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RECOVERY OF HIGH FREQUENCY WAVE FIELDS FOR THE

ACOUSTIC WAVE EQUATION

HAILIANG LIU AND JAMES RALSTON

Abstract. Computation of high frequency solutions to wave equations is impor-
tant in many applications, and notoriously difficult in resolving wave oscillations.
Gaussian beams are asymptotically valid high frequency solutions concentrated
on a single curve through the physical domain, and superposition of Gaussian
beams provides a powerful tool to generate more general high frequency solutions
to PDEs. An alternative way to compute Gaussian beam components such as
phase, amplitude and Hessian of the phase, is to capture them in phase space by
solving Liouville type equations on uniform grids. Following [3] we present a sys-
tematic construction of asymptotic high frequency wave fields from computations
in phase space for acoustic wave equations; the superposition of phase space based
Gaussian beams over two moving domains is shown necessary. Moreover, we prove
that the k-th order Gaussian beam superposition converges to the original wave

field in the energy norm, at the rate of ǫ
k

2
+

1−n

4 in dimension n.
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1. Introduction

This is the continuation of our project, initiated in [3], of developing a rigorous
recovery theory for high frequency wave fields from phase space based computations.
Here we focus on the wave equation

Pu := [∂2t − c(x)2∆]u = 0, (x, t) ∈ R
n × R,(1.1)

where c(x) is a positive smooth function, with highly oscillatory initial data

(1.2) u(x, 0) = Ain(x, ǫ)e
iSin(x)/ǫ, ut(x, 0) = Bin(x, ǫ)e

iSin(x)/ǫ.
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The initial phase Sin ∈ C∞(Rn), and the amplitudes Ain, Bin ∈ C∞
0 (Rn) have the

following asymptotic expansions:

Ain : = A
(0)
in (x) + ǫA

(1)
in (x) + ǫ2A

(2)
in (x) + · · · ,(1.3)

Bin : = ǫ−1B
(−1)
in (x) +B

(0)
in (x) + ǫB

(1)
in (x) + · · · .(1.4)

The small parameter ǫ represents the typical wave length of oscillations of the ini-
tial data. Propagation of oscillations of wave length ǫ causes mathematical and
numerical challenges in solving high frequency wave propagation problems.

In this article we are interested in the construction of globally valid asymptotic
wave fields and the analysis of their convergence to the true solutions of the initial
value problem. A general discussion of this problem and background references are
given in the introduction to [3]. We have two objectives:

i) to present the construction of asymptotic solutions as superpositions over
phase space;

ii) to estimate the difference between the exact wave fields and the asymptotic
ones.

The construction for (i) is based on Gaussian beams (GB) in physical space con-
structed similarly to those given for wave equations in [6], but here the construction
is carried out by solving inhomogeneous Liouville equations in phase space. While
the result is no longer a superposition of asymptotic solutions to the wave equa-
tion (1.1), the superposition is nonetheless asymptotic. We consider superpositions
over two subdomains moving with two Hamiltonian flows, respectively, and show
that they are asymptotic solutions by relating them to the Lagrangian superposition
through two time-dependent symplectic changes of variables. An argument of this
type was used for the Helmholtz equation in [2].

For (ii), as in [6], we use the well-posedness theory for (1.1), i.e. the continuous
dependence of solutions of Pψ = f on their initial data and f . Thus, the sources of
error in the Gaussian beam superposition for the initial value problem are the error
in approximating the initial data and the error in solving the PDE. There are some
differences between the acoustic wave equation and the Schrödinger wave equation.
For example, the caustics that can form are weaker.

In summary, our phase space based Gaussian beam superposition is expressed as

(1.5) uǫ(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+PGB(t, y,X)dX +

∫

Ω−(t)

u−PGB(t, y,X)dX

]

,

where X = (x, p) denotes variables in phase space R2n, Ω(0) is the domain where we
construct initial Gaussian beams from the given data, and Ω±(t) is the image of Ω(0)
under the Hamiltonian flow for H(x, p) = ±c(x)|p|. The functions u±PGB(t, y,X) are
constructed using the phase space based Gaussian beam Ansatz, and Z(n, ǫ) ∼ ǫ−n/2

is a normalization parameter. Our result shows that for the k−th order phase space
Gaussian beam superposition, the following estimate holds

(1.6) ‖(uǫ − u)(t, ·)‖E . ‖(uǫ(0, ·)− uin(·)‖E + |Ω(0)|ǫk
2
+ 1−n

4 ,

where ‖e‖2E := ǫ2

2

∫

Rn [c
−2|et|2 + |∇xe|2]dx. Here and in what follows we use A . B

to denote the estimate A ≤ CB for a constant C which is independent of ǫ.
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For the initial data of the form (Ain(x, ǫ), Bin(x, ǫ))e
iSin(x)/ǫ we need a superposi-

tion over an n-dimensional submanifold of phase space. The asymptotic solution is
then represented as

(1.7) uǫ(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+PGBδ(w
+)dX +

∫

Ω−(t)

u−PGBδ(w
−)dX

]

,

where w± is obtained from the Liouville equation

∂tw +Hp · ∇xw −Hx · ∇pw = 0, w(0, X) = p−∇xSin(x),

with H(x, p) = ±c(x)|p|, respectively. Our result shows that

(1.8) ‖(uǫ − u)(t, ·)‖E . ǫ
k
2
+ 1−n

4 .

Here the exponent k/2 reflects the accuracy of the Gaussian beam in solving the
PDE. It will increase when one uses more accurate beams. The exponent 1−n

4
indi-

cates the damage done by the caustics.
We now conclude this section by outlining the rest of this paper: in Section 2 we

start with Gaussian beam solutions in physical space, and define the phase space
based GB Ansatz through the Hamiltonian map. Section 3 is devoted to a recovery
scheme through superpositions over two moving domains. The total error is shown
to be bounded by an initial error and the evolution error of order ǫ(3−n)/4. Control of
initial error is discussed in Section 4. Convergence rates are obtained for first order
GB solutions in Section 5. In Section 6 we present an example to illustrate these
constructions. Extensions to higher order GB approximations are given in Section
7.

2. Phase space based Gaussian beam Ansatz

As is well known, the idea underlying Gaussian beams [5] is to build asymptotic
solutions concentrated on a single ray path in Rt × R

n
x. This means that, given a

ray path γ parameterized by (t, x(t)), one makes the ansatz

(2.1) uǫ(t, y) = A(t, y, ǫ)eiΦ(t,y)/ǫ,

where Φ(t, x(t)) is real, and Im{Φ(t, y)} > 0 for y 6= x(t). The amplitude is allowed
to be complex and has an asymptotic expansion in terms of ǫ:

A(t, y, ǫ) = A0(t, y) + ǫA1(t, y) + · · ·+ ǫNAN(t, y).

We wish to build asymptotic solutions to Pu(t, y) = 0, i.e., we want Puǫ = O(ǫM).
Substituting from (2.1) and grouping terms multiplied by the same power of ǫ, we
obtain the equations of geometric optics:

(2.2) P [A(t, y, ǫ)eiΦ(t,y)/ǫ] =

(

N
∑

j=−2

cj(t, y)ǫ
j

)

eiΦ(t,y)/ǫ,

where for G(t, y) = |∂tΦ|2 − c2|∇yΦ|2,
c−2(t, y) = −G(t, y)A0,

c−1(t, y) = 2iLA0 +G(t, y)A1,

cl−1(t, y) = 2iLAl +G(t, y)Al+1 + P [Al−1], l = 1, · · ·N − 1.
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Here L is the linear differential operator,

L = Φt∂t − c2∇yΦ · ∇y +
1

2
P [Φ].

Since eiΦ/ǫ decays rapidly away from γ, to make P (AeiΦ/ǫ) = O(ǫM) for a given
M ∈ Z, we only need to make cj vanish on γ to sufficiently high order. In this
work we discuss mainly the lowest order Gaussian beam solutions, followed by an
extension to higher order Gaussian beam superpositions in Section 7.

We begin with c−2 = 0, i.e. G = 0. This leads to two eikonal equations

(2.3) ∂tΦ +H(x,∇xΦ) = 0, H(x, p) = ±c(x)|p|.
The leading amplitude solves

(2.4) ∂tA+Hp · ∇xA =
AP [Φ]

2H(x,∇xΦ)
.

We continue to denote the phase space variable as X = (x, p), and let X0 = (x0, p0)
denote the initial state. Then the equations for the bicharacteristics X = X±(t, X0)
originating from X0 at t = 0 are

(2.5)
d

dt
X(t, X0) = V (X(t, X0)), X(0, X0) = X0.

The vector field V = (Hp,−Hx) is divergence free, and hence this flow preserves the
volume on phase space.

From now on we include the initial data X0 as a parameter in the phase: Φ =
Φ(t, y;X0) and the amplitude: A = A(t, y;X0). We apply Taylor expansion of the
phase Φ and the amplitude A about x = x(t, X0) to obtain
(2.6)

Φ(t, y;X0) = S(t;X0)+p(t, X0)(y−x(t, X0))+
1

2
(y−x(t, X0))

⊤M(t;X0)(y−x(t, X0)),

with p(t, X0) = ∂yΦ(t, x(t, X0);X0) and

S(t;X0) = Φ(t, x(t, X0);X0), M(t;X0) = ∂2yΦ(t, x(t, X0);X0).

For the amplitude we set A(t, y;X0) = A(t;X0) with A(t;X0) = A(t, x(t, X0);X0).
Then we get the equations along the curve γ for S

d

dt
S(t;X0) = 0, S(0;X0) = Sin(x0),(2.7)

and the Hessian M

(2.8)
d

dt
M(t;X0) +Hxx +HxpM +MHpx +MHppM = 0, M(0;X0) =Min(x0).

Using the eikonal equation ∂tΦ +H(x,∇Φ) = 0 twice, we see that

P [Φ] = ∂t[−H(x,∇Φ)]− c2∆Φ = Hp ·Hx +HpMHp − c2Tr(M).

This with (2.4) shows that the amplitude along the ray, A(t;X0), satisfies

(2.9)
d

dt
A(t;X0) =

A

2H

[

Hp ·Hx +HpMHp − c2Tr(M)
]

, A(0;X0) = Ain(x0).

We have introduced this form of the transport equation because it is easier to trans-
late to Eulerian coordinates. The essential idea behind the Gaussian beam method
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is to choose some complex Hessian Min initially so that M remains bounded for
all time, and its imaginary part is positive definite. Equation (2.9) shows that the
amplitude A(t;X0) will also remain bounded for all time.

The above construction ensures that the following GB Ansatz is an approximate
solution

uGB(t, y;X0) = u+GB(t, y;X0) + u−GB(t, y;X0),

where

u±GB(t, y;X0) = A±(t;X0) exp

(

i

ǫ
Φ±(t, y;X0)

)

,

where both A±(t;X0) and Φ±(t, y;X0) are computed from (2.9) and (2.6) with H =
±c(x)|p|, respectively.

Here A±(0;X) are to be chosen so that a superposition will match the initial data

(u, ut)|t=0 = (Ain, Bin)e
iSin/ǫ

to leading order. For this matching we need (for X = (x,∇Sin(x)))

A+(0;X) + A−(0;X) = A
(0)
in (x),

i

ǫ
A+(0;X)∂tΦ

+(0, x;X) +
i

ǫ
A−(0;X)∂tΦ

−(0, x;X) =
1

ǫ
B

(−1)
in (x).

In the second relation we took only the leading term in e−iSin/ǫut. Since the two
Hamiltonians have different signs,

Φ±(0, x;X) = Sin(x) and ∂tΦ
±(0, x;X) = ∓c(x)|∇xSin(x)|,

the second relation gives

(2.10) A+(0;X)− A−(0;X) =
iB

(−1)
in (x)

c(x)|∇xSin(x)|
.

Hence solving for A± we have

(2.11) A±(0;X) =
1

2

(

A
(0)
in (x)± iB

(−1)
in (x)

c(x)|∇xSin(x)|

)

.

Note that we could simplify the superposition by taking some special initial data

such that B
(−1)
in (x) = −iA(0)

in (x)c(x)|∇Sin(x)|. The advantage of these special choices
is that we do not need a sum of two Gaussians to approximate the solution. We also

note that for given initial Bǫ
in of order O(1), i.e., B

(−1)
in = 0, we see that A±(0;X) =

1
2
A

(0)
in (x).

3. Recovery of the high frequency wave fields

Since the wave equation we consider is linear, the high frequency wave field u at
(t, y) in physical space is expected to be generated by a superposition of neighboring
Gaussian beams

(3.1) uǫ(t, y) = Z(n, ǫ)

∫

Ω(0)

uGB(t, y;X0)dX0,
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where Ω(0) is a bounded open set containing

{X0 : x0 ∈ supp(Ain) ∪ supp(Bin), p0 ∈ range(∂xSin)}.
The normalization parameter Z(n, ǫ) ∼ ǫ−n/2 is determined by matching initial data
against the Gaussian profile.

Since the flows X±(t;X0) are volume preserving in phase space,

det

(

∂X±(t, X0)

∂X0

)

= 1.

Using X = X±(t, X0) and their inverses X0 = X±
0 (t, X), we obtain our Gaussian

beam Ansatz in phase space

u±PGB(t, y,X) := u±GB(t, y;X
±
0 (t, X)).

From (3.1) it follows that

uǫ(t, y) = Z(n, ǫ)

∫

Ω(0)

[

u+GB(t, y;X0) + u−GB(t, y;X0)
]

dX0

= Z(n, ǫ)

[
∫

Ω+(t)

u+PGB(t, y,X)dX +

∫

Ω−(t)

u−PGB(t, y,X)dX

]

,(3.2)

where
Ω±(t) = X±(t,Ω(0)).

Each phase space Gaussian beam has the form

(3.3) uPGB(t, y,X) = Ã(t, X) exp

(

i

ǫ
Φ̃(t, y,X)

)

,

where

(3.4) Φ(t, y,X) = S̃(t, X) + p · (y − x) +
1

2
(y − x)⊤M̃(t, X)(y − x).

Note that though u±PGB(t, y,X) are no longer asymptotic solutions of the wave equa-
tion in (t, y), their superpositions over the moving domains Ω±(t) in X remain as-
ymptotic solutions.

Let L be the Liouville operator defined by

(3.5) L := ∂t + V · ∇X .

If w̃(t, X) is the phase space representative of w(t;X0) in the sense that w(t;X0) =
w(t, X(t, X0)) for any t > 0, then

d

dt
w(t;X0) = Lw̃(t, X).

Hence from the Lagrangian formulation of equations for (S,M,A) we obtain PDEs

for (S̃, M̃, Ã) in (2.7), (2.8) and (2.9):

L(S̃) = 0, S̃(0, X) = Sin(x),(3.6)

L(M̃) +Hxx +HxpM̃ + M̃Hpx + M̃HppM̃ = 0, M̃(0, X) =Min(x),(3.7)

L(Ã) = Ã

2H

[

Hp ·Hx +HpM̃Hp − c2Tr(M̃)
]

, Ã(0, X) = Ain(x),(3.8)
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where H(x, p) = c(x)|p| or H(x, p) = −c(x)|p|. The heart of the matter is equation
(3.7). It is known from [4] that, if Min is symmetric and the imaginary part of Min

is positive definite, then a global solution M̃ to (3.7) is guaranteed and has the
properties:
i) M̃ = M̃T , and
ii) Im(M̃) is positive definite for all t > 0.

There are several ways of computing M̃ . Following [1] (see also [3, Section 7]), we
use a level set method to construct the Hessian:

(3.9) M̃ = −gx(gp)−1,

where g = φ1(t, X) + iφ2(t, X) with φi obtained by solving the Liouville equation

L(φ) = 0.

From the well-posedness theory of the wave equation we have the following.

Lemma 3.1. Let u satisfy P [u] = 0 in [0, T ]× R
n with (u, ut) given at t = 0, and

let uǫ be an asymptotic solution. Then the error e = uǫ − u satisfies

(3.10) ‖e(t)‖E ≤ ‖e(0)‖E + ǫ

∫ t

0

∥

∥c−1P [uǫ]
∥

∥

L2 dτ,

where ‖e‖E =
√
2E and

E :=
ǫ2

2

∫

Rn

[

c−2|et|2 + |∇xe|2
]

dx.

Proof. Since we start with the data with compact support, at any finite time the
support of the solution remains bounded (due to finite speed of propagation for the
wave equation).

Let e = uǫ − u. Then from P [u] = 0

P [e] = P [uǫ]− P [u] = P [uǫ].

We now have

d

dt
E(t) = ǫ2

∫

Rn

[

c−2etett +∇e · ∇et
]

dx

= ǫ2
∫

Rn

[

∇ · (et∇e) + c−2etP [u
ǫ]
]

dx

≤ ǫ2
∥

∥c−1et
∥

∥

L2

∥

∥c−1P [uǫ]
∥

∥

L2 ≤ ǫ
√
2E
∥

∥c−1P [uǫ]
∥

∥

L2 .

This, upon integration in time, leads to the desired estimate. �

4. Control of initial error

For the initial phase Sin, we set p0 = ∇xSin(x0) and form the Lagrangian super-
positions

uǫ(t, y) = Z(n, ǫ)

∫

Ω(0)

uGB(t, y;X0)δ(p0 −∇xSin(x0))dX0.
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In order to track the deformation of the surface p − ∇xSin(x) = 0 as time evolves,
we introduce two level set functions w = w±(t, X) such that

(4.1) L[w] = 0, w(0, X) = p−∇xSin(x),

with H(x, p) = ±c(x)|p|. Here w± gives φ2 needed in (3.9) and φ1 can be obtained
from solving the respective Liouville equation with φ1(0, X) = x.

Using the volume preserving maps X = X±(t, X0), leads to the Gaussian beam
superposition in phase space

(4.2) uǫ(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+PGBδ(w
+)dX +

∫

Ω−(t)

u−PGBδ(w
−)dX

]

,

where Ω±(t) = X±(t,Ω(0)). Our choice of initial data for the beams in this super-
position will be made to match the initial data in (1.2). Set

(4.3) I(0) = {x : (x, p) ∈ Ω(0), p = ∇xSin(x)}.
We now use the Lagrangian formulation of the GB superposition to match the initial
data.

(4.4) uǫ(t, y) = Z(n, ǫ)

∫

I(0)

uGB(t, y; x0)dx0.

Here and in what follows we use uGB(t, y; x0) for uGB(t, y; x0,∇xSin(x0)). If we take
S±(0; x0) = Sin(x0), M

±(0; x0) = ∂2xSin(x0) + iβI with β > 0 as well as A±(0;X0)
as defined in (2.11), then

uǫ(0, y) = Z(n, ǫ)

∫

I(0)

A
(0)
in (x0)e

iΦ(0,y;x0)/ǫdx0,

where

Φ(0, y; x0) = T x0
2 [Sin](y)−

β

2
|y − x0|2.

Here T x
j [S](y) denotes the j

th order Taylor polynomial of S about x at the point y.
Setting

Z(n, ǫ) =

(

β

2πǫ

)n/2

,

we have

uǫ(0, y) =

∫

I(0)

A
(0)
in (x0)e

i
ǫ [T

x0
2 [Sin](y)]K

(

x0 − y,
ǫ

2β

)

dx0,

where K(x, τ) = 1
(4πτ)n/2 e

−
|x|2

4τ is the usual heat kernel, satisfying limitτ↓0K(x, τ) =

δ(x) as distributions on R
n, and

∫

x

K(x− y, τ)dx = 1, ∀τ > 0, y ∈ R
n.

On the other hand the initial wave field is

u(0, y) = Aǫ
in(y)e

iSin(y)/ǫ =

∫

Rn

Aǫ
in(y)e

iSin(y)/ǫK

(

x− y,
ǫ

2β

)

dx.
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Both the phase and amplitude in the integrand can be approximated by their Taylor
expansion when |x − y| is small, say |x − y| < ǫ1/3, and the integral over the com-
plement of this neighborhood will then be O(exp(−cǫ−1/3)) for some c > 0. Thus
the main contributions to the error come from the remainder terms in the Taylor
expansions, and this leads to

Lemma 4.1. [6] Let Sin ∈ C∞(Rn) be a real-valued function, and Ain ∈ C∞
0 (Rn).

Then

‖u(0, ·)− uǫ(0, ·)‖L2 . ǫ
1
2 ,(4.5)

ǫ ‖u(0, ·)− uǫ(0, ·)‖H1 . ǫ
1
2 .(4.6)

Remark 4.1. We note that a cutoff function is necessary and important when one is
building beams of higher accuracy

We now show the initial error of time derivative of the GB superposition is also
under control. We compute the time derivative of (4.4) to obtain

∂tu
ǫ(t, y) = Z(n, ǫ)

∫

I(0)

∂tuGB(t, y; x0)dx0,

where uGB(t, y; x0) = u+GB(t, y; x0) + u−GB(t, y; x0) with

∂tu
±
GB(t, y; x0) =

[

∂tA
± +

i

ǫ
A±∂tΦ

±

]

eiΦ
±(t,y;x0)/ǫ.

Note that the GB construction ensures that

∂tΦ
±(t, y; x0) = ∓c(y)|∇Φ±(t, y; x0)|+O(|y − x(t, x0)|3).

Recall (2.9) we have ∂tA(t; x0) ∼ O(1). Hence from (2.10) we have

∂tuGB(0, y; x0) =
[

O(1) + ǫ−1(B(−1)(x0) +O(|y − x0|))
]

eiΦ
±(0,y;x0)/ǫ.

Note that
∥

∥

∥

∥

Z(n, ǫ)

∫

I(0)

[

O(1) +O

( |y − x0|
ǫ

)]

eiΦ
±(0,y;x0)/ǫdx0

∥

∥

∥

∥

L2
y

≤ C(1 + ǫ−1/2),

which together with Lemma 4.1 again gives

‖uǫ(0, ·)− u(0, ·)‖E ≤ ǫ‖uǫ(0, ·)− u(0, ·)‖H1 + ǫ‖∂tuǫ(0, ·)− ∂tu(0, ·)‖L2
y
. ǫ1/2.

(4.7)

Remark 4.2. The above analysis shows that one could choose B
(−1)
in to simplify the

superposition, as was pointed out in Section 2. For example,

(i) for B
(−1)
in = −ic(x)|∇Sin|, then A+(0;X0) = A

(0)
in (x0), A−(0;X0) = 0

(4.8) uǫ(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+PGBδ(w
+)dX

]

;

(ii) for B
(−1)
in = 0, then A±(0;X0) =

1
2
A

(0)
in (x0)

(4.9) uǫ(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+PGBδ(w
+)dX +

∫

Ω−(t)

u−PGBδ(w
−)dX

]

.
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5. Propagation of the approximation error

We now turn to quantify the evolution error P [uǫ]. Recall the Schur’s lemma: If
[Tf ](y) =

∫

K(x, y)f(x)dx and

supx

∫

y

|K(x, y)|dy = C1, supy

∫

x

|K(x, y)|dx = C2,

then
‖Tf‖L2 ≤

√

C1C2‖f‖L2.

Proof. We have by Schwartz

|[Tf ](y)|2 ≤
(
∫

|K(x, y)|f(x)dx
)2

≤
∫

|K(x, y)|dx
∫

|K(x, y)||f(x)|2dx

≤ C2

∫

|K(x, y)||f(x)|2dx.

So integrating both sides in y and taking the square root gives the result. �

We now apply Schur’s lemma to a typical term in
∫

I(0)
P [uǫ]dx0:

[TA](y) =

∫

I(0)

A(t; x0)F (t, y; x0)e
iΦ(t,y;x0)/ǫdx0,

where the imaginary part of Φ(t, y; x0) is bounded below by cI and for convenience
we will assume that |F | ≤ |y − x(t, x0)|k. Then one can apply Schur’s lemma with

C1 = supx0

∫

Rn

|y − x(t, x0)|ke−(c/ǫ)|y−x(t,x0)|2dy = ǫ
k
2
+n

2

∫

z

|z|ke−c|z|2dz, and

(5.1) C2(t, ǫ) = supy

∫

I(0)

|y − x(t, x0)|ke−(c/ǫ)|y−x(t,x0)|2dx0.

In general one does not know what C2(t, ǫ) will be. As long as A has compact
support C2 will be at least bounded by cǫk/2. Thus the error in L2 norm will be
bounded by cǫk/2+n/4. We now show that for the wave equation, a better rate can
be obtained.

Lemma 5.1. We have
C2(t, ǫ) . ǫ(k+1)/2.

Proof. From (2.7) and taking p0 = ∇xSin(x0) it follows

S(t, x(t, x0)) = Sin(x0), ∀t > 0.

Differentiation of this equation in x0 gives

∂x

∂x0
p = p0, p(t, x0) := ∇xS(t, x(t, x0)).

For non-constant initial phase, at least one element in the deformation matrix ∂x
∂x0

is non-zero. Assume ∂x1

∂x01
6= 0 near x∗0, then writing x0 = (x01, x̂0) there exists a

function h such that x01 = h(t, z, x̂0) and

z ≡ x1(t, h(t, z, x̂0), x̂0)
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in the neighborhood of x∗0. Also the map (x01 = h(t, z, x̂0), x̂0) → (z, x̂0) is invertible,
with the Jacobian determined by

J = det

(

∂(x01, x̂0)

∂(z, x̂0)

)

=

∣

∣

∣

∣

∂h

∂z

∣

∣

∣

∣

=

∣

∣

∣

∣

∂x1
∂x01

∣

∣

∣

∣

−1

.

With this map we rewrite the underlying quantity as

C2 =

∫

(z,x̂0)

(|ŷ−x̂(t, z, x̂0)|2+|y1−z|2)k/2 exp
(

−c
ǫ
(|ŷ − x̂(t, z, x̂0)|2 + |y1 − z|2)

)

Jdx̂0dz.

Using a stretched coordinate in z so that z− y1 =
√
ǫξ, with a := ŷ− x̂(t, z, x̂0), we

obtain

C2 =
√
ǫ

∫

(ξ,x̂0)

(|a|2 + ǫ|ξ|2)k/2e−c|ξ|2 exp
(

−c
ǫ
|a|2
)

Jdx̂0dξ.

Rewriting e−c|ξ|2 = e−c|ξ|2/2 · e−c|ξ|2/2, and using the fact that e−c|ξ|2/2 ≤ 1 and
|ξ|2e−c|ξ|2/2 ≤ C, we obtain

C2 ≤
√
ǫ

∫

(ξ,x̂0)

(|a|2 + Cǫ)k/2e−c|ξ|2/2e−c|a|2/ǫJdx̂0dξ

.
√
ǫǫk/2

∫

(ξ,x̂0)

e−c|ξ|2/2Jdx̂0dξ.

Here we have used the fact that (|a|2 + Cǫ)k/2e−c|a|2/ǫ . ǫk/2 for any a ∈ R
n−1. As

long as the initial domain for x0 is finitely compact, the above integral is uniformly
bounded. Note that the local feature of the used map is not restricted, since one
could use a partition of unity to decompose C2 into a finite sum of terms with the
same rate of error. The desired estimate thus follows. �

This lemma enables us to conclude the following key estimate

(5.2) ‖T [A]‖L2 . ǫk/2+(1+n)/4,

which will be used to prove the following theorem.

Theorem 5.2. Let P = ∂2t − c2(x)∆ be the linear wave operator and uǫ be defined
in (4.2) with Im(M±

in) = βI and Z(n, ǫ) = (β/(2πǫ))n/2. If both Ain and Bin have
compact supports, then uǫ is an asymptotic solution and satisfies

(5.3) ‖P [uǫ](t, ·)‖L2
y
. ǫ−

1+n
4 .
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Proof. Using the volume-preserving map of X = X(t, X0) and w(t, X(t, X0)) =
w(0, X0), we obtain

uǫ(t, y) = Z(n, ǫ)

∫

Ω(0)

uPGB(t, y,X(t, X0))δ(w(t, X(t, X0)))dX0

= Z(n, ǫ)

∫

Ω(0)

uGB(t, y;X0)δ(w(0, X0))dX0

= Z(n, ǫ)

∫

Ω(0)

uGB(t, y;X0)δ(p0 −∇xSin(x0))dX0

= Z(n, ǫ)

∫

I(0)

uGB(t, y; x0)dx0.

According to the GB construction, uGB(t, y; x0) is an asymptotic solution for each
x0, so will be their superpositions uǫ(t, y). It remains to verify (5.3). First we see
that

P [uǫ(t, y)] = Z(n, ǫ)

∫

I(0)

P [uGB(t, y; x0)]dx0,

where

(5.4) P [A(t; x0)e
iΦ(t,y;x0)/ǫ] =

(

ǫ−2c−2(t, y) + ǫ−1c−1 + c0
)

eiΦ(t,y;x0)/ǫ,

where for G(t, y) = |∂tΦ|2 − c2|∇yΦ|2, we have

c−2(t, y) = −G(t, y)A,

c−1(t, y) = 2i

[

∂tA∂tΦ +
1

2
AP [Φ]

]

,

c0(t, y) = ∂2tA(t; x0).

Using Taylor expansion around x = x(t, x0) we have

G(t, y) = G(t, x) + ∂xG(t, x) · (y − x) +
1

2
(y − x)⊤∂2xG(y − x) +O(|y − x|3).

Then the Gaussian beam construction sketched in Section 2 ensures that

|c−2(t, y)| ≤ C|A||y − x|3.
Also using the construction for A , we are able to show

|c−1(t, y)| ≤ C|A||y − x|, |c0(t, y)| ≤ C|A|.
The construction with positive Im(M) guarantees that

Φ(t, y; x0) ≥ c|y − x|2.
Consequently,

Z−1‖P [uǫ(t, ·)]‖L2 ≤
∥

∥

∥

∥

∫

I(0)

Ae−Im(Φ(t,y;x0))/ǫ
∣

∣ǫ−2c−2 + ǫ−1c−1 + c0
∣

∣ dx0

∥

∥

∥

∥

L2
y

≤
0
∑

j=−2

ǫj
∥

∥

∥

∥

∫

I(0)

|A||cj|e−c|y−x(t,x0)|2/ǫdx0

∥

∥

∥

∥

L2
y

,
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continuing the estimate by using the key estimate (5.2) with k = 3, 1, 0 for F =
c−2, c−1, c0, respectively

.
[

ǫ−2ǫ3/2 + ǫ−1 · ǫ1/2 + 1
]

ǫ(1+n)/4

. ǫ−1/2+(1+n)/4,

which when using Z ∼ ǫ−n/2 proves the result. �

This combined with the obtained initial error and total error estimate in Lemma
3.1 gives

Theorem 5.3. Given T > 0, and let u be the solution of the wave equation subject
to the initial data (u, ut)(0, x) = (Aǫ, Bin)e

iSin(x)/ǫ. Let uǫ be the first order approx-
imation defined in (4.2) with initial data satisfying S±(0; x) = Sin(x), M

±(0; x) =

∂2xSin(x)+iβI, and A
±(0; x) = 1

2

(

A
(0)
in (x)± iB

(−1)
in

c(x)|∇xSin|

)

with |supp(Aǫ
in)|+|supp(Bǫ

in)| <

∞. Then there exists ǫ0 > 0, a normalization parameter Z(n, ǫ) =
(

β
2πǫ

)n/2
, and a

constant C such that for all ǫ ∈ (0, ǫ0)

(5.5) ‖(uǫ − u)(t, ·)‖E ≤ Cǫ
1
2
+ 1−n

4

for t ∈ [0, T ].

6. An example

Consider the initial value problem in R
3 for ∂2t u−∆u = 0 with initial data

u(0, x) = ei|x|/ǫ
f(|x|)
|x| , and ut(0, x) = 0,

where f(s) ∈ C∞
0 (0,∞). Setting g(s) = f(s) exp(is/ǫ) for s > 0, we extend g(s) to

be odd on R, i.e.
g(−|x|) = −f(|x|) exp(i|x|/ǫ).

This problem has the exact solution

u(t, x) =
1

|x|(g(t+ |x|)− g(t− |x|)).

At x = 0 this solution has a caustic of the maximum possible strength, since all rays
starting inward from the sphere |x| = a arrive at x = 0 when t = a. This is reflected
in the behavior of the exact solution

u(0, t) = g′(t) = (if(t)/ǫ+ f ′(t))eit/ǫ,

which grows like ǫ−1 as ǫ goes to zero.
To build a Gaussian beam approximation for this we need

uGB(t, x) =
1

2

(

β

2πǫ

)3/2 ∫

R3

A+(t, y)eiΦ
+(t,x;y)/ǫ + A−(t, y)eiΦ

−(t,x;y)/ǫdy,

where A±(0, y) = f(|y|)/|y| and

Φ±(0, x; y) = |y|+ (x− y) · p(y) + (x− y) ·
(

1

|y|(I − P (y) + iβI

)

(x− y)/2,
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where p(y) = y/|y| and P (y) is the orthogonal projection on the span of p(y). We
also want Φ+

t (0, x; y) = −Φ−
t (0, x; y), so that ∂tu(0, x) = 0 andA±(t, y) exp(ikΦ±(t, x; y))

must be a lowest order Gaussian beams concentrated on the null bi-characteristics
for τ ± |ξ|. With these definitions we have

Φ±(t, x; y) = |y|+ (x− x±(t, y)) · p(y)+

1

2
(x− x±(t, y)) · [iβP (y) + 1 + iβ|y|

|y| ± t(1 + iβ|y|)(I − P (y))](x− x±(t, y)),

where x±(t, x; y) = y ± tp(y). For the amplitudes we have

A±(t, x± tp(y)) = (1± t(1 + iβ))−1A(0; x).

Evaluating uGB(t, x) analytically looks difficult, but for uGB(t, 0) one has for t > 0

uGB(t, 0) = u(t, 0) + o(1/ǫ).

This behavior is predicted by the basic result that, like Fourier integral operators,
Gaussian beam superpositions give accurate leading order terms in asymptotic ex-
pansions.

In principle, one can evaluate the Gaussian beam superposition and compare it
with the exact solution. Doing this numerically could lead to interesting results on
the accuracy of these superpositions.

7. Higher order Approximations

The accuracy of the phase space based Gaussian beam superposition depends on
accuracy of the individual Gaussian beam Ansatz. Gaussian beams can be con-
structed to satisfy the wave equation modulo errors of order ǫN , for arbitrary N , by
computing higher order terms in the spatial Taylor series for the phase and ampli-
tude about the central ray. If we refer the construction in previous sections as the
first order GB solution, then a kth order GB solution will include the Taylor series
up to (k+1)th order for the phase, and (k−1−2l)th order for the lth amplitude Al for
l = 0, · · · ,

[

k−1
2

]

. The equations for these phase and amplitude Taylor coefficients
are derived recursively, starting with the phase and then progressing through the
amplitudes. At each stage (phase function, leading amplitude, next amplitude ...)
one has to derive the Taylor series up to sufficiently high order before passing to the
next function in the expansion.

Let X = X±(t;X0), with x = x±(t;X0), denote the bicharacteristic at time t > 0,
which originates from X0. Following [6, 3] we define the kth order Gaussian beams
as follows

(7.1) u±kGB(t, y;X0) = ρ(y − x)





⌊k−1
2

⌋
∑

l=0

ǫlT x
k−1−2l[A

±
l ](y)



 exp

(

i

ǫ
T x
k+1[Φ

±](y)

)

,

where T x
k [f ](y) is the k

th order Taylor polynomial of f about x evaluated at y, and
ρ is a cut-off function such that on its support the Taylor expansion of Φ± still has
a positive imaginary part.
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By invoking the volume preserving map X = X±(t, X0) and its inverse map
denoted by X0 = X±

0 (t, X), we obtain a phase space based kth order Gaussian beam
Ansatz

u±kPGB(t, y,X) := u±kGB(t, y;X0(t, X)).

Proceeding as previously, we form the superpositions.

(7.2) uǫk(t, y) = Z(n, ǫ)

[
∫

Ω+(t)

u+kPGBδ(w
+)dX +

∫

Ω−(t)

u−kPGBδ(w
−)dX

]

,

where Ω(t) = X(t,Ω(0)), and w±(t, X) is the solution of the Liouville equation with
H = ±c(x)|p| subject to w±(0, X) = p−∇xSin(x).

In (7.1) the initial data for the amplitudes A±
l must be chosen consistently with

the initial data (1.2). This leads to the recursion relations

A+
l (0, x) + A−

l (0, x) = A
(l)
in(7.3)

∂tA
+
l−1(0, x) + ∂tA

−
l−1(0, x)− i(A+

l (0, x)−A−
l (0, x))c(x)|∇Sin(x)| = B

(l−1)
in (x).

Note that, since this recursion involves the initial time derivatives of the amplitudes,
it becomes quite complicated as l increases.

This gives a kth order asymptotic solution of the wave equation. More precisely,
we have the following theorem.

Theorem 7.1. Let P be the linear wave operator of the form P = ∂2t − c2∆, and uǫ

is defined in (7.2) with Im(M±
in) = βI and Z(n, ǫ) = (β/(2πǫ))n/2, β > 0, then uǫk

is an asymptotic solution and satisfies

(7.4) ‖P [uǫk](t, ·)‖L2
y
. ǫ

k
2
−1+ 1−n

4 .

Proof. For notational convenience we estimate only one of two Gaussian beams with
± index omitted:

uǫk(t, y) = Z(n, ǫ)

∫

I(0)

ukGB(t, y; x0)dx0.

According to the GB construction, ukGB(t, y; x0) are asymptotic solutions for each
x0, so will be their superpositions uǫk(t, y). It remains to verify (7.4). First we see
that

P [uǫk(t, y)] = Z(n, ǫ)

∫

I(0)

P [ukGB(t, y; x0)]dx0.

Using (2.2) in Section 2 with A replaced by ρ(y − x)
[

∑⌊k−1
2

⌋

l=0 ǫlT x
k−1−2l[Al](y)

]

and

Φ by T x
k+1[Φ](y), we have

c−2(t, y) = −G̃ρ(y − x)T x
k−1[A0](y),

c−1(t, y) = 2iL
[

ρT x
k−1[A0](y)

]

+ G̃T x
k−3[A1](y),

cl(t, y) =2iL
[

ρT x
k−3−2l[Al+1](y)]

]

+ G̃ρT x
k−5−2l[Al+2](y) + P [ρT x

k−1−2l[Al](y)], l = 0, 1, · · · ,
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where G̃ = [(∂tT
x
k+1[Φ](y))

2 − c2(∇yT
x
k+1[Φ](y))

2]. Using T x
k+1[Φ](y) = Φ(y) +

Rx
k+1[Φ](y), here R

x
k+1 denotes the remainder of the Taylor expansion, and G̃(t, y) =

O(|y − x|k+2) we can see that

|c−2(t, y)| ≤ C|y − x|k+2.

Also using the construction for Al and their derivatives, we are able to show

|cl(t, y)| ≤ C|y − x|k−2−2l,

where we have used the fact that differentiation of ρ vanishes in a neighborhood
of x. The use of the cut-off function ensures that we can always choose a small
neighborhood of x(t, x0) so that

Im(T x
k+1[Φ](y)) ≥ c|y − x|2.

Consequently,

Z−1‖P [uǫ(t, ·)]‖L2 ≤
∥

∥

∥

∥

∫

I(0)

Ae−Im(Tx
k+1[Φ](y))/ǫ

∣

∣ǫ−2c−2 + ǫ−1c−1 + c0 + · · ·
∣

∣ dx0

∥

∥

∥

∥

L2
y

≤
⌊k−1

2
⌋−2

∑

j=−2

ǫj
∥

∥

∥

∥

∫

I(0)

|A||cj|e−c|y−x(t,x0)|2/ǫdx0

∥

∥

∥

∥

L2
y

,

continuing the estimate by using the key estimate (5.2)

.
[

ǫ−2ǫk/2+1 + ǫ−1 · ǫk/2 + · · ·
]

ǫ(1+n)/4

. ǫk/2−1+(1+n)/4,

which when using Z ∼ ǫ−n/2 proves the result. �

In order to obtain an estimate of ‖(uǫk − u)(t, ·)‖E for any 0 ≤ t ≤ T , all that
remains to verify is that the superposition (4.2) accurately approximates the initial
data. However, using the recursion (7.3) to determine the amplitudes, this is again
an application of [6]. which shows that the initial error in energy norm is bounded
by ǫk/2 for k > 1. Thus our main result for kth order phase space GB superposition
is as follows.

Theorem 7.2. Given T > 0, and let u be the solution of the wave equation sub-
ject to the initial data (u, ut)(0, x) = (Ain, Bin)e

iSin(x)/ǫ, and uǫ be the kth order
approximation defined in (7.2) with initial data chosen as described above with
|supp(Ain)|+ |supp(Bin)| <∞. Then there exists ǫ0 > 0, a normalization parameter
Z(n, ǫ) ∼ ǫ−n/2, and a constant C such that for all ǫ ∈ (0, ǫ0)

‖(uǫ − u)(t, ·)‖E ≤ Cǫ
k
2
+ 1−n

4

for t ∈ [0, T ].

Remarks

• Due to the property of symmetry in time, all results obtained apply to |t| ≤
T .

• For higher order constructions, the Liouville equation for higher order GB
components can be given similarly to those for the first order GB method.
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• For computation of high order derivatives of the phase through level set
functions we refer to [3] for details.
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