectively.
Then there exists a constant Cy > 0 independent of h such that for all 0 < s < % the
following estimate holds:

_ 6=2s
(5:20) pu = Phnlare(@n) < Cnr (Ilu = wn 0 g3 oy + BT [+ ullnragey])
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Proof. We follow the steps of the proof of Theorem 5.1, with some simplifications,
because now the equations are linear and the boundary conditions are homogeneous.
To estimate @, — ¢4, We use estimates (5.2). Let us consider ¢, € H?({2),) given
by a solution of

da oL .
(5.25) —Aent g @y)en = o(@y) in O,
v o = 0 on T'y.

From assumption (N2) and estimates (5.2) we deduce the existence of a constant
C1 > 0 depending on M such that

da Oa

[5rem-5 |G- G
S \LYu) — 7 (T Yh,uy, u
Lz(Qh) ay y ay yh,} gﬁh h

a—y(l’,yu) - a_y(x7yh,uh)

L2(Qn)
(5.26) < Cillyu = ynun lr2(en) < C2 (Ilu = un 0 g M2y + 21+ [[ull gz qry]) -

From (5.23), (5.25), and (5.26) we obtain
lon — onunllmsrz,) < CsllA(Or — @hu,)llL2(@n)
(5.27) < Cy (||u — Up O g};lHLz(p) + h2[1 + ||u||H1/2(F)]) .

The remaining part of the proof is devoted to the derivation of the estimate

6—2s

(5.28) lou — enllms@n < Ch =,

since (5.27) and (5.28) imply (5.24).
We start with the case of s = 3/2. To this end, we define ¢, = v, — ¢p. From
(5.22) and (5.25) we get

da .
(5.29) ~Adnt g @p)én = 0 i@y,
O, ®n = Oy, pu on Iy
Then we have
(530) ||(pu - QOhHHS/Q(Qh) = ||¢h||H3/2(Qh) S OlHth(pu”I?(Fh) S C’zh’

where the estimate for 0, ¢, is obtained in the same way as for d,, z in (5.13).

Now, we prove (5.28) for s = 0. To apply the Aubin—Nitsche duality method
we define for every f € L?() vanishing in Q\ ), the functions z € H?(Q) and
zn, € H%(Qy,) given by solutions of the problems

—Az+@(x,yu)z = f inQ,
0

(5.31) Oy
Oz = onT
and
da .
(5.32) —Azp, + 8—y(a:, Yu)zn = [ in Qp,
Op,zn, = 0 onlYy.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/30/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATION OF BOUNDARY CONTROL PROBLEMS 3759
As in (5.13), we get

(5.33) Iz = znll a2,y < CPAFll2@n)-

The same arguments as in the proof of Theorem 5.1, in view of (5.30) and (5.33), lead
to

(5.34) lou = @nllL2a,) < Ch?,

where C' depends on M.
Finally, (5.28) is proved for 0 < s < 3/2 in the same way as in Theorem 5.1, using
the inequality (5.21) with e = h(3=29)/3 along with inequalities (5.30) and (5.34). O
COROLLARY 5.3. Under the assumptions of Theorem 5.2 the following inequality
holds:

(5:35)  llew = ennllzaen < Car (lu—un o g7 lnaq + b1+ ull raqry))

for a constant Cy; depending on M but independent of h.
Proof. Using the function ¢, defined in (5.25) and inequality (5.27), we get

low = nunllzz@,) < llow = @nll2@a) + lon — @nu, 2
(5.36) < llou — @nllz2n) +C (lu—un o g, Hlrzwy + AL+ [l gz ) -

According to [7, Theorem 1.5.1.10], we have

(5:37) llew = enllizr,) < K {21900 = on) 320, + 7 2l0u = onli3ca) }-
Taking s = 1 in (5.28) and ¢ = h*/3 in (5.37) it follows that

(5.38) lu = @nllLar,) < ChY/3.

Finally, (5.36) and (5.38) lead to (5.35). O

The remaining part of this section is devoted to the study of the convergence
of solutions of (NPj) to the solutions of (NP) with A — 0. First, we prove that
the solutions of (NP} ) converge to solutions of (NP). Since (NP) is not convex, we
are also interested in an inverse property: if a given local minimum of (NP) can
be approximated by local minima of problems (NPj). This question is positively
answered in this section. Let us start with a theorem which provides a precise meaning
for the convergence of controls. We recall that problems (NP;) admit at least one
solution for each h small enough (see the comments before Theorem 4.1).

THEOREM 5.4. Let @y be a solution of problem (NPp) for h < hg. Then {uyp, o
g;1}0<h§h0 is a bounded family in HY(T'). If u is a weak limit for a subsequence,
denoted in the same way, i.e., Uy, o g, — u weakly in H'(T') with h — 0, then @ is a
solution of problem (NP). Moreover,

lim [y = gnllgsrz,) =0 and  lim Jyp(an) — J(@),

where § and gy, denote the solutions of (2.1) and (4.5) corresponding to w and uy,
respectively.

Proof. The boundedness of {@ o g, ' Yo<n<n, in H'(T) is an immediate conse-
quence of (4.13). Let us prove the convergence of {.Jp,(@p)}. We denote by 7, and
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7 the states associated to @y, and @, respectively. Once again, (4.13) implies that
llunl z2(r,) < K for every h < hg. Then we can use the estimates (5.2) with s = 3/2
to get for h — 0

19 = Unll zror2 () < Cnr (1a = @ © gj, 2y + BIL + lull graszqry]) — 0.

This convergence implies also that || — gnlc(q) — 0. Then we have by assumption
(N2) that

/ﬂh L(x,g(x))dx—/ L(z, gn(x)) do

Qp

< [ lo@) - gu(a)ldz >0,
Qpn
On the other hand, it is obvious that

lim L(z,y(x))dx = 0.
h—0 Q\Qh

Finally, from (4.3) and by the strong convergence 1y, o g, * — @ in L?(T") we obtain

/F 22 (z) do(z) — / @ (z) dow (x)

Ty

< +Ch? = 0.

/F a(z) do(x) — / a2 (g7 () do(x)

Collecting all these estimates, we deduce the convergence Jp, (un) — J(@).

Let us show that @ is a solution of (NP). First we select an element u € H'/2(T")
such that a < u < 8, and we prove that J(u) < J(u). Indeed, it is clear that u o gp
is a feasible control for (NP}); consequently, Jp,(uy) < Jy(uo gp). Furthermore, if we
denote by yj, the state associated to u o gp, then (5.2) implies that

9u = ynllgs2(0,) < ChlL + [Jull g2y
This along with (4.3) implies the convergence Jy,(u o gp) — J(u). Thus, we have

J(a) = lim Jp(ap) < lim Jp(uo gp) = J(u).
h—0 h—0
Finally, let us take u € L*(I'), with a < u < 3. There exists a sequence {uy}72, C
H'/2(T") such that uj, — win L*(T"). Setting i, = Proji,, g (uk), we have that {ay}32,
is still strongly convergent to w in L?(T") and @, € HY?(I') is a feasible control for
(NP) for every k; then J(u) < J(ay,) for every k. Now, passing to the limit, we obtain
J(w) < J(u). Since u is an arbitrary feasible control of (NP), this completes the
proof. O
Now we consider the approximation of local minima of (NP) by local minima of
problems (NP},). First let us say that whenever we speak about a local minimum it
must be understood as a local minimum in the sense of L?; more precisely, it is the
minimum among all feasible controls in an L2-ball centered at the specific solution.
THEOREM 5.5. Let u be a strict local minimum of (NP); then there exists a

family {ap} such that each @y, is a local minimum of (NP) and @y, o g,:l — u weakly
in HY(T).
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Proof. Let € > 0 be such that « is the only global solution of problem

min J(u) = / L(z,y,(z)) dx + g / u?(z) do(z)
Q r
(NP2) ) subject to (yu,u) € (L2(Q) N HL(Q)) x LA(T),
a<u(z)<p forae xel and |u—ulrr) <e.

Now for every h < hg we consider the problems

min Jp(u) = /Q L(z,ypu(2)) de + g g u?(z) doy ()

(NPpe) subject to (ynu,u) € (L(Qp) N H! Q) x Lg(l—‘h)a

a<u(zr)<pB forae xzeT), and |uog,' — ullr2ry < e.

It is obvious that wo gy, is a feasible control for every problem (NP ); therefore, there
exists at least one solution upe of (NPj.). Let us prove that upe 0 g, ' — 4 weakly in
HYT) with h — 0.

Since {une 0 gy, ' Yo<h<h, is bounded in L2(T'), we can take a subsequence, denoted
in the same manner, and an element @ € L?(I") such that wupe o g,:l — 4 weakly in
L?(T') with h — 0. Let us denote by yu € H3/2(Qh) the state associated to up. and
consider an extension of yp. to €2, still denoted by ype, such that

ynell a2y < Cliynell s,y Vh-

The boundedness of {up: o g, '}ocn<n, in L?(T) implies that {ys.} is bounded in
H?/2(Q). Therefore, by taking a subsequence, we can assume that

Yne — § in H¥2(Q) and upe 0 g, ' —a in L*(T).

Using the compactness of the embeddings H>/2(Q) ¢ H*(Q) and H>/2(Q) C L>=(Q),
it is easy to prove that g is the solution of (2.1) associated to the control 4. On
the other hand, each up. o g; ! is a feasible control for (NP.), and the set of feasible
controls for this problem is convex and closed in L?(T); consequently, @ is also a
feasible control for (NP.). From (5.2), the strong convergence yp. — ¢ in L>(2), the
weak convergence uy. o ggl — 1, (4.3), and the fact that upe is a solution of (NPy.)
and @ o g, ' is feasible for (NP.), we get

J(@) < liminf Jy (upe) < liminf Jy, (7o g, ') <limsup Jy(ao g, ') = J(a).
h—0 h—0 h—0

The fact that @ is the unique solution of (NP.) and the above inequalities lead to
@ = and Jy(upe) = J(u), which implies

lim [ w2.(2)don(z) = /F 22(z) do ().

h—0 ry

Using (4.3) once again, we have

lim F(uhS 0 g, ) (x)do(z) = /az(x) do(x).

h—0 T

This identity and the weak convergence imply the strong convergence up. o g,:l —
@ in L?(T). A first consequence of this strong convergence is that the constraint
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[uog; ! —||z2(ry < € is not active for the elements up. if A is small enough. Therefore,
Upe is a local minimum of problem (NPp,) for i small enough. Since {||unc||z2(r,)} is
bounded, we can use (4.13) and conclude that {us. o g, '} is bounded in H*(T"), and
hence up o g, — @ weakly in HY(T') with h — 0. O

6. Error estimates for problems (NPp). In this section we assume that @y,
is a local minimum of (NPj,) for every h < hg, such that uy, o g,:l converges weakly
in H(T') to a local minimum @ of (NP) with A — 0; see Theorems 5.4 and 5.5. The
goal of this section is to derive estimates of ||u — uy, o g;l || L2(r), which are established
in the following theorem.

THEOREM 6.1. Let u and up be as above, and let us denote by y,yn and @, pp
the states and adjoint states associated to u and uy, respectively. Let us assume that
the second order sufficient optimality condition (3.6) is fulfilled. Then there exists a
constant C' independent of h such that the following estimates hold:

(61) ||ﬂ_ﬂhog}:1”L2(F) < Oh5/3,

N W

6.2) 17— Gnllaeon) + 116 — Gnllme,) < CA™MEE7213 v 0 <5 <

Proof. By taking v = @y, o g,;l in (3.3) and v, = wo g, in (4.9), we get

(6.3) /(@) (an o g7t — ) = /F(gZa N o gt — @) do = 0
and
(6.4) J;L(ﬂh)(ﬂ o gp — ﬂh) = /F ((ﬁh + Nﬂh)(ﬂ ogn — ﬂh) doy, > 0.

We rewrite inequality (6.4) as follows:

(6.5) J'(@nog, ' )(@—unogy ')+ (@n)(@ogn —un) —J' (anogy, ) (a—anog;, )] = 0.
From (6.3) and (6.5) we obtain

[T (an o g, ) = J' (@)(an o g, ' —u) < Jy(an)(@ogn —an) — J'(anogy ' )(@—anogy").

By applying the mean value theorem we obtain the existence of an element v, =
U+ 0p(ap, o gt — ) such that

(6.6) J"(vn)(@nogy' —w)? < Jy(uan)(@o gn —an) = J'(wn 0 gy ) (@ —wn o gy ).

This inequality plays the central role in the derivation of (6.1). The proof is divided
into two parts. First we use the second order optimality condition (3.6), or, more
precisely, its equivalent formulation (3.8), to estimate the left-hand side of (6.6) from
below. In the second part we estimate the right-hand side in terms of h from above.
The inequality (6.2) is an immediate consequence of (6.1) combined with the estimates
(5.2) and (5.24).

Lower bounds for (6.6). Let us prove that aj, o g; ' — @ € CY for every h small
enough. Indeed, @y, o g,:l — u obviously satisfies conditions (3.5). Let us check that
(@ 0 g, " — @)(z) = 0 at the points z where |¢(x) + Nu(x)| > 9. First, we observe
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that the weak convergence uy, o g;l — 4 in HY(T') implies the strong convergence in
C(T). On the other hand, from (5.24) with s = 3/2 we get

16 = @nllc@,) < Cille — @nllasiz )
(6.7) < (s {H@ — Up 0 g;lan(p) + h[Hﬁ”Huz(p) + 1]} — 0 with h — 0.

This inequality implies the strong convergence ¢y, o g;l — ¢ in C(I"). Therefore,
there exists hy > 0 such that

_ B _ B B 9
(6.8) [(@rogy +unog,") — (@+ Nu)|cr) < B V h<h

Thus, if (¢ + Nu)(z) > 9, then (py 0 g, " + @y 0 g, ')(x) > 9/2 for every h < hy.
Using the identities (3.4) and (4.11), we have that @(z) = @, 0 g, ' () = a; therefore,
(@(x) — a0 g;, ') (x) = 0. Analogously we can prove that (¢ + Nu)(z) < — leads to
u(x) = ay 0g, (z) = B and then (u(z) — @y o g, *)(z) = 0 as well. This proves that
up o gy, —u € CY, and hence (3.8) implies

(6.9) J"(@)(tn 0 gt —uw)? > pllun o gyt —alliey V< ho.

For the elements vy, in (6.6) we have that v, — @ in C(I") with » — 0. On the
other hand, the mapping J is of class C? in L?(I'); therefore, there exists 0 < hy < hy
such that

17(8) — ")) o 7" — ] < Bl o gt ~ a3y VR < b
This inequality combined with (6.9) leads to

(6.10) J"(vn)(an 0 g, t —w)* > Slun 0 gt —ullFapy-

o=

Upper bounds for (6.6). Let us define y, p € H?(2) as the solutions of the equa-
tions

—Ay+a(z,y) = 0 in Q,
(611) { ayy = Og;l onT
and
da oL ,
(6.12) —Ap+ 5—y(x,y)<p = 8—y(az,y) in Q,
O = 0 on .

Then we have

(6.13) J'(ap 0 gy ) (u—apog,t) = /(90 + Ny, 0 g, )@ — a0 g, *)do.
I
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From (6.3) and (6.13) and taking into account (4.2), (4.3), and (5.9), we get
| Jh (@n) (@ o gn — an) — J'(an 0 g ) (@ — an o g ')

/ (¢h+Nah)(ﬂOgh—ah)dah—/(w+Nﬂhog;1)(ﬂ—ﬂhog;1)d0
'y I

s/ |(Bh + Naw) — (9 0 gn + Naw)|[@o gn — anldon
Fh

+ Ch?/ l + Nap o g, [|@ — i o g;, *|do
I

<Alen — el + oo gn — @llrzwn } 1@ o gn — nllL2ry)
+ Ch?||¢ + Ny, o 9E1HL2(F)||71 — Up o g}:1|‘L2(F)
(614) < C(h5/3 + hz)”’ﬁ — up o g;lHLz(p) < Ch5/3||’ﬁ — Up, © g;lHLz(p),

the last estimate being a consequence of (5.35).
Finally, (6.6), (6.10), and (6.14) lead to (6.1), which completes the proof. O

7. Dirichlet control problem. Now we introduce the Dirichlet control problem
. N 2
minJ(u) = [ L(z,y,(z)) dz + 5 | (z)do(x)
Q r

subject to (yu,u) € (L=(Q) N HY?(Q)) x L>(T),

a<u(z)<p forae zecl,|

(DP)

where the state y,, associated to the control u is the solution of the Dirichlet problem

—Ay+a(r,y) = 0 inQ,
(7.1) { y = wu onl.

The following hypotheses are assumed for this problem.
(D1) Q is an open, convex, and bounded domain in R?, with the boundary I' of
class C2. Moreover, we assume that N > 0 and —oo < a < 3 < +o0.
(D2) We assume that L and a satisfy (2.2), and (2.3) is replaced by

0
(7.2) a—Z(x,y)ZO forae. x€Q andVyeR.
We say that an element y,, € L>°(2) is a solution of (7.1) if the following integral
identity is fulfilled:

(7.3) / —yAwdz +/ a(z,y)wdr = / ud,wdo Yw € H*(Q) N H(Q),
Q Q r

where 0, denotes the normal derivative on the boundary I'. This is the classical
definition of a weak solution by transposition. The following result proved by Casas
and Raymond [5] is valid for any convex domain €. If the domain is not convex, then
some smoothness of I' is required; I" of class C*! is enough.

THEOREM 7.1. For every u € L>®(I') the state equation (7.1) has a unique
solution y,, € L>(Q) N HY?(Q). Moreover, the following Lipschitz properties hold:

(14 I = woll ey < e — vl eoy,
v = woll 1720y < Cllu = vllzay  Vu,v € L=(T).
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Finally, if u, — w weakly* in L (T), then y,, — y. strongly in L"(Q) for all
r < +00.

Under the assumptions (D1) and (D2), it can be shown by standard arguments
that problem (DP) has at least one solution. Since (DP) is not convex, we cannot
expect any uniqueness of solutions. Moreover, (DP) may have some local solutions.
We formulate the optimality conditions satisfied by such local solutions. To this end,
we analyze the differentiability of the cost functional J.

Under the assumption (D2), J : L=(I') — R is of class C?, and

(7.5) J (w)v = / (Nu — ypy) vdo,
r
where v, is the state associated to u and ¢, € H?(Q) is the unique solution of the
problem
oa oL

—Ap+ —(z,Yu —(z,y,) in Q,
(7.6) ® 3y( Yu)p 8y( Yu)

Y = 0 onI.

Furthermore, we have

0L 0?
(77) JH(U)(ULUQ) = / {W(wayu)zmzvz - Soua—Z(fayu)zvlzvg] dx"_/ Nvyvs do,
Q Loy Y r

where z,,, i = 1,2, satisfy

da )
(78) _szi + a_y(xa yu)zv1 = 0 mn Q,

Zy, = wv; onl.

i

Using (7.5), we obtain the necessary optimality conditions for (DP).
THEOREM 7.2. Let @ be a local minimum of (DP). Then uw € W=Y/PP(T) for
every 1 < p < +o0, and there exist elements j € WP (Q) and ¢ € WP(Q) such that

(7.9) { ~Aytay) = 0 ;1;(12
_ da, . _ oL .
(7.10) —Apt g @Pe = Zo(@§) g
p = 0 onT,
(7.11) /F (Na(z) — 8,3(2)) (v(x) — (z)) do(x) > 0 ¥ a < v < .

The proof of the theorem is given in [5].
In order to establish the second order optimality conditions, we define the cone
of critical directions

Cy = {v € L*(I) satisfying (7.12) and v(z) = 0 if |Nu(z) — 9,¢(z)| > 0},

> if =
(7.12) v(z) = { =0 ?f Z(w) Y foraa. el

Now we formulate the second order necessary and sufficient optimality conditions.
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THEOREM 7.3. If 4 is a local solution of (DP), then J"(u)v? > 0 holds for all
v € Cy. Conversely, if u is an admissible control for problem (DP) satisfying the first
order optimality conditions given in Theorem 7.2 and the coercivity condition

(7.13) J' (@) >0 Yoe Oy {0},

then there exist § > 0 and p > 0 such that

)
for all u such that o« < u < 3 and ||u — || r2(ry < p.

The inequality (7.14) is strong when compared with the corresponding inequality
of [5]. Indeed, here we claim that (7.13) implies that @ is a strict local minimum of
(DP) in the sense of the L?(I')-topology. In [5] it is shown that condition (7.13) leads
to the strict local optimality of @ in the sense of the L>°(T')-topology. A more general
result is proved in [2] for a distributed control problem, but in such a case once again
only the local optimality in the sense of the L>°(€2)-topology is shown. Here we can
improve the result because the control appears in a quadratic form within the cost
functional.

Proof. The necessary condition is easy to obtain. Let us prove that (7.13) implies
(7.14). We proceed by contradiction. Let us assume that there is no pair (9, p), with
p,0 > 0, such that (7.14) holds. Then for every integer k, there exists a feasible
control of (DP), uy € L?(T), such that

1 1
(7.15) lug — 17,||L2(p) < T and J(uk) < J(u) + EHuk - ’ﬁ”%z(p).
Let us define

(7.16) A = Huk - ﬂ”[;(p) and vy = /\ik(’u}.C - ’ﬁ); hence ||'UkHL2(F) = 1.
By taking a subsequence, if necessary, there exists v € L?(I") such that v, — v weakly
in L2(T"). The proof is divided into three steps: first we prove that v € Cy, then we
deduce that v = 0, and finally we get the contradiction.

Step 1. v € Cy. Since a < uy < 3, it is obvious that every vy satisfies (7.12).
Also we have that the set of functions of L?(T") satisfying (7.12) is convex and closed;
therefore, v satisfies (7.12) as well. This implies

(7.17) (Nu(x) — d,p(x))v(x) = |Nu(z) — d,@(x)||v(z)| a.e. onT.
Indeed, it is well known that (7.11) implies that Na(z) — 0, @(x) > 0 if 4(z) = « and

Nu(z) — 0,¢(x) <0 if u(z) = 5. This property and (7.12) lead to (7.17).
On the other hand, from (7.15) we get

1
(7.18) EHuk - ’ﬁH%z(F) > J(uk) — J(ﬁ) = J(’ﬁ + )\kvk) — J(@) = J’(’ﬁ + HkAkvk)vk
for some 0 < 0 < 1. From (7.5) we have that

(7.19) Jl(ﬂ + O v )vg = /(N[’ﬁ + Hk)\kvk] — Oypr v do,
I8
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where y, is the solution of (7.6) with y, replaced by yi, yr being the state associated
to @+ Ok v = @+ 0k (ur —@). Since o < U+ 0k (up —a) < B and G+ Oy (up, — ) — 4
in L?(T) for k — 400, we deduce, in view of (7.4), that {yx}7°, is bounded in L>°(T')
and yp — 7 in H/?(Q). Therefore, the sequence of adjoint states {¢r 32, converges
to ¢ in H?(2). Hence, we can pass to the limit in (7.19) and use (7.18) to deduce
that

/(Nﬁ —dy@)vdo < 0.
r

This identity and (7.17) imply that v(xz) = 0 if |[Na(z) — 9,@(z)| > 0. Thus, we have
that v € Oﬂ
Step 2. v = 0. Using again (7.15), we obtain

A1
= 2l =l > T(we) = T(@) = J @+ Avr) = J (@)

(7.20) = M\ (W)vy + %ij”(a + O v )i > A—2’2€J”(a + Op \pvg Vi,
the last inequality being a consequence of (7.11); indeed,

e (@)vp = J' () (up — ) = /F(Nﬂ — 0y) (up — @) do > 0.
Inequality (7.20) implies that
(7.21) % > J" (@ + O Mor)vi.

Once again, we denote by y; and ¢y the state and adjoint state evaluated for u +
Op pvr = U + Op(up — @). Also, we define z, and z, as the elements of H'/2(Q)
satisfying

—Az, + @(x, yr)ze = 0 in
(7.22) dy
zr, = v onl
and
—Az, + @(x, Y)zy = 0 inQ,
(7.23) Ay
z, = v onl.

Then z, — z, weakly in H'/?(Q) and hence strongly in L?(Q). Moreover, 3, — 7 in
H'2(Q) and ¢, — @ in H?(Q). Now, recalling the expression of the second derivative
of J given in (7.7), we get

0?L 0?
(7.24)  J" (@ + O \pvr)vi = / — (z,yr)zi — @k—Z(x, yr)2i | da + N/ v? do.
a9y dy r

Passing to the limit in this expression and using (7.21), we obtain

~ 0’L, 0%,
J"(w)v? = /Q [8—312(3«,;;)42, - @a—:y?(a',y)zg] dx + N/Fv2 do

(7.25) < lim inf J" (@4 Op Apvr)vi < 0.
—00
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Since v € Cy, according to (7.13) this is possible only if v = 0.
Step 3. Final contradiction. Using two facts, vy — v = 0 and ||vg|| 2y = 1, we
deduce from (7.21) and (7.24) the following contradiction:

0<N§%MMfﬁHﬁmwmﬁ§O. 0
—00

We conclude this section with the following result that provides an equivalent
formulation of (7.13), which is more useful for our purposes.

THEOREM 7.4. Let u be a feasible control of problem (DP) satisfying the first
order optimality conditions (7.9)—(7.11). Then the condition (7.13) holds if and only

if

(7.26) 3> 0 and 9 > 0 such that J" (w)v> > pllv]|72ry Yo € oY,

where
CY = {v e LA(T) satisfying (7.12) and v(z) = 0 if |Na(z) — d,@(z)| > 9}
Proof. Since Cy C CY for any 9 > 0, it is obvious that (7.26) implies (7.13). Let

us prove the reciprocal implication. We proceed again by contradiction. We assume
that (7.13) holds, but there is no pair of positive numbers (i, ) such that (7.26) is

fulfilled. Then for every integer k there exists and element vy € Cé/ " such that
"(=\,,2 1 2
J"(w)vy, < EHUICHL?(F)'

Dividing v by its norm and denoting the quotient by v again, and taking a subse-
quence if necessary, we have that

(7.27) vk € CF) Nokllzay =1, v — v in LA(T), J" (@)} <

| =

Arguing as in the proof of Theorem 7.3, we obtain that v satisfies (7.12). On the

other hand, from the fact that v, € Cg/ " and denoting by I'j, the subset of I formed
by those points z such that |[Nua(z) — 9,5(z)| < 1/k, we get

/(Nﬂ —Oyp)vdo = lim [ (Nu— 0,@)v; do
T k—o00 T

1
< liminf/ IN@ — 0,@||vg| do < liminf — |vg| do = 0.

This inequality and the fact that v satisfies (7.12) imply that v vanishes whenever
|INu(x) — 0,@(x)| > 0; hence v € Cz. Now (7.13) implies that J”(u) > 0 if v Z 0.
But from (7.27) we deduce that

J" (w)v? < liminf J” (@)vi < 0.

k— o0

Consequently, we have that v = 0. However, if we argue as in the proof of Theorem
7.3, we have that 0 < N < liminfy_, J”(@)v; < 0, which is a contradiction. d
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8. Control problem (DPj). Now we consider Qj, as defined in section 4. In
the domain €2, we define the problem (DP},) as

min Jy(u) = /Q L(z,ypu(z)) de + g g u?(z) dop ()

(DPR) ) subject to (ynu,u) € (L(Qn) N HY2(Q)) x L),

a<u(zx)<p forae zely,

where yp, ., is the solution of the problem

(8.1) {—Ay—i—a(x,y) = 0 inQy,
y = wu only.

Theorem 7.1 can be applied to (8.1) to get the existence and uniqueness of a solution
Ynu € HY2(Q,) N L(Qy,). Moreover, inequalities (7.4) hold. (DP},) has at least one
global solution and possibly there are some other local solutions of (DPj). For each
local solution we have the first order optimality conditions analogous to the conditions
in Theorem 7.2.

THEOREM 8.1. Let @y, be a local minimum of (DPy). Then @y € HY?(T'),) and
there exist elements g, € HY () and ¢p, € H?(Qy) such that

(8.2) {_Athra(gC’yh) = 0 infy,
Yn = up only,
Oa oL
—Ap —(x,gn)en = —I(z,9 in Q
(8.3) <Ph+ay($,yh)<ﬂh 8y(l’,yh) in Q,
©Yn = 0 on I'y,

(8.4) /F (Nup(x) — Oy, @n(z)) (vp(z) — ap(x)) dop(x) >0 Va <o, <B.

Remark 8.2. We observe that uy, is less regular than @. The same is true for
yp, and @y, with respect to y and @. The reason for the loss of regularity is the lack
of regularity of I'y,. T is of class C?, and consequently we can deduce the W2P(Q)
regularity of ¢ for any p < +oo (see, for instance, Grisvard [7]), which leads to the
W1=1/P(T') regularity of 4 and consequently to the W'P(Q) regularity of j. Using
the results for polygonal domains of [7], we can establish the W?2P(Q) regularity of
pp, for some 2 < p, with p depending on the angles of €. The point is that p — 2 if
the maximal angle of €}, tends to w. This is exactly the case for h — 0; therefore, we
cannot deduce the boundedness of {||@x|yw2r(,) >0 for any p > 2.

By using the Stampacchia approach [11] we can derive a bound for ||7p|Le(q,)
which is dependent on «, 3, and a(-,0) but independent of h. Then, from (8.3) the
boundedness of {||@nll 72 (q,)}n>0 can be obtained. Now, from (8.4) we deduce

(8.5)  un(x) = Projy, g <—%8,,h<ph(a:)> = max {a,min {—%&htph(x),ﬁ}} ,

which implies that @, € H'/?(I';) and the family {l@nll g2, fr>o is bounded.
Finally, (8.2) leads to the boundedness of {||7xl 1 (q,)}n>0 as well.

Now, we prove the convergence of the local or global solutions of (DP},) to the
solutions of (DP) with h — 0. To prove the convergence, first we establish the
convergence of the solutions of the state and adjoint state equations.
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THEOREM 8.3. Let u € H'/2(T') N L>(T) and uj, € L>=(T}), with
(8.6) max{||ul| eo(r), [[unll ooy} < M.

Let y, € HY(Q) N L®(Q) and yp.., € HY?(Q,) NL>(Q,) be the corresponding solu-
tions of (7.1) and (8.1), respectively. Then there exists a constant Cpyr > 0 independent
of h such that

(8.7) 19 = Ynun 1720y < Cnr (1w —wn 0 gy Hlpzay + AL+ ull gz m)) -
Proof. Let us take y, € H'/2(Qy,) N L>(y,) satisfying

(88) { _Ayh + a’(xﬂ yh) = 0 m Qha

Yy, = wuogp only.
From (7.4) and (4.2) we get

1Yu = Ynun L2 ) < 1Ya = Ynllarz,) + 198 = Yngunll 517200
< lyu = Ynll g2,y + Clluo gn — unllz2(r,)

(8.9) <y = ynll sz, + Cllu = un o g 2y

Let us estimate ¢, = y, — yn. By substraction of the equations satisfied by ¥, and
yp, and using the mean value theorem, we get

Oa .

(8.10) —Aop + a—y(x, wh)qSh = 0 in Qp,
¢n = y—uognp onlp,

where w, = yn + O (Ynu, — yn) and 0 < 0, < 1. Now we have

lonll 2,y < Clly —uognller,) = Clly =y o gnllrary)-
Finally, by using (5.9) we conclude
lonllirz(a,) < Chllyllm @) < Ch(1+ |lull gr/2ry)-

This inequality along with (8.9) proves (8.7). O
Now we proceed with the analysis of the adjoint state equation. Let ¢, € H%(Q)
and @, , € H?(Q,) be given as the solutions of the equations

da oL .
(8.11) ~Aput g @y)en = Fo(@ya) DO
Pu = 0 onI
and
9a oL .
(8.12) —APh,u, + a_y(xa Yn,un)Phoun = a—y(l“,yh,uh) in Qp,
Phoup, = 0 on I'y,.

Then we have the following estimate.
THEOREM 8.4. Let (u,yy) and (up, Ynu,) be as in Theorem 8.3. Let o, € H*(Q)
and pp., € H*(Q) be the corresponding solutions of (8.11) and (8.12), respectively.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/30/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

APPROXIMATION OF BOUNDARY CONTROL PROBLEMS 3771

Then there exists a constant Cpr > 0, independent of h, such that the following
estimate holds:

(813)  leu — @houn llmer2ny < Cur (= un o gy MLz + [+ ull gz)) -

Proof. Let us define ¢, = o, — 0n.u, € H*(Qp). From (8.11) and (8.12) we get

oa oL oL
_A b N - - sYu) — 7 5 U
on + ay(af,y )On oy (T, Yu) oy (T, Yn,un)
8.14 ) ) .
(814 + 2w vhan) — )| o 0
(bh = Pu on Ph.

From assumption (D2), taking into account that y, and yp ., are bounded and using
(8.7), we get (see Kenig [10])

lénllgsrz(Qn) < C ([lyu — Ynun |22 + leullmre,))
(815) < CM) (Ilu—uno gy llr2wy + b1+ ull grzmy] + |l arr,)) -

Let us estimate ¢, in H'(I';). The norm in H*(T'},) is given by

1/
leullz i = {I0ulFar,y + 10neuliam, )

where 0, oy (x) = V() - Th(x), 7h(z) being the unit tangent vector to I'y, at the
point z; see section 4. The estimate of the first term of the norm follows easily from
(5.9) and the fact that ¢, o gp, =0 on T'p:

(8.16) leull2@,) = lleu = eu o gnllLam,) < Ch?(l@ull 2@y < C(M)R?.

Now the L?(T") norm of the tangential derivative is estimated. To this end we
observe that ¢, = 0 on I'; therefore, d;p, = 0 on I' as well. Thus, we also have
(Voyogn) - (togn) =0o0nT. Hence

O, u(r) = [Veou (@) = Voou(gn(@))lmn (2) + Vou(gn(@))[mm(x) — 7(gn(2))]-

This along with (5.9) and (4.1) leads to

105, PullL2r,) < NIV — Vou o gnllzzr,)
(8.17) + llpullzz@llmn — 7 0 gnll2 @,y < C(M)h.

Finally, (8.13) follows from (8.15), (8.16), and (8.17). O
COROLLARY 8.5. Under the assumptions of Theorem 8.4, the following inequality
holds:

(8.18)  [10u,u — Oy Phun l2(r) < Ot (1w — un 0 g, Ml p2ry + R+ [Jull grrzey))
for some Cpy > 0 independent of h.

Proof. 1t is enough to note that ¢, — ¢p., € H?’/Q(Qh) and A(py — @hu,) €
L*(Qn); then 9y, (pu — ¢hu,) € L*(T'1), and we have

H&/h(@u - SDth)HLz(Fh) < H‘Pu - 90h7UhHH3/2(Qh) + | A(pu — SDth)HLz(Qh);
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see [9] and [10]. From this inequality, assumption (D2), and estimates (8.7), (8.13),
(8.14), and (8.15) we get

10, (9w = nun)llz2mny < COM) (lu = un 0 g Hlzzry + h{L+ l[ull g1/2(r)])

" Haaww) 10w = P e + | 2 1) — 22 (g
7. &Ly Wh u — Ph,u 2(Qp 3. W Yu) — F o\ Yhu
82/ L2@n) n I L2(Q2) 82/ 82/ h L)
Oa oa
+ |y - e lealon)

< Cuh (lu = un o gy gy + AL+ [ullgz@]) . D

We complete this section by proving that the family of problems (DP},) realizes a
correct approximation of (DP). More precisely, we prove that the solutions of problems
(DP},) converge to the solutions of (DP). Reciprocally, we also prove that any strict
local solution of (DP) can be approximated by a sequence of local solutions of problems
(DPp).

THEOREM 8.6. Let 4y, be a solution of problem (DPp). Then {ap o g;l}h>0 18
a bounded family in H'/?(T'). If @ is a weak limit for a subsequence, still denoted in
the same way, up o g,?l — @ weakly in H'?(T') with h — 0, then @ is a solution of
problem (DP). Moreover,

I [y = gnllgirz,) =0 and - lim Jyp(an) — J(@),
where § and gy, denote the solutions of (7.1) and (8.1) corresponding to u and uy,

respectively.
Proof. First, we recall the definition of the norm

lan o g5 Ml gasa ey = { [ intair @)P doto)

o 9 1/2
(819) // |uh gh — uﬁgghl($ ))' dU(Jf)dU(Qf/)}

iC—{E

Let us estimate each of the two integrals. In Remark 8.2, we established the bound-
edness of {||unl|g1/2(q,) tr>0- If we prove that

lan o g, Nl /2y < Cllanll gz,

then we obtain that {@, o gj, ' }n0 is bounded in H/?(T"). On the other hand, from
(4.4) it follows that

lan o g5 2 = / fan(g; ()| do(x)
(8.20) - / () 2| Dgi () - 71 ()| dorn () < CllanlBaqr,

By a change of variables in the second integral of (8.19), in view of (4.4), we get

[an (g, () — an(g, " (2))I” /
/ / T do(z)do(z")

,T—J?

2 |an(x) — an(2’)[? /
(8.21) <C /Fh /Fh lgn () — gn(z’)]? dop (z)dop (2).
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Let us show that |z — /| < |gn(z) — gn(2’)] for every x,a’ € T',. First, we assume
that z,2’ € [xj,xj41] for some 1 < j < N(h). Then

r=uxj+1tr;, gn(lx)=x+¢;(t)v;, ' =xz;+t'7m, and gp(2') =2+ ;).
Therefore,
lgn (@) = gn(2)[* = [t =t'* + 16, (t) = &; (t')1* = Jw — 2> + |5 (1) — &5 (¢)[* > | — 2|
Now, we assume that € [zj,xj41] and 2/ € [z, x;41], with ¢ # j. Since Q is
convex, there exist two points {#} = [z}, xj41] N [gn(2), gn(2’)] and {2’} = [2;, iy1] N
[gn (), gn(2)]. Moreover, we have
(8.22) lgn(x) = gn(2')] = lgn(x) — 2 + | = 2’| + |2 — gn(2)].
On the other hand,

gn() =& = (gn(@) —2) + (x — &) = ¢;(t)y; + (t = )75,
which implies

lgn(2) = &> = |gn(@) — 2 + |2 — & = |gn(z) — 2] > |z — 2].

Analogously, we can prove that |gn(2') — &'| > |2/ — #/|. Finally, using (8.22), we
obtain

lgn(x) = gn(2)| = [ — &| + |2 = &' + 2" — 2| = |2 — 2.

Using this inequality in (8.21), we conclude that

o @) — e @DE
/F / do(z)do (')

|z —a'|?
ap(x) — ap(z"))?
(8.23) < Ca./g jﬁ | h(kz__$ﬁ§ W o (2)don ().

From (8.19), (8.20), and (8.23) it follows that
@ 0 g, Nl sz ey < C'llanll gz gr,y < C”-

Therefore, there exists a subsequence and an element @ € H'/?(T") such that w09, ' —
@ weakly in H'/2(T") with h — 0. Since the embedding H'/?(I") ¢ L?*(T) is compact,
we have 1y, o g,:l — 4 strongly in L?(T). It is obvious that o < u < 3. Now, if we
denote by ¥ the states associated to uy, and by y the state associated to u, we deduce
from (8.7) that

}1113%) llg — ﬂh”Hl/z(Qh) =0 and 3C,ps > 0 such that ||ﬂhHLoo(Qh) < Cup Yh.

Hence, it is easy to prove that Jy(ap) — J(u). It remains to prove that @ is a solution
of (DP). Let us take any feasible control u for (DP); then w o g, is also feasible for
(DPy,). Therefore, since uy, is a solution of (DP},), we obtain

J(u) = lim Jy(u o gn) > lim Jy(an) = J(a),
h—0 h—0
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which completes the proof. d

THEOREM &.7. Let u be a strict local minimum of (DP); then there exists a
family {1y} such that each control @y, is a local minimum of (DPy) and @y o0g; ' — 1
converges weakly in H'/?(T').

Proof. Let € > 0 be such that @ is the unique global solution of problem

min J(u) = / L(z,y,(z)) dx + g/uz(x) do(x)
Q r
(DPe) 0 subject to (ya,u) € (L(Q) N HY2(Q)) x LA(T),
a<u(r)<p forae xecl and [u—1ulrr) <e.

Now, for every h we consider the problems

min Jp, (u) = /Q L(z,ypu(z)) de + g/r u?(z) doy ()
(DPy,.) ' h

subject to (g, w) € (L%(Q4) N HY2()) x LA(Ty),
a<u(z)<pB forae z€l) and |luog, —ulrer) <e.
It is obvious that @o gy, is a feasible control for each problem (DPj.); therefore, there
exists at least one solution up. of (DPy.). Let us show that wup. o g,:l — u weakly in
H'Y?(T) with h — 0.

Since {upe o g;l}h>0 is bounded in L*>(I"), we can extract a subsequence, still
denoted by the same symbol, and an element 4 € L*(I") such that up. o g;l —q
*weakly in L>°(T') with h — 0. Let us denote by yn. € HY?(Q;,) N L>®(Q,) the state

associated to up. and consider an extension of yp. to €2, still denoted by yne, such
that

lynellmz) < Cllynellmiz,) and ([ynellL= @) < CllynellL=(a,) Yh-

The boundedness of {upc0g, '} in L>(T') implies that of {y;.} in H'/2(Q). Therefore,
by taking a subsequence, we can assume that

Yne — § in HY2(Q) and upe 0 g, " —a in L*(T).

We are going to prove that ¢ is the state associated to #. According to the definition
given in section 7, we have to prove that the following identity holds:

(8.24) / —yAw dx —|—/ a(z, g)wdr = /aa,,w do Yw € H*(Q) N H ().
Q Q r

For a given w € H2(Q) N H(Q) we take wy, € H2(Qp,) N HE(Q4), a unique solution
of the Dirichlet problem

—Aw, = —Aw in Qp,
(8.25) { wp = 0 on I'y,.

As in the proof of Theorem 8.4, we have

(8.26) e — wnll 20 < Cllelrs ey < Ch.
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Hence

100, w = Ou, wllz2r,) < C{IAW —wn)llz2(@,) + W — whllgs/2 () }
(827) = CHU} — ’wh”H?,/z(Qh) S Ch.

Since yp. is the state associated to upe, we have

/ —Ype Awp, da:—l—/ a(x, Yne )wp, da:z/ Upe Oy, W, dop,.
Qpn Qp

Ty

In view of (8.25), this identity can be rewritten as follows:

(8.28) —Awype dz + /

a(x,yhs)wh dr = / uhsﬁthh doy,.
Qp Qpn

Ty

Now we want to pass to the limit with A — 0 in (8.28). Using the compactness of the
embedding H'/2(Q) C L?(Q) it is easy to pass to the limit in the first two integrals,
which are also the first two integrals of (8.24). Let us consider the right-hand side
term of (8.28). Applying (8.27), we get

(8.29) / uhga,,hwh doy, = / uhgath doyp, + O(h)
'y Ty
Now from Lemma 8.8 below we deduce
(8.30) / Upe Oy, w doy, = /(uh‘S 0 g, Ho,wdo + O(h).
Ty r

Finally, combining (8.29) and (8.30), we get

lim Upe () 0y, wp, dop, = / ()0, w(z) do.
h—0 'y T

Thus, we show that (8.24) follows from (8.28) by the limit passage.

Now, using that use 0 g, ' — @ weakly in L?(T'), yn. — @ strongly in L3(Q),
{Yhe th>0 1s bounded in L>°(Q), and the facts that up. is a solution of (DPj.) and
wo g, " is feasible for problems (DPj.), we obtain

J(u) < liminf Jp,(upe) < liminf Jp, (@ o g,;l) < limsup Jj,(u o g,;l) = J(a).
h—0 h—0 h—0

Since @ is the unique solution of (DP.), the above inequality leads to @ = @ and
Jn(upe) — J(i), which implies

lim [ w2.(2)don(z) = / 22(z) do ().

h—0 Ty T

Using (4.3)

iny [ (une 0951 (2) dor(a) = / 22(z) do ().

h—0 T

This identity and the weak convergence imply the strong convergence up. © g;l — U
in L2(I"). The first consequence of this strong convergence is that the constraint ||u o
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gt - ||z 2(ry < € is not active at the controls up. for h small enough. Therefore, up.
is a local minimum of problem (DP},) for every h small enough. Since {||un:|/z2(r,)}
is bounded, we can argue as in the proof of Theorem 8.6 and conclude that {upeo g;l}
is bounded in H'/2(T") and hence up 0 g;, ' — @ weakly in HY/2(I') with h — 0. O

LEMMA 8.8. Let w € H?(Q) and v € L*(T); then there exists a constant C > 0
independent of w and v such that

(8.31) < Chllw|l g2y llvll 21y -

/ O, wv do — Oy, w(v o gp) doy,
T I'n

Proof. First, we observe that (4.3) implies that

/F Vu(z) - v(@)o() do(z) - / (Vao(gn () - v{gn (@)]o(gn () don (z)

Ty

< Coh? / V() - (@) ||o(z)| do(z)
r
(8.32) < Crh?|| 0w Loy l[vll L2y € CR?||w] mr2eyllv]l L2(r)-

On the other hand,

/ [Vw(z) - vi(x)]v(gn(z)) dUh(l‘)—/ [Vw(gn(x)) - v(gn(x))]v(gn(x)) don(x)
Ty Tn
=/F [Vw() - (va(x) — v(gn(2)))]v(gn(2)) don(z)
+/ [Vw(z) = Vw(gn(@))] - v(gn(x))v(gn(x)) don ().
I'n

From this identity we get, in view of (4.1), (4.2), and (5.9),

/F [Vw(@) - va(2)]v(gn(x)) don(x) — / [Vw(gn(x)) - v(gn(x))lv(gn () don(z)

Tn
(8.33) < Chllw|| g2y llvll 2 (-

Now, (8.32) and (8.33) imply (8.31). o

9. Error estimates for problems (DPp). In this section we assume that @y,
is a local minimum of (DP}) such that @y, o g, ' converges weakly in H/2(T") to a
local minimum % of (DP) with & — 0; see Theorems 8.6 and 8.7. The goal of this
section is to derive an estimate for || — @y, o g; || z2(r), Which is established in the
following theorem.

THEOREM 9.1. Let @ and up be as above, and let us denote by g, yn and @, pn
the states and adjoint states associated to u and uy, respectively. Let us assume that
the second order sufficient optimality condition (7.13) is fulfilled for u. Then there
exists a constant C, independent of h, such that the following estimates hold:

9.1)  Nlu—1anogy lrawy + 17— Unll gz, + 119 — @nllasrz o,y < Ch.

Before proving this theorem we provide a preliminary result. The proof of Lemma
9.2 is inspired by [5, Lemma 7.2]; however, there are some important differences.
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LEMMA 9.2. Let > 0 be taken from Theorem 7.4. Then there exists hg > 0
such that

1 . _ 1 - _ _ /s 1 -
(9.2) g min{N,pHl|wn o g, = Ty < (J'(@nog,") = J'(@)(@nog," —u).

Proof. By applying the mean value theorem there is an intermediate element
Gy, = U+ Oy (1 © g, " — 1) such that

(9.3) (J'(an 0 g, ") = J'(@)(@n 0 g —w) = J"(an)(an o g, — w)?.
Let us take

1

an o gyt — all2(r)

v, = (an o gy " —a).

Taking a subsequence, if necessary, we can assume that v, — v weakly in L?(T"). We
show that v belongs to the critical cone Cy defined in section 7. First, observe that v
satisfies the sign condition (7.12) since every element vy, satisfies the same condition.
Let us prove that v(x) = 0 if Nu(z)—9,@(x) # 0. To this end it is enough to establish
the limit passage

(9.4) lim (Ntp — Oy, &n)(vh 0 gpn) dop, = /(Nﬂ — 0y@)udo.
h—0 Fh T

Indeed, from (9.4) we deduce, in view of (8.4), that

/|Na_3y¢||v|dg:/(Na—ﬁy@vda
r r
!

im — o
h=0 ||up 0 g, — all L2y

/ (N’Cbh — &,h(ﬁh)(ﬂh —uo gh) dop, <0,
Ty

which proves the required property. Let us show (9.4). By the strong convergence
tp o g, ' — uin L*(T") combined with (8.18) and (4.2), we have

/ (N’ﬁh — &,h@h)(vh ogh) doy, — / (N’ﬁh — &,h@)(vh Ogh) doy,
'y Tn

< N10v, @h — 0w, Pl 20 [lvn © gnllL2(ry)
< Cwu (lano gy — allray + AL+ lull gz ey]) lonllcz gy
(95) =Cu (”ﬂh o g;l — aHLz(F) + h[l + HUHHI/Q(F)]) — 0 with A — 0.

On the other hand, from Lemma 8.8 we get

(9.6) Oy, (v, 0 gp) dop, = / Ovpup, do + O(h) — / Oypvdo with h — 0.
Vs r r

Finally, from (4.3) we obtain

(9.7) / ap (v o gn) doy, = /(@h o g, Hvpdo + O(h) — /Tw do with h — 0.
T, r r

Thus, (9.4) follows from (9.5), (9.6), and (9.7).
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Now by the definition of vy, and (7.7), (7.26), we get

lim J” (@, )v3 = i / 82—L( i) — Aa—za( iy )| 22 dz 4+ N
hli% Up, Uh_h% o 5y2 Ty Yay, Pay, ayz T, Yay, th xz

0%L 0%a
:/Q |:a—y2($ay) —%Da—yz(l’ay)} zyde+ N

= J"(@v* + N1 = [[v][Z2r)) = N + (1 = N)[[vl|Z2r-
Taking into account that ||v][z2(r) < 1, the above inequality leads to
lim J” (43)v; > min{u, N} >0,
h—0
which proves the existence of hg > 0 such that
1
J" (i v > 3 min{p, N} Vh < h.
From this inequality, by the definition of v;, and (9.3), we deduce (9.2), which com-
pletes the proof. O

Proof of Theorem 9.1. By taking v = @y, o g;l in (7.11) and v, = wo gp, in (8.4),
we get

(9.8) J(@)(an o gt —a) = /(Nﬂ —0,) (im0 gt — @) do > 0
r
and
(9.9) Jy (ap) (o gy — up) = / (Nuy, — Oy, @n) (@ o gn, — up) dop, > 0.
Ty

We rewrite inequality (9.9) as follows:

(9-10) J'(anogy ") (a—unogy )+ [Jj (@n) (@ogn—tn) —J' (anogy, ) (u—unogy )] > 0.
From (9.8) and (9.10) we obtain

[T (@nog, ") =" (@)(anogy " —a) < Jp(an)(@ogn —un) —J' (anogy, ) (a—anogy").
Now, from (9.2) we deduce

(9.11) %min{NaM}Hﬂhogﬁl—ﬂHQp(r) < Jp,(un) (@ogn—tn)—J' (anog, ') (—anog, ).

It remains to derive an estimate for the right-hand side of (9.11). To this end, we
introduce y € H(Q) N L>(Q) and ¢ € H?(2) as the solutions of the equations

—Ay+a(z,y) = 0 in Q,
(9.12) { y = apogi! onT
and
da oL )
(9.13) —Ap+ 5—y(x,y)<p = 8—y(az,y) in Q,
Y = 0 on I
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Then we have
(9.14) J'(ap 0 gy )(u—apog,t) = /F(Nﬂh 0gy "t — o) (@ — a0 gy do.
From (9.9) we get
(9.15) | T (an) (@ o gn —an) — J'(an 0 g5 ') (@ — un 0 g, )|

[ an— 0 o) @o g an)don ~ [ (Voo g~ 0u)(a— wn 0 g7 )do
'y I

Using (4.3) we obtain

/ @h(ﬁogh—ﬂh)dah—/@hoggl(@—@hoggl)da
Ty r

< Ch2/ |in 0 gy M| — an o gy | do
r
(916) < Ch2||ﬂh o g;lHLz(F)H’a — Up 0 g}?1||L2(F) < Ch2||’ﬁ — Up O g;lHLz(p).

On the other hand, from (8.18), Lemma 8.8, and (4.3), we get

Ov @n(t o gy — up) dop, — / dyp(it — iy 0 gy M)do
I

Tn
< ||0u), &h — Ouy pllL2(r,) T 0 g - UnllL2(ry)

+

Oy, (T o gy, — ap) dop, — / Oyp(u — up 0 g;l)da
In r

(917) < Ch”ﬂ—ﬂhogngLz(p).
Thus, from (9.11), (9.15), (9.16), and (9.17), we conclude
Hﬂ - ’ljh o g}:l||L2(F) S Oh

The remaining estimates of (9.1) follow from the above estimate, (8.7), and (8.13). a
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