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Abstract

If m ≥ 2 is constant and 0 ≤ r ≤ ε log log n for a small positive constant ε, then
whp a random walk with look-ahead r on a scale-free graph G = G(m,n) has cover time
CG(r) ∼ (2/(mr−1(m − 1))) n log n.

1 Introduction

Random graphs with degree sequences exhibiting power law properties have been studied
by many authors and in many contexts. Recent interest was stimulated by the papers of
Barabási and Albert [1] who observed a power law degree sequence for a subgraph of the
World Wide Web (www) and by Faloutsos, Faloutsos and Faloutsos [10] who observed power
law behaviour for the internet graph. Empirical studies giving power laws for a larger portion
of the www were subsequently made by other researchers, in particular Broder et al. [3].

An established method of searching large or unknown networks, is to use a random walk. Let
G = (V, E) be a connected graph with |V | = n vertices. For v ∈ V let Cv be the expected
time taken for a simple random walk W on G starting at v, to visit every vertex of G. The
vertex cover time CG of G is defined as CG = maxv∈V Cv.

Modifying random walks to reduce the cover time, CG, is a matter of considerable practical
and theoretical interest. One possible approach is to use look-ahead (probing to fixed depth).
A random walk has look-ahead r, if at each step the walk explores all neighbours of the current
vertex to depth r. More formally, for integer r ≥ 0 and v ∈ V we let Cv(r) be the expected
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time for a simple random walk starting at v to pass within distance r of every vertex of G.
Then we let CG(r) = maxv∈V Cv(r). Thus look-ahead CG(0) = CG.

In the case of random regular graphs, the performance of look-ahead r walks is given by the
following theorem of [6].

Theorem 1. Let CG(r) be the expected number of steps needed for a random walk to get within
distance r of every vertex of a graph G. Let d ≥ 3, r ≥ 0 be constants. Let Gd denote the set
of d-regular graphs with vertex set V = {1, 2, . . . , n}. If G is chosen randomly from Gd, then
whp

CG(r) ∼ 1

(d − 2)(d − 1)r−1
n log n.

In this paper we study look-ahead random walks in scale-free random graphs G(m, n). The
precise definition of G(m, n) is given in Section 2 below. The cover time of scale-free graphs
G(m, n), established in [7], is CG ∼ 2m

(m−1)
n log n. We generalize that result as follows.

Theorem 2. If m ≥ 2 constant, and 0 ≤ r ≤ ε log log n for a positive constant ε < 1/ logm,
then whp a random walk with look-ahead r on a scale-free graph G = G(m, n) has cover time

CG(r) ∼ 2

mr−1(m − 1)
n log n.

There are several distinct methods to generate a random graph with a given power law degree
sequence. One method is to use a process model, in which new vertices join using preferential
attachment; e.g. the scale-free model G(m, n) of [2] used in this paper. Another method
is to use a configuration model to generate a random graph with a fixed degree sequence
d of a power law type, or expected degree sequence d of a power law type. In Random
walks with look-ahead in power law random graphs [13], Mihail, Sabieri and Tetali study look-
ahead random walks on random graphs G(d) generated by a configuration model, in which
Pr(d(v) = k) = c/k2+ǫ for dmin ≤ k ≤ √

n. They find that:

Theorem 3. [13] For any δ, 0 < δ < 1/2, the expected number of steps for a random walk
with look-ahead 1 to discover Ω(n1−ǫ(1/2−δ)) vertices is O(n1/2+δ) log n whp.
For any δ, 0 < δ < 1/2, the expected number of steps for a random walk with look-ahead 2 to
discover Ω(n1−2ǫ(1/2−δ)−δ) vertices is O(nǫ(1/2−δ)) log n whp.

The theorem shows the rapid (super-linear) initial rate of discovery of vertices using look-
ahead. Many of the vertices discovered quickly by the walk are neighbours of the
Ω(n1/2−ǫ(1/2−δ)+δ) vertices of degree ≥ n1/2−δ (large vertices). The precise argument for look-
ahead 2, hinges on the fact that each large vertex has Ω(n1/2−δ) neighbours of degree dmin,
and that each large neighbour has Ω(n1/2−2ǫ(1/2−δ)) other large neighbours.

In process models using preferential attachment, the edge density between the large vertices
is much less, and it is not apparent that the results of Theorem 3 still hold. For example, if we
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use the web-graph model of [5], [4] to generate a graph with power law 2 + ǫ, then, whp, the
number of edges between large vertices is Õ(n1/2+δ−ǫ(1/2−δ)). This differs from the model used
in Theorem 3, where the expected number of edges between large vertices is Θ(n1−2ǫ(1/2−δ)).
The edge density between large vertices in the web-graph model, can be deduced as follows:
At step n, whp the degree of a vertex added at step s is Õ(n/s)1/(1+ǫ). For this to be at least
n1/2−δ, we need s = Õ(n1/2+δ−ǫ(1/2−δ)).

2 Scale-free graphs G(m, n)

A common method to generate random graphs with a power law degree sequence, is to use
a preferential attachment process. Many variants of the process method exist. We use the
scale-free model of [2]. In this model, a graph G(1, mn) is generated sequentially as follows.
At step t = 0 the graph is empty, and V (0) = ∅. Let δt(v) denote the degree of vertex v ∈ V (t)
at the end of step t. At each step t = 1, 2, ..., n, add vertex vt to V (t − 1), and an edge from
vt to a vertex u, chosen at random from existing vertices according to the distribution:

Pr(u = vi) =

{

δt−1(vi)
2t−1

, if vi 6= vt;
1

2t−1
, if vi = vt.

(1)

The graph G(m, n) is formed from G(1, mn) as follows. Every m steps contract the most
recently added m vertices vm(k−1)+1, ..., vmk to form a single vertex k = 1, 2, ... . Let G(m, n)
denote the random graph formed from G(1, mn) at time step mn after n contractions of size
m. Thus G(m, n) has n vertices and mn edges and may be a multi-graph. It can be thought
of as the final graph in a sequence G(m, 1), G(m, 2), . . . , G(m, n). The degree of a vertex v in
G(m, n) is denoted by dn(v).

2.1 Properties of nice scale-free graphs

Let 0 < ǫ < 1/ log m and let

ω = (log n)1/3, ω0 = ǫ log log n. (2)

For v ∈ V and l ≥ 0, let NG
l (v) = Nl(v) = {w : dist(v, w) = l} be the set of vertices at

distance l from v. Let MG
r (v) = Mr(v) be the subgraph of G induced by ∪r

l=0Nl(v).

• A vertex v is locally tree-like to depth k if the sub-graph Mk(v) is a tree. A vertex v is
locally tree-like if it is locally tree-like to depth 2ω.

• A vertex v is locally regular, if it has d(v) = dn(v) = m, is locally tree-like and the
vertices at distance 2ω0 or less have branching factor m.
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• A cycle C is small if |C| ≤ 2ω + 1. Thus a locally-tree-like vertex is distance at least 2ω
from any small cycle.

• A vertex v is light if v > n1/10 and heavy otherwise. A cycle is light if it only contains
light vertices.

A graph G(m, n) is nice if it has the following properties: The references in items 1.–7. indicate
where it is shown that G(m, n) has these properties whp. We will have to prove here that 8.
holds whp.

P1 Maximum vertex degree (Lemma 6 of [7]):

6 ∃(k, ℓ), 1 ≤ k ≤ ℓ ≤ n : dℓ(k) ≥ (ℓ/k)1/2 log3 n and 6 ∃v ≤ n1/10 : dn(v) ≤ n1/4. (3)

P2 There are n1−o(1) locally regular vertices v with M2ω0(v) ⊆ [n/2, n].
(Lemma 12 of [7]. The proof there uses ω0 = log log log n but ω0 = ǫ log log n will suffice.
To be precise, in the last two paragraphs of that proof, we require that n2−10kmk

= n1−o(1)

which it is when k = ω0 and ǫ log m < 1).

P3 No small cycle is within distance 10ω of a distinct light cycle. (Corollary 8 of [7]).

P4 There are at most (log n)10ω vertices on small cycles. (Lemma 9 of [7]).

P5 There are at most n/(log n)ω vertices v ≥ n/2 which have more than (log n)11ω vertices
at distance 3ω or less from them.

P6 There are O(n1/2+o(1)) non locally tree-like vertices. (Lemma 10 of [7]).

P7 G(m, n) has conductance Φ bounded away from zero [12].

P8
6 ∃v ≤ n1/10 such that

∑

x∈M2ω0 (v)

d(x) ≥ n9/10.

Lemma 4. For m ≥ 2, G(m, n) is nice whp.

Proof We only need to prove item 8. This uses

Pr(G(m, n) contains edge (α, β)) | dβ(α) ≤ (β/α)1/2(log n)3) ≤ log3 n

(αβ)1/2
. (4)

Furthermore, this remains an upper bound if we condition on the existence of some of the
other edges in G(m, n). This is equation (30) of [7].
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Fix v ≤ n1/10. Let Zv be the number of paths of length at most 2ω0 with v as an endpoint.
Then

E(Zv) ≤
2ω0
∑

k=1

∑

v1,...,vk

log3k+3 n

v1/2v
1/2
k

k−1
∏

i=1

1

vi
≤ 1

v1/2

2ω0
∑

k=1

log3k+3 nHk−1
n

∑

vk

1

v
1/2
k

≤ n1/2+o(1).

So
Pr(∃v ≤ n1/10 : Zv ≥ n3/4) ≤ n1/10n−1/4+o(1) = o(1).

Thus whp |M2ω0(v)| ≤ n3/4 for v ≤ n1/10. Applying (3) we see that whp

∑

x∈M2ω0(v)

d(x) ≤ n1/2 log3 n
n3/4
∑

k=1

k−1/2 ≤ n7/8+o(1).

2

3 First visit time lemma

For a random walk WG
v = Wv, starting at v, let

P (t)
v (x) = Pr(Wv(t) = x)

and
rt = rt(v, G) = P (t)

v (v)

be the probability that the walk returns to v at step t = 0, 1, .... In particular note that r0 = 1
as the walk starts on v.

Let πv = dn(v)
2m

denote the steady state distribution of the random walk Wv for all v ∈ V .

Let

R(z) =
∞

∑

t=0

rtz
t

generate rt, and let

RT (z) =

T−1
∑

j=0

rjz
j . (5)

Thus, evaluating RT (z) at z = 1, we have RT (1) ≥ r0 = 1.

For proof of the following lemma, see [6], [8]. The lemma should be viewed in the context
that G is an n vertex graph which is part of a sequence of graphs with n growing to infinity.

5



Lemma 5. Let T satisfy maxu,x∈V |P (T )
u (x) − πx| ≤ n−3, and let Rv = RT (1) where RT (z) is

given by (5). For sufficiently large constant K, let

λ =
1

KT
. (6)

Suppose also that the following conditions hold:
(a) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(b) Tπv = o(1) and Tπv = Ω(n−2).

For t ≥ T let At(v) be the event that Wu does not visit v at steps T, T + 1, . . . , t.
Then there exists

pv =
πv

Rv(1 + O(Tπv))
, (7)

such that for all T ≤ t

Pr(At(v)) =
(1 + O(Tπv))

(1 + pv)t
+ O(T 2πve

−λt/2). (8)

We should perhaps warn the reader that we will be applying Lemma 5 to a graph obtained
by contracting vertices within distance r of some fixed vertex v.

4 Random walks on scale-free graphs

4.1 Mixing time of walks on G(m, n)

The conductance Φ(G) of a graph G is defined by

Φ(G) = min
π(S)≤1/2

e(S : S)

d(S)

where e(S : S) denotes the number of edges between S and S and d(S) =
∑

v∈S d(v).

It follows from e.g. Sinclair [14] that

|P (t)
u (x) − πx| ≤ (d(x)/d(u))1/2(1 − Φ2/2)t. (9)

Let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3. (10)
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Mihail, Papadimitriou and Saberi [12] proved that the conductance Φ(G(m, n)) of a simple
random walk on G(m, n) is bounded below by an absolute constant Φ > 0 (whp). We
will form a graph Γ by contracting some set of vertices of G(m, n) to single vertex γ. This
contraction can only increase conductance, i.e. for nice graphs Φ(Γ) ≥ Φ(G(m, n)) > Φ. As
d(γ) < mn = 2|E(G)|, then condition (10) of Lemma 5 holds in both G and Γ provided we
choose a mixing time

T = A log n (11)

for some large constant A.

We remark that there is a technical point in using (9). The result of [14] assumes that the
walk is lazy, and only moves to a neighbour with probability 1/2 at any step, which halves the
conductance and doubles the cover time; but (asymptotically) at half the steps the particle
does not move. Asymptotically the values Rv are doubled too. Overall, the presence of loops
has a negligible effect on the analysis and we will ignore this for the rest of the paper and
continue as though there are no lazy steps.

4.2 Background material on random walks

We note some standard results. Let v be a vertex of a graph G and B a set of vertices disjoint
from v. The escape probability, pesc(v, B, G), is the probability that starting at v, the walk
reaches B before returning to v.

We note a property of random walks on undirected graphs (see e.g. Doyle and Snell [9]). For
an unbiased random walk,

pesc(v, B, G) =
1

d(v)REFF
, (12)

where REFF = REFF (v, B, G) is the effective resistance between v and B in G. We assume
each edge of G has resistance 1.

In the context of electrical networks, deleting an edge corresponds to increasing the resistance
of that edge to infinity (i.e. allocating zero flow). By Raleigh’s Monotonicity Law, if edges
are deleted from G to form a sub-graph G′ then REFF (v, B, G′) ≥ REFF (v, B, G). Provided
we do not delete edges incident with v, it follows that pesc(v, B, G′) ≤ pesc(v, B, G). However
pesc(v, B, G) = 1 − ρ, where ρ is the probability that the walk returns to v before absorption
at B, and hence ρ′ ≥ ρ. Thus Rv,B, the expected number of returns to v before absorption at
B satisfies

Rv,B =
1

1 − ρ
≤ 1

1 − ρ′
= R′

v,B. (13)

Another result we require, is the absorption probabilities for a biased random walk on the path
(0, 1, ..., k) with absorbing states 0, k. Let the transition probabilities at vertices (1, ..., k − 1)
be q = Pr(move left), p = Pr(move right). Then (see e.g. Feller [11]) provided p 6= q, for a
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particle starting at position i,

Pr(absorption at k) =
(q/p)i − 1

(q/p)k − 1
. (14)

For the special case of a walk on the semi-infinite path (0, 1, ...), with q < p, and starting
position i = 1, we have

Pr(absorption at 0) =
q

p
. (15)

4.3 Estimating returns for look-ahead random walks

Construction of γ(v). To analyze the look-ahead random walk we contract Mr(v) to a
single vertex γ(v), and delete any loops created with the exception of those arising from edges
between vertices in Nr(v). This contraction gives a graph Γ = Γ(v, r). For a random walk on
Γ starting from γ(v), let Rγ(v) be the expected number of returns to γ(v) during the mixing
time TΓ i.e. a suitable value for T in (11) as applied to Γ. The aim of this section is to
establish bounds on the value of Rγ(v).

When we contract MG
r (v) to γ(v), the subgraph MG

ω+r(v) of G is replaced by a subgraph
MΓ

ω (γ(v)) of depth ω in Γ. Let d(γ(v)) be the degree of γ(v) in Γ. If v is locally tree-like, then

d(γ(v)) ≥ d(v)mr.

The total degree d(Γ) of Γ(v, r) is

d(Γ) = 2|E(G)| − d(MG
r (v)) + 2L,

where L < d(MG
r (v)) is the number of edges induced by Nr(v).

Construction of tree T . We describe next how we now delete some edges and vertices
from MΓ

ω (γ(v)) and then extend it to an infinite tree. At the t-th step of the construction
of G(m, n), the newly added vertex vt directs m edges outward. Thus the edges of G and Γ
have an underlying orientation. We let NH+

≤ℓ (x) be those vertices in MH
ω (x), H = G, Γ that

are reachable from vertex x by a directed path of length at most ℓ.

We regard γ(v) as having out-degree d+(γ) = k and in-degree d−(γ) = l where k+ l = d(γ(v)).
If vertex v is locally tree-like up to depth ω + r, (or any cycles close to v are contained in
MG

r−1(v)), then γ(v) is not incident to any loops or parallel edges. In this case each out-edge
e = (γ, u) of γ gives rise to an out-branching Tu rooted at u which has vertex set NΓ+

≤ω−1(u))
and branching factor m. Now delete any exterior in-edges pointing to Tu, i.e. edges (w, x) 6= e
where x ∈ Tu and w 6∈ Tu. If d−(γ) > 0, then each in-edge e = (u, γ) also gives rise to an
out-branching Tu rooted at u. Starting with the out-branching T ′

u on NΓ+
≤ω−1(u)) we delete

edge e from T ′
u along with the sub-tree containing γ. This defines Tu in this case. Tu has

out-branching factor m−1 at u and out-branching factor m at each non-leaf. As before, prune
all exterior in-edges pointing to Tu coming from outside Tu.
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Suppose that, after the deletions described above, γ is not locally tree-like to depth ω. Let
C1, C2, . . . , Ck be the cycles contained in MΓ

ω (γ(v)). They are necessarily small. Using prop-
erty P3 we see that there are two cases to consider. In the first case C1 is light and k = 1. Let
e = (x, y) be the edge of C1 that is furthest from γ(v). Break ties arbitrarily. We assume that
its orientation is x to y. We delete e and prune away as in the tree-like case. If k ≥ 2 then
every cycle contains a heavy vertex. For each cycle Ci choose an edge ei containing a heavy
vertex vi and delete the edge ei. Vertex vi will become an absorbing vertex for the walk.

It will be convenient for some calculations to extend Mω(γ) outward to infinity from non-
absorbing vertices at depth ω from γ as a regular tree with branching factor m. (When m = 2
it is possible to create a single leaf x at depth less than ω). This forms an infinite tree T
rooted at γ(v).

Our first step is to calculate the number of returns to γ in T .

Lemma 6. Let k = d+(γ(v)), l = d−(γ(v)). For a random walk in T , starting from γ(v), let
ρ = ρv(k, l) be the probability of a first return to γ(v).

(a) If γ(v) is is locally tree-like then

ρ(k, l) =
k

k + l

(

1

m

)

+
l

k + l

(

m

m2 − m + 1

)

.

(b) If γ(v) is locally regular then ρ = 1/m.

(c) If Mω(γ) is not tree-like but contains only heavy cycles then

ρ(k, l) ≤ k

k + l

(

1

m

)

+
l

k + l

(

m

m2 − m + 1

)

.

(d) If Mω(γ) contains a unique light cycle C then

ρ(k, l) ≤ k − δk

k + l

(

1

m

)

+
l − δl

k + l

(

m

m2 − m + 1

)

+
1

k + l

where δk, δl = 0/1 and δk + δl ≤ 1.

Proof Case (a), (b): Let

ρ =
k

k + l
ρ+ +

l

k + l
ρ−. (16)

where ρ+ (respectively ρ−) is the return probability, conditional on the walk following an edge
oriented away from (respectively towards) γ(v).

Choosing p = m/(m + 1), q = 1/(m + 1), it follows from the local regularity of the out-
branching in T and (15), that ρ+ = ρ = 1/m.
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We claim that

ρ− =
1

m

∑

k≥0

(

ρ+

(

1 − 1

m

))k

=
m

m2 − m + 1
.

Explanation: We have to consider a walk on 0, 1, . . . , where the probability of going left is
1/m at i = 1 and 1/(m + 1) for i > 1. Under these circumstances the summand represents
the probability of k returns to i = 1 that then move right followed by a return to 0.

Case (c): This is similar to the above case, except that for some vertices vi we remove one
of their out-edges and make them absorbing. This makes a return to γ less likely.

Case (d): Next consider the case of a unique light cycle C. Arguing as for Case (a) we have

ρ ≤ k − δk

k + l
ρ+ +

l − δl

k + l
ρ− +

1

k + l
.

This is because only one of the edges g leaving γ(v) contains the vertex x that loses an out-
edge, see property P3. For an upper bound we make the return probability 1 for going down
this edge. Either k or l will be reduced by 1. 2

The next step is to relate returns in T to returns in Γ. For most vertices an upper bound will
suffice. For locally regular vertices we need a precise estimate.

Lemma 7. Let r ≤ ε log log n, where ε < 1/ log m. Let T = A log n be given by (11). Then

(a) For all v ∈ V ,

Rγ ≤ 1 + o(1)

1 − ρ

where the value of ρ is given in Lemma 6

(b) If v is locally regular then

Rγ =
m

m − 1
+ O

(

1

logδ n

)

where δ > 0 constant.

Proof Certainly

Rγ =

ω
∑

t=0

rt +

T
∑

t=ω+1

rt.

Using (9) (with x = u = γ) we have

|P (t)
γ (γ) − πγ | ≤ e−tΦ2/2, (17)

and thus for any ω

T
∑

t=ω+1

rt ≤ Tπγ +

T
∑

t=ω+1

e−tΦ2/2 (18)

= Tπγ + O(e−ωΦ2/2), (19)
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where e−Φ2/2 < 1 is constant follows from [12] and G(m, n) nice.

We now compute an upper bound for
∑ω

t=0 rt. Let ρ(H, t) denote the probability of return to
γ in graph H at some step s ≤ t. Assume first that MΓ

ω (γ) contains no small cycles containing
heavy vertices, so that T has no absorbing states at a finite distance from γ. Then from
Raleigh’s monotonicity law

ρ(Γ, ω) ≤ pesc(γ, NΓ
ω (γ), Γ) ≤ pesc(γ, NΓ

ω (γ), T ) ≤ ρ(T ),

and hence
ω

∑

t=0

rt ≤
1

1 − ρ(T )
.

If there are small cycles with heavy vertices, then we made these vertices absorbing. The
effect of this was to alter the above bound by o(ω−1). Indeed, a random walk of length ω that
starts at γ might as well terminate if it reaches a vertex w ≤ n1/10, w 6= γ. By the properties
assumed in Section 2.1 we have d(w) ≥ n1/4 (see P1), and that at least n0 = n1/4 − (log n)10ω

of the edges incident with w are not in any cycle Cw contained in Mω(γ) (see P4). But then
if a walk arrives at w, it has a more than n0/n

1/4 chance of entering a sub-tree Tw of Mω(γ)
rooted at w for which every vertex is separated from γ by w. The probability of leaving Tw

in ω steps is O(ω(logn)10ω/n1/4) and so once a walk has reached w, the expected number of
further returns to γ is o(ω−1).

(b) Locally regular vertices. We have rt = rt(γ, Γ) = rt(γ, T ) for t ≤ ω0. Thus

ω
∑

t=0

rt ≥
1

1 − ρ(T )
− ζ,

where ρ(T ) = 1/m and ζ is the probability of a return to γ in T at t > ω0.

For a walk on (0, 1, 2, ...) with reflection at 0, let Xt ≥ 0 be the distance from the origin at
step t. Couple this with Zt the distance from 0 for a walk on (0,±1,±2, ...) with the same
transition probabilities p, q. Clearly Pr(Xt ≤ L) ≤ Pr(Zt ≤ L). Also

E(Zt − Zt−1) = p − q =
m − 1

m + 1
.

Thus E(Zt) = t(m − 1)/(m + 1). As

Pr(Zt ≤ 0) ≤ Pr(Zt ≤ E(Zt)/2) = O
(

e−E(Zt)/8)
)

, (20)

then for some δ > 0 we have

ζ ≤
∑

t≥ω0

Pr(Zt ≤ 0) = O

(

1

logδ n

)

.

2

Finally, after all this, we get what we need, i.e. the ratio d(γ(v))/Rγ.

11



Corollary 8. Let 1 ≤ r ≤ ε log log n, where ε < 1/ log m. Then

(a) If v is is locally tree-like then
d(γ(v))/Rγ ≥ mr(m − 1)(1 − o(1)).

(b) If v is locally regular then
d(γ(v))/Rγ = mr(m − 1)(1 + o(1)).

(c) If v is is not locally tree-like then
d(γ(v))/Rγ ≥ mr+1 − mr + m−1 − 1.

Proof
(a) Let ρ = ρT (k, l) be the first return probability given in Lemma 6. Then

d(γ(v))

Rγ
≥ (k + l)(1 − ρ)(1 + o(1)).

However from (16)

(k + l)(1 − ρ) = k(1 − ρ+) + l(1 − ρ−) ≥ k(1 − ρ+).

Since v is tree-like, k ≥ mr+1 and ρ+ = 1/m, giving part (a).

(b) When v is locally regular, we have k = mr+1 and l = 0 and we can apply the above
analysis.

(c) Our first task is to find lower bounds on the values of k, l for these vertices. Suppose first
that MG

r (v) contains a vertex w ≤ n1/10. If |MG
r (v)| ≤ n1/4/2 then (3) implies that k + l ≥

n1/4/2. Otherwise, Property P8 implies that |MG
r (v)| ≥ n1/4/2 and

∑

x∈MG
r (v) d(x) ≤ n9/10.

But then Property P7 implies that k+ l ≥ mn1/4Φ/2. In summary, if MG
r (v) contains a heavy

vertex then k + l ≥ c1n
1/4 for some constant c1 > 0. From Lemma 6 we then have

d(γ(v))

Rγ(1 − o(1))
≥ (k + l)(1 − ρ) ≥ k + l − k − δk

m
− (l − δl)m

m2 − m + 1
− 1 ≥ c1n

1/4

4
≫ mr+1.

Suppose next that MG
r (v) contains a light cycle C. Property P3 implies that this can be the

only cycle in MG
r+ω(v). Because a triangle incident with v has the most effect in reducing k

we deduce from this that
k ≥ (m − 1)(mr + mr−1)

and
d(γ(v))

Rγ(1 − o(1))
≥ (m − 1)(mr + mr−1)(1 − ρ) = (m − 1)2(m + 1)mr−2.

We are now left with the case where MG
r (v) is cycle free but MG

r+ω(v) is not. If MG
r+ω(v)

contains a heavy vertex then Lemma 6(c) implies that we can use the lower bound of part

12



(a). Otherwise, MG
r+ω(v) contains a unique light cycle and from Lemma 6(d) we have

d(γ(v))

Rγ(1 − o(1))
≥ k + l − k − δk

m
− (l − δl)m

m2 − m + 1
− 1

≥ mr+1 − mr+1 − 1

m
− 1.

2

4.4 Verifying the conditions of Lemma 5

Lemma 5 uses the condition that Tπγ(v) = o(1), so we only use this lemma for vertices of
degree at most D = 2Tmr+1. Vertices v, such that d(γ(v)) ≥ D are dealt with in an ad-hoc
fashion (see Lemma 10 of Section 5).

Lemma 9. There exists a constant 0 < θ < 1 such that if v ∈ V then |RT (z)| ≥ θ for
|z| ≤ 1 + λ.

Proof The proof is similar to that given in Lemma 16 of [7], but we give it here for
completeness.

Assume first that v is locally tree-like. Let T1 be the infinite tree obtained by attaching disjoint
copies of the infinite tree T∞

m with branching factor m to all leaves of MΓ
ω (γ(v)) at depth ω.

Thus T1 is T without the edge deletions. We write

RT (s) = A(s) + Q(s)

=
1

1 − B(s)
+ Q(s). (21)

Let W∗
γ(v) denote a random walk on the tree T1. Then A(s) =

∑

ats
t where at = r∗t is the

probability that the random walk W∗
γ(v) is at γ(v) at time t. B(s) =

∑

bts
t where bt is the

probability of a first return at time t for the random walk W∗
γ(v). Then Q(s) = Q1(s) + Q2(s)

where

Q1(s) =

T
∑

t=ω+1

(rt − at)s
t

Q2(s) = −
∞

∑

t=T+1

ats
t.

Here we have used the fact that at = rt for 0 ≤ t ≤ ω.

We now justify equation (21). For this we need to show that

|B(s)| < 1 for |s| ≤ 1 + λ. (22)
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We note first that, in the notation of Lemma 6, B(1) ≤ ρ(k, l) < 1. Then observe that
bt ≤ at ≤ e−αt. The latter inequality can be proved following the same arguments as given
in the proof of (42) in [7]. Thus the radius of convergence ρB of B(s) is at least eα, B(s) is
continuous for 0 ≤ |s| < ρB, |B(s)| ≤ B(|s|) and B(1) < 1. Thus there exists a constant ǫ > 0
such that B(s) < 1 for |s| ≤ 1 + ǫ. We can assume that λ < ǫ and (22) follows. We will use

|RT (s)| ≥ 1

1 + B(|s|) − |Q(s)| ≥ 1

1 + B(1 + λ)
− |Q(s)| ≥ 1

2
− |Q(s)|.

The lemma for locally tree-like vertices will follow once we show that |Q(s)| = o(1). But,
using (9) (with x = u = γ),

|Q1(s)| ≤ (1 + λ)T

T
∑

t=ω+1

(πv + e−Φ2t/2 + e−αt) = o(1)

|Q2(s)| ≤
∞

∑

t=T+1

(e−α(1 + λ))t = o(1).

Suppose next that v is not locally tree-like. Assume first that MΓ
ω (γ) only contains cycles

with heavy vertices. We truncate MΓ
ω (γ) at vertices of degree more than n1/4, add copies of

T∞
m at leaves as before and then proceed as above. The point is that the truncation can only

change rt, t ≤ T by O(Tn−1/4).

Finally, consider the case where MΓ
ω (γ) contains a unique light cycle C = (x1, x2, . . . , xk, x1).

We can add copies of T∞
m at leaves as before and write an expression equivalent to (21) and

then the argument rests on showing that B(1) < 1 and as ≤ ζs for some ζ < 1. The latter
condition can be relaxed to as ≤ eo(s)ζs, allowing us to take less care with small s.

B(1) < 1: We can assume that r ≥ 1, since the case r = 0 is the subject of [7]. If k, l are as
in Lemma 6 then whp we have k + l ≥ 3 and then there is a ≥ 1− 2

k+l
probability of the first

move of W∗
v going into an infinite tree rooted at a neighbour of γ(v) and then the probability

of return to γ(v) is bounded below by a positive constant.

as ≤ eo(s)ζs: We can couple the distance Xt of W∗
v (t) to γ(v) with a random walk on

{0, 1, 2, . . . , }. In all cases we find that E(Xt+2−Xt) ≥ 0 and E(Xt+4−Xt) is strictly positive
and we can use Hoeffding’s theorem.

2

5 Upper bound on cover time

We now consider the upper bound in Theorem 2. Let t∗ = 2
mr−1(m−1)

n log n, and let t1 =

t∗(1 + ǫ), where ǫ → 0 sufficiently slowly, so that any subsequently claimed inequalities are
valid. An upper bound of t1 for the cover time is established below in Lemmas 10 and 11.
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Our basic approach is as follows. Let TG(u) be the time taken for the random walk Wu to
visit every vertex of a connected graph G. Let Ut be the number of vertices of G which have
not been visited by Wu at step t. Then

Cu = E(TG(u)) =
∑

t>0

Pr(TG(u) ≥ t), (23)

Pr(TG(u) ≥ t) = Pr(TG(u) > t − 1) = Pr(Ut−1 > 0) ≤ min{1,E(Ut−1)}. (24)

We first deal with vertices v with d(γ(v)) greater than D.

Lemma 10. Let D = 2Tmr+1, let VL = {v : d(γ(v)) ≥ D}. Then t1 is an upper bound on the
expected time to cover VL.

Proof Let τv(u) be the time taken for Wu to visit v ∈ VL. Then by considering
Wu(T ),Wu(2T ) . . . we see that

∑

t≥t1

Pr(τv(u) ≥ t) ≤
∑

j≥⌈t1/T ⌉

(

1 − D(1 + o(1))

2mn

)j

= O

(

exp

(

−(1+o(1))
Dt1

2mnT

))

= O(n−1).

2

Lemma 11. Let V ′ = V \ VL. Then t1 is an upper bound on the expected time to cover V ′.

Proof Recall that At(v), t ≥ T is the event that Wu does not visit v at steps T, T +
1, . . . , t. Then

Cu ≤ t + 1 +
∑

s≥t

E(Us) ≤ t + 1 +
∑

v

∑

s≥t

Pr(As(v)). (25)

Fix u ∈ V and let Cu(r) be the expected time for Wu to have been within distance r of every
vertex. It follows from (23), (24) that for all t ≥ T ,

Cu(r) ≤ t + 1 +
∑

v∈V

∑

s≥t

Pr(A(r)
s (v, G)), (26)

where A(r)
s (v, G) is the event that the walk Wu in G, has not been within distance r of v in

the interval [T, t].

Let γ(v) be the contraction of Mr(v) as described in the construction at the start of Section
4.3. We note the following:

• If w 6∈ MG
r (v), then πw(G) = πw(Γ)(1 + O(d(γ)/n)).
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• Thus Pr(WG
u (T ) = w) = Pr(WΓ

u (T ) = w)(1 + O(d(γ)/n)).

• We can couple a random walk in G starting at w 6∈ Mr(v) with a random walk in Γ
starting at w up until the second walk visits γ(v) in a measure preserving way.

Thus
Pr(A(r)

s (v, G)) ∼ Pr(As(γ(v), Γ)),

where Pr(As(γ(v), Γ)) is given by Lemma 5, on choosing v := γ(v) in (8). The precise value
of pγ for γ(v) in (7) is given d(γ)/(Rγd(Γ)), where d(γ)/Rγ is given by Corollary 8, and
d(Γ) = 2mn(1 − O(d(γ)).

Partition V ′ into VT , VC the vertices with tree-like and non-tree-like neighbourhoods of γ. For
tree-like neighbourhoods,

∑

v∈VT

∑

s≥t1

Pr(As(γ(v))) ≤ (1 + o(1))n
∑

s≥t1

e−spγ(v)

≤ 2n2e−(1+ǫ/2)t∗mr(m−1)/(2mn)

= O(n2n−(1+ǫ/2))

= o(t1).

For non-tree-like neighbourhoods, using property P6 we see that

∑

v∈VT

∑

s≥t1

Pr(As(γ(v))) ≤ O(n1/2+o(1))
∑

s≥t1

e−spγ(v)

≤ 2n3/2+o(1)e−(1+ǫ/2)t∗(mr+1−mr+m−1−1)/(2mn)

= O(n3/2+o(1)n−(1+ǫ/2)(1−(m−1)/mr+1))

= o(t1).

Note that we assume r ≥ 1 to get the final expression. The case r = 0 is the content of [7].

6 Lower bound on cover time

Lemma 12. If G is nice then there is a set S of locally regular vertices, |S| = n1−o(1), such
that if v, w ∈ S then the distance between any vertex of Mr(γ(v)) and Mr(γ(w)) is at least
10ω.

Proof Let S1 be the set of locally regular vertices described in property P2. They satisfy
property P1, and have at most (log n)100ω neighbours at depth 20ω by property P5. Then
|S1| = n1−o(1) and there is a subset S of S1 of size at least |S1|/(log n)100ω satisfying the
requirements of the lemma. 2
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Let t0 = t∗1(1 − ǫ) where ǫ → 0 sufficiently slowly that any subsequently claimed inequalities
are valid. Choose u ∈ S. We prove that at time t0, the probability that the set S is covered
by the walk Wu tends to zero.

For each pair of vertices v, w ∈ S \ {u} form Γ(v, w) by contracting Mr(v1) ∪ Mr(v2) into a
single vertex γ(v, w) and removing loops. Note that the mixing time TΓ(v,w) ≤ TΓ(v) + TΓ(w).

Lemma 13. Let v, w ∈ S. Then

Rγ(v,w) =
1

2
Rγ(v) +

1

2
Rγ(w) + o

(

1

log n

)

.

Proof The probability ρ∗ of a first return to γ(v, w) during TΓ(v,w) is given by

ρ∗ =
1

2
(ργ(v) + ργ(w)) + ζ(v, w),

where ζ(v, w) is the probability of a first passage between γ(v) and γ(w) during TΓ(v,w) in
the graph formed by contracting Mr(v) to γ(v) and Mr(w) to γ(w). Let γ = γ(v, w). This
passage requires at least 7ω steps of the walk, and we have (see (17)) for 7ω < t ≤ TΓ(v,w) that

|P (t)
γ (γ) − πγ | ≤ e−Φ2t/2.

Thus for some constant A > 1,

ζ(v, w) = TΓ(v,w)O(πγ + A−ω) = o(1/ logk n),

for any integer k.

By the same token the expected number of returns to v between TΓ(v) and TΓ(v) +TΓ(w) is also

o(1/ logk n). 2

Hence T1(u) > t0 whp which implies that CG ≥ t∗1 − o(t∗1).

Let Yv be the indicator for the event A(r)
t0 (v). Let X =

∑

v∈S Yv denote the subset of S which
is unvisited in [T, t0]. It follows from (8) that

E(X) =
∑

v∈S

Pr(A
(r)
t0 (v)) =

∑

v

(1 + O(Tπv))e
−t0pv + o(

√
ne−λt0/2) = n1−o(1). (27)

Having bounded E(X) from below we continue by estimating the second moment of X.

Fix v, w ∈ S. We will show that

Pr(A(r)
t0 (v) ∧ A(r)

t0 (w)) = (1 + o(1))Pr(A(r)
t0 (v))Pr(A(r)

t0 (w)). (28)

It then follows that
E(X2) = (1 + o(1))E(X)2. (29)
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Using the Chebyshev inequality we see that

Pr(X < E(X/2)) = o(1)

and thus whp at least E(X)/2 − T > 0 vertices of S are unvisited at t0.

So, with Pr∗ referring to probability in the space of random walks on Γ(v, w), and using
Lemma 13 and Rγ(v) ∼ Rγ(w),

Pr∗(At0(γ(v, w))) = (1 + o(1)) exp

{

− t0πγ(v,w)

(1 + O(Tπγ(v,w)))Rγ(v,w)

}

= (1 + o(1)) exp

{

−t0πγ(v)

Rγ(v)

}

exp

{

−t0πγ(w)

Rγ(w)

}

= (1 + o(1))Pr(At0(γ(v)))Pr(At0(γ(w)))

= (1 + o(1))Pr(A(r)
t0 (v))Pr(A(r)

t0 (w)). (30)

But, using rapid mixing in Γ(v, w),

Pr∗(At0(γ(v, w))) (31)

=
∑

x 6=γ(v,w)

P
TΓ(v,w)
u (x)Pr∗(Wx(t − TΓ(v,w)) 6= γ(v, w), TΓ(v,w) ≤ t ≤ t0)

=
∑

x 6=γ(v,w)

(

deg(x)

2mn
+ O(n−2+o(1))

)

Pr∗(Wx(t − TΓ(v,w)) 6= γ(v, w), TΓ(v,w) ≤ t ≤ t0)

=
∑

x 6=v,w

(

P
TΓ(v,w)
u (x) + O(n−2+o(1))

)

Pr(Wx(t − TΓ(v,w)) 6∈ MG
r (v) ∪ MG

r (w), TΓ(v,w) ≤ t ≤ t0)

(32)

= Pr(Wu(t) 6∈ MG
r (v) ∪ MG

r (w), TΓ(v,w) ≤ t ≤ t0) + O(n−2+o(1))

= Pr(A(r)
t0 (v) ∧ A(r)

t0 (w)) + O(n−2+o(1)). (33)

Equation (32) follows because there is a natural measure preserving map φ between walks in
G that start at x 6= v, w and avoid MG

r (v) ∪ MG
r (w) and walks in Γ(v, w) that avoid γ(v, w).

This completes the proof of Theorem 2.
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