
QUASI-NEWTON METHODS ON GRASSMANNIANS AND
MULTILINEAR APPROXIMATIONS OF TENSORS

BERKANT SAVAS∗ AND LEK-HENG LIM†

Abstract. In this paper we proposed quasi-Newton and limited memory quasi-Newton methods
for objective functions defined on Grassmannians or a product of Grassmannians. Specifically we
defined bfgs and l-bfgs updates in local and global coordinates on Grassmannians or a product
of these. We proved that, when local coordinates are used, our bfgs updates on Grassmannians
share the same optimality property as the usual bfgs updates on Euclidean spaces. When applied to
the best multilinear rank approximation problem for general and symmetric tensors, our approach
yields fast, robust, and accurate algorithms that exploit the special Grassmannian structure of the
respective problems, and which work on tensors of large dimensions and arbitrarily high order.
Extensive numerical experiments are included to substantiate our claims.

Key words. Grassmann manifold, Grassmannian, product of Grassmannians, Grassmann quasi-
Newton, Grassmann bfgs, Grassmann l-bfgs, multilinear rank, symmetric multilinear rank, tensor,
symmetric tensor, approximations

AMS subject classifications. 65F99, 65K10, 15A69, 14M15, 90C53, 90C30, 53A45

1. Introduction.

1.1. Quasi-Newton and limited memory quasi-Newton algorithms on
Grassmannians. We develop quasi-Newton and limited memory quasi-Newton al-
gorithms for functions defined on a Grassmannian Gr(n, r) as well as a product of
Grassmannians Gr(n1, r1)× · · · ×Gr(nk, rk), with bfgs and l-bfgs updates. These
are algorithms along the lines of the class of algorithms studied by Edelman, Arias,
and Smith in [24] and more recently, the monograph of Absil, Mahony, and Sepulchre
in [2]. They are algorithms that respect the Riemannian metric structure of the man-
ifolds under consideration, and not mere applications of the usual bfgs and l-bfgs
algorithms for functions on Euclidean space. The actual computations of our bfgs
and l-bfgs algorithms on Grassmannians, like the algorithms in [24], require nothing
more than standard numerical linear algebra routines and can therefore take advan-
tage of the many high quality softwares developed for matrix computations [3, 40]. In
other words, manifold operations such as movement along geodesics and parallel trans-
port of tangent vectors and linear operators do not require actual numerical solutions
of the differential equations defining these operations; instead they are characterized
as matrix operations on local and global coordinate representations (as matrices) of
points on the Grassmannians or points on an appropriate vector bundle.

A departure and improvement from existing algorithms for manifold optimization
[1, 2, 24, 27] is that we undertake a local coordinates approach. This allows our compu-
tational costs to be reduced to the order of the intrinsic dimension of the manifold as
opposed to the dimension of ambient Euclidean space. For a Grassmannian embedded
in the Euclidean space of n×r matrices, i.e. Gr(n, r) ⊆ Rn×r, computations in local co-
ordinates have r(n− r) unit cost whereas computations in global coordinates, like the
ones in [24], have nr unit cost. This difference becomes more pronounced when we deal

∗Department of Mathematics, Linköping University, SE-581 83 Linköping. Current address:
Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin
TX 78712 (berkant@cs.utexas.edu)
†Department of Mathematics, University of California, Berkeley, CA 94720

(lekheng@math.berkeley.edu)

1

ar
X

iv
:0

90
7.

22
14

v3
 [

m
at

h.
O

C
]

 3
0

M
ay

 2
01

0

with products of Grassmannians Gr(n1, r1)×· · ·×Gr(nk, rk) ⊆ Rn1×r1×· · ·×Rnk×rk—
for ni = O(n) and ri = O(r), we have a computational unit cost of O(kr(n− r)) and
O(krn) flops between the local and global coordinates versions the bfgs algorithms.
More importantly, we will show that our bfgs update in local coordinates on a prod-
uct of Grassmannians (and Grassmannian in particular) shares the same well-known
optimality property of its Euclidean counterpart, namely, it is the best possible up-
date of the current Hessian approximation that satisfies the secant equations and
preserves symmetric positive definiteness (cf. Theorem 6.6). For completeness and as
an alternative, we also provide the global coordinate version of our bfgs and l-bfgs
algorithms analogous to the algorithms described in [24]. However the aforementioned
optimality is not possible for bfgs in global coordinates.

While we have limited our discussions to bfgs and l-bfgs updates, it is straight-
forward to substitute these updates with other quasi-Newton updates (e.g. dfp or
more general Broyden class updates) by applying the same principles in this paper.

1.2. Multilinear approximations of tensors and symmetric tensors. In
part to illustrate the efficiency of these algorithms, this paper also addresses the
following two related problems about the multilinear approximations of tensors and
symmetric tensors, which are also important problems in their own right with various
applications in analytical chemistry [53], bioinformatics [47], computer vision [55],
machine learning [44, 41], neuroscience [45], quantum chemistry [35], signal processing
[10, 13, 18], etc. See also the very comprehensive bibliography of the recent survey [38].
In data analytic applications, the multilinear approximation of general tensors is the
basis behind the Tucker model [54] while the multilinear approximation of symmetric
tensors is used in independent components analysis [14, 18] and principal cumulant
components analysis [44, 41]. The algorithms above provide a natural method to solve
these problems that exploits their unique structures.

The first problem is that of finding a best multilinear rank-(p, q, r) approximation
to a tensor, i.e. approximating a given tensor A ∈ Rl×m×n by another tensor B ∈
Rl×m×n of lower multilinear rank [31, 20],

min
rank(B)≤(p,q,r)

‖A − B‖.

For concreteness we will assume that the norm in question is the Frobenius or Hilbert-
Schmidt norm ‖ · ‖F . In notations that we will soon define, we seek matrices X,Y, Z
with orthonormal columns and a tensor C ∈ Rp×q×r such that

argmin
X∈O(l,p),Y ∈O(m,q),Z∈O(n,r),C∈Rl×m×n

‖A − (X,Y, Z) · C‖F . (1.1)

The second problem is that of finding a best multilinear rank-r approximation to
a symmetric tensor S ∈ S3(Rn). In other words, we seek a matrix Q whose columns
are mutually orthonormal, and a symmetric tensor C ∈ S3(Rr) such that a multilinear
transformation of C by Q approximates S in the sense of minimizing a sum-of-squares
loss. Using the same notation as in (1.1), the problem is

argmin
Q∈O(n,r),C∈S3(Rr)

‖S − (Q,Q,Q) · C‖F . (1.2)

This problem is significant because many important tensors that arise in applications
are symmetric tensors.

2

We will often refer to the first problem as the general case and the second problem
as the symmetric case. Most discussions are presented for the case of 3-tensors for
notational simplicity but key expressions are given for tensors of arbitrary order to
facilitate structural analysis of the problem and algorithmic implementation. The
matlab codes of all algorithms in this paper are available for download at [50, 51].
All of our implementations will handle 3-tensors and in addition, our implementation
of the bfgs with scaled identity as initial Hessian approximation will handle tensors
of arbitrary order. In fact the reader will find an example of a tensor of order-10 in
Section 11, included to show that our algorithms indeed work on high-order tensors.

Our approach is summarized as follows. Observe that due to the unitary in-
variance of the sum-of-squares norm ‖ · ‖F , the orthonormal matrices U, V,W in
(1.1) and the orthonormal matrix Q in (1.2) are only determined up to an action
of O(p) × O(q) × O(r) and an action of O(r), respectively. We exploit this to our
advantage by reducing the problems to an optimization problem on a product of
Grassmannians and a Grassmannian, respectively. Specifically, we reduce (1.1), a
minimization problem over a product of three Stiefel manifolds and a Euclidean space
O(l, p) × O(m, q) × O(n, r) × Rp×q×r, to a maximization problem over a product of
three Grassmannians Gr(l, p)×Gr(m, q)×Gr(n, r); and likewise we reduce (1.2) from
O(n, r) × S3(Rr) to a maximization problem over Gr(n, r). This reduction of (1.1)
to product of Grassmannians has been exploited in [25, 34, 33]. The algorithms in
[25, 34, 33] involve the Hessian, either explicitly or implicitly via its approximation
on a tangent. Whichever the case, the reliance on Hessian in these methods results in
them quickly becoming infeasible as the size of the problem increases. With this in
mind, we consider the quasi-Newton and limited memory quasi-Newton approaches
described in the first paragraph of this section.

An important case not addressed in [25, 34, 33] is the multilinear approximation
of symmetric tensors (1.2). Note that the general (1.1) and symmetric (1.2) cases are
related but different, not unlike the way the singular value problem differs from the
symmetric eigenvalue problem for matrices. The problem (1.1) for general tensors
is linear in the entries of U, V,W (quadratic upon taking norm-squared) whereas
the problem (1.2) for symmetric tensors is cubic in the entries of Q (sextic upon
taking norm-squared). To the best of our knowledge, all existing solvers for (1.2)
are unsatisfactory because they rely on algorithms for (1.1). A typical heuristic is as
follows: find three orthonormal matrices Q1, Q2, Q3 and a nonsymmetric C′ ∈ Rr×r×r
that approximates S,

S ≈ (Q1, Q2, Q3) · C′,

then artificially set Q1 = Q2 = Q3 = Q by either averaging or choosing the last
iterate and then symmetrize C′. This of course is not ideal. Furthermore, using the
framework developed for the general tensor approximation to solve the symmetric
tensor approximation problem will be computationally much more expensive. In
particular, to optimize S ≈ (Q1, Q2, Q3)·C′ without taking the symmetry into account
incurs a k-fold increase in computational cost relative to S ≈ (Q, . . . , Q) · C. The
algorithm proposed in this paper solves (1.2) directly. It finds a single Q ∈ O(n, r)
and a symmetric C ∈ S3(Rr) with

S ≈ (Q,Q,Q) · C.

The symmetric case can often be more important than the general case, not surprising
since symmetric tensors are common in practice, arising as higher order derivatives of

3

smooth multivariate real-valued functions, higher order moments and cumulants of a
vector-valued random variable, etc.

Like the Grassmann-Newton algorithms in [25, 34] and the trust-region approach
in [33, 32], the quasi-Newton algorithms proposed in this article have guaranteed con-
vergence to stationary points and represent an improvement over Gauss-Seidel type
coordinate-cycling heuristics like alternating least squares (als), higher-order orthog-
onal iteration (hooi), or higher-order singular value decomposition (hosvd) [14]. And
as far as accuracy is concerned, our algorithms perform as well as the algorithms in
[25, 32, 34] and outperform Gauss-Seidel type strategies in many cases. As far as
robustness and speed are concerned, our algorithms work on much larger problems
and perform vastly faster than Grassmann-Newton algorithm. Asymptotically the
memory storage requirements of our algorithms are of the same order-of-magnitude
as Gauss-Seidel type strategies. For large problems, our Grassmann l-bfgs algorithm
outperforms even Gauss-Seidel strategies (in this case hooi), which is not unexpected
since it has the advantage of requiring only a small number of prior iterates.

We will give the reader a rough idea of the performance of our algorithms. Using
matlab on a laptop computer, we attempted to find a solution to an accuracy within
machine precision, i.e. ≈ 10−13. For general 3-tensors of size 200 × 200 × 200, our
Grassmann l-bfgs algorithm took less than 13 minutes while for general 4-tensors
of size 50 × 50 × 50 × 50, it took about 7 minutes. For symmetric 3-tensors of size
200 × 200 × 200, our Grassmann bfgs algorithm took about 5 minutes while for
symmetric 4-tensors of size 50 × 50 × 50 × 50, it took less than 2 minutes. In all
cases, we seek a rank-(5, 5, 5) or rank-(5, 5, 5, 5) approximation. For a general order-
10 tensor of dimensions 5 × · · · × 5, a rank-(2, . . . , 2) approximation took about 15
minutes to reach the same accuracy as above. More extensive numerical experiments
are reported in Section 11. The reader is welcomed to try our algorithms, which have
been made publicly available at [50, 51].

1.3. Outline. The structure of the article is as follows. In Sections 2 and 3,
we present a more careful discussion of tensors, symmetric tensors, multilinear rank,
and their corresponding multilinear approximation problems. In Section 4 we will
discuss how quasi-Newton methods in Euclidean space may be extended to Rieman-
nian manifolds and, in particular, Grassmannians. Section 5 contains a discussion on
geodesic curves and transport of vectors on Grassmannians. In Section 6 we present
the modifications on quasi-Newton methods with bfgs updates in order for them to
be well-defined on Grassmannians. Also, the reader will find proof of the optimal-
ity properties of bfgs updates on products of Grassmannians. Section 7 gives the
corresponding modifications for limited memory bfgs updates. Section 8 states the
corresponding expressions for the tensor approximation problem, which are defined
on a product of Grassmannians. The symmetric case is detailed in section 9. Sec-
tion 10 contains a few examples with numerical calculations illustrating the presented
concepts. The implementation and the experimental results are found in Section 11.
Related work and the conclusions are discussed in Section 12 and 13 respectively.

1.4. Notations. Tensors will be denoted by calligraphic letters, e.g. A, B, C.
Matrices will be denoted in upper case letters, e.g. X, Y , Z. We will also use upper
case letters X, Xk to denote iterates or elements of a Grassmannian since we represent
them as (equivalence classes of) matrices with orthonormal columns. Vectors and
iterates in vector form are denoted with lower case letters, e.g. x, y, xk, yk, where the
subscript is the iteration index. To denote scalars we use lower case Greek letters,
e.g. α, β, and t, tk.

4

We will use the usual symbol ⊗ to denote the outer product of tensors and a large
boldfaced version � to denote the Kronecker product of operators. For example, if
A ∈ Rm×n and B ∈ Rp×q are matrices, then A ⊗ B will be a 4-tensor in Rm×n×p×q
whereas A�B will be a matrix in Rmp×nq. In the former case, we regard A and B as
2-tensors while in the latter case, we regard them as matrix representations of linear
operators. The contracted products used in this paper are defined in Appendix A.

For r ≤ n, we will let O(n, r) = {X ∈ Rn×r | XTX = I} denote the Stiefel
manifold of n × r matrices with orthonormal columns. The special case r = n, i.e.
the orthogonal group, will be denoted O(n). For r ≤ n, O(r) acts on O(n, r) via
right multiplication. The set of orbit classes O(n, r)/O(r) is a manifold called the
Grassmann manifold or Grassmannian (we adopt the latter name throughout this
article) and will be denoted Gr(n, r).

In this paper, we will only cover a minimal number of notions and notations
required to describe our algorithm. Further mathematical details concerning tensors,
tensor ranks, tensor approximations, as well as the counterpart for symmetric tensors
may be found in [8, 20, 25]. Specifically we will use the notational and analytical
framework for tensor manipulations introduced in [25, Section 2] and assume that
these concepts are familiar to the reader.

2. General and symmetric tensors. Let V1, . . . , Vk be real vector spaces of
dimensions n1, . . . , nk respectively and let A be an element of the tensor product
V1 ⊗ . . . ⊗ Vk, i.e. A is a tensor of order k [30, 39, 56]. Up to a choice of bases
on V1, . . . , Vk, one may represent a tensor A as a k-dimensional hypermatrix A =
[ai1···ik] ∈ Rn1×···×nk . Similarly, let V be a real vector space of dimension n and
S ∈ Sk(V) be a symmetric tensor of order k [30, 39, 56]. Up to a choice of basis on V ,
S may be represented as a k-dimensional hypermatrix S = [si1···ik] ∈ Rn×···×n whose
entries are invariant under any permutation of indices, i.e.

siσ(1)···iσ(k) = si1···ik for every σ ∈ Sk (2.1)

We will write Sk(Rn) for the subspace of Rn×···×n satisfying (2.1). Henceforth, we
will assume that there are some predetermined bases and will not distinguish between
a tensor A ∈ V1 ⊗ . . . ⊗ Vk and its hypermatrix representation A ∈ Rn1×···×nk and
likewise for a symmetric tensor S ∈ Sk(V) and its hypermatrix representation S ∈
Sk(Rn). Furthermore we will sometimes present our discussions for the case k = 3
for notational simplicity. We often call an order-k tensor simply as a k-tensor and an
order-k symmetric tensor as a symmetric k-tensor.

As we have mentioned in Section 1, symmetric tensors are common in applications,
largely because of the two examples below. The use of higher-order statistics in signal
processing and neuroscience, most notably the technique of independent component
analysis, symmetric tensors often play a central role. The reader is referred to [8] for
further discussion of symmetric tensors.

Example 2.1. Let m ∈ {1, 2, . . . ,∞} and Ω ⊆ Rn be an open subset. If f ∈
Cm(Ω), then for k = 1, . . . ,m, the kth derivative of f at a ∈ Ω is a symmetric tensor
of order k,

Dkf(a) =

[
∂kf

∂xi11 . . . ∂xinn
(a)

]
i1+···+in=k

∈ Sk(Rn).

For k = 1, 2, the vector D1f(a) and the matrix D2f(a) are the gradient and Hessian
of f at a, respectively.

Example 2.2. Let X1, . . . , Xn be random variables with respect to the same

5

probability distribution µ. The moments and cumulants of the random vector X =
(X1, . . . , Xn) are symmetric tensors of order k defined by

mk(X) =
[
E(xi1xi2 · · ·xik)

]n
i1,...,ik=1

=

[∫
· · ·
∫
xi1xi2 · · ·xik dµ(xi1) · · · dµ(xik)

]n
i1,...,ik=1

and

κk(X) =

[∑
A1t···tAp
={i1,...,ik}

(−1)p−1(p− 1)!E(
∏
i∈A1

xi) · · ·E(
∏
i∈Apxi)

]n
i1,...,ik=1

respectively. The sum above is taken over all possible partitions {i1, . . . , ik} = A1 t
· · ·tAp. It is not hard to show that both mk(X) and κk(X) ∈ Sk(Rn). For n = 1, the
quantities κk(X) for k = 1, 2, 3, 4 have well-known names: they are the expectation,
variance, skewness, and kurtosis of the random variable X, respectively.

3. Multilinear transformation and multilinear rank. Matrices can act on
other matrices through two independent multiplication operations: left-multiplication
and right-multiplication. If C ∈ Rp×q and X ∈ Rm×p, Y ∈ Rn×q, then the matrix C
may be transformed into the matrix A ∈ Rm×n, by

A = XCY T, aij =

p∑
α=1

q∑
β=1

xiαyjβcαβ . (3.1)

Matrices act on order-3 tensors via three different multiplication operations. As in
the matrix case, these can be combined into a single formula. If C ∈ Rp×q×r and
X ∈ Rl×p, Y ∈ Rm×q, Z ∈ Rn×r, then the 3-tensor C may be transformed into the
3-tensor A ∈ Rl×m×n via

aijk =

p∑
α=1

q∑
β=1

r∑
γ=1

xiαyjβzkγcαβγ . (3.2)

We call this operation the trilinear multiplication of A by matrices X, Y and Z, which
we write succinctly as

A = (X,Y, Z) · C. (3.3)

This is nothing more than the trilinear equivalent of (3.1), which in this notation has
the form

A = XCY T = (X,Y) · C.

Informally, (3.2) amounts to multiplying the 3-tensor A on its three ‘sides’ or modes
by the matrices X, Y , and Z respectively.

An alternative but equivalent way of writing (3.2) is as follows. Define the outer
product of vectors x ∈ Rl, y ∈ Rm, z ∈ Rn by

x ⊗ y ⊗ z = [xiyjzk] ∈ Rl×m×n,
6

and call a tensor of the form x⊗ y ⊗ z a decomposable tensor or, if non-zero, a rank-1
tensor. One may also view (3.2) as a trilinear combination (as opposed to a linear
combination) of the decomposable tensors given by

A =

p∑
α=1

q∑
β=1

r∑
γ=1

cαβγxα ⊗ yβ ⊗ zγ . (3.4)

The vectors x1, . . . , xp ∈ Rl, y1, . . . , yq ∈ Rm, z1, . . . , zr ∈ Rn are, of course, the
column vectors of the respective matrices X,Y, Z above. In this article, we find it
more natural to present our algorithms in the form (3.3) and therefore we refrain from
using (3.4).

More abstractly, given linear transformations of real vector spaces Tu : U → U ′,
Tv : V → V ′, Tw : W → W ′, the functoriality of tensor product [30, 39] (denoted by
the usual notation ⊗ below) implies that one has an induced linear transformation
between the tensor product of the respective vector spaces

Tu ⊗ Tv ⊗ Tw : U ⊗ V ⊗W → U ′ ⊗ V ′ ⊗W ′.

The trilinear matrix multiplication above is a coordinatized version of this abstract
transformation. In the special case where U = U ′, V = V ′, W = W ′ and Tu, Tv,
Tw are (invertible) change-of-basis transformations, the operation in (3.2) describes
the manner a (contravariant) 3-tensor transforms under change-of-coordinates of U ,
V and W .

Associated with the trilinear matrix multiplication (3.3) is the following notion
of tensor rank that generalizes the row-rank and column-rank of a matrix. Let A ∈
Rl×m×n. For fixed values of j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}, consider the column
vector, written in a matlab-like notation, A(:, j, k) ∈ Rl. Likewise we may consider
A(i, :, k) ∈ Rm for fixed values of i, k, and A(i, j, :) ∈ Rn for fixed values of i, j. Define

r1(A) := dim(span{A(:, j, k) | 1 ≤ j ≤ m, 1 ≤ k ≤ n}),
r2(A) := dim(span{A(i, :, k) | 1 ≤ i ≤ l, 1 ≤ k ≤ n}),
r3(A) := dim(span{A(i, j, :) | 1 ≤ i ≤ l, 1 ≤ j ≤ m}).

Note that Rl×m×n may also be viewed as Rl×mn. Then r1(A) is simply the rank of A
regarded as an l×mn matrix, see the discussion on tensor matricization in [25] with
similar interpretations for r2(A) and r3(A). The multilinear rank of A is the 3-tuple
(r1(A), r2(A), r3(A)) and we write

rank(A) = (r1(A), r2(A), r3(A)).

We need to ‘store’ all three numbers as r1(A) 6= r2(A) 6= r3(A) in general—a clear
departure from the case of matrices where row-rank and column-rank are always
equal. Note that a rank-1 tensor must necessarily have multilinear rank (1, 1, 1),
i.e. rank(x ⊗ y ⊗ z) = (1, 1, 1) if x, y, z are non-zero vectors.

For symmetric tensors, one would be interested in transformation that preserves
the symmetry. For a symmetric matrix C ∈ S2(Rn), this would be

S = XCXT, sij =

r∑
α=1

r∑
β=1

xiαxjβcαβ . (3.5)

7

Matrices act on symmetric order-3 tensors S ∈ S3(Rn) via the symmetric version
of (3.7)

sijk =

r∑
α=1

r∑
β=1

r∑
γ=1

xiαxjβxkγcαβγ . (3.6)

We call this operation the symmetric trilinear multiplication of S by matrix X, which
in the notation above, is written as

S = (X,X,X) · C.

This is nothing more than the cubic equivalent of (3.5), which in this notation becomes

S = XCXT = (X,X) · C.

Informally, (3.6) amounts to multiplying the 3-tensor A on its three ‘sides’ or modes
by the same matrix X. In the multilinear combination form, this is

S =

r∑
α=1

r∑
β=1

r∑
γ=1

cαβγxα ⊗ xβ ⊗ xγ

where the vectors x1, . . . , xr ∈ Rn are the column vectors of the matrix X above.

More abstractly, given a linear transformation of real vector spaces T : V → V ′,
the functoriality of symmetric tensor product [30, 39] implies that one has an induced
linear transformation between the tensor product of the respective vector spaces

Sk(T) : Sk(V)→ Sk(V ′).

The symmetric trilinear matrix multiplication above is a coordinatized version of this
abstract transformation. In the special case where V = V ′ and T is an (invertible)
change-of-basis transformation, the operation in (3.6) describes the manner a sym-
metric 3-tensor transforms under change-of-coordinates of V .

For a symmetric tensor S ∈ S3(Rn), we must have

r1(S) = r2(S) = r3(S)

by its symmetry. See Lemma 9.1 for a short proof. The symmetric multilinear rank of
S is the common value, denoted rS(S). When referring to a symmetric tensor in this
article, rank would always mean symmetric multilinear rank; e.g. a rank-s symmetric
tensor S would be one with rS(S) = s.

We note that there is a different notion of tensor rank and symmetric tensor rank,
defined as the number of terms in a minimal decomposition of a tensor (resp. sym-
metric tensor) into rank-1 tensors (resp. rank-1 symmetric tensors). Associated with
this notion of rank are low-rank approximation problems for tensors and symmetric
tensors analogous to the ones discussed in this paper. Unfortunately, these are ill-
posed problems that may not even have a solution [8, 20]. As such, we will not discuss
this other notion of tensor rank. It is implicitly assumed that whenever we discuss
tensor rank or symmetric tensor rank, it is with the multilinear rank or symmetric
multilinear rank defined above in mind.

8

3.1. Multilinear approximation as maximization over Grassmannians.
Let A ∈ Rl×m×n be a given third order tensor and consider the problem

min{‖A − B‖F | rank(B) ≤ (p, q, r)}.

Under this rank constraint, we can write B in factorized form

B = (X,Y, Z) · C, bijk =

p∑
α=1

q∑
β=1

r∑
γ=1

xiαyjβzkγcαβγ , (3.7)

where C ∈ Rp×q×r and X ∈ Rl×p, Y ∈ Rm×q, Z ∈ Rn×r, are full rank matrices. In
other words, one would like to solve the following best multilinear rank approximation
problem,

min
X,Y,Z,C

‖A − (X,Y, Z) · C‖F . (3.8)

This is the optimization problem underlying the Tucker model [54] that originated in
psychometrics but has become increasingly popular in other areas of data analysis.
In fact, there is no loss of generality if we assume XTX = I, Y TY = I and ZTZ = I.
This is verified as follows, for any full column-rank matrices X̃, Ỹ and Z̃ we can
compute their qr-factorizations

X̃ = XRX , Ỹ = Y RY , Z̃ = ZRZ

and multiply the right triangular matrices into the core tensor, i.e.

‖A − (X̃, Ỹ , Z̃) · C̃‖F = ‖A − (X,Y, Z) · C‖F where C = (RX , RY , RZ) · C̃ .

With the orthonormal constraints on X ,Y and Z the tensor approximation problem
can be viewed as an optimization problem on a product of Stiefel manifolds. Using
the identity

(UT, V T,WT) · A ≡ A · (U, V,W),

we can rewrite the tensor approximation problem as a maximization problem with
the objective function

Φ(X,Y, Z) =
1

2
‖A · (X,Y, Z)‖2F s.t. XTX = I, Y TY = I, ZTZ = I, (3.9)

in which the small core tensor C is no longer present. See references [16, 25] for the
elimination of C. The objective function Φ(X,Y, Z) is invariant under orthogonal
transformation of the variable matrices X,Y, Z from the right. Specifically, for any
orthogonal matrices Q1 ∈ O(p), Q2 ∈ O(q) and Q3 ∈ O(r) it holds that Φ(X,Y, Z) =
Φ(XQ1, Y Q2, ZQ3). This homogeneity property implies that Φ(X,Y, Z) is in fact
defined on a product of three Grassmannians Gr(l, p)×Gr(m, q)×Gr(n, r).

Let S ∈ S3(Rn) be a given symmetric 3-tensor and consider the problem

min{‖S − T ‖F | T ∈ S3(Rn), rS(S) ≤ r}.

Under this rank constraint, we can write T in factorized form

T = (X,X,X) · C, tijk =

r∑
α=1

r∑
β=1

r∑
γ=1

xiαxjβxkγcαβγ ,

9

where C ∈ S3(Rr) and X ∈ Rn×r is a full-rank matrix. In other words, one would like
to solve the following best symmetric multilinear rank approximation problem,

min{‖A − (X,X,X) · C‖F | X ∈ O(n, r), C ∈ S3(Rr)}.

As with the general case, there is no loss of generality if we assume XTX = I. With
the orthonormal constraints on X, the tensor approximation problem can be viewed
as an optimization problem on a single Stiefel manifold (as opposed to a product of
Stiefel manifolds in (3.9)). Using the identity

(V T, V T, V T) · S ≡ S · (V, V, V),

we may again rewrite the tensor approximation problem as a maximization problem
with the objective function

Φ(X) =
1

2
‖S · (X,X,X)‖2F s.t. XTX = I,

in which the core-tensor C is no longer present. As with the general case, the ob-
jective function Φ(X) also has an invariance property, namely Φ(X) = Φ(XQ) for
any orthogonal Q ∈ O(r). As before, this homogeneity property implies that Φ(X) is
well-defined on a single Grassmannian Gr(n, r).

These multilinear approximation problems may be viewed as ‘dimension reduc-
tion’ or ‘rank reduction’ for tensors and symmetric tensors respectively. In general, a
matrix requires O(n2) storage and an order-k tensor requires O(nk) storage. While
it is sometimes important to perform dimension reduction to a matrix, a dimen-
sion reduction is almost always necessary if one wants to work effectively with a
tensor of higher order. A dimension reduction of a matrix A ∈ Rn×n of the form
A ≈ UCV T, where U, V ∈ O(n, r) and diagonal C ∈ Rr×r reduces dimension from
O(n2) to O(nr + r). A dimension reduction of a tensor A ∈ Rn×···×n of the form
A ≈ (Q1, . . . , Qk) · C where Q1, . . . , Qk ∈ O(n, r) and C ∈ Rr×···×r, reduces dimension
from O(nk) to O(knr+rk). If r is significantly smaller than n, e.g. r = O(n1/k), then
a dimension reduction in the higher order case could reduce problem size by orders of
magnitude.

4. Optimization in Euclidean space and on Riemannian manifolds. In
this section we discuss the necessary modifications for generalizing an optimization
algorithm from Euclidean space to Riemannian manifolds. Specifically we consider
the quasi-Newton methods with bfgs and limited memory bfgs (l-bfgs) updates.
First we state the expressions in Euclidean space and then we point out what needs
to be modified. The convergence properties of quasi-Newton methods defined on
manifolds were established by Gabay [27]. Numerical treatment of algorithms on the
Grassmannian are given in [24, 1, 52, 42, 32]. A recent book on optimization on
manifolds is [2]. In this and the next three sections, i.e. Sections 4 through 7, we will
discuss our algorithms in the context of minimization problems, as is conventional.
It will of course be trivial to modify them for maximization problem. Indeed the
tensor approximation problems discussed in Sections 8 through 11 will all be solved
as maximization problems on Grassmannians or product of Grassmannians.

4.1. BFGS updates in Euclidean Space. Assume that we want to minimize a
nonlinear real valued function f(x) where x ∈ Rn. As is well-known, in quasi-Newton
methods, one solves

Hkpk = −gk, (4.1)

10

to obtain the direction of descent pk from the current iterate xk and the gradient
gk = ∇f(xk) at xk. Unlike Newton method, which uses the exact Hessian for Hk, in
(4.1) Hk is only an approximation of the Hessian at xk. After computing the (search)
direction pk one obtains the next iterate as xk+1 = xk + tkpk in which the step length
tk is usually given by a line search method satisfying the Wolfe or the Goldstein
conditions [46]. Instead of recomputing the Hessian at each new iterate xk+1, it is
updated from the previous approximation. The bfgs update has the following form,

Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

yTk sk
, (4.2)

where

sk = xk+1 − xk = tkpk, (4.3)

yk = gk+1 − gk. (4.4)

Quasi-Newton methods with bfgs updates are considered to be the most compu-
tationally efficient algorithms for minimization of general nonlinear functions. This
efficiency is obtained by computing a new Hessian approximation as a rank-2 modifi-
cation of the previous Hessian. The convergence of quasi-Newton methods is super-
linear in a vicinity of a local minimum. In most cases the quadratic convergence of
the Newton method is outperformed by quasi-Newton methods since each iteration is
computationally much cheaper than a Newton iteration. A thorough study of quasi-
Newton methods may be found in [46, 23]. The reader is reminded that quasi-Newton
methods do not necessarily converge to local minima but only to stationary points.
Nevertheless, using the Hessians that we derived in Sections 8.1 and 9.3 (for the gen-
eral and symmetric cases respectively), the nature of these stationary points can often
be determined.

4.2. Quasi-Newton methods on a Riemannian manifold. We will give a
very brief overview of Riemannian geometry tailored specifically to our needs in this
paper. First we sketch the modifications that are needed in order for an optimization
algorithm to be well-defined when the objective function is defined on a manifold.
For details and proof, the reader should refer to standard literature on differential
and Riemannian geometry [11, 5, 2]. Informally a manifold, denoted with M , is an
object locally homeomorphic to Rn. We will regard M as a submanifold of some
high-dimensional ambient Euclidean space RN . Our objective function f : M → R
will be assumed to have (at least) continuous second order partial derivatives. We
will write f(x), g(x), and H(x) for the value of the function, the gradient, and the
Hessian at x ∈M . These will be reviewed in greater detail in the following.

Equations (4.1)–(4.4) are the basis of any algorithmic implementation involving
bfgs or l-bfgs updates. The key operations are (1) computation of the gradient,
(2) computation of the Hessian or its approximation, (3) subtraction of iterates, e.g.
to get sk or xk+1 and (4) subtraction of gradients. Each of these points needs to be
modified in order for these operations to be well-defined on manifolds.

Computation of the gradient. The gradient g(x) = grad f(x) = ∇f(x) at x ∈ M
of a real-valued function defined on a manifold, f : M → R, M 3 x 7→ f(x) ∈ R, is
a vector in the tangent space Tx = Tx(M) of the manifold at the given point x. We
write g ∈ Tx.

To facilitate computations, we will often embed our manifold M in some am-
bient Euclidean space RN and in turn endow M with a system of global coordi-

11

nates (x1, . . . , xN) where N is usually larger than d := dim(M), the intrinsic dimen-
sion of M . The function f then inherits an expression in terms of x1, . . . , xN , say,
f(x) = f̃(x1, . . . , xN). We would like to caution our readers that computing ∇f on M
is not a matter of simply taking partial derivatives of f̃ with respect to x1, . . . , xN . An
easy way to observe this is that ∇f is a d-tuple when expressed in local coordinates

whereas
(
∂f̃/∂x1, . . . , ∂f̃/∂xN

)
is an N -tuple.

Computation of the Hessian or its approximation. The HessianH(x) = Hess f(x) =
∇2f(x) at x ∈ M of a function f : M → R is a linear transformation of the tangent
space Tx to itself, i.e.

H(x) : Tx → Tx. (4.5)

As in the case of gradient, when f is expressed in terms of global coordinates, differ-
entiating the expression twice will in general not give the correct Hessian.

Updating the current iterate. Given an iterate xk ∈ M , a step length tk and a
search direction pk ∈ Txk the update xk+1 = xk + tkpk will in general not be a point
on the manifold. The corresponding operation on a manifold is to move along the
geodesic curve of the manifold given by the direction pk. Geodesics on manifolds
correspond to straight lines in Euclidean spaces. The operation sk = xk+1 − xk
is undefined in general when the points on the right hand side belong to a general
manifold.

Updating vectors and operators. The quantities sk and yk are in fact tangent
vectors and the Hessians (or Hessian approximations) are linear operators all defined
at a specific point of the manifold. A given Hessian H(x) is only defined at a point
x ∈ M and correspondingly only acts on vectors in the tangent space Tx. In the
right hand side of the bfgs update (4.2) all quantities need to be defined at the same
point xk in order to have well-defined operations between the terms. In addition the
resulting sum will define an operator at a new point xk+1. The notion of parallel
transporting vectors along geodesic curves resolves all of these issues. The operations
to the Hessian are similar and involves parallel transport operation back and forth
between two different points.

5. Grassmann geodesics and parallel transport of vectors. In this paper,
the Riemannian manifold M of most interest to us is Gr(n, r), the Grassmannian or
Grassmannian of r-planes in Rn. Our discussion will proceed with M = Gr(n, r).

5.1. Algorithmic considerations. Representing points on Grassmannians as
(equivalence classes of) matrices allows us to take advantage of matrix arithmetic and
matrix algorithms, as well as the readily available libraries of highly optimized and
robust matrix computational softwares developed over the last five decades [3, 40]. A
major observation of [24] is the realization that common differential geometric oper-
ations on points of Grassmann and Stiefel manifolds can all be represented in terms
of matrix operations. For our purposes, the two most important operations are (1)
the determination of a geodesic at a point along a tangent vector and (2) the parallel
transport of a tangent vector along a geodesic. On a product of Grassmannians, these
operations may likewise be represented in terms of matrix operations [25]. We will
give explicit expressions for geodesic curves on Grassmannians and two different ways
of parallel transporting tangent vectors.

5.2. Grassmannians in terms of matrices. First we will review some pre-
liminary materials from [24]. A point 〈X〉 on the Grassmannian Gr(n, r) is an equiv-
alence class of orthonormal matrices whose columns form an orthonormal basis for an

12

r-dimensional subspace of Rn. Explicitly, we write

〈X〉 = {XQ ∈ O(n, r) | Q ∈ O(r)},

where X ∈ O(n, r), i.e. X is an n× r matrix and XTX = Ir. The set O(n, r) = {X ∈
Rn×r | XTX = Ir} is also a manifold, often called the Stiefel manifold. When n = r,
O(r, r) = O(r) is the orthogonal group. It is easy to see that the dimensions of these
manifolds are

dim(O(r)) =
1

2
r(r− 1), dim(O(n, r)) = nr− 1

2
r(r+ 1), dim(Gr(n, r)) = r(n− r).

In order to use standard linear algebra in our computations, we will not be able to
work with a whole equivalence class of matrices. So by a point on a Grassmannian, we
will always mean some X ∈ 〈X〉 that represents the equivalence class. The functions f
that we optimize in this paper will take orthonormal matrices in O(n, r) as arguments
but will always be well-defined on Grassmannians: given two representatives X1, X2 ∈
〈X〉, we will have f(X1) = f(X2), i.e.

f(XQ) = f(X) for every Q ∈ O(r).

Abusing notations slightly, we will sometimes write f : Gr(n, r)→ R.
The tangent space TX , whereX ∈ Gr(n, r), is an affine vector space with elements

in Rn×r. It can be shown that any element ∆ ∈ TX satisfies

XT∆ = 0.

The projection on the tangent space is

ΠX = I −XXT = X⊥X
T
⊥,

where X⊥ is an orthogonal complement of X, i.e. the square matrix [XX⊥] is an n×n
orthogonal matrix. Since by definition XTX⊥ = 0, any tangent vector can also be
written as ∆ = X⊥D where D is an (n− r)× r matrix. This shows that the columns
of X⊥ may be interpreted as a basis for TX . We say that ∆ is a global coordinate
representation and D is a local coordinate representation of the same tangent. Note
that the number of degrees of freedom in D equals the dimension of the tangent
space TX , which is r(n− r). It follows that for a given tangent in global coordinates
∆, its local coordinate representation is given by D = XT

⊥∆. Observe that to a
given local representation D of a tangent there is an associated basis matrix X⊥.
Tangent vectors are also embedded in Rnr since in global coordinates they are given
by n × r matrices. We will define algorithms using both global coordinates as well
as intrinsic local coordinates. When using global coordinates, the Grassmannian
Gr(n, r) is (isometrically) embedded in the Euclidean space Rn×r and a product of
Grassmannians in a corresponding product of Euclidean spaces. The use of Plücker
coordinates to represent points on Grassmannian is not useful for our purpose.

5.3. Geodesics. Let X ∈ Gr(n, r) and ∆ be a tangent vector at X, i.e. ∆ ∈ TX .
The geodesic path from X in the direction ∆ is given by

X(t) = [XV U]

[
cos Σt
sin Σt

]
V T, (5.1)

13

where ∆ = UΣV T is the thin svd and we identify X(0) ≡ X. Observe that omitting
the last V in (5.1) will give the same path on the manifold but with a different1

representation. This information is useful because some algorithms require a consis-
tency in the matrix representations along a path but other algorithms do not. For
example, in a Newton-Grassmann algorithm we may omit the second V [25] but in
quasi-Newton-Grassmann algorithms V is necessary.

5.4. Parallel transport in global and local coordinates. Let X be a point
on a Grassmannian and consider the geodesic given by the tangent vector ∆ ∈ TX .
The matrix expression for the parallel transport of an arbitrary tangent vector ∆2 ∈
TX is given by

TX(t) 3 ∆2(t) =

(
[XV U]

[
− sin Σt
cos Σt

]
UT + (I − UUT)

)
∆2 ≡ TX,∆(t)∆2, (5.2)

where ∆ = UΣV T is the thin svd and we define TX,∆(t) to be the parallel transport
matrix 2 from the point X in the direction ∆. If ∆2 = ∆ expression (5.2) can be
simplified.

Let X ∈ Gr(n, r), ∆ ∈ TX , and X⊥ be an orthogonal complement of X so that
[X X⊥] is orthogonal. Recall that we may write ∆ = X⊥D, where we view X⊥ as
a basis for TX and D as a local coordinate representation of the tangent vector ∆.
Assuming that X(t) is the geodesic curve given in (5.1), the parallel transport of the
corresponding basis X⊥(t) for TX(t) is given by

X⊥(t) = TX,∆(t)X⊥, (5.3)

where TX,∆(t) is the transport matrix defined in (5.2). It is straightforward to show
that the matrix [X(t) X⊥(t)] is orthogonal for all t, i.e.

XT
⊥(t)X⊥(t) = In−r and XT

⊥(t)X(t) = 0 for every t.

Using (5.3) we can write the parallel transport of a tangent vector ∆2 as

∆2(t) = T (t)∆2 = T (t)X⊥D2 = X⊥(t)D2. (5.4)

Equation (5.4) shows that the local coordinate representation of the tangent vector is
constant at all points of the geodesic path X(t) when the basis for TX(t) is given by
X⊥(t). The global coordinate representation, on the other hand, varies with t. This is
an important observation since explicit parallel transport of tangents and Hessians (cf.
Section 6.5) can be avoided if the algorithm is implemented using local coordinates.
The computational complexity for these two operations3 are O(n2r) and O(n3r2)
respectively. The cost saved in avoiding parallel transports of tangents and Hessians
is paid instead in the parallel transport of the basis X⊥. This matrix is computed in
the first iteration at a cost of at most O(n3) operations, and in each of the consecutive
iterations, it is parallel transported at a cost of O(n2(n − r)) operations. There are
also differences in memory requirements: In global coordinates tangents are stored
as n × r matrices and Hessians as nr × nr matrices, whereas in local coordinates
tangents and Hessians are stored as (n − r) × r and (n − r)r × (n − r)r matrices

1A given matrix representation of a point on a Grassmannian can be postmultiplied by any
orthogonal matrix, giving a new representation of the same point.

2We will often omit subscripts X and ∆ and just write T (t) when there is no risk for confusion.
3Here we assume that the parallel transport operator has been computed and stored.

14

respectively. Local coordinate implementation also requires the additional storage of
X⊥ as an n × (n − r) matrix. In most cases, the local coordinate implementation
provides greater computational and memory savings, as we observed in our numerical
experiments.

By introducing the thin svd of D = Ū Σ̄V̄ T, we can also write (5.3) as

X⊥(t) = T (t)X⊥ =
[
XV̄ X⊥Ū

] [− sin Σ̄t
cos Σ̄t

]
ŪT +X⊥

(
I − Ū ŪT

)
.

This follows from the identities

Ū = XT
⊥U, Σ̄ = Σ, V̄ = V,

which are obtained from ∆ = UΣV T = X⊥D. Using this, we will derive a general
property of inner products for our later use.

Theorem 5.1. Let X ∈ Gr(n, r) and ∆,∆1,∆2 ∈ TX . Define the transport
matrix in the direction ∆

TX,∆(t) = T (t) =
[
XV U

] [− sin Σt
cos Σt

]
UT + (I − UUT),

where ∆ = UΣV T is the thin svd. Then

〈∆1,∆2〉 = 〈∆1(t),∆2(t)〉 for every t,

where ∆1(t) = TX,∆(t)∆1 and ∆2(t) = TX,∆(t)∆2 are parallel transported tangents.
Proof. The proof is a direct consequence of the Levi-Civita connection used in

the definition of the parallel transport of tangents. Or we can use the canonical inner
product on the Grassmannian 〈∆1,∆2〉 = tr(∆T

1 ∆2). Then, inserting the parallel
transported tangents we obtain

〈∆1(t),∆2(t)〉 = tr
(
∆1(t)

T
∆2(t)

)
= tr

(
∆T

1T (t)
T
T (t)∆2

)
= tr

(
∆T

1

(
I − U sin(Σt)V TXT −XV sin(Σt)UT

)
∆2

)
= tr

(
∆T

1 ∆2

)
− tr

(
∆T

1U sin(Σt)V TXT∆2

)
− tr

(
∆T

1XV sin(Σt)UT∆2

)
.

The proof is concluded by observing that the second and third terms after the last
equality are zero because XT∆2 = 0 and ∆T

1X = 0.
Remark. We would like to point out that it is the tangents that are parallel

transported. In global coordinates tangents are represented by n × r matrices and
their parallel transport is given by (5.2). On the other hand, in local coordinates,
tangents are represented by (n − r) × r matrices and this representation does not
change when the basis for the tangent space is parallel transported according to (5.3).
In other words, in local coordinates, parallel transported tangents are represented by
the same matrix at every point along a geodesic. This is to be contrasted with the
global coordinate representation of points on the manifold Gr(n, r), which are n × r
matrices that differ from point to point on a geodesic.

6. Quasi-Newton methods with BFGS updates on a Grassmannian. In
this section we will present the necessary modifications in order for bfgs updates to
be well-defined on a Grassmannian. We will write f(X) instead of f(x) since the
argument to the function is a point on a Grassmannian and represented by a matrix
X = [xij]

n,r
i,j=1 ∈ Rn×r. Similarly the quantities sk and yk from equations (4.3) and

(4.4) will be written as matrices Sk and Yk, respectively.

15

6.1. Computations in global coordinates. We describe here the expressions
of various quantities required for defining bfgs updates in global coordinates. The
corresponding expressions in local coordinates are in the next section.

Gradient. The Grassmann gradient of the objective function f(X) is given by

∇f(X) = ΠX
∂f

∂X
,

∂f

∂X
:=

[
∂f

∂xij

]n,r
i,j=1

, (6.1)

where ΠX = I −XXT is the projection on the tangent space TX .
Computing Sk. We will now modify the operations in equation (4.3), i.e.

sk = xk+1 − xk = tkpk,

so that it is valid on a Grassmannian. Let Xk+1 be given by Xk+1 = Xk(tk) where
the geodesic path originating from Xk is defined by the tangent (or search direction)
∆ ∈ TXk . The step size is given by tk. We will later assume that Sk ∈ TXk+1

and
with the tangent ∆ ∈ TXk , corresponding to pk, we conclude that

Sk = tk∆(tk) = tkT (tk)∆, (6.2)

where T (tk) is the transport matrix defined in (5.2).
Computing Yk. Similarly, we will translate

yk = gk+1 − gk = ∇f(xk+1)−∇f(xk)

from equation (4.4). Computing the Grassmann gradient at Xk+1 we get ∇f(Xk+1) ∈
TXk+1

. Parallel transporting ∇f(Xk) ∈ TXk along the direction ∆ and subtracting
the two gradients as in equation (4.4) we get

TXk+1
3 Yk = ∇f(Xk+1)− T (tk)∇f(Xk), (6.3)

where we again use the transport matrix (5.2). Recall that Yk corresponds to yk.
The expressions for ∇f , Sk and Yk are given in matrix form, i.e. they have the

same dimensions as the variable matrix X. It is straightforward to obtain the corre-
sponding vectorized expressions. For example, with ∂f/∂X ∈ Rn×r, the vector form
of the Grassmann gradient is given by

vec(∇f) = (Ir � ΠX) vec

(
∂f

∂X

)
∈ Rnr.

where vec(·) is the ordinary column-wise vectorization of a matrix. For simplicity we
switch to this presentation when working with the Hessian.

Updating the Hessian (approximation). Identify the tangents (matrices) ∆ ∈
Rn×r with vectors in Rnr and assume that the Grassmann Hessian

Rnr×nr 3 Hk = H(Xk) : TXk → TXk

at the iterate Xk is given. Then

H̄k = (Ir � T (tk))Hk(Ir � T̃ (tk)) : TXk+1
→ TXk+1

, (6.4)

is the transported Hessian defined at iterate Xk+1. As previously T (tk) is the trans-

port matrix from Xk to Xk+1 given in (5.2) and T̃ (tk) is the transport matrix from

16

Xk+1 to Xk along the same geodesic path. Informally we can describe the operations

in (6.4) as follows. Tangent vectors from TXk+1
are transported with T̃ (tk) to TXk

on which Hk is defined. The Hessian Hk transforms the transported vectors on TXk

and the result is then forwarded with T (tk) to TXk+1
.

Since all vectors and matrices are now defined at Xk+1, the bfgs update is com-

puted using equation (4.2) in which we replace Hk with (Ir � T (tk))Hk(Ir � T̃ (tk))
and use sk = vec(Sk) and yk = vec(Yk) from equations (6.2) and (6.3) respectively.

6.2. Computations in local coordinates. Using local coordinates we obtain
several simplifications. First given the current iterate X we need the orthogonal
complement X⊥. When it is obvious we will omit the iteration subscript k.

Grassmann gradient. In local coordinates the Grassmann gradient is given by

∇f̂ = XT
⊥∇f = XT

⊥ΠX
∂f

∂X
= XT

⊥
∂f

∂X
, (6.5)

where we have used the global coordinate representation for the Grassmann gradient
(6.1). We denote quantities in local coordinates with a hat to distinguish them from
those in global coordinates.

Parallel transporting the basis X⊥. It is necessary to parallel transport the basis
matrix X⊥ from the current iterate Xk to the next iterate Xk+1. Only in this basis
will the local coordinates of parallel transported tangents be constant. The parallel
transport of the basis matrix is given by equation (5.3).

Computing Ŝk and Ŷk. According to the discussion in Section 5.4, in the trans-
ported tangent basis X⊥(t), the local coordinate representation of any tangent is

constant. Specifically this is true for Ŝk and Ŷk. The two quantities are obtained with
the same expressions as in the Euclidean space.

Updating the Hessian (approximation). Since explicit parallel transport is not re-
quired in local coordinates, the Hessian remains constant as well. The local coordinate
representations for Hk in the basis X⊥(t) for points on the geodesic path X(t) are
the same. This statement is proven in Theorem 6.4.

The effect of using local coordinates on the Grassmannian is only in the geodesic
transport of the current point Xk and its orthogonal complement Xk⊥. The trans-
ported orthogonal complement Xk⊥(tk) is used to compute the Grassmann gradient

∇f̂(Xk+1) in local coordinates at the new iterate Xk+1 = Xk(tk). Assuming tangents
are in local coordinates at Xk in the basis Xk⊥ and tangents at Xk+1 are given in the
basis Xk⊥(tk), the bfgs update is given by (4.2), i.e. exactly the same update as in
the Euclidean space. This is a major advantage compared with the global coordinate
update of Hk. In global coordinates Hk is multiplied by matrices from the left and
from the right (6.4). This is relatively expensive since the bfgs update itself is just a
rank-2 update, see equation (4.2).

6.3. BFGS update in tensor form. It is not difficult to see that if the gradient
∇f(X) is written as an n × r matrix, then the second derivative will take the form
of a 4-tensor Hk ∈ Rn×r×n×r. The bfgs update (4.2) can be written in a different
form using the tensor structure of the Hessian. The action of this operator will map
matrices to matrices. Assuming sk = vec(Sk) and Hk is a matricized form of Hk, the
matrix-vector contraction Hksk can be written as 〈Hk, Sk〉1,2. Obviously the result of
the first operation is a vector whereas the result of the second operation is a matrix,
and of course Hksk = vec (〈Hk, Sk〉1,2).

17

Furthermore keeping the tangents, e.g. Sk or Yk, in matrix form, the parallel
transport of the Hessian in equation (6.4) can be written as a multilinear product

between Hk ∈ Rn×r×n×r and the two transport matrices T (tk) and T̃ (tk), both in
Rn×n, along the first and third modes,

Rn×r×n×r 3 H̄ = Hk · (T (tk), I, T̃ (tk), I).

Finally, noting that the outer product between vectors corresponds to tensor
products between matrices the bfgs update becomes4

Hk+1 = H̄k +
〈H̄k, Sk〉1,2 ⊗ 〈H̄k, Sk〉1,2
〈〈H̄k, Sk〉1,2, Sk〉

+
Yk ⊗ Yk
〈Sk, Yk〉

, (6.6)

where the matrices Sk, Yk ∈ TXk+1
are given by (6.2) and (6.3) respectively.

In local coordinates the update is even simpler since we do not have to parallel
transport the Hessian operator,

Ĥk+1 = Ĥk +
〈Ĥk, Ŝk〉1,2 ⊗ 〈Ĥk, Ŝk〉1,2
〈〈Ĥk, Ŝk〉1,2, Ŝk〉

+
Ŷk ⊗ Ŷk
〈Ŝk, Ŷk〉

, (6.7)

where Ĥk ∈ R(n−r)×r×(n−r)×r and Ŝk, Ŷk ∈ R(n−r)×r. The hat indicates that the
corresponding variables are in local coordinates.

6.4. BFGS update on a product of Grassmannians. Assume now that the
objective function f is defined on a product of three5 Grassmannians, i.e.

f : Gr(l, p)×Gr(m, q)×Gr(n, r)→ R,

and is twice continuously differentiable. We write f(X,Y, Z) where X ∈ Gr(l, p),
Y ∈ Gr(m, q) and Z ∈ Gr(n, r). The Hessian of the objective function will have
a ‘block tensor’ structure but the blocks will not have conforming dimensions. The
action of a (approximate) Hessian operator on tangents ∆X ∈ TX , ∆Y ∈ TY and
∆Z ∈ TZ may be written symbolically asHXX HXY HXZ

HY X HY Y HY Z
HZX HZY HZZ

∆X

∆Y

∆Z

 (6.8)

=

〈HXX ,∆X〉3,4;1,2 + 〈HXY ,∆Y 〉3,4;1,2 + 〈HXZ ,∆Z〉3,4;1,2

〈HY X ,∆X〉3,4;1,2 + 〈HY Y ,∆Y 〉3,4;1,2 + 〈HY Z ,∆Z〉3,4;1,2

〈HZX ,∆X〉3,4;1,2 + 〈HZY ,∆Y 〉3,4;1,2 + 〈HZZ ,∆Z〉3,4;1,2


=

〈HXX ,∆X〉1,2 + 〈HY X ,∆Y 〉1,2 + 〈HZX ,∆Z〉1,2
〈HXY ,∆X〉1,2 + 〈HY Y ,∆Y 〉1,2 + 〈HZY ,∆Z〉1,2
〈HXZ ,∆X〉1,2 + 〈HY Z ,∆Y 〉1,2 + 〈HZZ ,∆Z〉1,2

 .
The blocks of the Hessian are 4-tensors and elements of the tangent spaces are matri-
ces. The result of the operation3 is a triplet where each element is in the corresponding
tangent space. For example HXX is an l× p× l× p tensor which acts on the tangent
matrix ∆X of size l × p with the result 〈HXX ,∆X〉1,2 ∈ TX . Off diagonal example

4The contractions denoted by 〈·, ·〉∗ are defined in Appendix A.
5We assume k = 3 for notational simplicity; generalization of these discussions to arbitrary k is

straightforward.

18

may look as follows, HY Z is an m× q × n× r tensor which acts on the tangent ma-
trix ∆Z of size n × r with the result 〈HY Z ,∆Z〉3,4;1,2 = 〈HZY ,∆Z〉1,2 ∈ TY . The
equality in the last step follows from the fact that the n× r×m× q tensor HZY is a
permutation of the m× q×n× r tensor HY Z . This is expected since for twice contin-
uously differentiable functions fxy = fyx. But in our case they have different ‘shapes’.
The three tangent spaces TX , TY and TZ are interconnected through the Hessian of
f(X,Y, Z) in the sense that every block in (6.8) is a linear operator mapping matrices
from one tangent space to another tangent space. For example HY X : TX → TY and
HZX : TX → TZ .

The corresponding bfgs in the product manifold case has basically the same
form as equations (6.6) and (6.7) where the action of the Hessian on Sk, which will
be a triplet with an element on each tangent space, is replaced with formulas as in
(6.8). Also the tensor/outer product needs to be modified in the obvious way, i.e. if
∆ = (∆X ,∆Y ,∆Z) and Γ = (ΓX ,ΓY ,ΓZ) then we let

∆ ⊗̂ Γ = (∆X ,∆Y ,∆Z) ⊗̂ (ΓX ,ΓY ,ΓZ) (6.9)

:=

∆X ⊗ ΓX ∆X ⊗ ΓY ∆X ⊗ ΓZ
∆Y ⊗ ΓX ∆Y ⊗ ΓY ∆Y ⊗ ΓZ
∆Z ⊗ ΓX ∆Z ⊗ ΓY ∆Z ⊗ ΓZ

 ,
where the results are conveniently stored in a ‘block matrix’ whose blocks are tensors
of different dimensions (possibly nonconforming).

6.5. Optimality of BFGS on Grassmannians. The bfgs update in quasi-
Newton methods is optimal because it is the solution to

min
H∈Rn×n

‖H −Hk‖F subject to H = HT, Hsk = yk,

where sk and yk are given by (4.3) and (4.4) respectively [46]. For the Euclidean
case it is immaterial whether H is considered as an abstract operator or explicitly
represented as a matrix. The final conclusion with respect to optimality is the same—
it amounts to a rank-2 change of Hk. The situation is different when considering the
corresponding optimality problem on Grassmannians. In particular, a given Hessian
(or approximate Hessian) matrix Hk considered in a global coordinate representation
and defined at Xk ∈ Gr(n, r) has the following form when parallel transported along
a geodesic,

H̄k = (Ir � T (tk))Hk(Ir � T̃ (tk)).

This is the same expression as equation (6.4). While the Hessian operator should
not change by a parallel transport to a new point on the manifold, its representation
evidently changes. This has important numerical and computational ramifications.
In fact, the global coordinate representation of the Hessian at the previous point is
usually very different from the global coordinate representation of the transported
Hessian at the current point.

Assume now the Hessian matrix (or its approximation) is given in local coordi-

nates Ĥk at Xk ∈ Gr(n, r) and let Xk⊥ be the associated basis matrix for the tangent
space. Representation of the parallel transported Hessian will not change if the asso-
ciated basis matrix Xk⊥(t) is transported according to (5.3). The updated Hessian
at the current point is a rank-2 modification of the Hessian from the previous point
given by the bfgs update. The optimality of bfgs update on Euclidean spaces is

19

with respect to a change in successive Hessian matrices; we will prove that in the
correct tangent space basis and in local coordinates, the bfgs update is also optimal
on Grassmannians.

We now give a self contained proof for this statement. First we will state the
optimality results for the Euclidean case. The proofs of Theorem 6.1, Lemma 6.2, and
Theorem 6.3 are based on [21, 22]. We will then use these to deduce the corresponding
optimality result on a product of Grassmannians in Theorem 6.6.

Theorem 6.1. Let B ∈ Rn×n, y ∈ Rn, 0 6= s ∈ Rn. The solution to

min{‖A−B‖F | A ∈ Rn×n, As = y}

is given by

B̄ = B +
(y −Bs)sT

sTs
.

Proof. Note that while the set Q(y, s) := {A ∈ Rn×n | As = y} is non-compact
(closed but unbounded), for a fixed B, the function f : Q(y, s)→ R, f(A) = ‖A−B‖F
is coercive and therefore a minimizer A∗ ∈ Q(y, s) is attained. This demonstrates
existence. The minimizer is also unique since Q(y, s) is convex while f is strictly
convex. We claim that A∗ = B̄: Observe that B̄s = y and so B̄ ∈ Q(y, s); for any
A ∈ Q(y, s),

‖B̄ −B‖F =

∥∥∥∥ysTsTs
− BssT

sTs

∥∥∥∥
F

=

∥∥∥∥(A−B)
ssT

sTs

∥∥∥∥
F

≤ ‖A−B‖F
∥∥∥∥ssTsTs

∥∥∥∥
F

= ‖A−B‖F .

Lemma 6.2. Let y ∈ Rn, 0 6= s ∈ Rn. Then the set Q(y, s) = {A ∈ Rn×n | As =
y} contains a symmetric positive definite matrix iff y = Lv and v = LTs for some
0 6= v ∈ Rn and L ∈ GL(n).

Proof. If such v and L exist, then y = Lv = LLTs and so LLT is a symmetric
positive definite matrix in Q(y, s). On the other hand, if A ∈ Q(y, s) is symmetric
positive definite, its Cholesky factorization A = LLT yields an L ∈ GL(n). If we let
v = LTs, then Lv = As = y, as required.

Theorem 6.3. Let y ∈ Rn, 0 6= s ∈ Rn. Let L ∈ GL(n) and H = LLT. There is
a symmetric positive definite matrix H+ ∈ Q(y, s) iff yTs > 0. In this case, the bfgs
update H+ = L+L

T
+ is one where

L+ = L+
(y − αHs)(LTs)T

αsTHs
with α = ±

√
yTs

sTHs
. (6.10)

Proof. In order for the update (6.10) to exist it is necessary that there exists
0 6= v ∈ Rn and L+ ∈ GL(n) such that y = L+v and v = LT

+s. Hence

0 < vTv = (LT
+s)

T(L−1
+ y) = sTy

as required.
If v is known, then the nearest matrix to L that takes v to y would be the update

given in Theorem 6.1, i.e.

L+ = L+
(y − Lv)vT

vTv
.

20

Hence we need to find the vector v. By Lemma 6.2,

v = LT
+s = LTs+

yTs− vTLTs

vTv
v (6.11)

and so

v = αLTs (6.12)

for some α ∈ R. Now it remains to find the scalar α. Plugging (6.12) into (6.11) and
using H = LLT, we get

α = 1 +
yTs− αsTHs
α2sTHs

· α ⇒ α2 =
yTs

sTHs
.

If yTs > 0, this defines an update in Q(y, s) that is symmetric positive definite. It is
straightforward to verify that H+ = L+L

T
+ yields the bfgs update

H+ = H − HssTH

sTHs
+
yyT

yTs
.

Theorem 6.4. Let X ∈ Gr(n, r) and X⊥ be the orthogonal complement to
X, i.e. [XX⊥] is orthogonal. Let ∆ ∈ TX and X∆(t) be a geodesic with TX,∆(t)
the corresponding transport matrix, defined according to equations (5.1) and (5.2).
Identify TX with R(n−r)r and consider a linear operator in local coordinates Â :
R(n−r)r → R(n−r)r. Consider the corresponding linear operator in global coordinates
A : Rnr → Rnr, in which tangents in TX are embedded. The relation between the two
operators is given by

A = (I �X⊥)Â(I �XT
⊥), (6.13)

Â = (I �XT
⊥)A(I �X⊥). (6.14)

Furthermore, the parallel transported operator Â has the same representation for all
t along the geodesic X(t), i.e. Â(t) ≡ Â.

Proof. Let d1 ∈ R(n−r)r be a tangent vector with corresponding global coordinate
matrix representation ∆1 = X⊥D1 ∈ TX . Obviously d1 = vec(D1). We may write
vec(∆1) = (I �X⊥)d1. Set d2 = Âd1 and it follows that vec(∆2) = (I �X⊥)d2. The
corresponding operation in global coordinates are

vec(∆2) = A vec(∆1) ⇔ (I �X⊥)d2 = A(I �X⊥)d1

⇔ d2 = (I �XT
⊥)A(I �X⊥)d1

and it follows that Â = (I �XT
⊥)A(I �X⊥), which proves (6.14).

For any tangent ∆∗ ∈ TX it holds that ∆∗ = ΠX∆∗ = X⊥X
T
⊥∆∗, where ΠX is

a projection onto TX , and consequently vec(∆∗) = (I �X⊥X
T
⊥) vec(∆∗). Thus the

operations in global coordinates also satisfy

vec(∆2) = (I �X⊥X
T
⊥)A(I �X⊥X

T
⊥) vec(∆1)

= (I �X⊥)Â(I �XT
⊥) vec(∆1)

≡ A vec(∆1).

21

This proves equation (6.13).
For the third part we have A : TX → TX and A(t) : TX(t) → TX(t) with

A(0) ≡ A. We want to prove that Â(t) ≡ Â for all t. The operator A(t) is defined in

the following sense: a tangent ∆1(t) ∈ TX(t) is parallel transported with T̃X(t),−∆(t)(t)
to X(0) along X(t), the operator transformations is performed in TX , thus ∆2 =
A(∆1(0)) ∈ TX and the result is forwarded to TX(t), i.e. ∆2(t) = TX,∆(t)∆2. The
parallel transported operator in global coordinates takes the form

A(t) = (I � TX,∆(t))A(I � T̃X(t),−∆(t)(t)). (6.15)

Then, in the basis X⊥(t), the local coordinate representation of the operator is

Â(t) = (I �XT
⊥(t))A(t)(I �X⊥(t)). (6.16)

Substituting (6.15) into (6.16), we obtain

Â(t) = (I �XT
⊥(t)TX,∆(t)X⊥)Â(I �XT

⊥T̃X(t),−∆(t)(t)X⊥(t)).

Recall that TX,∆(t)X⊥ = X⊥(t) and thus XT
⊥(t)TX,∆(t)X⊥ = I. Similarly one can

show that XT
⊥T̃X(t),−∆(t)(t)X⊥(t) = I and we get Â(t) = Â for all t.

A different proof of essentially the same statement may be found in [52].
Lemma 6.5. Let Xi ∈ Gr(ni, ri), i = 1, . . . , k, with corresponding tangent

spaces TXi . Let Yi be given such that [Xi Yi] is orthogonal. On each Grassmannian
Gr(ni, ri), let Xi(t) be a geodesic and Yi(t) be its orthogonal complement correspond-
ing to the tangent ∆i ∈ TXi . Then a local coordinate representation of the linear
operator

Â : TX1
× · · · ×TXk → TX1

× · · · ×TXk

is independent of t when parallel transported along the geodesics Xi(t) and in the
tangent basis Yi(t).

Proof. First we observe that the operator Â must necessarily have the structure

Â =

Â11 · · · Â1k

...
. . .

...

Âk1 · · · Âkk


where each Âij , 1 ≤ i, j ≤ k is such that Âij : TXj → TXi . Now, applying a

similar procedure as in Theorem 6.4 on each block Âij proves that local coordinate

representation of Âij and thus Â is independent of t along the geodesics Xi(t) in the
tangent space basis Yi(t).

Now we will give an explicit expression for the general bfgs update in tensor form
and in local coordinates. We omit the hat and iteration index below for clarity. For a
function defined on a product of k Grassmannians f : Gr(n1, r1)×· · ·×Gr(nk, rk)→ R,
we write f(X1, . . . , Xk) and S = (S1, . . . , Sk), Y = (Y1, . . . , Yk) where Xi ∈ Gr(ni, ri)
and Si, Yi ∈ TXi for i = 1, . . . , k. The Hessian or its approximation has the symbolic
form

H =

H11 · · · H1k

...
. . .

...
Hk1 · · · Hkk


22

where each block is a 4-tensor. The bfgs update takes the form,

H+ = H+
〈H, S〉1,2 ⊗̂ 〈H, S〉1,2
〈〈H, S〉1,2, S〉

+
Y ⊗̂ Y
〈S, Y 〉

, (6.17)

where the 〈H, S〉1,2 is given by a formula similar to (6.8) with the result being a k-
tuple, the tensor product between k-tuples of tangents is an obvious generalization of
(6.9), and of course 〈S, Y 〉 =

∑d
i=1〈Si, Yi〉.

Finally, we have all the ingredients required to prove the optimality of the bfgs
update on a product of Grassmannians.

Theorem 6.6 (Optimality of bfgs update on product of Grassmannians). Con-
sider a function f(X1, . . . , Xk) in the variables Xi ∈ Gr(ni, ri), i = 1, . . . , k, that we
want to minimize. Let Xi(t) be geodesic defined by ∆i ∈ TXi with the corresponding
tangent space basis matrices Yi(t). In these basis for the tangent spaces, the bfgs
updates in (6.17) on the product Grassmannians have the same optimality properties
as a function with variables in a Euclidean space, i.e. it is the least change update of
the current Hessian approximation that satisfies the secant equations.

Proof. First we observe that the Grassmann Hessian of f(X1, . . . , Xk) (or its
approximation) is a linear operator

Hf : TX1
× · · · ×TXk → TX1

× · · · ×TXk

and according to Lemma 6.5 its local coordinate representation is constant along the
geodesics Xi(t). Given this, the bfgs optimality result on product Grassmannians is
a consequence from Theorem 6.3—the optimality of bfgs in Euclidean space.

Remark. An important difference on (product) Grassmannians is that we need
to keep track of the basis for the tangent spaces—Yi(t) from equation (5.3). Only
then will the local coordinate representation of an operator be independent of t when
transported along geodesics.

Note that Theorem 6.6 is a coordinate dependent result. If we regard Hessians
as abstract operators, there will no longer be any difference between the global and
the local scenario. But the corresponding optimality as the least amount of change
in successive Hessians cannot be obtained in global coordinate representation and is
thus not true if the Hessians are regarded as abstract operators.

6.6. Other alternatives. Movement along geodesics and parallel transport of
tangents are the most straightforward and natural generalizations to the key opera-
tions from Euclidean spaces to manifolds. There are also methods for dealing with
the manifold structure in optimization algorithms based on different principles. For
example, instead of moving along geodesics from one point to another on the manifold
one could use the notion of retractions, which is a smooth mapping from the tangent
bundle of the manifold onto the manifold. Another example is the notion of vector
transport that generalizes the parallel translation/transport of tangents used in this
paper. All these notions are defined and described in [2]. It is not clear how the use
of the more general vector transport would effect the convergence properties of the
resulting bfgs methods.

7. Limited memory BFGS. We give a brief summary of the limited memory
quasi-Newton method with l-bfgs updates on Euclidean spaces [6] that we need later
for our Grassmann variant. See also the discussion in [52, Chapter 7]. In Euclidean
space the bfgs update can be represented in the following compact form

Hk = H0 +
[
Sk H0Yk

] [R−Tk (Dk + Y T
k H0Yk)R−1

k −R−Tk
−R−1

k 0

] [
ST
k

Y T
k H0

]
, (7.1)

23

where Sk = [s0, . . . , sk−1], Yk = [y0, . . . , yk−1], Dk = diag
[
sT0 y0, . . . , s

T
k−1yk−1

]
and

Rk =


sT0 y0 sT0 y1 · · · sT0 yk−1

0 sT1 y1 · · · sT1 yk−1

...
. . .

...
0 · · · 0 sTk−1yk−1

 ,
are obtained using equations (4.3) and (4.4). Observe that in this section Sk and Yk
are not the same as in (6.2) and (6.3) respectively. The limited memory version of
the algorithm is obtained when replacing the initial Hessian H0 by a sparse matrix,
usually this is a suitably scaled identity matrix γkI, and only keep the m most resent
sj and yj in the update (7.1). Since m� n the amount of storage and computations
in each iteration is only a small fraction compared to the regular bfgs. According to
[46] satisfactory results are often achieved with 5 ≤ m ≤ 20, even for large problems.
Our experiments confirm this heuristic. Thus for the limited memory bfgs we have

Hk = γkI +
[
Sk γkYk

] [R−Tk (Dk + γkY
T
k Yk)R−1

k −R−Tk
−R−1

k 0

] [
ST
k

γkY
T
k

]
, (7.2)

where now

Sk = [sk−m, . . . , sk−1] , Yk = [yk−m, . . . , yk−1] , Dk = diag
[
sTk−myk−m, . . . , s

T
k−1yk−1

]
and

Rk =


sTk−myk−m sTk−myk−m+1 · · · sTk−myk−1

0 sTk−m+1yk−m+1 · · · sTk−m+1yk−1

...
. . .

...
0 · · · 0 sTk−1yk−1

 .
7.1. Limited memory BFGS on Grassmannians. Analyzing the l-bfgs

update above with the intent of modifying it to be applicable on Grassmannians, we
observe the following:

1. The columns in the matrices Sk and Yk represent tangents, and as such, they
are defined on a specific point of the manifold. In each iteration we need to
parallel transport these vectors to the next tangent space. Assuming sk and
yk are vectorized forms of (6.2) and (6.3) the transport amounts to computing
S̄k = (Ir � T (tk))Sk and Ȳk = (Ir � T (tk))Yk where T (tk) is the Grassmann
transport matrix.

2. The matrices Rk and Dk contain inner products between tangents. Fortu-
nately, the inner products are invariant with respect to parallel transporting.
Given vectors u, v ∈ TXk and a transport matrix T from TXk to TXk+1

,
i.e. Tu, Tv ∈ TXk+1

, we have that 〈Tu, Tv〉 = 〈u, v〉. This is a direct result
from Theorem 5.1, showing that there is no need for modifying Rk or Dk.
Because of this property one may wonder whether the transport matrix T is
orthogonal, but this is not the case, TTT 6= I.

3. Recalling the relation from equation (6.13) between local and global coordi-
nate representation of an operator, we conclude that the global representation
is necessarily a singular matrix, simply because the local coordinate represen-
tation of the operator is a smaller matrix. The same is true for the Hessian

24

using global coordinates. But by construction, the l-bfgs update Hk in
(7.2) is positive definite and thus nonsingular. This causes no problem since
TXk is an invariant subspace of Hk, i.e. if v ∈ TXk then Hkv ∈ TXk , see
Lemma 7.1. Similarly for the solution of the (quasi-)Newton equations (4.1)
since yk ∈ TXk and Hk : TXk → TXk , then obviously pk ∈ TXk . This is
valid for Hk from both (7.1) and (7.2).

Lemma 7.1. The tangent space TXk is an invariant subspace of the operator
obtained by the l-bfgs update.

Proof. This is straightforward. Simply observe that for a vector vk ∈ TXk we
have that Hkvk is a linear combination of vectors, and all of them belong to TXk .

l-bfgs algorithms are intended for large scale problems where the storage of the
full Hessian may not be possible. With this in mind we realize that the computation
and storage of the orthogonal complement X⊥, which is used in local coordinate
implementations, may not be practical. For large and sparse problems it is more
economical to do the parallel transports explicitly than to update a basis for the
tangent space. The computational time is reasonable since only 2(m− 1) vectors are
parallel transported each step and m is usually very small compared to the dimensions
of the Hessian.

8. Quasi-Newton methods for the best multilinear rank approximation
of a tensor. In this section we apply the algorithms developed in the last three sec-
tions to the tensor approximation problem described earlier. Recall from Section 3.1
that the best multilinear rank-(p, q, r) approximation of a general tensor is equivalent
to the maximization of

Φ(X,Y, Z) =
1

2
‖A · (X,Y, Z)‖2F s.t. XTX = I, Y TY = I, ZTZ = I,

where A ∈ Rl×m×n and X ∈ Rl×p, Y ∈ Rm×q, Z ∈ Rn×r. Recall also that X,Y, Z
may be regarded as elements of Gr(l, p), Gr(m, q), and Gr(n, r) respectively and Φ may
be regarded as a function defined on a product of the three Grassmannians. The Grass-
mann gradient of Φ will consist of three parts. Setting F = A·(X,Y, Z), one can show
that in global coordinates the gradient is the triplet ∇Φ = (ΠXΦx,ΠY Φy,ΠZΦz),
where

ΠXΦx = 〈A · (ΠX , Y, Z),F〉−1 ∈ Rl×p, ΠX = I −XXT, (8.1)

ΠY Φy = 〈A · (X,ΠY , Z),F〉−2 ∈ Rm×q, ΠY = I − Y Y T, (8.2)

ΠZΦz = 〈A · (X,Y,ΠZ),F〉−3 ∈ Rn×r, ΠZ = I − ZZT, (8.3)

and Φx = ∂Φ/∂X, Φy = ∂Φ/∂Y and Φz = ∂Φ/∂Z, see equation (6.1). For derivation
of these formulas3 see [25].

To obtain the corresponding expressions in local coordinates we observe that a
projection matrix can also be written as ΠX = X⊥X

T
⊥. Then for tangent vectors

∆x ∈ TX , we have

∆x = ΠX∆x = X⊥X
T
⊥∆x ≡ X⊥Dx,

which gives the local coordinates of ∆x as XT
⊥∆x = Dx. The practical implication

of these manipulations is that in local coordinates we simply replace the projection

25

matrices ΠX ,ΠY ,ΠZ with XT
⊥, Y

T
⊥ , Z

T
⊥. We get ∇Φ̂ = (XT

⊥Φx, Y
T
⊥Φy, Z

T
⊥Φz), where

XT
⊥Φx = 〈A · (X⊥, Y, Z),F〉−1 ∈ R(l−p)×p, (8.4)

Y T
⊥Φy = 〈A · (X,Y⊥, Z),F〉−2 ∈ R(m−q)×q, (8.5)

ZT
⊥Φz = 〈A · (X,Y, Z⊥),F〉−3 ∈ R(n−r)×r. (8.6)

Note that the expressions of the gradient in global and local coordinates are different.
In order to distinguish between them we put a hat on the gradient, i.e. ∇Φ̂, when it
is expressed in local coordinates.

8.1. General expression for Grassmann gradients and Hessians. In the
general case we will have an order-k tensor A ∈ Rn1×···×nk and the objective function
takes the form

Φ(X1, . . . , Xk) =
1

2
‖A · (X1, . . . , Xk)‖2F .

The low rank approximation problem becomes

max Φ(X1, . . . , Xk) s.t. XT
i Xi = I, i = 1, . . . , k.

The same procedure used to derive the gradients for the order-3 case can be used
for the general case. The results are obvious modifications of what we have for 3-
tensors. First we introduce matrices Xi⊥, i = 1, . . . , k, such that each [Xi Xi⊥] forms
an orthogonal matrix and we define the tensors

F = A · (X1, X2, X3, . . . , Xk),

B1 = A · (X1⊥, X2, X3, . . . , Xk),

B2 = A · (X1, X2⊥, X3, . . . , Xk),

... (8.7)

Bk−1 = A · (X1, . . . , Xk−2, Xk−1,⊥, Xk),

Bk = A · (X1, . . . , Xk−2, Xk−1, Xk⊥).

The Grassmann gradient of the objective function in local coordinates is given by the
k-tuple

∇Φ̂ = (Φ1,Φ2, . . . ,Φk) , Φi = 〈Bi,F〉−i, i = 1, 2, . . . , k.

Each Φi is an (ni − ri) × ri matrix representing a tangent in TXi . To obtain the
corresponding global coordinate representation, simply replace each Xi⊥ with the
projection ΠXi = I −XiX

T
i .

We will also give the expression of the Hessian since we may wish to initialize
our approximate Hessian with the exact Hessian. Furthermore, in our numerical
experiments in Section 11, the expression for the Hessian will be useful for checking
whether our algorithms have indeed arrived at a local maximum. In order to express
the Hessian, we will need to introduce the additional variables

C12

C13 C23

...
...

. . .

C1,k C2,k · · · Ck−1,k

(8.8)

26

where each term is a multilinear tensor-matrix product involving the tensor A and a
subset of the matrices in {X1, . . . , Xk, X1⊥, . . . , Xk⊥}. The subscripts i and j in Cij
indicate that Xi⊥ and Xj⊥ are multiplied in the ith and jth mode of A, respectively.
All other modes are multiplied with the corresponding Xd, d 6= i and d 6= j. For
example we have

C12 = A · (X1⊥, X2⊥, X3, . . . , Xk),

C24 = A · (X1, X2⊥, X3, X4⊥, X5, . . . , Xk),

Ck−1,k = A · (X1, . . . , Xk−2, Xk−1,⊥, Xk⊥).

Together with B1, . . . ,Bk, introduced earlier, one can express the complete Grassmann
Hessian of the objective function Φ(X1, . . . , Xk). The derivation of the Hessian is
somewhat tricky. The interested reader should refer to [25] for details. In this paper
we only state the final result in a form that can be directly implemented in a solver.

The diagonal blocks of the Hessian are Sylvester operators and have the form

Hii(Di) = 〈Bi,Bi〉−iDi −Di〈F ,F〉−i, i = 1, 2, . . . , k.

The off-diagonal block operators are

H12(D2) = 〈〈C12,F〉−(1,2), D2〉2,4;1,2 + 〈〈B1,B2〉−(1,2), D2〉4,2;1,2,

...

Hij(Dj) = 〈〈Cij ,F〉−(i,j), Dj〉2,4;1,2 + 〈〈Bi,Bj〉−(i,j), Dj〉4,2;1,2,

where i 6= j, i < j and i, j = 1, 2, . . . , k. See Appendix A for definition of the con-
tracted products 〈 ·, ·〉−(i,j).

9. Best multilinear rank approximation of a symmetric tensor. Recall
from Section 2 that an order-k tensor S ∈ Rn×···×n is called symmetric if

siσ(1)···iσ(k) = si1···ik , i1, . . . , ik ∈ {1, . . . , n},

where σ ∈ Sk, the set of all permutations with k integers. For example, a third order
cubical tensor S ∈ Rn×n×n is symmetric iff

sijk = sikj = sjik = sjki = skij = skji

for all i, j, k ∈ {1, . . . , n}. The definition given above is equivalent to the usual
definition given in, say [30]; see [8] for a proof of this simple equivalence. Recall
also that the set of all order-k dimension-n symmetric tensors is denoted Sk(Rn).
This is a subspace of Rn×···×n and

dimSk(Rn) =

(
n+ k − 1

k

)
.

Lemma 9.1. If S ∈ Sk(Cn) and rank(S) = (r1, . . . , rk), then

r1 = · · · = rk.

In other words, the multilinear rank of a symmetric tensor is always of the form
(r, . . . , r) for some r. We will write rS(S) for this common value. Furthermore, we
have a multilinear decomposition of the following form

S = (X,X, . . . ,X) · C, (9.1)

27

where C ∈ Sk(Rr) and X ∈ O(n, r).
Proof. The ranks ri being equal follows from observing that the matricizations

S(1), . . . , S(k) of S are, due to symmetry, all equal. The factorization (9.1) is a conse-
quence of the higher order singular value decomposition (hosvd) [15].

In application where noise is an inevitable factor, we would like to study instead
the approximation problem

S ≈ (X,X, . . . ,X) · C,

instead of the exact decomposition in (9.1). More precisely, we want to solve

min{‖S − T ‖F | T ∈Sk(Rn), rS(T) ≤ r}. (9.2)

Similar analysis as in the general case shows that the minimization problem
(9.2) can be reformulated as a maximization of ‖S · (X, . . . ,X)‖F , with the con-
straint XTX = I. The objective function becomes Φ(X) = 1

2 〈F ,F〉 where now
F = S · (X, . . . ,X). Observe that the symmetric tensor approximation problem is
defined on one Grassmannian only, regardless of the order of the tensor. These prob-
lems require much less storage and computations compared to a general problem of
the same dimensions. Applications involving symmetric tensors are found in signal
processing, independent component analysis, and the analysis of multivariate cumu-
lants in statistics [10, 8, 37, 14, 18, 19, 9, 44, 41]. We refer interested readers to [8]
for discussion of a different notion of rank for symmetric tensors.

9.1. The symmetric Grassmann gradient. The same procedure for deriving
the gradient for the general case can be used to obtain the gradient for the symmetric
case. In particular it involves the very same terms as the nonsymmetric gradient with
obvious modifications. It is straightforward to show that, due to symmetry of S,

〈S · (ΠX , X,X),F〉−1 = 〈S · (X,ΠX , X),F〉−2 = 〈S · (X,X,ΠX),F〉−3.

We will use the first expression without loss of generality. In which case, the Grass-
mann gradient in global coordinates becomes

∇Φ = ΠXΦx = 3〈S · (ΠX , X,X),F〉−1, (9.3)

where ΠX = I −XXT; and in local coordinate it is

∇Φ̂ = X⊥Φx = 3〈S · (X⊥, X,X),F〉−1, (9.4)

where X⊥ is the orthogonal complement of X. Compare these with equations (8.1)–
(8.3) for the general case.

9.2. The symmetric Grassmann Hessian. As for the general case discussed
in [25], we may identify the second order terms in the Taylor expansion of Φ(X∆(t)).
There are 15 second order terms and all have the form

〈∆,H∗(∆)〉, ∆ ∈ TX and X ∈ Gr(n, r),

for some linear operator H∗. Two specific examples are

〈∆,H11(∆)〉 = 〈∆, 〈B1,B1〉−1∆−∆〈F ,F〉−1〉 ,
〈∆,H12(∆)〉 =

〈
∆, 〈〈C12,F〉−(1,2),∆〉2,4;1,2 + 〈〈B1,B2〉−(1,2),∆〉4,2;1,2

〉
,

28

where B1 = S · (ΠX , X,X), B2 = S · (X,ΠX , X) and C12 = S · (ΠX ,ΠX , X). The
subscripts 1 and 2 indicate that the projection matrix ΠX is multiplied with S in the
first and second mode respectively. Not surprisingly, analysis of these terms reveals
equality among the second order terms due to the symmetry of S. Gathering like
terms and summing up the expressions, we see that the Hessian is a sum of three
different terms,

〈∆,H1(∆)〉 =〈∆, 3〈B1,B1〉−1∆− 3ΠX∆〈F ,F〉−1〉, (9.5)

〈∆,H2(∆)〉 =〈∆, 6〈〈C12,F〉−(1,2),∆〉2,4;1,2〉, (9.6)

〈∆,H3(∆)〉 =〈∆, 6〈〈B1,B2〉−(1,2),∆〉4,2;1,2〉. (9.7)

So the action of the Hessian on a tangent is simply

H(∆) = H1(∆) +H2(∆) +H3(∆).

Observe that the second term in (9.5) arises from the fact that the objective function
is defined on a Grassmannian, see [24] for details.

9.3. General expression for Grassmann gradients and Hessians for a
symmetric tensor. With the analysis and expressions for symmetric 3-tensors at
hand, generalization to symmetric k-tensors is straightforward. We will only state the
final results and in local coordinates. Assume we have an order-k symmetric tensor
S ∈ Sk(Rn). The corresponding symmetric low rank tensor approximation problem
is written as

max Φ(X) = max
1

2
‖S · (X, . . . ,X)‖2F s.t. X ∈ Gr(n, r).

Using the tensor products

F = S · (X,X, . . . ,X) X appears k times,

B1 = S · (X⊥, X, . . . ,X) X appears k − 1 times,

where X⊥ is such that [X X⊥] forms an orthogonal matrix, the Grassmann gradient
becomes

∇Φ = k〈B1, F 〉−1.

Observe that the symmetric case involves the very same tensor products Bi as in the
general case (given in Section 8.1) but due to the symmetry of the problem all terms
are equal.

We also introduce tensor-matrix multilinear products Cij similar to those in equa-
tion (8.8). Two specific examples are

C12 = S · (X⊥, X⊥, X, . . . ,X),

C24 = S · (X,X⊥, X,X⊥, X, . . . ,X).

In general Cij , where i 6= j, i < j and i, j = 1, . . . , k, is a multilinear product of two
X⊥’s that are multiplied in the ith and jth mode of S. All other modes are multiplied
with X.

The second order terms of the Taylor expansion of Φ(X) contain the following
diagonal block operators

Hii(D) = 〈Bi,Bi〉−iD −∆〈F ,F〉−i, i = 1, 2, . . . , k.

29

Again, due to symmetry all these are identical and summing them up we get

Hdiag(D) = k (〈B1,B1〉−1D −D〈F ,F〉−1) .

The off-diagonal block operators have the form

H12(D) = 〈〈C12,F〉−(1,2), D〉2,4;1,2 + 〈〈B1,B2〉−(1,2), D〉4,2;1,2,

...

Hij(D) = 〈〈Cij ,F〉−(i,j), D〉2,4;1,2 + 〈〈Bi,Bj〉−(i,j), D〉4,2;1,2,

where i 6= j, i < j and i, j = 1, . . . , k. Similarly, due to symmetry all of them are
identical. We have

Hoff-diag(D) = k(k − 1)
(
〈〈C12,F〉−(1,2), D〉2,4;1,2 + 〈〈B1,B2〉−(1,2), D〉4,2;1,2

)
.

The complete Grassmann Hessian operator is simply

H = Hdiag +Hoff-diag.

9.4. Matricizing the Hessian operator. The second order terms are de-
scribed using the canonical inner product on Grassmannians and contracted tensor
products. Next we will derive the expression of the Hessian as a matrix acting on the
vector d = vec(∆).

The terms in (9.5) involve only matrix operations and vectorizing the second
argument in the inner product yields

vec ((H1(∆)) = vec(3〈B1,B1〉−1∆− 3ΠX∆〈F ,F〉−1)

= 3 (I � 〈B1,B1〉−1 − 〈F ,F〉−1 � ΠX) vec(∆)

≡ H1d.

The vectorization of the terms from (9.6) and (9.7) involve the 4-tensors

H2 = 〈C12,F〉−(1,2) ∈ Rn×n×r×r,
H3 = 〈B1,B2〉−(1,2) ∈ Rn×r×r×n,

and is done using the tensor matricization described in [25]. We get

vec(〈H2,∆〉2,4;1,2) = H
(3,1;4,2)
2 vec(∆) ≡ H2d, (9.8)

vec(〈H3,∆〉4,2;1,2) = H
(3,1;2,4)
3 vec(∆) ≡ H3d. (9.9)

In H2 we map indices of the first and third mode to row-indices and indices of the

second and fourth mode to column-indices obtaining the matrix H
(3,1;4,2)
2 . In this

way the contractions in the matrix-vector product coincide with the tensor-matrix
contractions. Similarly for H3. The matrix form of the Hessian becomes

H = H1 +H2 +H3.

To obtain the Hessian in local coordinates we replace ΠX with X⊥ in the computations
of the factors involved and thereafter perform the same matricization procedure.

30

10. Examples. We will now give two small explicit examples to illustrate the
computations involved in the algorithms for tensor approximation described before.

Example 10.1. In this example we will compute the gradient of the objective
function, both in global and in local coordinates. Let the 3× 3× 3 tensor A be given
by

A(:, :, 1) =

9 −3 8
2 7 0
7 0 −1

 , A(:, :, 2) =

 2 7 0
−7 5 −3
0 −3 1

 , A(:, :, 3) =

3 0 −2
0 4 −1
0 −2 1

 .

Let the current point of the product manifold be given by (X,Y, Z) where

X = Y = Z =

1
0
0

 , and ΠX = ΠY = ΠZ =

0 0 0
0 1 0
0 0 1


are the corresponding projection matrices onto the three tangent spaces. The expres-
sion for the Grassmann gradient at the current iterate is given by (8.1)–(8.3). The
intermediate quantities, cf. equation (8.7), needed in the calculations of the Grass-
mann gradient are

F = A · (X,Y, Z) = 9,

Bx = A · (ΠX , Y, Z) = (0 2 7)T, (10.1)

By = A · (X,ΠY , Z) = (0 − 3 8)T,

Bz = A · (X,Y,ΠZ) = (0 2 3)T,

and the Grassmann gradient in global coordinates is given by

∇Φ = (〈Bx,F〉−1, 〈By,F〉−2, 〈Bz,F〉−3) =

 0
18
63

 ,
 0
−27
72

 ,
 0

18
27

 .

To compute the Grassmann gradient in local coordinates we need a basis for the tangent
spaces. For the current iterate we choose

X⊥ = Y⊥ = Z⊥ =

0 0
1 0
0 1

 ,
as the corresponding basis matrices for the tangent spaces at X, Y and Z. Obviously
[X X⊥], [Y Y⊥] and [Z Z⊥] are orthogonal and XTX⊥ = Y TY⊥ = ZTZ⊥ = 0. Re-
placing the projection matrices ΠX , ΠY and ΠZ by the orthogonal complements X⊥,
Y⊥ and Z⊥ in (10.1), we obtain B̂x, B̂y, B̂z, and thus the local coordinate representa-
tion of the Grassmann gradient is given by

∇Φ̂ = (〈B̂x,F〉−1, 〈B̂y,F〉−2, 〈B̂z,F〉−3) =

([
18
63

]
,

[
−27
72

]
,

[
18
27

])
.

Recall that we use a hat to distinguish local coordinate representation from global
coordinate representation. The local coordinate representation is depending on the
choice of basis matrices for the tangent spaces. A different choice of X⊥, Y⊥ and Z⊥
would yield a different representation of ∇Φ̂.

Example 10.2. Next we will illustrate the parallel transport of tangent vectors
along geodesics on a product of Grassmannians. Let the tensor A, the current iterate,

31

and the corresponding gradient be the same as in the previous example. Introduce
tangent vectors

∆ = (∆x, ∆y, ∆z) =

 0
−1
0

 ,
0

0
1

 ,
0

1
0

 .

Clearly we have XT∆x = Y T∆y = ZT∆z = 0. The tangent ∆ will determine the
geodesic path from the current point and in turn the transport of the Grassmann
gradient (see Figure 10.1). We may also verify that ∇Φ is indeed a tangent of the
product Grassmannian at the current iterate.

The thin or compact svds, written ∆∗ = U∗ · Σ∗ · V T
∗ , of the tangents are

∆x =

 0
−1
0

 · 1 · 1, ∆y =

0
0
1

 · 1 · 1, ∆z =

0
1
0

 · 1 · 1.
The transport matrix, cf. equation (5.2), in the direction ∆x at X with a step size

t = π/4 is given by

TX,∆x
(t)|t=π/4 =

[
XVx Ux

] [− sin Σx(π/4)
cos Σx(π/4)

]
UT
x + (I − UxUT

x) =

1 1/
√

2 0

0 1/
√

2 0
0 0 1

 .
Similarly, it is straightforward to calculate

TY,∆y
(t)
∣∣
t=π/4

=

1 0 −1/
√

2
0 1 0

0 0 1/
√

2

 and TZ,∆z
(t)|t=π/4 =

1 −1/
√

2 0

0 1/
√

2 0
0 0 1

 .
Parallel transporting one tangent we get TX,∆x

(π/4)∆x = (−1/
√

2, −1/
√

2, 0)T. For
all tangents in ∆ and ∇Φ we get

∆(t)|t=π/4 =

−1/
√

2

−1/
√

2
0

 ,
−1/

√
2

0

1/
√

2

 ,
−1/

√
2

1/
√

2
0

 ,

∇Φ(t)|t=π/4 =

18/
√

2

18/
√

2
63

 ,
−72/

√
2

−27

72/
√

2

 ,
−18/

√
2

18/
√

2
27

 .

The above are calculations in global coordinates. In local coordinates we parallel
transport the basis matrices X⊥, Y⊥ and Z⊥ so that the local coordinate representation
of a tangent is the same as in the previous point. The computations are given by
equation (5.3) and in this example we get

X⊥(π/4) =

1/
√

2 0

1/
√

2 0
0 1

 , Y⊥(π/4) =

0 −1/
√

2
1 0

0 1/
√

2

 , Z⊥(π/4) =

−1/
√

2 0

1/
√

2 0
0 1

 ,
i.e. the second and third columns of each transport matrix due to the specific choice
of X⊥, Y⊥ and Z⊥.

32

Fig. 10.1. Pictorial depiction of the main algorithmic procedure for the Grassmannian Gr(3, 1),
which is simply the sphere S2.

Taking a step of size t = π/4 from X, Y and Z along the specified geodesic we
arrive at

X(π/4) =

 1/
√

2

−1/
√

2
0

 , Y (π/4) =

1/
√

2
0

1/
√

2

 , Z(π/4) =

1/
√

2

1/
√

2
0

 .
The value of the objective function at the starting point is Φ(X,Y, Z) = 40.5 and at
the new point is Φ (X(π/4), Y (π/4), X(π/4)) ≈ 45.5625, an increment as expected.

Figure 10.1 illustrates the procedures involved in the algorithms on the Grass-
mannian Gr(3, 1), which we may regard as the 2-sphere S2 (unit sphere in R3). For
the best rank-1 tensor approximation of a 3 × 3 × 3 tensor, the optimization takes
place on a product of three spheres S2 × S2 × S2, one for each vector that needs to
be determined. The procedure starts at a point X1 and a direction of ascent6, the
tangent ∆1 ∈ TX1

, is obtained through some method. Next we perform a movement
of the point X1 along the geodesic defined by ∆1. Geodesics on spheres are just great
circles. At the new point X2 ∈ Gr(3, 1) we repeat the procedure, i.e. determine a new
direction of ascent ∆2 and take a geodesic step in this direction.

11. Numerical experiments and computational complexity. All algo-
rithms described here and the object oriented Grassmann classes required for them
are available for download as two matlab packages [50] and [51]. We encourage our
readers to try them out.

11.1. Initialization and stopping condition. We will now test the actual
performance of our algorithms with a few large numerical examples. All algorithms
in a given test are started with the same initial points on a Grassmannian, repre-
sented as truncated singular matrices from the hosvd and a number of additional
higher order orthogonal iterations—hooi iterations [15, 16], which are introduced to
make the initial Hessian of Φ negative definite. The number of initial hooi iterations
ranges between 5 and 50 depending on the size of the problem. The bfgs algorithm is
either started with (possibly a modification of) the exact Hessian or a scaled identity
matrix according to [46, pp. 143]. The l-bfgs algorithm is always started with a
scaled identity matrix but one can modify the number of columns m in the matrices
representing the Hessian approximation, see equation (7.2). This number is between

6Recall that we are maximizing Φ, therefore ‘ascent’ as opposed to ‘descent’.

33

0 20 40 60 80 100
10

−15

10
−10

10
−5

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS
L−BFGS
HOOI
NG

200 300 400 500 600 700 800
10

−15

10
−10

10
−5

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS
L−BFGS
HOOI

Fig. 11.1. Left: A 20× 20× 20 tensor is approximated by a rank-(5, 5, 5) tensor. bfgs initiated
with the exact Hessian; In l-bfgs m = 5. Right: A 100 × 100 × 100 tensor is approximated by a
rank-(5, 10, 20) tensor. In this case the initial Hessian is a scaled identity and m = 10.

5 and 30. Although we use the hosvd to initialize our algorithms, any other reason-
able initialization procedure would work as long as the initial Hessian approximate is
negative definite. The quasi-Newton methods can be used as stand-alone algorithms
for solving the tensor approximation problem as well as other problems defined on
Grassmannians.

In the following figures, the y-axis measures the norm of the relative gradient,
i.e. ‖∇Φ(X)‖/‖Φ(X)‖, and the x-axis shows iterations. This ratio is also used as
our stopping condition, which typically requires that ‖∇Φ(X)‖/‖Φ(X)‖ ≈ 10−13, the
machine precision of our computer. At a true local maximizer the gradient of the
objective function is zero and its Hessian is negative definite. In the various figures
we present convergence results for four principally different algorithms. These are
(1) quasi-Newton-Grassmann with bfgs, (2) quasi-Newton-Grassmann with l-bfgs,
(3) Newton-Grassmann, denoted with ng and (4) hooi which is an alternating least
squares approach. In addition, the tags for bfgs methods may be accompanied by i
or h indicating whether the initial Hessian was a scaled identity matrix or the exact
Hessian, respectively.

11.2. Experimental results. We run all our numerical experiments in matlab
on a MacBook with a 2.4-GHz Intel Core 2 Duo processor and 4 GB of physical
memory.

Figure 11.1 shows convergence results for two tests with tensors generated with
N(0, 1)-distributed values. In the left plot a 20× 20× 20 tensor is approximated with
a rank-(5, 5, 5) tensor. One can observe superlinear convergence in the bfgs method.
The right plot shows convergence results of a 100×100×100 tensor approximated with
a rank-(5, 10, 20) tensor. Both bfgs and l-bfgs methods exhibit rapid convergence
in the vicinity of a stationary point.

Figure 11.2 (left) shows convergence for an even larger 200 × 200 × 200 tensor
approximated by a tensor of rank-(10, 10, 10) using l-bfgs with m = 20. In the right
plot we approximate a 50× 50× 50 tensor by a rank-(20, 20, 20) tensor where we vary
over a range of values of m in the l-bfgs algorithm, namely, m = 5, 10, 15, 20, 25, 30.
m = 5 gives (in general) slightly poorer performance, otherwise the different runs
cannot be distinguished. In other words, our Grassmann l-bfgs algorithm can in
practice work as well as our Grassmann bfgs algorithm, just as one would expect

34

0 200 400 600 800 1000
10

−15

10
−10

10
−5

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

L−BFGS
HOOI

0 50 100 150 200 250
10

−15

10
−10

10
−5

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS
L−BFGS: m = 5
L−BFGS: m = 10
L−BFGS: m = 15
L−BFGS: m = 20
L−BFGS: m = 25
L−BFGS: m = 30
HOOI

Fig. 11.2. Left: Convergence plots of a 200×200×200 tensor approximated by a rank-(10, 10, 10)
tensor. Right: Effect of varying m in l-bfgs. A 50 × 50 × 50 tensor approximated by a rank-
(20, 20, 20) tensor with m = 5, 10, 15, 20, 25, 30.

0 50 100 150 200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS: H
BFGS: I
L−BFGS
NG
HOOI

0 100 200 300 400 500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS: I
L−BFGS
HOOI

Fig. 11.3. Left: A 50 × 50 × 50 symmetric tensor is approximated by a rank-5 symmetric
tensor; m = 10. Right: Here we have a 100×100×100 symmetric tensor approximated by a rank-20
symmetric tensor; m = 10.

(from the numerical experiments performed) in the Euclidean case.

Figure 11.3 shows convergence plots for two symmetric tensor approximation
problems. In the left plot we approximate a symmetric 50 × 50 × 50 tensor by a
rank-5 symmetric tensor. We observe that bfgs initialized with the exact Hessian
(bfgs:h tag) converges much more rapidly, almost as fast as the Newton-Grassmann
method, than when initialized with a scaled identity matrix (bfgs:i tag). In the right
plot we give convergence results for a 100×100×100 symmetric tensor approximated
by a rank-20 symmetric tensor. In both cases m = 10.

In Figure 11.4 we show the performance of a local coordinate implementation of
the bfgs algorithm on problems with 4-tensors. The first plot shows convergence
results for a 50× 50× 50× 50 tensor approximated by a rank-(5, 5, 5, 5) tensor. The
second convergence plot is for a symmetric 4-tensor with the same dimensions ap-
proximated by a symmetric rank-5 tensor. Again the h and i tags indicate whether
the exact Hessian or a scaled identity is used for initialization.

We end this section with two unusual examples to illustrate the extent of our
algorithms’ applicability: a high order tensor and an objective function that includes
tensors of different orders. The left plot in Figure 11.5 is a high-order example: it

35

0 50 100 150 200 250 300 350 400
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS: H
BFGS: I
HOOI

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS: H
BFGS: I
HOOI

Fig. 11.4. Left: A 50× 50× 50× 50 tensor is approximated by a rank-(5, 5, 5, 5) tensor. Right:
Here we have a 50× 50× 50× 50 symmetric tensor approximated by a rank-5 symmetric tensor.

0 10 20 30 40 50 60 70 80 90 100
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

RE
LA

TI
VE

 N
O

RM
 O

F
TH

E
G

RA
DI

EN
T

ITERATION #

BFGS: I
HOOI

0 10 20 30 40 50 60 70 80 90 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
E

LA
T

IV
E

 N
O

R
M

 O
F

 T
H

E
 G

R
A

D
IE

N
T

ITERATION #

BFGS: I

Fig. 11.5. Left: A 5× 5× · · · × 5 tensor of order-10 is approximated with a rank-(2, 2, . . . , 2).
Right: A ‘simultaneous’ rank-5 approximation of a weighted sum of tensors of orders 2, 3, and 4.

shows the convergence of bfgs verses hooi when approximating an order-10 tensor
with dimensions 5 × 5 × · · · × 5 with a rank-(2, 2, . . . , 2) tensor. The right plot in
Figure 11.5 has an unusual objective function that involves an order-2, an order-3,
and an order-4 tensor,

Φ(X) =
1

2!
‖S2 · (X,X)‖2F +

1

3!
‖S3 · (X,X,X)‖2F +

1

4!
‖S4 · (X,X,X,X)‖2F

where S2 is a 30 × 30 symmetric matrix, S3 is a 30 × 30 × 30 symmetric 3-tensor,
and S4 is a 30 × 30 × 30 × 30 symmetric 4-tensor. Such objective functions have
appeared in independent component analysis with soft whitening [18] and in principal
cumulants components analysis [44, 41] where S2,S3,S4 measure the multivariate
variance, kurtosis, skewness respectively (cf. Example 2.2). In both examples we
observe a fast rate of convergence at the vicinity of a local minimizer for the bfgs
algorithm.

It is evident from the convergence plots here that bfgs and l-bfgs have faster
rate of convergence compared with hooi. The Newton-Grassmann algorithm takes
few iterations but is computationally more expensive, specifically for larger problems.
Our implementation of the different algorithms in matlab give shortest runtime for
the bfgs and l-bfgs methods. The time for one iteration of bfgs, l-bfgs and hooi is

36

Algorithm 1 Algorithmic framework for bfgs and l-bfgs on Grassmannians.

Given tensor A and starting points (X0, Y0, Z0) ∈ Gr3 and an initial Hessian H0

repeat
1 Compute the Grassmann gradient.
2 Parallel transport the Hessian approximation to the new point.
3 Update the Hessian or its compact representation.
4 Solve the quasi-Newton equations to obtain ∆ = (∆x,∆y,∆z).
5 Move the points (Xk, Yk, Zk) along the geodesic curve given by ∆.

until ‖∇Φ̂‖/Φ < TOL

of the same magnitude for smaller problems. In larger problems, the l-bfgs performs
much faster than all other methods.

Our algorithms use the basic arithmetic and data types in the TensorToolbox [4]
for convenience. We use our own object-oriented routines for operations on Grassman-
nians and product of Grassmannians, e.g. geodesic movements and parallel transports
[51]. We note that there are several different ways to implement bfgs updates [46]; for
simplicity reasons, we have chosen to update the inverse of the Hessian approximation.
A possibly better alternative will be to update the Cholesky factors of the approxi-
mate Hessians so that one may monitor the approximate Hessians for indefiniteness
during the iterations [23, 28, 7].

11.3. Computational complexity, curse of dimensionality, and conver-
gence. The Grassmann quasi-Newton methods presented in this report all fit within
the procedural framework given in Algorithm 1.

General case. In analyzing computational complexity, we will assume for simplic-
ity that A is a general n × n × n 3-tensor being approximated with a rank-(r, r, r)
3-tensor. A problem of these dimensions will give rise to a 3nr × 3nr Hessian matrix
in global coordinates and a 3(n− r)r× 3(n− r)r Hessian matrix in local coordinates.
Table 11.1 gives approximately the amount of computations required in each step of
Algorithm 1. Recall that in l-bfgs m is a small number, see Section 7. We have

bfgs-gc bfgs-lc l-bfgs

1 6n3r + 12n2r2 6n3r + 6n2r2 + 6n(n− r)r3 6n3r + 12n2r2

2 18n3r2 — 12n2rm
3 36n2r2 36(n− r)2r2 —
4 18n2r2 18(n− r)2r2 24nrm

Table 11.1
Computational complexity of the bfgs-gc (global coordinates), bfgs-lc (local coordinates) and

l-bfgs algorithms. The numbers in the first column correspond to the steps in Algorithm 1.

omitted terms of lower asymptotic complexity as well as the cost of point 5 since
that is negligible compared with the costs of points 1–4. For example, the geodesic
movement of Xk requires the thin svd UxΣxV

T
x = ∆x ∈ Rn×r which takes 6nr2+20r3

flops (floating point operations) [29]. On the other hand, given the step length t and
U,Σ, V in (5.1), the actual computation of X(t) amounts to only 4nr2 flops.

Symmetric case. The symmetric tensor approximation problem involves the de-
termination of one n× r matrix, resulting in an nr×nr Hessian in global coordinates
and an (n− r)r × (n− r)r Hessian in local coordinates. Therefore the complexity of

37

the symmetric problem differs only by a constant factor from that of the general case.

Curse of dimensionality. The approximation problem will suffer from the curse
of dimensionality when the order of a tensor increases. In general, an n × · · · × n
order-k tensor requires the storage of nk entries in memory. The additional mem-
ory requirement, mainly for storing the Hessian, is of order O(n2r2k2) for the bfgs
methods and O(2nrkm) for the l-bfgs method, respectively. In the current approach
we assume that the tensor is explicitly given. Our proposed algorithms are applica-
ble as long as the given tensor fits in memory. There have been various proposals
to deal with the curse of dimensionality using tensors [35, 36, 48]. For cases where
the tensor is represented in compact or functional forms our methods can take direct
advantage of these simply by computing the necessary gradients (and Hessians) using
the specific representations. In fact this was considered in [43] for symmetric tensor
approximations.

Convergence. There is empirical evidence suggesting that als based algorithms
have fast convergence rate for specific tensors. This was also pointed out in [12].
These are tensors that have inherently low multilinear rank and the approximating
tensor has the correct low ranks, or tensors that have fast decay in its multilinear
singular values [15], or a substantial gap in the multilinear singular values at the site
of truncation, e.g. the source tensor is given by a low rank tensor with noise added. On
the other hand not all tensors have gaps or fast decaying multilinear singular vales.
This is specifically true for sparse tensors. It is still desirable to obtain low rank
approximations for these “more difficult” tensors. And on these tensors als performs
very poorly, but methods using first and second order derivatives of the objective
function, including the methods presented in this paper perform good. Among the
methods that are currently available, quasi-Newton methods presented in this paper
have the best computational efficiency.

12. Related work. There are several different approaches to solve the tensor
approximation problem. In this section we will briefly describe them and point out
the main differences with our work. The algorithms most closely related to the quasi-
Newton methods are given in [25, 34, 33]. All three references address the best low
rank tensor approximation based on the Grassmannian structure of the problem and
use explicit computation of the Hessian. The obtained Newton equations are solved
either fully [25, 34] or approximately [33]. In the latter case the authors used a
truncated conjugate gradient approach to approximately solve the Newton equations.
The iterates are updated using the more general notion of retractions instead of taking
a step along the geodesic on the manifold. In addition a trust region scheme is
incorporated making the procedure more stable with respect to occasional indefinite
Hessians. The computation of the Hessian is a limiting factor in these algorithms.
This is the case even when the Hessian is not formed explicitly but used implicitly
via its action on a tangent. In our experiments, on moderate-sized problems, e.g. 3-
tensors of dimensions around 20×20×20, the bfgs methods noticeably outperformed
Hessian-based methods; and for dimensions around 100× 100× 100, we were unable
to get any methods relying on Hessians to work despite our best efforts.

There is a different line of algorithms for related tensor approximation problems
based on als and mutltigrid accelerated als [35, 36]. In our experience, the conver-
gence of als-type methods depend on the decay of the multilinear singular values
of the given tensor. The exact dependence is unclear but the relation seems to be
that the faster the decay, the faster the convergence of als. In this regard the class
of functions and operators considered in [35, 36] appears to possess these favorable

38

properties.
Yet a third approach to obtain low multilinear rank tensor approximations are

the cross methods in [49, 48, 26]. The novelty of such methods is that they discard
some given information and retain only a fraction of the original tensor, and as such
it is markedly different from our approach, which uses all given information to achieve
maximal accuracy. In addition, there is an assumption on the tensor that there exist
approximations within pre-specified bounds and of specific low ranks while we make
no such assumptions.

13. Conclusion. In this paper we studied quasi-Newton algorithms adapted to
optimization problems on Riemannian manifolds. More specifically, we proposed algo-
rithms with bfgs and l-bfgs updates on a product of Grassmannians that (1) respect
the Riemannian metric structure and (2) require only standard matrix operations in
their implementations. Two different algorithmic implementations are presented: one
based on local/intrinsic coordinates while the other one uses global/embedded coordi-
nates. In particular, our use of local coordinates is a novelty not previously explored in
other manifold optimization [1, 2, 24, 27]. We proved the optimality of our Grassman-
nian bfgs updates in local coordinates, showing that the well-known bfgs optimality
[21, 22] extends to Grassmannian and products of Grassmannians.

We also applied these algorithms to the problem of determining a best multilinear
rank approximation of a tensor and the analogous (but very different) problem for a
symmetric tensor. While a Newton version of this was proposed in [25], here we make
substantial improvements with respect to the Grassmann-Newton algorithm in terms
of speed and robustness. Furthermore, we presented specialized algorithms that take
into account the symmetry in the multilinear approximation of symmetric tensors and
related problems. In addition to the numerical experiments in this paper, we have
made our codes freely available for download [50, 51] so that the reader may verify
the speed, accuracy, and robustness of these algorithms for himself.

Appendix A. Notation for tensor contractions.
In this section we define the contracted tensor product notation used throughout

this paper. For given third order tensors A and B we define the following contracted
products:

C = 〈A,B〉1, cijkl =
∑
λ

aλijbλkl. (A.1)

When contracting several indices, with the corresponding indices of the two arguments
being the same, we write

C = 〈A,B〉1,2, cij =
∑
λ,ν

aλνibλνj . (A.2)

The subscript ‘1’ in 〈A,B〉1 and subscripts ‘1,2’ in 〈A,B〉1,2 indicate that the con-
traction is over the first index and both the first and second indices respectively. If
instead the contraction is to be performed on different indices, we write

C = 〈A,B〉1;2, cijkl =
∑
λ

aλijbkλl or C = 〈A,B〉1,3;2,1, cij =
∑
λ,ν

aλiνbνλj .

The subscripts indicating the indices to be contracted are separated by a semicolon.
It is also convenient to introduce a notation when contraction is performed in all but

39

one or a few indices. For example the products in (A.2) and (A.2) may also be written

〈A,B〉1,2 = 〈A,B〉−3 or 〈A,B〉1 = 〈A,B〉−(2,3).

REFERENCES

[1] P.-A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian man-
ifolds, Found. Comput. Math., 7 (2007), no. 3, pp. 303–330.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ, 2008.

[3] E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz,
A. Greenbaum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen,
LAPACK Users’ Guide, 3rd Ed., SIAM, Philadelphia, PA, 1999.

[4] B. W. Bader and T. G. Kolda, Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping, ACM Trans. Math. Software, 32 (2006), no. 4, pp. 635–653.

[5] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd
Ed., Academic Press, Orlando, FL, 1986.

[6] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices
and their use in limited memory methods, Math. Program., 63 (1994), no. 2, pp. 129–156.

[7] S. H. Cheng and N. J. Higham, A modified cholesky algorithm based on a symmetric indefinite
factorization, SIAM J. Matrix Anal. Appl., 19 (1998), no. 4, pp. 1097–1110.

[8] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor
rank, SIAM J. Matrix Anal. Appl., 39 (2008), no. 3, pp. 1254–1279.

[9] ———, Genericity and rank deficiency of high order symmetric tensors, Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Process. (ICASSP ’06), 31 (2006), pp. 125–128.

[10] P. Comon and B. Mourrain, Decomposition of quantics in sums of powers of linear forms,
Signal Process., 53 (1996), pp. 93–107.

[11] L. Conlon, Differentiable Manifolds, 2nd Ed., Birkhäuser, Boston, MA, 2001.
[12] L. De Lathauwer, Tucker compression, parallel factor analysis and block term decompositions:

New results, European Meeting on Challenges in Modern Massive Data Sets (EMMDS ’09),
Copenhagen, Denmark, 2009.

[13] ———, Signal Processing Based on Multilinear Algebra, Ph.D. thesis, Department of Electrical
Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1997.

[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, An introduction to independent com-
ponent analysis, J. Chemometrics, 14 (2000), pp. 123–149.

[15] ———, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000),
no. 4, pp. 1253–1278.

[16] ———, On the best rank-1 and rank-(R1, R2, . . . , RN) approximation of higher-order tensors,
SIAM J. Matrix Anal. Appl., 21 (2000), no. 4, pp. 1324–1342.

[17] L. De Lathauwer, L. Hoegaerts, and J. Vandewalle, A Grassmann-Rayleigh quotient
iteration for dimensionality reduction in ICA, Proc. Int. Conf. Independent Component
Analysis and Blind Signal Separation (ICA ’04), 5 (2004), pp. 335–342.

[18] L. De Lathauwer and J. Vandewalle, Dimensionality reduction in higher-order signal pro-
cessing and rank-(r1, r2, . . . , rn) reduction in multilinear algebra, Linear Algebra Appl.,
391 (2004), pp. 31–55.

[19] ———, Dimensionality reduction in ICA and rank-(r1, r2, . . . , rn) reduction in multilinear
algebra, Proc. Int. Conf. Independent Component Analysis and Blind Signal Separation
(ICA ’04), 5 (2004), pp. 295–302.

[20] V. De Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approxi-
mation problem, SIAM J. Matrix Anal. Appl., 30 (2008), no. 3, pp. 1084–1127.

[21] J. E. Dennis and J. Moré, Quasi-newton methods, motivation and theory, SIAM Rev., 19
(1997), no. 1, pp. 46–89.

[22] J. E. Dennis and R. B. Schnabel, A new derivation of symmetric positive definite secant
updates, Nonlinear Program., 4 (1981), pp. 167–199.

[23] ———, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM,
Philadelphia, PA, 1996.

[24] A. Edelman, T. A. Arias, and S. T. Steven, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1999), no. 2, pp. 303–353.

[25] L. Eldén and B. Savas, A Newton–Grassmann method for computing the best multilinear
rank-(r1, r2, r3) approximation of a tensor, SIAM J. Matrix Anal. Appl., 31 (2009), no. 2,
pp. 248–271.

40

[26] H.-J. Flad, B. N. Khoromskij, D. Savostianov, and E. Tyrtyshnikov, Verification of the
cross 3D algorithm on quantum chemistry data, Russian J. Numer. Anal. Math. Modelling,
4 (2008), pp. 1–16.

[27] D. Gabay, Minimizing a differentiable function over a differential manifold, J. Optim. Theory
Appl., 37 (1982), no. 2, pp. 177–219.

[28] D. Goldfarb, Factorized variable metric methods for unconstrained optimization, Math.
Comp., 30 (1976), no. 136, pp. 796–811.

[29] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[30] W. Greub, Multilinear Algebra, 2nd Ed., Springer-Verlag, New York, NY, 1978.
[31] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math.

Phys., 6 (1927), no. 1, pp. 164–189.
[32] M. Ishteva, L. De Lathauwer, P.-A. Absil, and S. Van Huffel, Dimensionality reduction

for higher-order tensors: Algorithms and applications, Int. J. Pure Appl. Math., 42 (2008),
no. 3, pp. 337–343.

[33] ———, Best low multilinear rank approximation of higher-order tensors, based on the Rie-
mannian trust-region scheme, Tech. Rep., 09-142, ESAT-SISTA, Katholieke Universiteit
Leuven, Leuven, Belgium, 2009.

[34] ———, Differential-geometric newton algorithm for the best rank-(r1, r2, r3) approximation of
tensors, Numer. Algorithms, 51 (2009), no. 2, pp. 179–194.

[35] B. N. Khoromskij and V. Khoromskaia, Low rank Tucker-type tensor approximation to
classical potentials, Cent. Eur. J. Math., 5 (2007), no. 3, pp. 523–550.

[36] ———, Multigrid accelerated tensor approximation of function related multidimensional ar-
rays, SIAM J. Sci. Comput., 31 (2009), no. 4, pp. 3002–3026.

[37] E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersym-
metric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), no. 3, pp. 863–884.

[38] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev.,
51(2009), no. 3, pp. 455–500.

[39] S. Lang, Algebra, Rev. 3rd Ed., Springer-Verlag, New York, NY, 2002.
[40] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK Users’ Guide, SIAM, Philadelphia, PA,

1998.
[41] L.-H. Lim and J. Morton, Cumulant component analysis: a simultaneous generalization of

PCA and ICA, Computational Algebraic Statistics, Theories and Applications (CASTA
’08), Kyoto University, Kyoto, Japan, December 10–11 2008.

[42] E. Lundström and L. Eldén, Adaptive eigenvalue computations using Newton’s method on
the Grassmann manifold, SIAM J. Matrix Anal. Appl., 23 (2002), no. 3, pp. 819–839.

[43] J. Morton, Scalable implicit symmetric tensor approximation, preprint, 2010.
[44] J. Morton and L.-H. Lim, Principal cumulant components analysis, preprint, 2009.
[45] M. Mørup, L. K. Hansen, S. M. Arnfred, ERPWAVELAB: A toolbox for multi-channel

analysis of time-frequency transformed event related potentials, J. Neurosci. Methods, 161
(2007), no. 2, pp. 361–368.

[46] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd Ed., Springer, New York, NY,
2006.

[47] L. Omberg, G. H. Golub, and O. Alter, A tensor higher-order singular value decomposition
for integrative analysis of DNA microarray data from different studies, Proc. Natl. Acad.
Sci., 104 (2007), no. 47, pp. 18371–18376.

[48] I. V. Oseledets, Compact matrix form of the d-dimensional tensor decomposition, Tech. Rep.,
Institute of Numerical Mathematics, Russian Academy of Science, Moscow, Russia, 2009.

[49] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, Tucker dimensionality re-
duction of three-dimensional arrays in linear time, SIAM J. Matrix Anal. Appl., 30 (2008),
no. 3, pp. 939–956.

[50] B. Savas, Algorithm package manual: Best low rank tensor approximation, Department of
Mathematics, Linköping Univeristy, Linköping, Sweden, 2008. (http://www.mai.liu.se/

~besav/soft.html)
[51] ———, Toolbox for Grassmann manifold computations, Department of Mathematics,

Linköping Univeristy, Linköping, Sweden, 2008. (http://www.mai.liu.se/~besav/soft.
html)

[52] L. Simonsson, Subspace Computations via Matrix Decompositions and Geometric Optimiza-
tion, Linköping studies in science and technology, 1052, Linköping University, Linköping,
Sweden, 2007.

[53] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the Chemical Sci-
ences, John Wiley, West Sussex, England, 2004.

41

http://www.mai.liu.se/~besav/soft.html
http://www.mai.liu.se/~besav/soft.html
http://www.mai.liu.se/~besav/soft.html
http://www.mai.liu.se/~besav/soft.html

[54] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), no. 3, pp. 279–311.

[55] M. A. O. Vasilescu and D. Terzopoulos, Multilinear subspace analysis of image ensembles,
Proc. Comput. Vis. Pattern Recognition Conf. (CVPR ’03), 2 (2003), pp. 93–99.

[56] T. Yokonuma, Tensor Spaces and Exterior Algebra, AMS, Providence, RI, 1992.

42

