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Abstract. Moduli of rings and quadrilaterals are frequently applied in geometric function theory,
see e.g. the Handbook by Kühnau. Yet their exact values are known only in a few special cases.
Previously, the class of planar domains with polygonal boundary has been studied by many authors
from the point of view of numerical computation. We present here a new hp-FEM algorithm for
the computation of moduli of rings and quadrilaterals and compare its accuracy and performance
with previously known methods such as the Schwarz-Christoffel Toolbox of Driscoll and Trefethen.
We also demonstrate that the hp-FEM algorithm applies to the case of non-polygonal boundary and
report results with concrete error bounds.
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1. Introduction. Plane domains with piecewise-smooth boundary curves occur
in applications to electronics circuit design, airfoil modelling in computational fluid
dynamics, computer vision and various other problems of engineering and science
[23, 28, 29, 35, 39, 41]. We assume that the domain is bounded and that there
are either one or two simple (and nonintersecting) boundary curves. The domain is
then either simply or doubly connected. For the mathematical modelling of these
domains it is usually convenient to map the domains conformally onto “canonical
domains” as simple as possible: the unit disk D = {z ∈ C : |z| < 1} or the annulus
{z ∈ C : r < |z| < 1} . Sometimes a rectangle is preferable to the unit disk as a
canonical domain. The existence of these canonical conformal mappings is guaranteed
by classical results of geometric function theory but the construction of this mapping
in a concrete application case is usually impossible. Therefore one has to resort to
numerical conformal mapping methods for which there exists an extensive literature
[18, 29, 36, 39]. The Schwarz-Christoffel (SC) Toolbox of Driscoll [17], based on the
software of Trefethen [43], is in wide use for numerical conformal mapping applications.

In the doubly connected case, one might be interested in only knowing the inner
radius r of the canonical annulus. For instance this occurs if we wish to compute the
electric resistance of a ring condenser. In this situation the conformal mapping itself
is not needed if we are able to find the inner radius r by some other method. It is a
classical fact that the inner radius r can be obtained in terms of the solution of the
Dirichlét problem for the Laplace equation in the original domain with the boundary
value 0 on one boundary component and the boundary value 1 on the other one.
This fact is just one way of saying that the modulus of a ring domain is conformally
invariant: for the canonical annulus {z ∈ C : r < |z| < 1} the modulus is equal to
log(1/r) . This idea reduces the problem of computing the number r to the problem
of numerical approximation of the solutions of Laplace equation in ring domains. In
the paper [9] this method was applied to several concrete examples of ring domains
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for which numerical results were reported, too. Again, it is also possible to use the
Schwarz-Christoffel method for doubly connected domains [25].

We next consider the case of simply connected plane domains. For such a domain
D and for a quadruple {z1, z2, z3, z4} of its boundary points we call (D; z1, z2, z3, z4) a
quadrilateral if z1, z2, z3, z4 occur in this order when the boundary curve is traversed
in the positive direction. The points zk, k = 1, .., 4 , are called the vertices and the
part of the oriented boundary between two successive vertices such as z1 and z2 is
called a boundary arc (z1, z2) . The modulus M(D; z1, z2, z3, z4) of the quadrilateral
(D; z1, z2, z3, z4) is defined to be the unique h > 0 for which there exists a conformal
mapping of D onto the rectangle with vertices 1 + ih, ih, 0, 1 such that the points
z1, z2, z3, z4 correspond to the vertices in this order. This conformal mapping is called
the canonical conformal mapping associated with the quadrilateral. As in the case of
doubly connected domains discussed above, it is well-known that the computation of
the modulus h of the quadrilateral may be reduced to solving the Dirichlét-Neumann
boundary value problem in the original domain D with the Dirichlét boundary values
1 on the boundary arc (z1, z2) and 0 on the arc (z3, z4) and Neumann boundary values
0 on the arcs (z3, z4) and (z4, z1) .

Conformal moduli of rings and quadrilaterals have independent theoretical inter-
est because of their crucial role in the theory of quasiconformal mappings [30]. These
quantities are closely related to certain physical constants, e.g. they play an impor-
tant role in applications involving the measurement of resistance values of integrated
circuit networks. But the problem of computing the moduli is also interesting in the
wider engineering context. The reciprocal identities (4.1) and (6.1) can be used to
generate test cases for curvilinear Lipschitz domains and thus should be standard
tools in the FEM-software development community. Unfortunately these identities
are missing from the introductory FEM textbooks. Although the experimental re-
sults in this paper show that the reciprocal identities provide error estimates similar
to the true error (in cases where the exact analytic result is known) more investiga-
tions are needed to properly study their applicability in other contexts. Even though
our interest lies in the high-order methods, these test cases are equally valid for any
numerical PDE methods and mesh adaptation in particular.

One specific application area of the algorithms presented here is the simulation
of measurements for the 2D electrical impedance tomography (EIT) [26]. In EIT
problems a number of electrodes are placed on the boundary of the domain and current
patterns are considered between every pair of them. Indeed, computing the moduli
can be considered as a very crude model for the so-called EIT background forward
problem. In general, the meshes for the EIT forward problems can be adapted using
the approaches outlined below. High level of accuracy is necessary for precise control
of artificial noise in the simulations.

A general observation about the literature seems to be that reported numerical
values of the moduli of concrete quadrilaterals (or ring domains) are hard to find.
Perhaps the longest list of numerical results is given in [9] where pointers to earlier
literature may be found. The recent book [36] lists also many such numerical values.
In our opinion a catalogue of these numerical values in the simplest cases would be
desirable for instance for reference purposes. The book [39] and the paper [35, p. 127]
list certain engineering formulas which have been applied in VLSI circuit design.

An outline of the structure of this paper now follows. First, in Section 2 we
describe the methods used in this paper. In Section 3 we discuss in detail the various
FEM methods used here, in particular the hp-method which was implemented and
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applied to generate some of the results reported below. Another method we use is the
h-adaptive software package AFEM of K. Samuelsson, which implements an adaptive
FEM method and which was previously used in [9]. In the present paper we use
the AFEM method to compute the modulus of a quadrilateral whereas in [9] it was
used merely for the computation of the moduli of ring domains. In Section 4 a test
problem for quadrilaterals is described together with its analytic solution, following
[22]. This analytic solution requires, however, an application of a numerical root
finding program. Accordingly, this formula is analytic-numeric in its character. In
Section 5 we check several methods against this analytic formula in a test involving a
family of convex quadrilaterals. The methods discussed are the analytic formula from
[22], the Schwarz-Christoffel Toolbox of [17, 18], the AFEM method of Samuelsson [9]
and the present hp-method. On the basis of these experiments, an accuracy ranking
of the methods is given in Section 5. In Section 6 the more general case of polygonal
quadrilaterals is investigated, in particular L-shaped domains, and the results are
compared to the literature. In Section 7 we discuss the computation of the modulus
of a ring domain in a few special cases. For instance, for “the cross in square”
ring domain considered previously in [9, Example 4] we now obtain much improved
accuracy. In Section 8 we compute some examples with the hp-FEM which are difficult
for other methods. In Section 9 our results and discoveries are summarized.

2. Methods. The following problem is known as the Dirichlét-Neumann prob-
lem. Let D be a region in the complex plane whose boundary ∂D consists of a finite
number of regular Jordan curves, so that at every point, except possibly at finitely
many points, of the boundary a normal is defined. Let ∂D = A∪B where A,B both
are unions of Jordan arcs. Let ψA, ψB be a real-valued continuous functions defined
on A,B, respectively. Find a function u satisfying the following conditions:

(i) u is continuous and differentiable in D.
(ii) u(t) = ψA(t), for all t ∈ A.
(iii) If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψB(t), for all t ∈ B.

2.1. Modulus of a quadrilateral and Dirichlét integrals. One can ex-
press the modulus of a quadrilateral (D; z1, z2, z3, z4) in terms of the solution of the
Dirichlét-Neumann problem as follows. Let γj , j = 1, 2, 3, 4 be the arcs of ∂D between
(z4, z1) , (z1, z2) , (z2, z3) , (z3, z4), respectively. If u is the (unique) harmonic solution
of the Dirichlét-Neumann problem with boundary values of u equal to 0 on γ2, equal
to 1 on γ4 and with ∂u/∂n = 0 on γ1 ∪ γ3 , then by [1, p. 65/Thm 4.5]:

M(D; z1, z2, z3, z4) =

∫
D

|∇u|2 dm. (2.1)

2.2. Modulus of a ring domain and Dirichlét integrals. Let E and F be
two disjoint compact sets in the extended complex plane C∞. Then one of the sets
E, F is bounded and without loss of generality we may assume that it is E . If both
E and F are connected and the set R = C∞ \ (E ∪ F ) is connected, then R is called
a ring domain. In this case R is a doubly connected plane domain. The capacity of
R is defined by

capR = inf
u

∫
R

|∇u|2 dm,
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where the infimum is taken over all nonnegative, piecewise differentiable functions
u with compact support in R ∪ E such that u = 1 on E. It is well-known that the
harmonic function on R with boundary values 1 on E and 0 on F is the unique function
that minimizes the above integral. In other words, the minimizer may be found by
solving the Dirichlét problem for the Laplace equation in R with boundary values 1
on the bounded boundary component E and 0 on the other boundary component F .
A ring domain R can be mapped conformally onto the annulus {z : e−M < |z| < 1},
where M = M(R) is the conformal modulus of the ring domain R . The modulus and
capacity of a ring domain are connected by the simple identity M(R) = 2π/ capR.
For more information on the modulus of a ring domain and its applications in complex
analysis the reader is referred to [1, 23, 28, 30, 36].

2.3. Classification of methods for numerical computing. For the compu-
tation of the modulus of a quadrilateral or of a ring domain there are two natural
approaches

(i) methods based on the definition of the modulus and on the use of a conformal
mapping onto a canonical rectangle or annulus,

(ii) methods that give only the modulus, not the canonical conformal map.
In some sense, methods of class (i) give a lot of extra information, namely the con-
formal mapping – all we want is a single real number. Methods of class (ii) rely on
solving the Dirichlét-Neumann boundary value problem or Dirichlét problem for the
Laplace equation as described above.

In this paper we will mainly use methods of type (ii) that make use of adaptive
FEM methods for solving the Laplace equation.

2.4. Review of the literature on numerical conformal mapping. With the
exception of a few special cases, both of the above methods lead to extensive numerical
computation. For both classes of methods there are several options in the literature,
see for instance the bibliography of [9]. Various aspects of the theory and practice of
numerical conformal mapping are reviewed in the monographs [18, 29, 36, 39]. See
also the authoritative surveys [20, 34, 44, 45].

Recently numerical conformal mappings have been studied from various points
of view and in various applications by many authors, see e.g. [2, 8, 13, 14, 15, 27,
32, 37, 38]. In [36, Chapter 3] N. Papamichael and N. Stylianopoulos describe the
so-called domain decomposition method for the computation of the modulus of a
quadrilateral which is designed for the case of elongated quadrilaterals and applies
e.g. to polygonal quadrilaterals that can be decomposed into simple pieces whose
moduli can be estimated. As an example they consider a spiraling quadrilateral that
can be decomposed into a “sum” of 13 trapezoids and report results that are expected
to be correct up to 7 decimal places. Therefore, this method seems very attractive
for the computation of the modulus of a special class of quadrilaterals. A key feature
of the method is that it reduces the numerical difficulties caused by the crowding
phenomenon for this special class of quadrilaterals.

3. p-, and hp-finite element method. In the paper [9] the modulus of a ring
domain was computed with the help of the software package AFEM of K. Samuelsson,
based on an h-adaptive finite element method. It can be easily applied to compute
the modulus of a quadrilateral.

In this section we describe the high-order p-, and hp-finite element methods. The
paper of Babuška and Suri [7] gives an accessible overview of the method. For a more
detailed exposition we refer to Schwab [40], and for those familiar with engineering
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approach the book by Szabo and Babuška [42] is recommended. For the applications
considered in this paper, any finite element computation requires at least the choice
of the following.

1. Initial discretization of the domain. In 2D each discretization or mesh divides
the domain into elements, plane regions with piecewise smooth boundaries. These are
usually either triangles or quadrilaterals.

2. Refinement strategy. The choice of the refinement strategy is connected to
choosing the finite element method (FEM): mesh refinement (h-method), elementwise
polynomial order (p-method), or both above (hp-method). The unknowns or degrees
of freedom are the coefficients of the chosen shape functions. In the h-version the
shape functions are such that the coefficients are also values of the solution at specified
locations of the discretization of the computational domain, that is, the nodes of the
mesh. In the p-method, the shape functions are polynomials that are associated with
topological entities of the elements, nodes, sides, and interior. Thus, in addition
to increasing accuracy through refining the mesh, we have an additional refinement
parameter, the polynomial degree p.

Both choices will have an influence on the performance and the accuracy attained
with the chosen method. The mutual influence of these choices is hard to analyze
theoretically but usually it may be seen in the results. For instance, we have observed
that the choice of the intitial mesh and the mesh refinement strategy may limit the
accuracy achieved by the hp-method and therefore it is useful to try a few initial
meshes.

Let us next define a p-type quadrilateral element. The construction of triangles
is similar and can be found from the references given above.

3.1. Shape functions. Many different selections of shape functions are possible.
We follow Szabo and Babuška [42] and present the so-called hierarchic shape functions.

Legendre polynomials of degree n can be defined using a recursion formula

(n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0, P0(x) = 1. (3.1)

The derivatives can similarly be computed using a recursion

(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x). (3.2)

For our purposes the central polynomials are the integrated Legendre polynomials
for x ∈ [−1, 1]

φn(ξ) =

√
2n− 1

2

∫ ξ

−1

Pn−1(t) dt, n = 2, 3, . . . (3.3)

which can be rewritten as linear combinations of Legendre polynomials

φn(ξ) =
1√

2(2n− 1)
(Pn(ξ)− Pn−2(ξ)) , n = 2, 3, . . . (3.4)

The normalizing coefficients are chosen so that∫ 1

−1

dφi(ξ)

dξ

dφj(ξ)

dξ
dξ = δij , i, j ≥ 2. (3.5)

We can now define the shape functions for a quadrilateral reference element over
the domain [−1, 1] × [−1, 1]. The shape functions are divided into three categories:
nodal shape functions, side modes, and internal modes.
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3.2. Nodal shape functions. There are four nodal shape functions:

N1(ξ, η) =
1

4
(1− ξ)(1− η),

N2(ξ, η) =
1

4
(1 + ξ)(1− η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η),

N4(ξ, η) =
1

4
(1− ξ)(1 + η).

Taken alone, these shapes define the standard four-node quadrilateral finite element.

3.3. Side shape functions. There are 4(p− 1) side modes associated with the
sides of a quadrilateral (p ≥ 2).

N
(1)
i (ξ, η) =

1

2
(1− η)φi(ξ), i = 2, . . . , p,

N
(2)
i (ξ, η) =

1

2
(1 + ξ)φi(η), i = 2, . . . , p,

N
(3)
i (ξ, η) =

1

2
(1 + η)φi(η), i = 2, . . . , p,

N
(4)
i (ξ, η) =

1

2
(1− ξ)φi(ξ), i = 2, . . . , p.

3.4. Internal shape functions. For the internal modes we have two options.
The so-called trunk space has (p− 2)(p− 3)/2 shapes

N0
i,j(ξ, η) = φi(ξ)φj(η), i, j ≥ 2, i+ j = 4, 5, . . . , p, (3.6)

whereas the full space has (p− 1)(p− 1) shapes

N0
i,j(ξ, η) = φi(ξ)φj(η), i = 2, . . . , p, j = 2, . . . , p. (3.7)

In this paper we always use the full space. The internal shape functions are often
referred to as bubble-functions.

3.5. Parity problem. The Legendre polynomials have the property Pn(−x) =
(−1)nPn(x). In 2D all internal edges of the mesh are shared by two different elements.
We must ensure that each edge has the same global parameterization in both elements.
This additional book-keeping is not necessary in the standard h-FEM.

3.6. Resource requirements. We have seen that the number of unknowns in
a p-type quadrilateral is (p+ 2)(p+ 3)/2− p or 4p+ (p− 1)2 if the internal modes are
from trunk or full space, respectively. To compensate this, the number of elements
is naturally taken to be as small as possible. Indeed, when the mesh is adapted in
a suitable way, the dimension of the overall linear system can be significantly lower
than in the corresponding h-method. However, the matrices tend to be denser in the
p-method, so the space requirements in relation to the dimension of the linear system
are greater for the p-method.
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Fig. 1. Geometric mesh for a general quadrilateral.

3.7. Proper grading of the meshes. For a certain class of problems it can
be shown that if the mesh and the elemental degrees have been set optimally, we can
obtain exponential convergence. A geometric mesh is such that each successive layer
of elements changes in size with some geometric scaling factor α, toward some point
of interest. In this case, the points of interest are always corner points.

The following theorem is due to Babuška and Guo [5]. Note that construction
of appropriate spaces is technical. For rigorous treatment of the theory involved see
Schwab [40], Babuška and Guo [6] and references therein.

Theorem 1. Let Ω ⊂ R2 be a polygon, v the FEM-solution, and let the weak
solution u0 be in a suitable countably normed space where the derivatives of arbitrarily
high order are controlled. Then

inf
v
‖u0 − v‖H1(Ω) ≤ C exp(−b 3

√
N),

where C and b are independent of N , the number of degrees of freedom. Here v is
computed on a proper geometric mesh, where the orders of individual elements depend
on their originating layer, such that the highest layers have the smallest orders.

The result also holds for constant polynomial degree distribution.

Let us denote the number of the highest layer with ν, the nesting level. Using
this notation we can refer to geometric meshes as (α, ν)-meshes.

In Figure 1 we show a geometric mesh template for a non-convex quadrilateral.
Here we require that each node lies at the end point of an edge and that the meshlines
follow the guidelines of the geometric meshes.

In Figure 2 a sequence of graded meshes is shown. In the middle and the rightmost
meshes the number of elements is the same because the nesting level is the same, only
the scaling factor changes.

3.8. Generating geometric meshes. Here we consider generation of geometric
meshes in polygonal domains. We use the following two-phase algorithm:

1. Generate a minimal mesh (triangulation) where the corners are isolated with
a fixed number of triangles depending on the interior angle, θ so that the refinements
can be carried out independently:

(i) θ ≤ π/2: one triangle,
(ii) π/2 < θ ≤ π: two triangles, and
(iii) π < θ: three triangles.
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Fig. 2. Graded meshes: Effect of the scaling factor. From left to right, template mesh, (α, ν) =
(1/2, 3), (α, ν) = (1/6, 3).

Fig. 3. Three sample meshes used in numerical experiments below. Note the refinement of the
mesh structure close to the corner points.

2. Every triangle attached to a corner is replaced by a refinement, where the
edges incident to the corner are split as specified by the scaling factor α. This process
is repeated recursively until the desired nesting level ν is reached. Note that the mesh
may include quadrilaterals after refinement.

In Figure 2 we can also see our preferred element subdivisions: triangle to (quadri-
lateral, triangle)-pair, and quadrilateral to three quadrilaterals. These two rules are
sufficient for our purposes since we always grade toward a corner point. Using this,
we can derive a simple estimate for the number of degrees of freedom N . Letting T
denote the number of elements in the initial mesh, and C the number of corners in
the domain (or those used in refining):

N ∼ (T + 6Cν)p2, (3.8)

where the constant 6 is the product of the maximal number of elements surrounding
a corner, 3, and the maximal number of new elements per level, 2.

Finally, in Figure 3 three minimal meshes and in Figure 4 one final mesh are
shown.

3.9. Domains with curved boundaries. Since we want to use as large ele-
ments as possible, it is important to represent curved boundary segments accurately.
The linear blending function method of Gordon and Hall [21] is our choice for this
purpose.

In the general case all sides of an element can be curved as in Figure 5. We
assume that every side is parameterized:

x = xi(t), y = yi(t), −1 ≤ t ≤ 1, i = 1, . . . ,number of sides (3.9)

Using capital letters as coordinates of the corner points, (Xi, Yi), we can write the
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Fig. 4. Final geometric or (0.15, 12)-mesh. Due to small α only first two levels are visible.

A B

A

D

C

D C

B

x

yξ

η

Fig. 5. Curved boundary mapping.

mapping for the global x-coordinates of a quadrilateral as

x =
1

2
(1− η)x1(ξ) +

1

2
(1 + ξ)x2(η) +

1

2
(1 + η)x3(ξ) +

1

2
(1− ξ)x4(η)

− 1

4
(1− ξ)(1− η)X1 −

1

4
(1 + ξ)(1 + η)X2 −

1

4
(1 + ξ)(1 + η)X3

− 1

4
(1− ξ)(1 + η)X4,

(3.10)

and symmetrically for the y-coordinate. Note, that if the side parameterizations
represent straight edges, the mapping simplifies to the standard bilinear mapping of
quadrilaterals.

In the following we always use exact representation of the geometry which implies
that in the ensuing mesh grading process no approximation of geometry is necessary.
Here the mesh generation of the curved domains is template-based, thus the changes
in curvature are not automatically dealt with. For a highly accessible review of the
p-method mesh generation issues we refer to [31].

4. Convex quadrilateral. In this section our goal is to introduce a test prob-
lem, whose solution is determined by a transcendental equation. This equation can be
numerically solved to the desired accuracy and we will use this to check the validity of
the numerical methods we use as well as to obtain an experimental estimate for their
accuracy. The test problems we consider are convex polygonal quadrilaterals. The
simplest such quadrilateral consists of the four vertices and the line segments joining
the vertices. Let z1, z2, z3, z4 ∈ C be distinct points and suppose that the polygonal
line that results from connecting these points by segments in the order z1, z2, z3, z4, z1
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forms the positively oriented boundary of a domain Q. For simplicity, we denote by
QM(z1, z2, z3, z4) the modulus M(Q; z1, z2, z3, z4). Then the modulus is a conformal
invariant in the following sense: If f : Q→ fQ is a conformal mapping onto a Jordan
domain fQ, then f has a homeomorphic extension to the closure Q (also denoted by
f) and

M(Q; z1, z2, z3, z4) = M(fQ; f(z1), f(z2), f(z3), f(z4)) .

It is clear by geometry that the following reciprocal identity holds:

M(Q; z1, z2, z3, z4)M(Q; z2, z3, z4, z1) = 1. (4.1)

There are two particular cases, where we can immediately give QM(z1, z2, z3, z4).
The first case occurs, when all the sides are of equal length (i.e. the quadrilat-
eral is a rhombus) and in this case the modulus is 1 , see [22]. In the second case
(Q; z1, z2, z3, z4) is the rectangle (Q; 1+ih, ih, 0, 1), h > 0, and QM(1+ih, ih, 0, 1) = h.

4.1. Basic identity. In [22, 2.11] some identities satisfied by the function QM(a, b, 0, 1)
were pointed out. We will need here the following one, which is the basic reciprocal
identity (4.1) rewritten for the expression QM :

QM(a, b, 0, 1) ·QM((b− 1)/(a− 1), 1/(1− a), 0, 1) = 1 . (4.2)

We shall consider here the following particular cases of this reciprocal identity:
(a) parallelogram, (b) trapezoid with angles (π/4, 3π/4, π/2, π/2), and (c) a convex
polygonal quadrilateral. Note that for the cases (a) and (b) the formula is less complex
than for the general case (c).

4.2. The hypergeometric function and complete elliptic integrals. Given
complex numbers a, b, and c with c 6= 0,−1,−2, . . ., the Gaussian hypergeometric
function is the analytic continuation to the slit plane C \ [1,∞) of the series

F (a, b; c; z) = 2F1(a, b; c; z) =

∞∑
n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1 . (4.3)

Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function or the Appell
symbol

(a, n) = a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N \ {0}, where N = {0, 1, 2, . . .} and the elliptic integrals K(r),K
′
(r) are

defined by

K(r) =
π

2
F (1/2, 1/2; 1; r2), K

′
(r) = K(r′), and r′ =

√
1− r2.

Some basic properties of these functions can be found in [4] and [33].

4.3. Parallelogram. For t ∈ (0, π) and h > 0 let

g(t, h) ≡ QM(1 + heit, heit, 0, 1).

An analytic expression for this function has been given in [3, 2.3]:

g(t, h) = K
′
(rt/π)/K(rt/π), (4.4)
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where

ra = µ−1
a

(
πh

2 sin(πa)

)
, for 0 < a < 1, (4.5)

and the decreasing homeomorphism µa : (0, 1)→ (0,∞) is defined by

µa(r) ≡ π

2 sin(πa)

F (a, 1− a; 1; 1− r2)

F (a, 1− a; 1; r2)
. (4.6)

Theorem 2. [22] Let 0 < a, b < 1, max{a + b, 1} ≤ c ≤ 1 + min{a, b}, and let
Q be the quadrilateral in the upper half plane H = {z ∈ C : Im z > 0} with vertices
0, 1, A and B, the interior angles at which are, respectively, bπ, (c− b)π, (1− a)π and
(1 + a− c)π. Then the conformal modulus of Q is given by

QM(A,B, 0, 1) ≡ M(Q) = K(r′)/K(r), (4.7)

where r ∈ (0, 1) satisfies the equation

A− 1 =
Lr′

2(c−a−b)
F (c− a, c− b; c+ 1− a− b; r′2)

F (a, b; c; r2)
, (4.8)

say, and

L =
B(c− b, 1− a)

B(b, c− b)
e(b+1−c)iπ.

For a fixed complex number b with Im(b) > 0 define the following function
g(x, y) = QM(x + i · y, b, 0, 1) for x ∈ R, y > 0 . This is well-defined only if the
polygonal domain with vertices x+ i · y, b, 0, 1 is positively oriented. This holds e.g.
if Re(b) < 0 and x > 0. It is a natural question to study the level sets of the func-
tion g . This function tells us how the modulus of a polygonal quadrilateral changes
when three vertices are kept fixed and the fourth one is moving. For instance, it was
shown in [19] that the function decreases when we move the fourth vertex into certain
directions.

4.4. Trapezoid (Burnside [12]). In [9, pp. 237-239] so called square frame,
the domain between two concentric squares with parallel sides, was considered. Such
a domain can be split into 8 similar quadrilaterals, and we shall study here one such
quadrilateral with vertices 1 + hi, (h− 1)i, 0, and 1, h > 1. When h > 1 we have by
[10, pp. 103-104], [12]

M(Q; 1 + hi, (h− 1)i, 0, 1) ≡M(h) ≡K(r)/K(r′) (4.9)

where

r =

(
t1 − t2
t1 + t2

)2

, t1 = µ−1
1/2

( π
2c

)
, t2 = µ−1

1/2

(πc
2

)
, c = 2h− 1 .

Therefore, the quadrilateral can be conformally mapped onto the rectangle 1+iM(h),
iM(h), 0, 1, with the vertices corresponding to each other. It is clear that h − 1 ≤
M(h) ≤ h . The formula (4.9) has the following approximative version

M(h) = h+ c+O(e−πh), c = −1/2− log 2/π ≈ −0.720636 ,

given in [35]. As far as we know there is neither an explicit nor asymptotic formula
for the case when the angle π/4 of the trapezoid is replaced by an angle equal to
α ∈ (0, π/2) .
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4.5. Numerical computation of elliptic integrals. The computation of the
elliptic integrals is efficiently carried out by classical methods available in most pro-
gramming environments. Numerical estimates for K(r), and hence for µ1/2(r), are
obtained very efficiently by the following recursive method. For r ∈ (0, 1) let{

a0 = 1, b0 = r′ =
√

1− r2,
an+1 = (an + bn)/2, bn+1 =

√
anbn,

Then the sequences (an) and (bn) have the common limit π/(2K(r)), and, for each
y ∈ (0,∞) we can approximate µ−1

1/2(y) numerically by the Newton-Raphson iteration.

For details. see e.g. [4, 3.22, 5.32] and [22, 2.11].

5. Validation of algorithms: convex quadrilaterals. Validation of the algo-
rithms for the modulus of a quadrilateral will be discussed in two main cases: convex
quadrilaterals and the case of a general polygonal quadrilateral. In this section the
case of a convex quadrilateral will be discussed for the following three algorithms: (a)
the SC Toolbox in MATLAB written by Driscoll [17], (b) the AFEM software due
to Samuelsson [9], (c) the hp-method of the present paper implemented in the Math-
ematica language using the double precision. The reference computation is carried
out by the algorithm of [22], implemented in [22] in the Mathematica language (the
algorithm QM[A,B] implementing the formula in Theorem 2). This implementation
makes use of multiple precision arithmetic for root finding of a transcendental equa-
tion involving the hypergeometric function. All the SC Toolbox tests in this paper
were carried out with the settings precision = 1e-14.

5.1. Setup of the validation test. All our tests were carried out in the same
fashion using the reciprocal identity (4.2) and considering a quadrilateral with the
vertices a, b, 0, 1 with Im a > 0, Im b > 0, and the line segments joining the vertices as
the boundary arcs. The vertices b, 0, 1 were kept fixed and the vertex a varied over a
rectangular region in the complex plane. The numerical value b = −0.2 + i · 1.2 was
used and the lower left (upper right) corner of the rectangular region was 0.5 + i · 0.2
(1.5 + i · 1.2). Examples of such quadrilaterals, along with some minimal meshes used
in the computation, are illustrated in Figure 3. The test functional, based on the
reciprocal identity (4.2), is

test(a, b) =
∣∣QM(a, b, 0, 1)QM

(
(b− 1)/(a− 1), 1/(1− a), 0, 1

)
− 1
∣∣ (5.1)

which vanishes identically. The values of this test functional are reported in Table
1 for the fixed value b = −0.2 + i · 1.2 when a runs through the aforementioned
rectangular region. A table of values of QM(m + in, i, 0, 1), m,n = 1, . . . , 5 is given
in [22, Table 1].

Table 1
Tests related to the convex quadrilateral, with (0.15, 18)-meshes used in the hp-method.

Method Error range (test(a, b))
AFEM 1.15 · 10−11 1.41 · 10−8

SC Toolbox 1.11 · 10−16 1.55 · 10−14

hp-method (p = 12) 6.51 · 10−14 7.84 · 10−9

hp-method (p = 15) 2.22 · 10−16 1.42 · 10−10

hp-method (p = 18) 1.11 · 10−16 3.90 · 10−12
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Fig. 6. Logarithm (with base 10) of errors over the domain [0.1, 2] × [0.1, 2], corresponding to
values of p = 12, 15, 18 starting from above. The error estimate is obtained by using the identity
(4.2).

5.2. The reference computation. We used the Mathematica script of [22] for
solving the equation in Theorem 2 for the computation of QM(a, b, 0, 1) in order to
carry out the test. The conclusion was that the amplitude of the error was roughly
10−17 i.e. there was practically no error. Note that the quadrilateral here is not
always convex. On the basis of numerical experiments, it seems that the reference
method of [22] does also work in non-convex cases, but this has not been rigorously
proved.

6. Validation: polygonal quadrilaterals. In this section we will consider the
validation of the algorithms for the modulus of a quadrilateral in the case of polygonal
domains with q > 4 vertices. In the case considered in the previous section there was a
reference computational method, providing the reference value for the moduli. There
is no similar formula available for the general polygonal case.

6.1. Setup of the validation test. All our tests were carried out in the same
fashion as in the previous section, using the reciprocal identity (4.2). We selected a
quadruple of points {z1, z2, z3, z4} , which is a subset of the set of vertices defining the
polygon D , and assume that these are positively oriented. Thus (D; z1, z2, z3, z4) is
a quadrilateral to which the reciprocal identity (4.2) applies.

6.2. The notation cmodu(w, k1, k2) and modu(w, k1, k2). Suppose that w is a
vector of p complex numbers such that the points w1, . . . , wq, q ≥ 5, are the vertices
of a polygon D and that they define a positive orientation of the boundary. Choose
indices k1, k2 ∈ {1, . . . , p− 1} with k1 < k2 and set z1 = wk1 , z2 = wk1+1, z3 = wk2 ,
z4 = wk2+1 . Then we define

cmodu(w, k1, k2) = M(D; z1, z2, z3, z4) , modu(w, k1, k2) = M(D; z2, z3, z4, z1) .

By the reciprocal relation (4.1) we have

cmodu(w, k1, k2) ·modu(w, k1, k2) = 1 . (6.1)

6.3. L-shaped region. The L-shaped region:

L(a, b, c, d) = L1 ∪ L2, L1 = {z ∈ C : 0 < Re(z) < a, 0 < Im(z) < b},

L2 = {z ∈ C : 0 < Re(z) < d, 0 < Im(z) < c} , 0 < d < a, 0 < b < c ,

is a standard domain considered by several authors for various computational tasks.
In the context of computation of the moduli it was investigated by Gaier [20] and we
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will compare our results to his results. In the test cases all the vertices had integer
coordinates in the range [1, 4] . Since we consider an integer coordinate domain, simple
quadrilateral grid has the desired properties of the minimal mesh, see Figure 8. An
example of such a mesh is shown in Figure 9. The results are summarized in Table 2,
and the potential functions are illustrated by Figure 7.

Fig. 7. Potential functions in the case of L-shaped region 6.3. The vertices of the region
Q are z1 = (0, 0), z2 = (3, 0), z3 = (3, 1), z4 = (2, 1), z5 = (2, 2) and z6 = (0, 2). Poten-
tial functions related to M(Q; z2, z4, z6, z1) ≈ 1.5081540958548603 (left), and M(Q; z1, z2, z4, z6) ≈
0.6630622181450123 (right), are illustrated.

Table 2
Tests of (6.1) for L-shaped regions (see 6.3 and Figure 7), with (0.15, 12)-meshes used in the

hp-method.

Method Error range
AFEM 1.80 · 10−10 7.10 · 10−10

SC Toolbox 2.22 · 10−16 2.58 · 10−14

hp-method (p = 12) 4.01 · 10−11 1.59 · 10−10

hp-method (p = 16) 8.03 · 10−13 2.28 · 10−12

hp-method (p = 20) 5.98 · 10−13 1.80 · 10−12

Table 3
Table of capacity values for square in square 7.1, p = 16. Error is the difference to the exact

value 4π/µ1/2(r), where r is as in (7.1).

a Capacity Error (hp) Error (SC)
0.1 2.83977741905223 2.35 · 10−15 3.17 · 10−14

0.2 4.134487024234081 1.93 · 10−15 2.10 · 10−15

0.3 5.632828000941654 1.58 · 10−16 2.69 · 10−16

0.4 7.5615315398105745 1.17 · 10−15 1.50 · 10−16

0.5 10.23409256936805 1.74 · 10−16 3.42 · 10−16

0.6 14.234879675824363 7.49 · 10−16 1.35 · 10−15

0.7 20.901581676413954 0. 2.89 · 10−16

0.8 34.23491519877346 6.23 · 10−16 3.61 · 10−16

0.9 74.23491519877882 3.83 · 10−16 8.31 · 10−15

7. Ring domains. In this section, we compare hp-FEM with exact values and
with AFEM and SC Toolbox in certain ring domains. The square in square and cross
in square cases were previously considered in [9] and numerical values were reported
in [9, Table1, Table 4]. Our numerical results in Tables 3 and 4 provide 12 decimal
places whereas in [9] only 6 decimal places were given. Due to the symmetry of the
situation it is possible to reduce the computational load for some domains. Of these
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Fig. 8. Minimal (see 3.8) meshes for domains of 6.3 and 7.1.

Table 4
Table of capacity values for cross in square 7.2, p = 16. The numerical values and their

respective differences are given.

a b c Capacity (SC) Capacity (hp) Difference
0.5 1.2 1.5 21.94721953515564 21.94721953515577 5.99 · 10−15

0.5 1.0 1.5 14.00279904484107 14.00279904484109 8.88 · 10−16

0.2 0.7 1.2 9.186926595881523 9.186926595881525 1.93 · 10−16

0.1 0.8 1.1 11.256582318490887 11.256582318490889 1.58 · 10−16

0.5 0.6 1.5 7.323269585560689 7.323269585567927 9.88 · 10−13

0.1 1.2 1.3 23.13861453810508 23.13861453810529 8.91 · 10−15

we discuss here two cases: (a) square in square 7.1 and (b) cross in square 7.2. These
ring domains are symmetric with respect to both the x- and y-axes, and they are
divided into four similar parts by the coordinate axes.

7.1. Square in square. We compute here the capacity of the ring domain with
plates E = [−a, a] × [−a, a] and F = C∞ \ ((−1, 1) × (−1, 1)), 0 < a < 1. The
results with SC and the hp-method with (0.15, 16)-meshes are summarized in Table
1. For computation of the capacity, the ring domain is first split into four similar
quadrilaterals. For the potential function, see Figure 10. Note that in this case,
the exact values of the potential are known, see (4.9) and the related trapezoid type
quadrilateral example. Explicitly, with c = (1− a)/(1 + a) and

u = µ−1
1/2

(
π c

2

)
, v = µ−1

1/2

(
π

2c

)
, r =

(
u− v
u+ v

)2

, (7.1)

the capacity equals 4π/µ1/2(r) .

7.2. Cross in square. Let Gab = {(x, y) : |x| ≤ a, |y| ≤ b} ∪ {(x, y) : |x| ≤
b, |y| ≤ a}. and Gc = {(x, y) : |x| < c, |y| < c}, where a < c and b < c. We compute
the capacity of the ring domain R = Gc\Gab. The results with SC and the hp-method
with (0.15, 16)-meshes are summarized in Table 4. For computation of the capacity,
the ring domain is again first split into four similar quadrilaterals. The mesh for the
quadrilaterals is given in Figure 9, and the potential function is given in Figure 10.
The exact values are not known in this case.

Since the underlying mesh topology remains constant in both examples above we
have computed the results using exactly the same mesh template for every subproblem,
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a

b

c

Fig. 9. Meshing setup for cross in square.

Fig. 10. Potential functions: square in square and cross in square. Because of the symmetry,
only one fourth of the picture is shown.

e.g. Figure 9 for Cross in square, a = 0.5, b = 1.2, c = 1.5, except for the extremal
cases in terms of element distortion a = 0.9 for the square in square, and the case
a = 0.5, b = 0.6, c = 1.5 for cross in square. Thus, the results also measure the
robustness of the method with respect to moderate element distortion. Also, in both
cases due to symmetry we have graded the mesh only to the reentrant corners of the
domain.

Fig. 11. Rectangle in rectangle; {a, b, c, d} = {4, 1, 6, 2}, the minimal mesh and the potential
function.

7.3. Rectangle in rectangle. Let Gabcd = {(x, y) : a ≤ x ≤ c, b ≤ y ≤ d}
and G = {(x, y) : 0 ≤ x ≤ 7, 0 ≤ y ≤ 4}. We compute the capacity of the ring
domain R = G\Gabcd. Here we consider a subset of possible cases when a, b, c, d ∈ N.
The results computed using the hp-method with (0.15, 16)-meshes are summarized in
Table 5. The potential function for the case {a, b, c, d} = {4, 1, 6, 2} is given in Figure
11. The exact values are not known in this case.
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Fig. 12. The quadrilateral (QA;π/12, π, 3π/2, 1), the (final) mesh and the potential function.
The relative error is 1.23 · 10−13.

Fig. 13. The quadrilateral (QA;π/12, 17π/12, 3π/2, 1), the (final) mesh and the potential func-
tion. The relative error is 6.14 · 10−14.

Again, we have employed the same mesh template (simple quadrilateral grid as in
Figure 9) over the entire test set. Grading has been used in the corners of Gabcd only.
From results of Table 5 we can also see that some of the configurations are symmetric
in terms of capacity. In these cases the differences in the computed values are less
than 10−13.

Table 5
Table of capacity values for rectangle in rectangle 7.3.

a b c d p Capacity
1 1 2 2 20 5.210320385649294
1 1 3 2 19 6.746053277945276
1 1 4 2 20 8.27007839293125
1 1 5 2 19 9.86240917550835
1 1 6 2 17 11.89718127369752
2 1 3 2 18 4.692072335693745
2 1 4 2 18 6.232078709256309
2 1 5 2 20 7.827105378062926
2 1 6 2 17 9.86240917550835
3 1 4 2 17 4.621123827863167
3 1 5 2 20 6.232078709256313
3 1 6 2 18 8.2700783929313
4 1 5 2 19 4.69207233569376
4 1 6 2 20 6.746053277945233
5 1 6 2 20 5.210320385649318
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Fig. 14. The quadrilateral (QB ;π/12, π, 3π/2, 1), the minimal mesh and the potential function.
The relative error is 3.38 · 10−11.

Fig. 15. The quadrilateral (QB ;π/12, 17π/12, 3π/2, 1), the minimal mesh and the potential
function. The relative error is 5.17 · 10−11.

10.05.0 20.03.0 15.07.0
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10.05.0 20.03.0 15.07.0
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10-6

10-4

0.01

1

Fig. 16. The p-convergence of the reciprocal error for the quadrilaterals
(QA;π/12, 17π/12, 3π/2, 1) (left) and (QB ;π/12, 17π/12, 3π/2, 1) (right). Logarithmic scale.

10.05.02.0 3.0 7.0
10-10

10-8

10-6

10-4

Fig. 17. The ν-convergence of the reciprocal error for the quadrilateral (QB ;π/12, π, 3π/2, 1)
for different values of p; p = 8 dotted line, p = 12 dashed line, p = 16 dot-dashed line, p = 20 solid
line, ν = 2, . . . , 12, α = 0.15. Logarithmic scale.
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8. Domains with curved boundaries. In this section, we give further exam-
ples featuring domains with curved boundaries. Simple examples of such domains are
domains, where four or more points are connected with circular arcs. Some examples
related to numerical methods and Schwarz-Christoffel formula for such domains can
be found in the literature, e.g. [11, 24]. Our method has the advantage that even
more general quadrilaterals can be considered, as illustrated by examples given be-
low. Here the meshing has been tuned by monitoring the rate of convergence in the
polynomial degree. Both the minimal mesh and the scaling factor have been adjusted
until exponential convergence in p has been observed. Let us consider the quadrilat-
erals (QA;π/12, 17π/12, 3π/2, 1) and (QB ;π/12, 17π/12, 3π/2, 1). In Figures 16 and
17 the effects of choosing the polynomial order and the nesting level, respectively,
are shown. Since the boundary segments of (QA;π/12, 17π/12, 3π/2, 1) are orthog-
onal, there is no need to refine the mesh. For (QB ;π/12, 17π/12, 3π/2, 1) the effect
of nesting for a given p eventually diminishes as the errors from outside the corners
(sometimes referred to as the modelling error) start to dominate. On the other hand,
the smallest error for p = 20 is obtained at ν = 12. This error can only be made
smaller by modifying the minimal mesh and/or the value of the grading parameter α.

8.1. Circular quadrilaterals. The absolute ratio of four points a, b, c, d ∈ C is
defined as

|a, b, c, d| = |a− c||b− d]

|a− b||c− d|
. (8.1)

The main property of the absolute ratio is the Möbius invariance:

|a, b, c, d| =
∣∣w(a), w(b), w(c), w(d)

∣∣, (8.2)

if w is a Möbius transformation

w(z) =
kz + l

mz + n
, (kn−ml 6= 0). (8.3)

Given z1, z2, z3 on a circle (or on a line) and w1, w2, w3 on a circle (or on a line), there
exists a Möbius transformation w with w(zj) = wj , j = 1, 2, 3.

Table 6
Moduli of quadrilaterals (QA; eimπ/24, einπ/24, eirπ/24, 1) for several integer triples (m,n, r)

computed with the hp-method, p = 20.

Nodes Reference Computed value Relat. error Recipr. error
(2, 10, 12) 0.7071508111121534 0.7071508111121347 2.64 · 10−14 1.02 · 10−13

(2, 10, 14) 0.8074514311467651 0.8074514311467831 2.23 · 10−14 2.55 · 10−14

(4, 12, 18) 1.0383251171675787 1.0383251171675796 8.55 · 10−16 1.44 · 10−15

(6, 16, 24) 1.170060906774661 1.1700609067746603 5.69 · 10−16 2.22 · 10−15

(8, 22, 32) 1.313262425617007 1.3132624256170076 5.07 · 10−16 3.33 · 10−16

8.2. Type A. Let us first consider a quadrilateral whose sides are circular arcs
of intersecting orthogonal circles, i.e., angles are π/2. Let 0 < a < b < c < 2π and
choose the points {1, eia, eib, eic} on the unit circle with the absolute ratio∣∣1, eia, eib, eic∣∣ =

sin(b/2) sin((c− a)/2)

sin(a/2) sin((c− b)/2)
= u. (8.4)

Let QA stand for the domain which is obtained from the unit disk by cutting away
regions bounded by the two orthogonal arcs with endpoints {1, eia} and {eib, eic} ,
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respectively. Then QA determines a quadrilateral (QA; eia, eib, eic, 1) . Using a suitable
Möbius transformation and the invariance (8.2) we can map QA onto the upper half
of the annulus {z ∈ C : 1 < |z| < t} and we obtain the following formula:

M(QA; eia, eib, eic, 1) = π/ log t, (8.5)

i.e. a half of the modulus of the full annulus, where

t = 2u− 1 + 2
√
u2 − u, t > 1.

The results are summarized in Table 6.

Table 7
Moduli of quadrilaterals (QB ; eimπ/24, einπ/24, eirπ/24, 1) for several integer triples (m,n, r)

computed with the hp-method, p = 20.

Nodes Reference Computed value Relat. error Recipr. error
(2, 10, 12) 0.5389714947317054 0.5389714947624924 5.71 · 10−11 7.68 · 10−11

(2, 10, 14) 0.5953434982171909 0.5953434982359955 3.16 · 10−11 4.26 · 10−11

(4, 12, 18) 0.7121629047455362 0.7121629047457778 3.39 · 10−13 6.06 · 10−13

(6, 16, 24) 0.7718690862645192 0.7718690862646902 2.22 · 10−13 4.09 · 10−13

(8, 22, 32) 0.8319009599091923 0.8319009599093506 1.90 · 10−13 3.48 · 10−13

Table 8
Timing for (QB ; eiπ/12, eiπ , ei3π/2, 1), with (0.15, 12)-meshes (Apple Mac Pro 2009 Edition

2.26 GHz, Mathematica 7.0.1).

p Reciprocal error Number of d.o.f. Time (seconds) Setup/solve
8 1.6 · 10−5 6817 4.1 9.2
12 2.2 · 10−7 15025 9.7 3.9
16 2.8 · 10−9 26433 27 3.4
20 4.5 · 10−11 41041 67 3.3

8.3. Type B. Next we let the sides of the quadrilateral be circular arcs be of the
unit disk, and in this case all the angles are equal to π. Now the unit disk, together
with the boundary points eia, eib, eic, 1 determines a quadrilateral which we denote by
QB . Using an auxiliary Möbius transformation of the unit disk onto the upper half
plane we can readily express the modulus using the capacity of the Teichmüller ring
domain [4, Section 7] and express it as follows

M(QB ; eia, eib, eic, 1) =
1

2
τ(u− 1), (8.6)

where u is as in (8.4), and

τ(t) = π/µ1/2(1/
√

1 + t) , t > 0,

and µ1/2(r) is as in (4.6), gives the conformal capacity of the plane Teichmüller ring.
The results are summarized in Table 7.

In every test case, the local stiffness matrices have been integrated, then assembled
into the system matrix A, and finally two linear systems of equations derived from
A have been solved. We present timing results for the (QB ; eiπ/12, eiπ, ei3π/2, 1) with
ν = 12 in Table 8. This case was chosen because, due to the curved geometry, in
terms of numerical integration it represents the worst case. The total execution time
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in seconds and a dimensionless ratio, system setup time / time spent in the linear
solver, are given for the values of p = 8, 12, 16, 20. In this kind of experiments,
specifying the domain and the initial mesh are the most time consuming parts as
the execution times are at most minutes and for reasonable accuracy (as in p = 12)
seconds. As one would expect in Mathematica environment, in the range of problems
considered, the system setup time is much longer than time spent in solving the linear
systems.

Fig. 18. Wave: the minimal mesh and the potential function for 8.4.

Fig. 19. Flower I: the minimal mesh and the potential function. See also 8.5 and Table 9.

Fig. 20. Flower II: the minimal mesh and the potential function. See also 8.5 and Table 10.

Next we consider non-convex examples featuring quadrilaterals with curved bound-
aries which are not circular segments.

8.4. Wave. Let Q = {(x, y) : 0 < x < 1, sin(2πx)/4 < y < 1 + sin(2πx)/4}, and
z1 = (0, 0), z2 = (1, 0), z3 = (1, 1), z4 = (0, 1). Then the hp-method with p = 20 gives
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M(Q; z2, z3, z4, z1) ≈ 1.285385932609546. An error estimate based on the reciprocal
identity (4.1) is 2.66 · 10−15. For visualization, see Figure 18.

8.5. Flowers. LetQ be the domain bounded by the curve r(θ) = 0.8+t cos(nπθ),
0 ≤ θ ≤ 2π, n = 4, 6, 8 and t = 0.1 or t = 0.2 . Domains of this type are illustrated
in Figures 19 and 20. We compute moduli of quadrilaterals M(Q; z1, z2, z3, z4), where
zj = r(θj). We consider flower shaped quadrilaterals of type I with θj = (j − 1)π/2
for j = 1, 2, 3, 4, and type II, where θ1, θ2, θ3 are as before, and θ4 = 5π/4 (see Figures
19 and 20). The numerical results are summarized in Tables 9 and 10.

Table 9
Moduli of flower-shaped quadrilaterals (t, n) of type I computed with the hp-method, p = 20.

Note that, because of symmetry, it follows from (4.1) that the exact value of modulus is 1.

n Error (t = 0.1) Error (t = 0.2)
4 3.18 · 10−14 2.25 · 10−14

6 3.74 · 10−11 8.45 · 10−11

8 1.34 · 10−13 6.27 · 10−11

Table 10
Moduli of flower-shaped quadrilaterals (t, n) of type II computed with the hp-method, p = 20.

The error estimate is obtained by using the reciprocal identity (4.1).

n t Error Modulus
4 0.1 2.00 · 10−15 0.8196442147286799
4 0.2 1.40 · 10−13 0.8196441884805612
6 0.1 2.34 · 10−14 0.7896695654987764
6 0.2 1.43 · 10−10 0.7690460663235661
8 0.1 9.05 · 10−14 0.8196441884804566
8 0.2 1.38 · 10−10 0.8196441885295815

9. Summary. The computation of the moduli of quadrilaterals and ring domains
with piecewise smooth boundaries is a problem frequently occurring in various appli-
cations, see [36]. There is no general method for such computations except perhaps
the case of polygonal quadrilaterals when the SC Toolbox [17, 18] may be considered
as the “state-of-the-art” tool. For the case of ring domains there is no such general
tool, but the adaptive finite element software AFEM of K. Samuelsson [9] has turned
out to be effective in a number of cases reported in [9]. For the purposes of this
paper the so called hp-FEM method implemented by H. Hakula, and first reported in
this paper, is used in several examples with curvilinear boundaries where the previous
methods do not apply. The hp-FEM method, applied to the computation of moduli of
two ring domains previously considered in [9] and reported in Tables 3 and 4, provide
a significant improvement over the values reported in [9].

For experimental error estimate we have used so called reciprocal identity, which
we have not seen used anywhere for the purpose of error estimation. It is our belief
that this simple identity should be more widely known. It provides a criterion for
estimating the error of numerical computation of the modulus of a quadrilateral for a
very large class of simply connected domains, including those with curved piecewise
smooth boundaries. It seems that such a large class of examples has previously not
been known for instance in the FEM community. These examples also enable one
to experimentally demonstrate the theoretical convergence rates in nontrivial model
problem cases as we have shown for the case of hp-FEM.
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For the very special case of convex polygons with four sides, the modulus of the
corresponding quadrilateral is known as an analytic-numeric formula (4.7) by [22]
and this is our starting point. We compare the performance of SC Toolbox, AFEM,
and hp-FEM against the formula [22] and the reciprocal identity test. Next, again
using SC Toolbox, AFEM, and hp-FEM, we consider polygonal quadrilaterals with
more sides, L-shaped quadrilaterals and carry out similar comparision, using again
the reciprocal identity as the test quantity. Thereafter, we discuss, now using AFEM,
and hp-FEM, two classical cases of ring domains, the square frame and the cross in
square ring domains previously considered e.g. in [9] where further references may be
found. The error estimate in the square frame case is based on the well-known formula
(4.9) whereas for the cross in square case we use SC Toolbox and the results from
[9] as the comparision data. Finally, we also consider several cases of quadrilaterals
with curvilinear boundaries, now only using the hp-FEM method, because the other
methods mentioned above do not apply.
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