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Abstract. In this paper we describe a general framework for deriving modified equations for
stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are
derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of
higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity
of the underlying solutions, we derive a SDE which the numerical method solves exactly in the
weak sense. Applications of modified equations in the numerical study of Langevin equations is also
discussed.
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1. Introduction. This paper considers the existence of modified equations for
stochastic differential equations (SDEs) with respect to weak convergence. This is
essentially a form of backward error analysis; a technique which has been extremely
successful in understanding the behaviour of numerical methods for ordinary differen-
tial equations (ODEs). It is possible to fit an ODE (the so called modified equation)
to a numerical method to very high order accuracy. Backward error analysis has
been of particular importance in the numerical study of Hamiltonian problems, since
it approximates symplectic numerical methods by a perturbed Hamiltonian system,
giving an approximate statistical mechanics description for symplectic methods. The
reader is encouraged to see the monographs [6, 21] for a review and further references.

A natural question is whether such techniques extend to SDEs and in which
sense. This is a very important question since, unlike the ODEs case, there exist two
different notions of convergence for SDEs. In this paper we focus on deriving modified
equations for SDEs with respect to weak convergence. The only prior work in this
area, that the author is aware of, is [24], [22], where in [24] linear Langevin equations
were considered and in [22] modified equations were derived only for the forward and
backward Euler approximations to Itô SDEs with additive noise. Another interesting
paper is [3], where higher order corrections for the one step probability distribution
were calculated for the Euler method. The modified equations for the Euler method
were used in [18] to exhibit the fact that the Euler method performs poorly for small
random perturbations of Hamiltonian flows.

In this paper, using weak stochastic Taylor expansions [20], we describe a general
framework for deriving modified equations for SDEs with additive and multiplicative
noise, with respect to weak convergence. Actually the nature of the noise is a very
subtle issue since, as we later show in the case of multiplicative noise it is impossible
to write down a modified SDE that approximates the Euler method to second order
accuracy. However, this problem is solved, once we consider the Milstein’s method
[11], where we show that it is possible to fit a SDE up to second order accuracy.

The rest of the paper is organised as follows. In Section 2, we briefly recap some
basic facts regarding weak convergence for numerical approximation of SDEs and
describe what is meant by a modified equation, following very closely the presentation
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in [22]. For expository reasons the discussion is restricted to one dimensional SDEs,
but the generalisation to multiple dimensions is straightforward. In Section 3, using
the approach presented in Section 2, we present a general framework for deriving an
arbitrary order modified equation for any first order numerical method. In Section 4
we discuss the existence of modified equations for various numerical schemes, while
in Section 5 we study linear SDEs where we are able to derive a modified SDE, which
the numerical method solves exactly in the weak sense. In Section 6, we discuss
applications of modified equations in the numerical study of the Langevin equation,
where we try to generalise some well known concepts for ODEs to the appropriate
stochastic context. Finally in Section 7 we perform various numerical investigations
to validate our theoretical findings.

2. Weak convergence and modified equations. Consider the following SDE

dX = v(X)dt+ σ(X)dW (t), X(0) = Y, (2.1)

where v : R
d 7→ R, σ : R

d×n 7→ R
d are smooth functions and W (t) is a standard n

dimensional Brownian motion.
Now let Cl

P (Rd,R) denote the space of l times continuously differentiable functions
g : R

d 7→ R which, together with their partial derivatives of orders up to and inculding
order l, have polynomial growth. Then we have the following definition

Definition 2.1. A numerical approximation X0, X1, · · · of (2.1) obtained using
a time step ∆t, converges to X(t), in the weak sense: for T > 0,

|E(φ(Xn)) − E(φ(X(n∆t)))| = O(∆tp), 0 ≤ n∆t ≤ T, (2.2)

for φ ∈ C
2(p+1)
P (Rd,R), where p is known as the weak order of the method.

In the case of the test functions φ it is enough to think about polynomials of order
up to 2p+ 1.

The simplest example of a weak first order method is the forward Euler method
(often called the Euler-Maruyama method), given by

Xn+1 = Xn + v(Xn)∆t+
√

∆tσ(Xn)ξn, (2.3)

where ξn are i.i.d random variables with ξ0 ∼ N (0, 1). The reader is pointed to [11, 13]
for a technical statement of the proof and a review of other approximation methods.
An excellent introduction to algorithmic aspects of numerical methods for SDEs can
be found in [7].

The goal is to modify the SDE (2.1) to define a process X̃ that better describes
the numerical approximation Xn, in the sense that

|E(φ(Xn)) − E(φ(X̃(n∆t)))| = O(∆tp+q), 0 ≤ n∆t ≤ T, (2.4)

where q > 0 is the increase in the order of accuracy. We define X̃ as the solution to
the modified Itô SDE

dX̃ =
[

v(X̃) + ṽ(X̃)∆tp
]

dt+
[

σ(X̃) + σ̃(X̃)∆tp
]

dW (t), X̃(0) = Y, (2.5)

where ṽ, σ̃ are smooth functions to be determined, and look for convergence at one
order higher

|E(φ(Xn)) − E(φ(X̃(n∆t)))| = O(∆tp+1), 0 ≤ n∆t ≤ T, (2.6)
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The main technical fact we use in studying this problem is the following one:
The p-th weak convergence of a numerical method can be reduced to studying the
approximations over one time step [11, 13]. This is very similar to the idea of local
error for ordinary differential equations [10], where the global error in the numerical
approximation can essentially be determined using only the local error. More precisely,
to achieve p-th order weak convergence, one would expect that we should have

|E(φ(X1)) − E(φ(X(∆t)))| = O(∆tp+1), (2.7)

for all test functions φ(x). Thus in order to achieve (2.6), we need

|E(φ(X1)) − E(φ(X̃(∆t)))| = O(∆tp+2), (2.8)

for all test functions φ. It turns out (Theorem 14.5.2 in [11], Theorem 9.1 in [13]) that
in order to achieve weak order p-convergence it is sufficient for (2.7) to be satisfied
for all the polynomials φ(x) up to degree 2p+ 1, and thus for (2.8) to be satisfied for
all the polynomials φ(x) of degree up to 2p+ 3.

Remark 2.1. In [22], this fact was used in order to derive modified equation
for the Euler-Maruyama method. Our approach is slightly more different, since we
study conditions in order for (2.7), (2.8) to be satisfied for all φ, and not just for the
sufficient polynomials. Even though this seems more complicated it “provides us” with
a general framework in which we are able derive modified equations for a wider class
of numerical methods.

3. A general framework. In this section we describe a general framework for
deriving modified equations of arbitrary order with respect to weak convergence for
SDEs. As we have previously discussed in order to fit a modified SDE to a numerical
method of weak order p we need (2.8) to be satisfied, which implies that the important
thing is to understand what happens to expectations of functionals of the path X(t)
given by (2.1). We do this using weak Taylor expansions [20].

3.1. Weak Taylor Expansion. There exist a natural way of looking at expec-
tations of functionals of the path for SDEs and that is using the backward Kolmogorov
equation [19]. More precisely, we can associate an Itô SDE with a partial differential
operator L0, which is called the generator of the SDE in the relevant literature [17].
In the case of (2.1) (n = d = 1), L0 is given by

L0u := v(x)
du

dx
+

1

2
σ2(x)

d2u

dx2
. (3.1)

The backward Kolmogorov equation associated with the SDE (2.1) is

∂u

∂t
= L0u, (3.2a)

u(x, 0) = φ(x), (3.2b)

where L0 given by (3.1). The probabilistic way [17, 15] of looking at solutions of this
equation is that

u(x, t) = E (φ(x(t))|x(0) = x) .

We now integrate equation (3.2) to obtain

u(x,∆t) − u(x, 0) = L0

∫ ∆t

0

u(x, s)ds. (3.3)
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Assuming u(x, t) is N + 1 times differentiable with respect to t we have the following
Taylor expansion

u(x, s) = u(x, 0) + s
∂u(x, 0)

∂s
+ · · · + sN

N !

∂Nu(x, 0)

∂sN
+R.

Using this together with equation (3.3) we obtain

u(x,∆t) − u(x, 0) = ∆tL0u(x, 0) +

N
∑

k=1

∆tk+1L0
∂ku(x, 0)

∂sk
+ O(∆tN+2).

Now using the fact that u(x, 0) = φ(x) together with equation (3.2) it is easy to see
that

∂ku(x, 0)

∂sk
= Lk

0φ(x).

We thus obtain

u(x,∆t) − φ(x) =
N

∑

k=0

∆tk+1

(k + 1)!
Lk+1

0 φ(x) + O(∆tN+2). (3.4)

Remark 3.1. A weak p-th order method should now obey this expansion up to
terms of order O(∆tp), since if we then subtract the method from the expansion the
local error would be O(∆tp+1), which implies that the global weak error is of p-th
order.

3.2. 1-st modified equation. Following Remark 3.1 we expect a first order
numerical method to satisfy

unum(x,∆t) − φ(x) = ∆tL0φ(x) + ∆t2A1φ+ O(∆t3),

where A1 is a partial differential operator acting on φ that depends on the choice of
the numerical method used. This implies that

u(x,∆t) − unum(x,∆t) = O(∆t2),

so the local error is O(∆t2), which implies that our numerical scheme is of weak order
one.

The first order modified equation for (2.1) is of the form

dX̃ =
[

v(X̃) + v1(X̃)∆t
]

dt+
(

σ(X̃) + σ1(X̃)∆t
)

dW (t). (3.5)

The generator of this process is given by

L∆tu := (v(x) + ∆tv1(x))
du

dx
+

1

2
(σ(x) + ∆tσ1(x))

2 d
2u

dx2
,

and the associated backward Kolmogorov equation reads

∂u

∂t
= L∆tu, (3.6a)

u(x, 0) = φ(x). (3.6b)
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We now write the generator of this modified equation in the more convenient form

L∆t := L0 + ∆tL1 + ∆t2L2, (3.7)

where

L0u := v(x)
du

dx
+
σ2(x)

2

d2u

dx2
,

L1u := v1(x)
du

dx
+ σ(x)σ1(x)

d2u

dx2
,

L2u :=
σ2

1(x)

2

d2u

dx2
.

Note that L0 is the generator of the original SDE (2.1). Using the same procedure as
before together with (3.7) we obtain:

umod(x,∆t) − φ(x) = ∆tL0φ(x) + ∆t2L1φ(x) + ∆t3L2φ(x) (3.8)

+
∆t2

2
L0L∆tφ(x) +

∆t3

2
L1L∆tφ(x) +

∆t4

2
L2L∆tφ(x).

We can now subtract unum from umod to obtain:

umod(x,∆t) − unum(x,∆t) = ∆t2
(

L1φ(x) +
1

2
L2

0φ(x) −A1φ(x)

)

+ O(∆t3).

So in order for equation (3.5) to be O(∆t2) apart from the numerical approximation
we need

L1φ(x) = A1φ(x) − 1

2
L2

0φ(x), ∀φ (3.9)

Remark 3.2. Equation (3.9) is true in arbitrary dimensions and not just for
one dimension. The only difference is that the associated partial differential operators
would be slightly more complicated, which as we later see makes the calculations slightly
more involved.

Remark 3.3. We could have used the representation u(x, t) = eLtφ(x) to repre-
sent the solution of the backward-Kolmogorov equation and then expand it using the
formula for the exponential of an operator. We would have obtained the same expan-
sion as in (3.4). We choose however to use a Taylor expansion instead in order to
make a connection with ODEs. More precisely, in the case of ODEs the first order
modified equation would be obtained by (3.9), for φ(x) = x. This fact illustrates the
complexity of SDEs, since in order to obtain modified equations we need (3.9) to be
satisfied for every φ in the space of smooth functions and not just for φ(x) = x, as it
is the case with ODEs

Remark 3.4. A similar local error analysis related with the chemical master
equation can be found in [9]. Finally in [23], a similar in nature expansion for the
global weak error was given in terms of the time step ∆t for the Euler and the Milstein
method.
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3.3. Higher Order Modified Equations. In this section we describe what
are the conditions that should be satisfied in order to derive higher order modified
equations. We start by describing analytically the case of a second order modified
equation for a first order method. More precisely, a second order modified SDE for a
first order method would be of the form

dX̃ =
[

v(X̃) + ∆tv1(X̃) + ∆t2v2(X̃)
]

+
[

σ(X̃) + ∆tσ1(X̃) + ∆t2σ2(X̃)
]

dW (t),

(3.10)
where v1(x), σ1(x) are the modified coefficients we had determine before and v2(x), σ2(x)
are the new coefficients to be determined. The generator L∆t of this SDE is of the
form:

L∆t := L0 + ∆tL1 + ∆t2L2 + ∆t3L3 + ∆t4L4, (3.11)

where

L0u := v(x)
du

dx
+
σ2(x)

2

d2u

dx2
, (3.12)

L1u := v1(x)
du

dx
+ σ(x)σ1(x)

d2u

dx2
, (3.13)

L2u := v2(x)
du

dx
+

(

σ2
1(x)

2
+ σ(x)σ2(x)

)

d2u

dx2
, (3.14)

L3u := σ1(x)σ2(x)
d2u

dx2
, (3.15)

L4u :=
σ2

2(x)

2

d2u

dx2
. (3.16)

Using the same procedure as in Section 3.1 together with (3.11) we obtain:

umod(x,∆t) − φ(x) = ∆tL0φ

+ ∆t2
(

L1φ+
1

2
L2

0φ

)

+ ∆t3
(

L2φ+
1

2
L0L1φ+

1

2
L1L0φ+

1

6
L3

0φ

)

+ O(∆t4).

Since our numerical method is of first order we have:

unum(x,∆t) − φ(x) = ∆tL0φ(x) + ∆t2A1φ+ ∆t3A2φ+ O(∆t4).

By following the same technique as in Section 3.1 and assuming that (3.9) holds, the
condition for (3.10) to be O(∆t3) away from our first order numerical method is

L2φ = A2φ− 1

2
(L1L0φ+ L0L1φ) − 1

6
L3

0φ, ∀φ. (3.17)

It is easy to see that by repeating this procedure we can derive conditions for
modified equations of arbitrary high order. More precisely the n-th modified equation
for a first order method would be of the form

dX̃ =

[

v(X̃) +

n
∑

k=1

∆tkvk(X̃)

]

dt+

[

σ(X̃) +

n
∑

k=1

∆tkσk(X̃)

]

dW (t), (3.18)
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where vk(x), σk(x), k = 1, · · ·n − 1 are the modified coefficients we had determine
before and vn(x), σn(x) are the new coefficients to be determined. The generator L∆t

of (3.18) is of the form

L∆t := L0 +
2n
∑

k

∆tkLk, (3.19)

and Ln contains the unknown coefficients vn(x), σn(x). Using the same procedure as
in Section 3.1 together with (3.19) we obtain:

umod(x,∆t) − φ(x) = ∆tL0φ

+ ∆t2
(

L1φ+
1

2
L2

0φ

)

+ ∆t3
(

L2φ+
1

2
L0L1φ+

1

2
L1L0φ+

1

6
L3

0φ

)

...

+ ∆tn+1

(

Lnφ+
1

2
(L0Ln−1φ+ Ln−1L0φ) + · · · + 1

n!
Ln

0φ

)

+ O(∆tn+2).

Since our numerical method is of first order we have:

unum(x,∆t) − φ(x) = ∆tL0φ(x) +

n
∑

k=1

∆tk+1Akφ+ O(∆tn+2).

By following the same technique as in Section 3.1 and assuming that all the conditions
up to the (n-1)-th modified equation hold, the condition for (3.18) to be O(∆tn+1)
away from our first order numerical method is

Lnφ = Anφ− 1

2
(L0Ln−1φ+ Ln−1L0φ) − · · · − 1

n!
Ln

0φ, ∀φ. (3.20)

4. Different numerical methods and existence of associated modified

equations. In this section we discuss the existence of modified equations for different
weak first order methods. We use the word existence, since as we later show there
would be cases where even to derive a modified SDE that fits the numerical method to
second order would be impossible. We split our investigations into two parts, namely
in one and in multiple dimensions.

4.1. One dimension. In this subsection we discuss the existence of modified
equations for one dimensional SDEs. As we have seen in Section 3, in order to
calculate the modified equations we need to know the structure of L0 and A1, with
the later being method specific. However, L0 is associated with the SDE (2.1) and it
is not method dependent. After some calculations, which can be found in Appendix
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A, we find that:

L2
0f =

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

φ(1)(x)

+

(

v2(x) + σ2(x)v(1)(x) + v(x)σ(x)σ(1)(x) +
σ2(x)

2
(σ(1)(x))2 +

σ3(x)

2
σ(2)(x)

)

φ(2)(x)

+
(

σ3(x)σ(1)(x)f (3)(x) + σ2(x)v(x)
)

φ(3)(x)

+
σ4(x)

4
φ(4)(x), (4.1)

where by φ(i), v(i), σ(i), we denote the i-th derivative of the associated function. We are
now ready to study issues regarding the existence of modified equations for different
numerical methods.

4.1.1. Euler-Maruyama method. The one step approximation for the Euler-
Maruyama method [11] is given by

x(∆t) = x+ v(x)∆t+ σ(x)
√

∆tξ,

where ξ is N (0, 1) distributed. It is easy to see that

E(φ(x(∆t))|x(0) = x) = E(φ(x+ v(x)∆t+ σ(x)
√

∆tξ)).

After taking the Taylor expansion of φ up to 4-th order we find that

E(φ(x(∆t))|x(0) = x) = φ(x) + ∆tL0φ

+ ∆t2
(

v2(x)φ(2)(x)

2
+

3σ2(x)v(x)

6
φ(3)(x) +

3σ4(x)

24
φ(4)(x)

)

+ O(∆t3). (4.2)

The details of this calculation can be found in Appendix A. From equation (4.2) we
can deduce that

A1φ =
v2(x)φ(2)(x)

2
+

3σ2(x)v(x)

6
φ(3)(x) +

3σ4(x)

24
φ(4)(x).

Using this, together with (4.1), equation (3.9) becomes

L1φ(x) = −1

2

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

φ(1)(x)

+ −1

2

(

σ2(x)v(1)(x) + v(x)σ(x)σ(1)(x) +
σ2(x)

2
(σ(1)(x))2 +

σ3(x)

2
σ(2)(x)

)

φ(2)(x)

+
σ3(x)

2
σ(1)(x)φ(3)(x). (4.3)

There is a problem, however, with equation (4.3) since L1 is a second order differential
operator and the right hand side of (4.3) contains third derivatives in φ. This implies
that in the case of Euler method for SDEs with multiplicative noise it is impossible
to write down a modified Itô SDE that fits the numerical method to second weak
order. We later see that if instead of the Euler method we use the Milstein’s method
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such a derivation of a modified Itô SDE is possible, under appropriate smoothness
assumptions for the drift v(x) and the diffusion coefficient σ(x).

Another way of getting around this problem is to consider (2.1) for σ(x) = σ. In
that case (4.3) reads

L1φ(x) = −
(

1

2
v(x)v(1)(x) +

σ2

4
v(2)(x)

)

φ(1)(x) − σ2

2
v(1)φ(2)(x).

Using the expression for L1 we can deduce

v1(x) = −
(

1

2
v(x)v(1)(x) +

σ2

4
v(2)(x)

)

, (4.4a)

σ1(x) = −σ
2
v(1)(x), (4.4b)

which agrees with the modified equations derived in [22] for the Euler-Maruyama
method. However, besides the case where v(x) is linear, the modified equation (2.5)
is an Itô SDE with multiplicative noise and we thus cannot iterate it to obtain the
next higher order modified equation.

4.1.2. Milstein’s method. The Milstein’s method for the approximation of
x(∆t) [11] reads

x(∆t) = x+ v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t),

where ξ is N (0, 1) distributed. It is easy to see that

E(φ(x(∆t))|x(0) = x) = E(φ(x+ v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t))).

After taking the Taylor expansion of φ up to 4-th order we find that

E(φ(x(∆t))|x(0) = x) = φ(x) + ∆tL0φ

+
∆t2

2

(

v2(x) +
1

2
σ(x)σ(1)(x)

)

φ(2)(x)

+
3∆t2

6

(

σ3(x)σ(1)(x) + σ(2)(x)v(x)
)

φ(3)(x)

+
3∆t2

24
σ4(x)φ(4)(x) + O(∆t3). (4.5)

The details of this calculation can be found in the Appendix A. From equation (4.2)
we can deduce that

A1φ =
v2(x)φ(2)(x)

2
+

1

2

(

σ3(x)σ(1)(x) + σ(2)(x)v(x)
)

φ(3)(x) +
3σ4(x)

24
φ(4)(x).

Using this, together with (4.1), equation (3.9) becomes

L1φ(x) = −1

2

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

φ(1)(x)

− 1

2

(

σ2(x)v(1)(x) + v(x)σ(x)σ(1)(x) +
σ2(x)

2
(σ(1)(x))2 +

σ3(x)

2
σ(2)(x)

)

φ(2)(x)

+
1

4
σ(x)σ(1)(x)φ(2)(x).
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We thus have

v1(x) = −1

2

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

σ(x)σ1(x) = −1

2

(

σ2(x)v(1)(x) + v(x)σ(x)σ(1)(x) +
σ2(x)

2
(σ(1)(x))2 +

σ3(x)

2
σ(2)(x)

)

+
1

4
σ(x)σ(1)(x),

and thus for the Milstein’s method the modified coefficients are

v1(x) = −1

2

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

,

σ1(x) = −1

2

(

σ(x)v(1)(x) + v(x)σ(1)(x) +
σ(x)

2
(σ(1)(x))2 +

σ2(x)

2
σ(2)(x) − 1

2
σ(1)(x)

)

.

A good reality check for these coefficients is checking that they agree with the Euler-
Maruyama method in the case where the noise is additive, since then the Euler-
Maruyama coincides with the Milstein’s method. This is indeed the case, since if
we set σ(x) = σ equation (4.6) becomes equation (4.4). Another important thing to
notice is that in principle it is possible to iterate (2.5) to find a higher order modified
equation.

4.2. Multiple dimensions. In this subsection we discuss the existence of mod-
ified equations for multiple dimensional SDEs. For calculation reasons we restrict our
attention to the following SDE

dX = v(X)dt+ ΣdW (t), (4.7)

where X ∈ R
d, Σ ∈ R

d×d and W (t) is a standard d-dimensional Brownian motion.
As before L2

0 is not method specific, so after some calculations, which are presented
in Appendix B, we find that, in the case where Σ is a constant matrix:

L2
0φ = vk∂kvi∂iφ+ vkvi∂k∂iφ+

1

2
vk(ΣΣT )ij∂k∂i∂jφ

+
1

2
(ΣΣT )km [∂k∂mvi∂iφ+ ∂mvi∂k∂iφ+ ∂kvi∂m∂iφ+ vi∂k∂m∂iφ]

+
1

4
(ΣΣT )km(ΣΣT )ij∂k∂m∂i∂jφ, (4.8)

where we have used Einstein’s summation formula and k,m, i, j = 1, · · · , d, while
φ : R

d 7→ R is a smooth test function. The first order modified equation for (4.7) is
of the form

dX̃ =
[

v(X̃) + ∆tv1(X̃)
]

dt+
[

Σ + ∆tΣ1(X̃)
]

dW (t), (4.9)

and thus in this case

L1 = ṽ · ∇ +
1

2

(

Σ1Σ
T + ΣΣT

1

)

: ∇∇. (4.10)
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4.2.1. Euler-Maruyama method. The one step approximation for the Euler
Maruyama method for (4.7) is given by

x(∆t) = x+ ∆tv(x) + Σ
√

∆tξ, (4.11)

with the understanding that ξ is a N (0, Id) distributed random variable. By taking
the Taylor expansion of φ up to 4-th order as we have done before, we find

E(φ(x(∆t))|x(0) = x) = φ(x) + ∆tL0φ

+
∆t2

2
vivj∂i∂jφ

+
3∆t2

6
(ΣΣT )kmvi∂k∂m∂iφ

+
3∆t2

24
(ΣΣT )km(ΣΣT )ij∂k∂m∂i∂jφ+ O(∆t3). (4.12)

The details of this calculation can be found in Appendix B. From equation (4.12) we
deduce that

A1φ =
∆t2

2
vivj∂i∂jφ

+
3∆t2

6
(ΣΣT )kmvi∂k∂m∂iφ

+
3∆t2

24
(ΣΣT )km(ΣΣT )ij∂k∂m∂i∂jφ.

Using this, together with (4.8), equation (3.9) becomes

L1φ =

(

−1

2
vk∂kvi −

1

4
(ΣΣT )km∂k∂mvi

)

∂iφ

− 1

4
(ΣΣT )km (∂mvi∂k∂iφ+ ∂kvi∂m∂iφ) .

Thus the modified drift ṽ is given by

v1 = −1

2
(∇v)v − 1

4
(ΣΣT ) : ∇∇v,

and the modified diffusion coefficient satisfies the Lyapunov equation

Σ1Σ
T + ΣΣT

1 = −ΣΣT∇v.

In the case where Σ = σI the resulting v1,Σ1 are the same as the ones found in [22].

4.2.2. Symplectic Euler. We now study the following symplectic Euler method

qn+1 = qn + ∆tpn+1, (4.13a)

pn+1 = pn − (γpn + V ′(qn))∆t+ σ
√

∆tξn, (4.13b)

which corresponds to solving the following Langevin equation

dq = pdt, (4.14a)

dp = −(γp+ V ′(q))dt+ σdW (t), (4.14b)
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where W (t) is a one standard dimensional Brownian motion. This equation describes
the motion of a particle in the potential V (q), subject to linear friction and molecular
diffusion [4, 19], the magnitude of which is given by γ and σ respectively. The reason
that we consider solving (4.14) with the symplectic Euler method described by (4.13)
is that in the absence of noise and friction (σ = γ = 0), (4.14) describes a Hamiltonian
system and thus a symplectic method is preferred. There exist a number of interesting
publications on the interplay between symplectic methods for ODE and their extension
to stochastic problems [14, 16] .

Now assuming that we have started from p, q, using (4.13), the numerical approx-
imation for q(∆t), p(∆t) is given by

q(∆t) = q + p∆t− γp∆t2 − V ′(q)∆t2 + σ
√

∆t3ξ,

p(∆t) = p− (γp+ V ′(q))∆t+ σ
√

∆tξ.

By taking the Taylor expansion of φ up to 4-th order as we have done before we find:

E(φ(p(∆t), q(∆t)) | (p(0), q(0))) = (p, q)) = φ(p, q) + ∆tL0φ

− ∆t2(γp+ V ′(q))∂qφ

+
∆t2

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ

+ O(∆t3). (4.15)

The details of this calculation can be found in Appendix B. From equation (4.15) we
can deduce that:

A1φ = −(γp+ V ′(q))∂qφ+
1

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
1

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3σ4

24
∂4

pφ.

Using this, together with (4.8), equation (3.9) becomes:

L1φ = −1

2
(V ′(q) + γp)∂qφ− 1

2
(γV ′(q) + γ2p− pV ′′(q))∂pφ+

σ2

2
∂p∂qφ+

1

2
γσ2∂2

pφ,

which implies that the modified equation is of the form:

dq =

[

p− ∆t

2
(V ′(q) + γp)

]

dt+ σ
∆t

2
dW (t), (4.16)

dp =

[

−γp− V ′(q) − ∆t

2

(

γV ′(q) + γ2p− pV ′′(q)
)

]

dt+ σ

(

1 +
∆t

2
γ

)

dW (t).

It is important to note that the noise that drives the q-equation is the same as the
noise that drives the p-equation. Again a good reality check for this modified equation
is to set σ = γ = 0 and then we obtain

dp = H̃p(p, q)dt,

dq = −H̃q(p, q)dt,
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where

H̃(p, q) =
1

2
p2 + V (q) − ∆t

2
V ′(q)p, (4.17)

is the modified Hamiltonian that we would have obtained using modified equations
for the corresponding ODE [6].

4.2.3. 1st order Lie-Trotter splitting method. We now study a 1st order
Lie-Trotter splitting method. This method is used in order to solve Langevin equations
of the form

dq = Hpdt, (4.18a)

dp = −(Hq + γp)dt+ σdW (t). (4.18b)

The main idea behind this method is that we split (4.18) into two parts. The first
one is the one we would obtain in the absence of noise, namely

dq = Hpdt, (4.19a)

dp = −Hqdt, (4.19b)

while the second one is an Ornstein-Uhlenbeck for the generalised momentum p,

dq = 0, (4.20a)

dp = −γpdt+ σdW (t). (4.20b)

Then we can solve (4.19) using a first order symplectic method, while we can solve
(4.20) exactly. The numerical approximation is then given by the composition of
solutions of these two equations. The main property of this method [16] is that
preserves the Boltzmann-Gibbs distribution in the appropriate norm up to the order
of the symplectic method used to solve (4.19).

For this study we choose the first order symplectic method to be the symplectic
Euler method. The numerical approximation in this case is given by:

qn+1 = q∗ + ∆tpn+1,

pn+1 = p∗ − V ′(q∗)∆t,

where (q∗, p∗) satisfy

q∗ = qn,

p∗ = e−γ∆tpn + βξn,

where ξn is N (0, 1) distributed and

β2 =
σ2

2γ

(

1 − e−2γ∆t
)

.

Thus the one step approximation starting from (q, p) is given by:

q(∆t) = q + ∆tp(∆t), (4.21a)

p(∆t) = e−γ∆tp− V ′(q)∆t+ βξ, (4.21b)
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where ξ is N (0, 1) distributed. By taking the Taylor expansion of φ up to 4-th order
as we have done before we find:

E(φ(p(∆t), q(∆t)) | (p(0), q(0))) = (p, q)) = φ(p, q) + ∆tL0φ

− ∆t2
[

(γp+ V ′(q))∂qφ− γ2

2
p∂pφ

]

+
∆t2

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ

+ O(∆t3). (4.22)

The details of this calculation can be found in Appendix B. From equation (4.22) we
can deduce that:

A1φ = −(γp+ V ′(q))∂q +
γ2

2
p∂p

+
1

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
1

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3σ4

24
∂4

pφ.

Using this, together with (4.8), equation (3.9) becomes:

L1φ = −1

2
(V ′(q) + γp)∂qφ− 1

2
(γV ′(q) − pV ′′(q))∂pφ

+
σ2

2
∂p∂qφ+

1

2
γσ2∂2

pφ,

which implies that the modified equation is of the form:

dq =

[

p− ∆t

2
(V ′(q) + γp)

]

dt+ σ
∆t

2
dW (t), (4.23)

dp =

[

−γp− V ′(q) − ∆t

2
(γV ′(q) − pV ′′(q))

]

dt+ σ

(

1 +
∆t

2
γ

)

dW (t).

It is important to note that the noise that drives the q-equation is the same as
the noise that drives the p-equation. Again a good reality check for this modified
equation is to set σ = γ = 0 and then we obtain:

dp = H̃p(p, q)dt,

dq = −H̃q(p, q)dt,

where

H̃(p, q) =
1

2
p2 + V (q) − ∆t

2
V ′(q)p, (4.24)

is the modified Hamiltonian that we would have obtained using modified equations
for the corresponding ODE [6].

Remark 4.1. It is important to note that both of the modified equations (4.16),
(4.23) have no longer the structure of the Langevin equation (4.14). The implications
of this fact are futherly discussed in Section 6.
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5. Linear SDEs and ∞-modified equation. In this section we study the case
of linear SDEs. More precisely, we show that we can write down a perturbation of the
original SDE, which the numerical solution of the original SDE solves exactly in the
weak sense. This is a well known fact in the case of Runge-Kutta methods for linear
ODEs [1] and it was used in [21] in order to derive a modified Hamiltonian system for
the case of the harmonic oscillator, which the numerical solution for the symplectic
Euler method solves exactly. From now on we shall use the term ∞ modified SDE for
the modified SDE, which the numerical method solves exactly in the weak sense.

We now apply these ideas in the case of linear SDEs. More precisely let x ∈ R
d

satisfying the following linear SDE:

dx = Axdt+ ΣdWt, (5.1)

where A,Σ are d × d matrices. Then it is possible to show using the variation of
constants formula that (5.1) has the solution [4]:

x(t) = eAtx(0) +

∫ t

0

eA(t−s)ΣdWs. (5.2)

Since this is a linear system the numerical approximation x̃(∆t) of x(∆t) by any
numerical method, assuming that we start from x(0) = x would be of the form:

x(∆t) = A(∆t)x+ f(∆t, ω), (5.3)

where f(∆t, ω) denotes the way we approximate the noise and A(∆t) is another matrix
for which A(0) = I. For example in the case of Euler-Maruyama method

A(∆t) = (I + ∆tA),

f(∆t, ω) = Σ
√

∆tξ,

where ξ is N (0, Id) distributed.
The important thing to note in the case of linear SDEs is that the solution of

them due to linearity is always Gaussian. This is very useful, since in order to find
the ∞ modified SDE it is enough to check that its first and second moments over one
step approximation agree exactly with those of the numerical method. Thus let the
∞ modified equation be of the form

dx = Ãxdt+ Σ̃dWt. (5.4)

Then from (5.2) we have that:

E(x(∆t)|x(0) = x) = eÃ∆tx,

E(x(∆t)xT (∆t)|x(0) = x) = eÃtxxT eÃT t +

∫ ∆t

0

eÃ(t−s)Σ̃Σ̃T eÃT (t−s)ds.

On the other hand using (5.3) it is easy to see that:

E(x(∆t)|x(0) = x) = A(∆t)x,

E(x(∆t)xT (∆t)|x(0) = x) = A(∆t)xxTA(∆t)T + E(ffT ).

Thus the coefficients Σ̃, Ã of the ∞-modified equation satisfy

eÃ∆tx = A(∆t)x,

eÃtxxT eÃT t +

∫ ∆t

0

eÃ(t−s)Σ̃Σ̃T eÃT (t−s)ds = A(∆t)xxTA(∆t)T + E(ffT ).
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We can solve for Ã to obtain:

Ã =
log(A(∆t))

∆t
, (5.5)

while Σ̃ satisfies:

∫ ∆t

0

eÃ(t−s)Σ̃Σ̃T eÃT (t−s)ds = E(ffT ). (5.6)

After some calculations that are presented in Appendix D equation (5.6) becomes

eÃ∆tΣ̃Σ̃T eÃT ∆t − Σ̃Σ̃T = ÃJ + JÃT (5.7)

where J = E(ffT ). We also need to note that, since (5.3) solves (5.1) numerically
then

lim
∆t→0

Ã = A.

5.1. Connection with ODEs. In this subsection we make a connection be-
tween the ∞ modified equations for the SDEs described before and the ODEs govern-
ing the evolution of the mean and the covariance. More precisely, let M(t) = E(x(t))
and σ(t) = Cov(x(t), x(t)). Then by using Itô’s formula and taking expectation we
find that M(t), σ(t) satisfy the following ODEs

dM

dt
= −AM, (5.8a)

dσ

dt
= −Aσ − σAT + ΣΣT . (5.8b)

Similarly the mean and the covariance of the modified equation M̃(t), σ̃(t) satisfy the
following ODEs

dM̃

dt
= −ÃM̃ , (5.9a)

dσ̃

dt
= −Ãσ̃ − σ̃ÃT + Σ̃Σ̃T (5.9b)

It is important to see that equations for the modified mean and covariance (5.9a),(5.9b)
are the ∞ modified equations that we would have obtained for the ODEs (5.8a),(5.8b),
using the numerical approximation (5.3) for (5.1) [1, 6].

6. Backward Error Analysis for the Langevin Equation. In this section we
discuss how we can extent the backward error analysis for deterministic Hamiltonian
systems to the case of the Langevin equation. In the case of deterministic time
autonomous Hamiltonian systems

dq = Hpdt, (6.1a)

dp = −Hqdt, (6.1b)

it is easy to see that since ∂tH(p, q) = 0

dH

dt
= 0, (6.2)
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thus the solutions of (6.1) evolve so as for the Hamiltonian H(p, q) to remain constant.
It is thus naturally expected that an appropriate numerical discretization for (6.1)
would respect in some sense the properties of (6.1). It is then possible to show using
backward error analysis [6, 21] that there exist numerical schemes which conserve
up to high accuracy a modified Hamiltonian H∆t(p, q), which is close to the original
Hamiltonian H(p, q).

6.1. Properties of the Langevin equation. A natural question is how does
equation (6.2) carry forward in the stochastic setting of the Langevin equation (4.14).
It is very important to note that the Langevin equation (4.14) can be written in the
following form

dq = Hpdt, (6.3a)

dp = −(Hq + γHp)dt+ σdW (t), (6.3b)

for H(p, q) = 1
2p

2 + V (q). The reason for writing equation (4.14) in the form of (6.3)
is that the invariant measure of (6.3) is given by:

π0(p, q) = e−
2γ

σ2
H(p,q), (6.4)

where we have to assume appropriate growth for the Hamiltonian at infinity, in order
for the invariant measure to be normalizable.

We now use Itô’s formula for (4.14) to see that

H(p(t), q(t)) = H(p(0), q(0)) +

∫ t

0

L0H(q(s), p(s))ds+
σ2

2

∫ t

0

∂pH(q(s), p(s))dWs,

where L0 is the generator of the process given by

L0 := p∂q − (γp+ V ′(q))∂p +
σ2

2
∂2

p . (6.5)

If we take expectations the stochastic integral vanishes and thus

E (H(p(t), q(t))) = E (H(p(0), q(0))) + E

(
∫ t

0

L0H(q(s), p(s))ds

)

.

We now have

E

(
∫ t

0

L0H(q(s), p(s))ds

)

=

∫ t

0

(
∫

R2

L0H(p, q)π(p, q, s)dpdq

)

ds, (6.6)

where π satisfies the Fokker-Planck equation with initial data π(p, q, 0) = ρ0. Using
that L∗

0 is the L2 adjoint of L0 we obtain

∫

R2

L0H(p, q)π(p, q, s)dpdq =

∫

R2

H(p, q)L∗

0π(p, q, s)dpdq = 0, (6.7)

Now, since our system is a Hamiltonian one, it is natural to assume that the initial
conditions are distributed according to the Boltzmann-Gibbs distribution π0 given by
(6.4), satisfying

L∗

0π0 = 0. (6.8)
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which implies that π(p, q, s) = π0(p, q), ∀s > 0. Thus using (6.8) and (6.7) we obtain

E (H(p(t), q(t))) = E (H(p(0), q(0))) , (6.9)

which implies that when starting from stationarity the mean Hamiltonian remains
constant. This is the analogous of the conservation of the Hamiltonian in the case
of no friction and noise. In this sense a suitable numerical method for the Langevin
equation (4.14), just as in the case of ODEs, would be one which preserves up to
high accuracy the average of a modified Hamiltonian H∆t(p, q) which is close to the
original Hamiltonian H(p, q).

From the point of view of backward error analysis if such a method exists, this
would imply that the first modified equation would be of the form (6.3) for some
modified Hamiltonian H1(p, q) which differs from the original Hamiltonian O(∆t).
It is important to note that neither the symplectic Euler method nor the 1st order
Lie-Trotter splitting method belong to this class of methods, since their modified
equations (4.16),(4.23) are not in the form of (6.3), since for both of them the q-
variable is driven by noise. In the next subsection we construct a numerical scheme
which 1st modified equation is in the form of (6.3).

6.2. 1st order integrated Euler. In this subsection we describe the way we
derive a numerical scheme for (4.14), which its 1st modified equation is in the form
of (6.3). It is possible to solve up to quadrature (4.14) to obtain [26, 18]:

q(t) = q(0) +
1

γ

(

1 − e−γt
)

p(0) − 1

γ

∫ t

0

(

1 − e−γ(t−s)
)

V ′(q(s))ds+
σ

γ

∫ t

0

(

1 − e−γ(t−s)
)

dWs,

p(t) = p(0)e−γt −
∫ t

0

e−γ(t−s)V ′(q(s))ds+ σ

∫ t

0

e−γ(t−s)dWs. (6.10)

The most straightforward numerical approximation of (6.10) is

qn+1 = qn +
1

γ

(

1 − e−γ∆t
)

pn − ∆t
1

γ

(

1 − e−γ∆t
)

V ′(qn) + αξn + δψn,

pn+1 = e−γ∆tpn − ∆te−γ∆tV ′(qn) + βξn, (6.11)

where ξn, ψn are N (0, 1) distributed, independent random variables and the coeffi-
cients α, δ, β are given by [18]:

α2 + δ2 =
σ2

γ2

[

∆t− 2

γ

(

1 − e−γ∆t
)

+
1

2γ

(

1 − e−2γ∆t
)

]

, (6.12a)

αβ =
σ2

2γ2

(

1 − e−γ∆t
)2
, (6.12b)

β2 =
σ2

2γ

(

1 − e−2γ∆t
)

. (6.12c)

From now on, because of the way we approximated the integrals, we will call this
method 1st order integrated Euler. The one step time approximation of this method
assuming that (q(0), p(0)) = (q, p) is given by:

q(∆t) = q +
1

γ

(

1 − e−γ∆t
)

p− ∆t
1

γ

(

1 − e−γ∆t
)

V ′(q) + αξ + δψ,

p(∆t) = e−γ∆tp− ∆te−γ∆tV ′(q) + βξ. (6.13)
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By taking the Taylor expansion of φ up to 4-th order as we have done before we find

E(φ(p(∆t), q(∆t)) | (p(0), q(0))) = (p, q)) = φ(p, q) + ∆tL0φ

− ∆t2
[

(γp

2
+ V ′(q)

)

∂qφ− γ2

2
p∂pφ

]

+
∆t2

2

(

p2∂2
qφ+ (σ2 − 2p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ. (6.14)

The details for this calculation can be found in Appendix C. From equation (6.14) we
can deduce that

A1φ = −
(γp

2
+ V ′(q)

)

∂q +
γ2

2
p∂p

+
1

2

(

p2∂2
qφ+ (σ2 − 2p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
1

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3σ4

24
∂4

pφ.

Using this, together with (4.8), equation (3.9) becomes

L1φ = −1

2
V ′(q)∂qφ− 1

2
(γV ′(q) − pV ′′(q))∂pφ+

1

2
γσ2∂2

pφ,

which implies that the modified equation is of the form

dq =

[

p− ∆t

2
V ′(q)

]

dt, (6.15)

dp =

[

−γp− V ′(q) − ∆t

2
(γV ′(q) − pV ′′(q))

]

dt+ σ

(

1 +
∆t

2
γ

)

dW (t).

If we now consider the modified Hamiltonian

H̃1(p, q) =
1

2
p2 + V (q) − ∆t

2
V ′(q)p, (6.16)

we can write the modified equation (4.16) in the more convenient form

dq = H̃1pdt, (6.17a)

dp = −(H̃1q + γH̃1p)dt+ σ

(

1 +
∆t

2
γ

)

dW (t), (6.17b)

and using a similar analysis like the original Hamiltonian equation we see that

E

(

H̃1(p(t), q(t))
)

= E

(

H̃1(p(0), q(0))
)

, (6.18)

which implies that the modified Hamiltonian H̃1 given by (6.16) does not change on
average, when starting from stationarity.

Remark 6.1. It is important to notice that in the deterministic case (σ, γ = 0) the
1st order integrated Euler method, the 1st order Lie Trotter splitting method and the
symplectic Euler method are exactly the same, and thus they have the same modified
equation. However, in the stochastic case their modified equations are different. This
illustrates a very important point, namely that the way we approximate the noise plays
a very important role in the structure of the modified equation.
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7. Numerical Investigations. In this section we investigate numerically our
theoretical findings for different numerical methods. We start by investigating linear
SDEs in one and two dimensions, such as the one dimensional Ornstein-Uhlenbeck
process and the harmonic oscillator. For these SDEs we compare the numerically
computed moments with the ∞-modified equation ones. We finally study an exam-
ple of an SDE driven by multiplicative noise and compare the numerical computed
moments with the ones of the 1-st modified equation.

7.1. One dimensional Ornstein-Uhlenbeck process. The one dimensional
Ornstein Uhlenbeck process satisfies the SDE

dx = −γxdt+ σdWt. (7.1)

7.1.1. Forward Euler. In the case of forward Euler method it is not difficult
to see that for the OU process

A(∆t) = (1 − γ∆t),

f(∆t, ω) = σ
√

∆tξ,

where ξ is a N (0, 1) distributed random variable, and we need to impose the condition
∆t < 1/γ in order for the numerical approximation to be stable. We can now solve
(5.5), (5.7) to obtain:

Ã =
log(1 − γ∆t)

∆t
, (7.2a)

Σ̃ = σ

√

2 log(1 − γ∆t)

(1 − γ∆t)2 − 1
. (7.2b)

Due to the linearity of the numerical approximation, it is possible to calculate explic-
itly the parameters of the invariant measure for the numerical approximation. More
precisely, we find that the invariant measure ρ∞,∆t is a Gaussian one, with mean 0
and variance σ1 given by [25]:

σ1 =
σ2

2γ − γ2∆t
. (7.3)

This is exactly the same value for the variance we would have obtained if we used the
∞ modified equation we have just calculated for the forward Euler method. In Figure
7.1 we plot the numerically computed variance for different time steps and we compare
it with the variance predicted by the 1st and the ∞ modified equation at large times.
The values of the parameters used for Figure 7.1 are γ = σ = 1, while for the numerical
solution we have used final integration time T = 50 and N = 105 realizations of the
noise. It is obvious that the variance of the numerical approximation agrees with the
one predicted by the ∞ modified equation. The variance calculated with the use of
the first modified equation is a good approximation for the variance only for small
time steps.

7.1.2. Backward Euler. In the case of backward Euler method it is not difficult
to see that for the OU process

A(∆t) =
1

(1 + γ∆t)
,

f(∆t, ω) = σ
√

∆tξ,
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Fig. 7.1. Numerical computed variance for different time steps

where ξ is a N (0, 1) distributed random variable. It is very important to note that
unlike the forward Euler method we do not need to impose any condition on the
timestep ∆t in order for the numerical solution not to blow up. This is related with
the fact that the backward Euler method is an implicit method. The effectiveness of
implicit methods for stiff stochastic problems is discussed in [12].

We can now solve (5.5), (5.7) to obtain:

Ã = − log(1 + γ∆t)

∆t
, (7.4a)

Σ̃ = σ

√

2 log(1 + γ∆t)

1 − (1 + γ∆t)−2
. (7.4b)

Again due to the linearity of the numerical approximation, it is possible to calculate
explicitly the parameters of the invariant measure More precisely, we find that the
invariant measure ρ∞,∆t is a Gaussian one, with mean 0 and variance σ2 given by
[25]:

σ2 =
σ2(1 + γ∆t)2

2γ + γ2∆t
. (7.5)

This is exactly the same value for the variance we would have obtained if we used
the ∞ modified equation we have just calculated for the backward Euler method. In
Figure 7.2 we plot the numerical computed variance for different time steps and we
compare it with the variance1 predicted by the 1st and the ∞ modified equation at
large times. The values of the parameters used for Figure 7.2 are γ = σ = 1, while
for the numerical solution we have used final integration time T = 50 and N = 105

realizations of the noise. It is obvious that the variance of the numerical approximation
agrees with the one predicted by the ∞ modified equation. The variance calculated
with the use of the first modified equation is a good approximation for the variance
only for small time steps.

1In this paper we have not computed the first modified equation for the backward Euler method,
but instead use the result from [22].
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7.2. Harmonic Oscillator. The harmonic oscillator in the presence of friction

and noise is in the form of equation (4.14) for H = p2

2 + q2

2 . More precisely, we have

dq = pdt, (7.6a)

dp = −(q + γp)dt+ σdW (t), (7.6b)

The structure of the covariance matrix of the invariant measure for different numerical
methods was studied in [2]. Note that we can write equation (7.6) in the form of (5.1)
for

A =

(

0 1
−1 −γ

)

,Σ =

(

0 0
0 σ

)

. (7.7)

7.2.1. Symplectic Euler. The symplectic Euler in the case of the harmonic
oscillator reads

qn+1 = qn + ∆t
[

pn − ∆t(γpn + qn) + σ
√

∆tξn

]

, (7.8a)

pn+1 = pn − ∆t(γpn + qn) + σ
√

∆tξn, (7.8b)

where ξn is N (0, 1) distributed. We can thus rewrite (7.8) in the form of (5.3) for

A(∆t) =

(

1 − ∆t2 ∆t− γ∆t2

−∆t 1 − γ∆t

)

,

and

f(∆t, ω) =

(

σ
√

∆t3

σ
√

∆t

)

ξ,

which implies that Ã is given by:

Ã =
1

∆t
log

(

1 − ∆t2 ∆t− γ∆t2

−∆t 1 − γ∆t

)

.

We now solve the Lyapunov equation (5.7) in order to find the matrix Σ̃Σ̃T . Using
this it is possible to calculate the correlation matrix L of the invariant measure using
the formula [4]:

L =
(DetA)BBT + [A− (TrA)I]BBT [A− (TrA)I]T

2(TrA)(DetA)
, (7.9)
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where

A = −Ã,
B = Σ̃.

In Figure 7.3 we compare the elements of the correlation matrix L of the invariant
measure of the ∞ modified equation as computed from realizations of the path and
from (7.9). The values of the parameters used for Figure 7.3 are γ = 1, σ = 5, while
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Fig. 7.3. Correlation matrix L as a function of ∆t.

for the stochastic simulation we have used final integration time T = 50 and N = 105

realizations of the noise. As we can see there is complete agreement between the
correlation matrix L computed from stochastic simulations and from (7.9).

7.2.2. 1st order Lie-Trotter splitting method. The 1st order Lie-Trotter
splitting method in the case of the harmonic oscillator reads

qn+1 = qn + ∆te−γ∆tpn − ∆t2qn + ∆tβξn, (7.10a)

pn+1 = e−γ∆tpn − ∆tqn + βξn, (7.10b)

where ξn is N (0, 1) distributed. We can rewrite (7.10) in the form of (5.3) for

A(∆t) =

(

1 − ∆t2 ∆te−γ∆t

−∆t e−γ∆t

)

,

and

f(∆t, ω) =

(

∆tβ
β

)

ξ,
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which implies that Ã is given by:

Ã =
1

∆t
log

(

1 − ∆t2 ∆te−γ∆t

−∆t e−γ∆t

)

.

Now as we did the case for the symplectic Euler method, we can solve the Lyapunov
equation (5.7) and then use equation (7.9) to obtain the correlation matrix L for the
invariant measure of the ∞ modified equation. In Figure 7.4 we compare the elements

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

∆ t

V
ar

(q
)

 

 

Lyapunov equation

stochastic simulation

(a) Var(q)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

∆ t

V
ar

(p
)

 

 

Lyapunov equation

stochastic simulation

(b) Var(p)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

∆ t

C
o

v(
q

,p
)

 

 

Lyapunov equation

stochastic simulation

(c) Cov(p, q)

Fig. 7.4. Correlation matrix L as a function of ∆t.

of the correlation matrix L of the invariant measure as computed from realizations
of the path and from (7.9). The values of the parameters used for Figure 7.4 are
γ = 1, σ = 5, while for the stochastic simulation we have used final integration time
T = 50 and N = 105 realizations of the noise. As we can see there is complete
agreement between the correlation matrix L computed from stochastic simulations
and from (7.9).

Another important feature of this method is that underestimates Var(q), unlike
the symplectic Euler, while the relative error is similar for both of the methods. On
the other hand, it overestimates Var(q),Cov(q, p) just like the symplectic Euler, but
the relative size of the error in the case of the Lie-Trotter splitting method is smaller
than the symplectic Euler one. This should not be a surprise, since for the Lie-Trotter
splitting method, the noise in the p-equation is calculated exactly.

7.3. One dimensional Geometric Brownian motion. The one dimensional
geometric Brownian motion [8, 15] satisfies the SDE

dx = µxdt+ σxdWt. (7.11)
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7.3.1. Milstein Method. In (7.11) the noise is multiplicative so we use Mil-
stein’s method to solve it. Using (4.6) we have that the modified equation is

dX̃ =

[(

µ− ∆t

2
µ2

)

X̃

]

dt+

[

X̃

(

σ − ∆tµσ − ∆t

4
σ3

)

+
∆t

4
σ

]

dWt. (7.12)

We want to compare the first and second moments of the numerical solution with the
ones of (7.11) and (7.12). For x satisfying (7.11) we can calculate those moments
by applying Itô’s formula and then take expectations. The ODEs that we obtain are
explicitly solvable and by solving them we obtain

E(x(t)) = x(0)eµt,

E(x2(t)) = x2(0)e(2µ+σ2)t.

In similar way we find that

E(X̃(t)) = x(0)e(µ−
∆t
2

µ2)t

while the second moment satisfies the following ODE:

dE(X̃2(t))

dt
=

[

2

(

µ− ∆t

2
µ2

)

+

(

σ − ∆tµσ − ∆t

4
σ3

)2
]

E(X̃2(t))

+ 2
∆t

4
σ

(

σ − ∆tµσ − ∆t

4
σ3

)

E(X̃(t)) +
∆t2

16
σ2 (7.13)

We can now obtain the second moment of X̃ by solving (7.13) using a Runge-Kutta
method.

We now solve (7.11) for µ = 2, σ = 0.1, x(0) = 1 with the Milstein’s scheme
for T = 1 using N = 5 107 sample paths and five different stepsizes ∆t = 2k−10, k =
1, . . . , 5. In Figure 7.5 we plot the absolute error between the numerically computed
moments and the moments of (7.11) and (7.12). As we can see the global error is
of first order when we compare our numerical solution with (7.11) and second order
when we compare with (7.12) as expected by theory.
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8. Conclusions and Further Work. In this paper a method for calculating
modified equations for SDEs was developed building on previous ideas in [3, 20, 22, 23].
The key idea is to exploit the backward Kolmogorov equation in order to characterise
the order of convergence of the numerical method and then using the same approach
to find the modified SDE. A variety of numerical methods were studied in both one
and multiple dimensions.

In the case of linear SDEs it was shown that it is possible to write a SDE (the
∞ modified equation), which the numerical method solves exactly in the weak sense.
This was also verified by numerical investigations where the value of the parameters
of the invariant measure of the numerical solution were compared with the ones of
the ∞ modified equation and almost perfect agreement was found.

A backward error analysis was performed for the Langevin equation. More pre-
cisely, trying to generalise ideas of backward error analysis for Hamiltonian dynamics
a numerical method was proposed, which 1-st modified equation remains a Langevin
equation for a modified temperature and for the modified Hamiltonian that one ob-
tains from the deterministic dynamics [6, 21].

There are still a lot of questions that remain open. We list some of them.
• Finding modified equations for numerical methods with respect to strong

convergence.
• Understand better why there is no modified equation for the Euler-Maruyama

method in the case of multiplicative noise. A possible non rigorous explana-
tion is that the strong order of convergence of the Euler-Maruyama equation
for multiplicative noise is 1/2 instead of 1 as in the additive noise case, where
a modified equation does exist.

• Construct higher order methods using (6.10), with similar properties to the
first order integrated Euler method.

• Study the case of the generalised Langevin equation

dz = (J∇H(z) −K∇H(z))dt+
√

2βKdWt, (8.1)

where z = (p, q), J is a skew-symmetric matrix and K is a positive definite
symmetric matrix, which might possibly depend on the q. It can be shown
that under appropriate assumptions on the Hamiltonian H that the invariant
measure of this system is the Boltzmann-Gibbs distribution

π0(z) = e−β−1H(z) (8.2)

The question is similar to what we have already studied in Section 6 is for
which numerical method is the modified equation of similar form to (8.1).

• Apply a similar analysis for numerical methods used to solve the chemical
Langevin equation [5].
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Appendix A. In this appendix we present some calculations needed for the
material presented in Section 4.1. We start by presenting a calculation for L2

0. More
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precisely we have

L2
0φ(x) = L0

(

v(x)φ(1)(x) +
σ2(x)

2
φ(2)(x)

)

.

We have

L0v(x)φ
(1)(x) = v(x)v(1)(x)φ(1)(x) + v2(x)φ(2)(x) +

σ2(x)

2
v(2)(x)φ(1)(x)

+ σ2(x)v(1)(x)φ(2)(x) +
σ2(x)

2
v(x)φ(3)(x),

and

L0
σ2(x)

2
φ(2)(x) = v(x)

d

dx

(

σ2(x)

2
φ(2)(x)

)

+
σ2(x)

2

d2

dx2

(

σ2(x)

2
φ(2)(x)

)

= v(x)σ(x)σ(1)(x)φ(2)(x) +
σ2(x)

2
v(x)φ(3)(x)

+
σ2(x)

2

d

dx

(

σ(x)σ(1)(x)φ(2)(x) +
σ2(x)

2
φ(3)(x)

)

= v(x)σ(x)σ(1)(x)φ(2)(x) +
σ2(x)

2
v(x)φ(3)(x)

+
σ2(x)

2
(σ(1)(x))2φ(2)(x) +

σ3(x)

2
σ(2)(x)φ(2)(x)

+ σ3(x)σ(1)(x)φ(3)(x) +
σ4(x)

4
φ(4)(x).

Thus L2
0 reads

L2
0φ(x) =

(

v(x)v(1)(x) +
σ2(x)

2
v(2)(x)

)

φ(1)(x)

+

(

v2(x) + σ2(x)v(1)(x) + v(x)σ(x)σ(1)(x) +
σ2(x)

2
(σ(1)(x))2 +

σ3(x)

2
σ(2)(x)

)

φ(2)(x)

+
(

σ3(x)σ(1)(x)f (3)(x) + σ2(x)v(x)
)

φ(3)(x)

+
σ4(x)

4
φ(4)(x).

A.1 Euler-Maruyama method. We present the calculations needed to find A1

for the Euler-Maruyama method in greater detail. The one step approximation for
the Euler method is given by

x(∆t) = x+ v(x)∆t+ σ
√

∆tξ,

where ξ is N (0, 1) distributed. Using the previous equation we see that

E(φ(x(∆t))|x(0) = x) = E(φ(x+ v(x)∆t+ σ
√

∆tξ)).

We now need to take the Taylor expansion of φ up to 4-th order so as to calculate
A1. More precisely, we have

φ(x+ v(x)∆t+ σ
√

∆tξ) = φ(x) + (v(x)∆t+ σ
√

∆tξ)φ(1)(x) +
(v(x)∆t+ σ

√
∆tξ)2

2
φ(2)(x)

+
(v(x)∆t+ σ

√
∆tξ)3

6
φ(3)(x) +

(v(x)∆t+ σ
√

∆tξ)4

24
φ(4)(x) + · · · .
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We are interested in keeping only the ∆t,∆t2 terms. Also we need to note that the
∆t1/2,∆t3/2 terms will be killed once we take expectations, since ξ is a mean zero
variable. We thus have:

E(φ(x(∆t))|x(0) = x) = φ(x) + ∆tL0φ(x)

+ ∆t2
(

v2(x)φ(2)(x)

2
+

3σ2v(x)

6
φ3(x) +

3σ4

24
φ(4)(x)

)

+ O(∆t3).

A.2 Milstein method. We present the calculations needed to find A1 for the
Milstein’s method in greater detail. The Milstein’s method for the approximation of
x(∆t) in the case of multiplicative noise reads

x(∆t) = x+ v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t),

where ξ is N (0, 1) distributed. In order to calculate A1 we need to take the Taylor
expansion of φ up to 4th order as before

φ(x(∆t)) = φ(x) +

(

v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t)

)

φ(1)(x)

+
1

2

(

v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t)

)2

φ(2)(x)

+
1

6

(

v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t)

)3

φ(3)(x)

+
1

24

(

v(x)∆t+ σ(x)
√

∆tξ +
1

2
σ(x)σ(1)(x)(∆tξ2 − ∆t)

)4

φ(4)(x) + · · ·

and after taking expectations and keeping terms of order up to ∆t2 we find

E(φ(x(∆t)))|x(0) = x) = ∆t

(

v(x)φ(1)(x) +
σ2(x)

2
φ(2)(x)

)

+
∆t2

2

(

v2(x) +
1

2
σ(x)σ(1)(x)

)

φ(2)(x)

+
3∆t2

6

(

σ(3)(x)σ(1)(x) + σ(2)(x)v(x)
)

φ(3)(x)

+
3∆t2

24
σ4(x)φ(4)(x).

Appendix B. In this appendix we present some calculations needed for the
material presented in Section 4.2. We start by presenting a calculation for L2

0 in
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multiple dimensions. More precisely we have

L2
0φ = v(x) · ∇

(

v(x) · ∇φ+
1

2
ΣΣT : ∇∇φ

)

+
1

2
ΣΣT : ∇∇

(

v(x) · ∇φ+
1

2
ΣΣT : ∇∇φ

)

= vk∂kvi∂iφ+ vkvi∂k∂iφ+
1

2
(ΣΣT )ij∂k∂i∂jφ

+
1

2
(ΣΣT )km [∂k∂mvi∂iφ+ ∂mvi∂k∂iφ+ ∂kvi∂m∂iφ+ vi∂k∂m∂iφ]

+
1

4
(ΣΣT )km(ΣΣT )ij∂k∂m∂i∂jφ.

B.1 Symplectic Euler. We present the calculations needed to find A1 for the
symplectic Euler in greater detail. Note, assuming we started from p, q, that

q(∆t) = q + p∆t− γp∆t2 − V ′(q)∆t2 + σ
√

∆t3ξ,

p(∆t) = p− (γp+ V ′(q))∆t+ σ
√

∆tξ.

So now we can take the Taylor expansion for φ(q(∆t), p(∆t)) around q, p up to 4-th
order. The first order term in the Taylor expansion is

(

p∆t− γp∆t2 − V ′(q)∆t2 + σ
√

∆t3ξ
)

∂qφ+
(

−(γp+ V ′(q))∆, t+
√
σ∆tξ

)

∂pφ

and after taking expectation and using the fact that ξ is N (0, 1) distributed we obtain
(

p∆t− γp∆t2 − V ′(q)∆t2
)

∂qφ− (γp+ V ′(q))∆t∂pφ,

The terms that are of order up to O(∆t2) once we take expectations for the second
order term in the Taylor expansion is

1

2

(

∆t2p2∂2
qf + 2(σ2 − p(γp+ V ′(q)))∆t2∂p∂qφ+ (σ2∆t+ (γp+ V ′(q))2∆t2)∂2

pφ
)

.

The terms that are of order up to O(∆t2) once we take expectations for the third
order term in the Taylor expansion is

∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

,

and finally the terms that are up to O(∆t2) once we take expectations for the fourth
order term in the Taylor expansion is

3∆t2σ4

24
∂4

pφ.

Thus for the symplectic Euler we have

E(φ(p(∆t), q(∆t))|(p(0), q(0)) = (p, q)) = ∆tL0φ− ∆t2(γp+ V ′(q))∂qφ

+
∆t2

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2)∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ.
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B.2 1st order Lie-Trotter splitting method. We present the calculations
needed to find A1 for the symplectic Euler in greater detail. In doing this is useful to
write equation (4.21) in the following way

q(∆t) = q + ∆tp− γ
∆t2

2
p− ∆t2V ′(q) + ∆tβξ + O(∆t3), (B.1a)

p(∆t) =

(

1 − γ∆t+
1

2
γ2∆t2

)

p− ∆tV ′(q) + βξ + O(∆t3). (B.1b)

We now need to take the Taylor expansion up to the 4-th order and then take con-
ditional expectations. In doing this it is very useful to express the magnitude of the
coefficient β. More precisely, it is not difficult to see that

β2 = σ2(∆t− γ∆t2) + O(∆t3).

Using this it together with the expression (B.1) we obtain

E(φ(p(∆t), q(∆t)) | (p(0), q(0))) = (p, q)) = φ(p, q) + ∆tL0φ

− ∆t2
[

(γp+ V ′(q))∂qφ− γ2

2
p∂pφ

]

+
∆t2

2

(

p2∂2
qφ+ 2(σ2 − p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ.

Appendix C. In this appendix we present some calculations needed for the
material presented in Section 7.2. More precisely we present the calculations needed
to find A1 for the first order integrated Euler method. In doing this is useful to write
equation (6.13) in the following way

q(∆t) = q + ∆tp− γ
∆t2

2
p− ∆t2V ′(q) + αξ + δψ + O(∆t3), (B.1a)

p(∆t) =

(

1 − γ∆t+
1

2
γ2∆t2

)

p− (∆t− γ∆t2)V ′(q) + βξ + O(∆t3). (B.1b)

We now need to take the Taylor expansion up to the 4-th order and then take con-
ditional expectations. In doing this it is very useful to express the magnitude of the
coefficients α, β, δ. More precisely, it is not difficult to see that

α2 + δ2 = O(∆t3),

αβ =
σ2

2
∆t2 + O(∆t3),

β2 = σ2(∆t− γ∆t2) + O(∆t3).

Using this it together with the expression (B.1) we obtain

E(φ(p(∆t), q(∆t)) | (p(0), q(0))) = (p, q)) = φ(p, q) + ∆tL0φ

− ∆t2
[

(γp

2
+ V ′(q)

)

∂qφ− γ2

2
p∂pφ

]

+
∆t2

2

(

p2∂2
qφ+ (σ2 − 2p(γp+ V ′(q)))∂p∂qφ+ (γp+ V ′(q))2∂2

pφ
)

+
∆t2

6

(

3σ2p∂q∂
2
pφ− 3σ2(γp+ V ′(q))∂3

pφ
)

+
3∆t2σ4

24
∂4

pφ.
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Appendix D. In this appendix we present the necessary calculations in order
to obtain equation (5.7) from (5.6). We start by noting that from the definition of
matrix exponential

(e−As)′ = −Ae−As = −e−AsA,

since A, e−As commute. Thus, if we denote with J the integral term on the left hand
side of (5.6) we have

J = −
∫ ∆t

0

Ã−1(eÃ(∆t−s))′Σ̃Σ̃T eÃT (∆t−s)ds

= −
[

Ã−1eÃ(∆t−s)Σ̃Σ̃T eÃT (∆t−s)ds
]∆t

0
−

∫ ∆t

0

Ã−1eÃ(∆t−s)Σ̃Σ̃T eÃT (∆t−s)ÃTds,

and thus J satisfies the equation

J + Ã−1JÃT = Ã−1eÃ∆tΣ̃Σ̃T eÃT ∆t − Ã−1Σ̃Σ̃T .

We now multiply from the left hand side with Ã to obtain the discrete Lyapunov
equation:

ÃJ + JÃT = eÃ∆tΣ̃Σ̃T eÃT ∆t − Σ̃Σ̃T .
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