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Abstract. We investigate integer programs containing monomial con-
straints of the type [],.; #;" = b. Due to the number-theoretic nature of
these constraints, standard methods based on linear algebra cannot be
applied directly. Instead, we present a reformulation resulting in integer
programs with linear constraints and polynomial objective functions, us-
ing prime decompositions of the right hand sides b. Moreover, we show
that minimizing a linear objective function with nonnegative coefficients

over bivariate constraints is possible in polynomial time.

1 Introduction

Let Z denote the set of nonnegative integers. We consider integer programs of
the form

max CT.’L'

st [[,z;™ =b; forj=1,....m (1)

2

x ez,

where ¢ € Z™, b € (Zy \ {0})™, and o € Z}*™. We assume throughout that
every variable appears in at least one of the monomial constraints, i.e., that for
every i € {1,...,n} at least one «; ; is non-zero. This assumption can be made
without loss of generality, since a variable, i say, with «; ; = 0 for all j can always
be set to zero if ¢; < 0. Otherwise, if ¢; > 0, then the corresponding program is
unbounded.

The number-theoretic nature of monomial constraints on integer variables
explains why such constraints are difficult to handle by standard techniques
based on linear algebra. Indeed, a notorious problem related to such constraints
is the fact that the convex hull of integer feasible solutions in general contains
integer infeasible points.
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For an example consider the constraint xy = p with p prime, where z and y
are nonnegative integer variables. This equation has only two feasible solutions,
namely (z,y) = (1,p) and (x,y) = (p,1). The convex hull of those two points,
however, contains p — 2 additional, infeasible integer vectors,

(q7p+1_q)ezia forq:27"'ap_1a

see Fig. 1(a). If p is not prime, the convex hull may even be full-dimensional and
contain integer infeasible points in its interior, see Fig. 1(b).

(a)

Fig. 1. The convex hull of feasible solutions for (a) zy = 7 and (b) zy = 6.

When intersecting this convex hull with other hyperplanes, e.g., with x = y,
then one could even end up with an integer infeasible vertex. This fact limits
on the one hand the applicability of traditional polyhedral techniques for non-
linear integer programs. On the other hand, this fact motivates the search for
alternative approaches to tackle such a nonlinear integer problem.

It is our main objective to present such an alternative approach. We propose
a transformation of Problem (1) into an integer linear program with polynomial
objective function. For every monomial constraint

n

Xij _p
[« =0;
i=1

the new formulation explicitely models the possible distributions of prime factors
of the right hand sides b; to the variables x; appearing on the left hand side.
We show that such a reformulation is always possible in quadratic time, and we
use this reformulation to show that the bivariate version of Problem (1) can be
solved in polynomial time for non-negative costs c¢. Moreover, we present a further
reformulation of the problem as a constrained quadratic binary optimization
problem. This construction is polynomial in the case that the right hand sides b;
are polynomially bounded in the input length.

We call Problem (1) an integer monomial program. Such a program gener-
alizes the set partitioning problem. This connection can be used to settle the
complexity of the feasibility version of Problem (1).



Theorem 1. It is strongly NP-complete to decide whether Problem (1) has a
feasible solution, even if o ; <1 for alli,j and > ., o <3 for all j.

Proof. We polynomially transform the set partitioning problem to Problem (1).
For this, let I; C {1,...,n}, j =1,...,m, be given. Then, we ask whether there
is a binary vector z € {0,1}" such that

i€l;

for j =1,...,m. We claim that Equation (2) holds true if and only if

[[E+1n=2.

i€l;

Indeed, for x € 7'}, the monomial equation [],. i = 2 is satisfied if and only
if all @; € {1,2} for i € I; and }_,.; (#; — 1) = 1. We conclude that the given
set partitioning instance is feasible if and only if

[T,z =2 forj=1,....m

NS/

has a feasible solution, where

1 ifiel;
QG 5 =
7 0 otherwise.

As the feasibility version of the set partitioning problem is NP-complete even if
all equations have a support of cardinality at most three [3], deciding whether
Problem (1) has a feasible solution is NP-complete, too. O

In the following sections we will investigate the complexity of special cases
of monomial integer programming problems. In doing so, we need some care in
defining the encoding of the input. It will turn out that a central element of the
analysis provided in the paper is based on prime decompositions of the right hand
sides b;. For a general integer b, a decomposition into its prime factors p1,. .., p;
can be computed in polynomial time in the encoding length (b) of b using a
quantum computer model [6]. In the Turing computer model it is not known
whether a prime factorization can be determined in polynomial time. The best
known algorithms for the factorization of integers are sub-exponential (e.g., the
general number field sieve algorithm [4]), but not polynomial. This motivates
to include the prime decomposition of the right hand sides b; into the input of
Problem (1). We thus input, in binary encoding,

— a positive number n

— a positive number m

— for every j = 1,...,m, a positive integer b;, together with its unique prime
decomposition, given by the pairs (pg, pr,;) with b; = [, pe’*,



— for every i = 1,...,n, an integer ¢;,
— for every j = 1,...,m and i« = 1,...,n, a non-negative integer o ;, such
that 327" o ; > 1foralli=1,...,n

The objective is to solve Problem (1). Note that every py ; is logarithmically
bounded in b;, as pr > 2, and hence linear in the input size.

The paper is organized as follows: Section 2 introduces a reformulation of
Problem (1) as a polynomial optimization problem subject to linear integer con-
straints. Section 3 is devoted to the investigation of the special bivariate case in
which at most two variables appear in any constraint. In Section 4, we propose
a binary quadratic programming model for Problem (1) which is of polynomial
size if all right hand sides b; are polynomially bounded.

2 A transformation based on prime decompositions

An important difficulty in tackling nonlinear integer programs stems from the
fact that the convex hull of feasible solutions can contain infeasible integer points.
The purpose of this section is to propose a reformulation of Problem (1) that
turns all nonlinear constraints into linear ones in an extended space whose di-
mension is quadratic in the encoding length of the original problem input. The
core of this reformulation is a transformation based on the prime factorization
of the right hand sides. We consider the set of monomial constraints

n

t
Hw?i’j:bj:Hka’j, Vi=1,...,m,
k=1 (3)

i=1

reZl .
Let i, = min{|pr /0u,] | 3 = 1,....,m with «; ; > 1}. We now associate
with each variable z; new integer variables y; € {0,1,..., v 1}, fork=1,....¢,

which count how often pj divides the value of variable x;, and consider the
following integer linear system:

Z?:lai,jyi7k:uk7j, Vk=1,...,t,Vj=1,...,m,

4
vik €{0,..., ik}, Vi=1,...,n, Vk=1,... ¢t @)

Proposition 1. Fach feasible solution to system (3) corresponds to a feasible
solution of the linear system (4), and vice versa.
Proof. Let x € Z1 be feasible for (3). Since 37", a;; > 1 foralli =1,...,n,

each x; € Z divides at least one b;. It follows that

t
x; = Hp}:i'k, for suitable w; 1, € Z ..
k=1



As 39 must be a divisor of b;, we conclude that w; x € {0,1,...,7;x}. Now

setting y; , = w; , for all < and k, we obtain for all j =1,...,m that
t n n t t "
H pl]ik,j —b; = ijcu _ H H pzi,jyi,k _ H pkzizl igYik
k=1 i=1 i=1k=1 k=1

Comparing exponents and using the uniqueness of the prime decomposition, it
follows that for all j =1,...,m

n
Zamyi,k = Hk,j, for all k = 1,...,t.

=1

Thus y; i is feasible for the constraints in (4).
Now, assume that y; , € {0,...,7i,} is a feasible solution for system (4).
Then, for each j =1,...,m, we have that

pitd = Y forall k=1, 1.

We define z; = [[,_, pi"*, for all i = 1,...,n. This implies

t t t
L Hik,j D i1 ®iiYik _ Yi,k\Xig Qg
bJ_Hpk = Hpk = (Hpk ) _Hxi ’
k=1 k=1

1 k=1 i=1
for all j € {1,...,m}. O

n
=

In order to complete the reformulation of Problem (1), we still need to trans-
form the original objective function to the new model. From a solution y; j of
system (4) we can reconstruct a feasible solution for the variables x; using

t
Yi, k
k=1

Then, the objective function ¢’z turns into

n

cle=) a[[m™ = fw. (5)
i=1 k=1

Unfortunately, f(y) is a highly nonlinear function so that no tools are available to
solve the transformed system max f(y) subject to (4). With the help of additional
binary variables, we claim that we can write down a polynomially sized linear
system and polynomial objective function that model problem (1) correctly.

Theorem 2. In quadratic time, Problem (1) can be transformed to a linear
integer problem with polynomial objective function.



Proof. From Proposition 1, it follows that Problem (1) is equivalent to maximiz-
ing function f(y) of Formula (5) over the linear equation system stated in (4).
Now, we replace each integer variable y; ; by the sum of ;; binary variables

2 le yig = Tk 2] - Then, f(y) reads as
n Z%‘k - n t Yik
o1 7]
el ™ =D all ]+ ®e—D2r) = g(2).  (6)
i=1 k=1 i=1  k=1r=1

In summary, Problem (1) is equivalent to

max g9(2)
Z?:l Q5 :lzkl Z;k = prj, VEk,J, (7)
zi €{0,1}, V ki,

This model contains at most one binary variable z], for each variable x; and
each prime factor p; appearing in some right hand side b; with «a; ; > 1, where
we distinguish between different appearances of the same prime factor in a given
right hand side. It follows that the total number of binary variables is bounded
by ”(27;1 logb;), which is quadratic in the input length. O

Note that the presented construction is not linear in general. For example, to
transform the single monomial constraint []; ; #; = b into a linear one, one
needs nlog b variables y; . The reason is that every prime factor of b can appear
in every variable z;. However, it is easy to see that the construction becomes
linear if the degree of all monomials is bounded by a constant.

In the case where p;, < 1 for all 4, k, i.e.,, where all right hand sides are
square-free, the variables z;, are not needed, and the system (7) specializes to
the easier problem

max Y 1 ¢ HZ:l (1 + (pk — 1)yi,k)
>y QigYik = fikg, Yk, ],
yi € {0, 1),V k1.

We remark that Theorem 2 cannot be proven using the standard linearization
approach in which every variable z; is expanded z; = ), 2!y, with yig € {0,1}.
Indeed, this approach would require to introduce additional binary variables in
order to linearize the monomial constraints. Since the numbers «; ; are part of
the input and not constant, the number of such extra linearization variables
grows exponentially with the size of the input of Problem (1).



Ezxample 1. For pairwise distinct prime numbers p1, p2, p3, consider the following
instance of Problem (1):

. 15
min Y .7

s.t.

T1 T2 T3 T4 T =

Te L7 Tg T9 T10 =

T11 T12 13 T14 T15 =

1 Te T11 =
T2 T7 T12 =
I3 Tg T13 =
T4 T9g T14 =
Is5 T10 Ti5 =

x S

by := pt p2 pl

by = pi p3 p3,
bs := pi p3 p3,

by := p? p p3, (8)
bs == pi p3 p§,

b := p? pY p3,
by := pt p3 p3,
bs := pi p3 P3,
z15

By taking the product of the first three constraints and the product of the
last five constraints, we obtain that each feasible solution of Problem (8) must
satisfy both Hzl; z; = pi? p§ pi and Hzl; x; = pi® p§ pi. This shows that
Problem (8) is infeasible. We have created several test instances of type (8)
characterized in Table 1. The second column contains the values chosen for the
prime numbers p;, p2 and p3. In column by .y, the largest right-hand-side that
occurs in the test instance is listed, while column .« denotes the maximum
upper bound induced on some variable z;. For solving the test instances we

name p1/p2/ps bmax Umax time (sec) BaR It.
p01 2/3/5 1200 720 102.14 10965
p02 2/3/7 2952 1008 110.19 10803
p03 2/3/11 5808 1584 148.73 14681
p04 2/3/13 8112 1872 139.96 15323
p05 3/5/2 5625 4050 270.14 28305
p06 3/5/7 19845 14175 777.07 74961
p07 3/5/11 49005 22275 975.23 98239
p08 3/5/13 68445 26325 862.08 88427
p09* 5/7/2 61250 60025 1829.96 194227
pl0* 5/7/3 91875 60025 2558.92 259655
pll”* 5/7/11 529375 336875 3956.05 396555
pl2* 5/7/13 739375 398125 2068.02 509757

Table 1. Characteristics and computational results for test instances of Problem (8).
For instances p09-p12 marked with x, BARON was not able to guarantee infeasibility
as bounds on variables were too wide.

used the software package BARON [7], a state-of-the-art global solver for mixed-
integer nonlinear optimization problems. All computations have been carried out
in a GAMS 22.5 environment [5] using BARON v. 7. 8. 1 (epsr= 1.00E — 09,



epsa= 1.00F — 09, isotol= 1.00F — 04, nlpsol=Snopt, 1psol=Cplex) on a
3GHz Dual-Core AMD Opteron(tm) Processor 8222 SE with 64GB Ram. The
solution time and the number of BARON iterations (Bar It.) needed to prove
infeasibility are also reported in Table 1. The computational results indicate
that proving infeasibility of the test instances in their standard formulation (8)
strongly depends on the size of the right-hand-sides and of the upper bounds
on the variables, though the underlying structure, the core of the problem, is
identical for all test instances pO01—pl2.
To see this, let us consider the reformulation of problem (8) given by

min 3°;°, pY"t pb? pyt?
st S0 gyik = tiks k€ {1,2,3}, j€{1,...,8},

where «; ; € {0,1} reflects the exponent of variable z; in constraint j and p; x
is the multiplicity of py in b;. Using the integer reformulation (9), infeasibility
could be proven by BARON in the pre-processing step with less than 0.02 sec for
all test instances p01-p12. This example shows that the reformulation suggested
by Theorem 2 can capture the combinatorial structure of the problem much
better than the original formulation. ad

(9)

Based on Proposition 1, there is little hope in solving Problem (7) efficiently,
in general. Interestingly, if we impose additional structure on the constraints,
polynomial time algorithms are available to tackle the corresponding feasibility
and optimization questions. This topic is discussed in the next section.

3 Bivariate constraints

The set partitioning problem turns easy as soon as every constraint has a support
bounded by two. In our context, this translates to the fact that Problem (1) is
eagy if all monomial degrees and all right hand sides are bounded by two. In
this section we show a much more general result. We consider the case where
Problem (1) only involves bivariate monomials, but do not bound the right hand
sides. In this case, it is appropriate to rewrite Problem (1) as

T

max c¢'zx
i i t i .. . .
st af ’Jacf T =10 = kzlp‘k%(”) for (4,5) € I, i < 7, (10)
x €77,
where the index set I C {1,...,m}? is given and we can assume «; j,3; ; > 1.

It is the topic of this section to show that variants of this problem can be
solved efficiently. In the following, we consider the undirected graph G = (V, E)
with V' ={1,...,n} and (4,7) € E if and only if (¢,j) € T and i < j, or (j,i) € I
and j < 1.

Proposition 2. If every non-trivial component of G contains an edge (i,7) such

that b;j is polynomially bounded in the input size, then Problem (10) can be solved
i polynomial time.



Proof. We may assume that the graph G is connected, as otherwise the problem
decomposes. Let b; ; be polynomial in the input size for some (i,5) € I. The

constraint ;" xf” = b; ; has at most one solution for every subset of the set
of prime factors of b; ;. Since b; ; can have at most logb; ; many prime factors,
the number of solutions is thus bounded by b; ;. As G is connected, fixing the
value of x; either implicitly fixes all variables or leads to a contradiction. This
can be checked by a depth first traversal of G. a

The proof of Proposition 2 does not work for monomials of higher degree. In
fact, a crucial advantage in the bivariate case is that fixing a single variable in a
connected component of G fixes all other variables in this component. This fact
is also used in the following proof.

Theorem 3. It can be checked in polynomial time whether Problem (10) has
a solution or is infeasible. Moreover, Problem (10) can be solved in polynomial
time if ¢ > 0.

Proof. Again, we may assume that the graph G is connected. By Theorem 2, we
have to solve the problem

max y i, ¢ H};:l Pt
8.t Yk + Bijyik = (i, ) VEV (i,5) € I, with i < j (11)
yik € {0,..., vk} VEVi.

Feasibility of (11) can be checked in the following way: Let k € {1,...,t} be
fixed, and choose a variable y; .. As each equation involves only two variables,
fixing y; 1, to one of its values either leads to a uniquely feasible integer solution
for all variables y;x, ¢ € J, or leads to a non-solvable integer system in the
remaining variables. This can obviously be checked in linear time. This means,
testing solvability requires for each k € {1,...,t} evaluating at most ~; + 1
possibilities for ¥; 1, and the total number of evaluations is polynomially bounded
in the input size.

To determine an optimal solution for Problem (11), we first fix k to one of
its values. Then, the set of equations

oG Yk + Bi Yk = ur(i,g) V(i,5) €1, withi<jandi, jeJ

has a polynomial number of feasible solutions. One can easily verify that these
solutions are of the form

Yik = Yir + Mbi, M €1{0,..., 1k}

with y; , € Z for all 4,k and y; € Z \ {0} for all i. Note that ; does not depend
on k, but only on the «; ; and §; ;. Using this reformulation, Problem (11) can
be rewritten as

B ¢ A Yi
max e, Ci(szlpk ) (12)
s.t. )\kE{O,...,lk} vk,



where ¢; = ¢; H;Zl pzi'k > 0. Thus, the function

f:(0,0) = R, f(x)= Zéixm

ieJ
is convex. In particular, its maximum over the interval [1, szl péj] is attained
at one of the end points. In other words, an optimal solution for Problem (12)
is either Ay = 0 for all k or A\ = [}, for all k. O
Ezample 2. Consider the problem

max 2x1 + 3z3 + 24

sit. x2wy =23.3%.5% = 81.000
rizg =21-3%3.5%2 = 1.350
xox? =25 3%. 57 = 202.500.000
3wy =22-3%.5% = 67.500

4
z € 7.
Then p; = 2, po = 3, and p3 = 5. The resulting system of linear equations is

2011+ Y21=3 2y12+ Y22=4 2y1,3+ y2,3=3
yi1t+ ys1=1 Y12+ Ys2=3 Y13t Y33 =2
Yo, 1+ 2ys1 =5 Yo,2+ 2ys0 =4 Y23+ 2ys3 =17
Y31t Yya1 =2 Y32t Ya2 =3 Y33+ Y43 =4

Then
00 0 1 1 1 \
3 4 3 -2 -2 -2 .
(Yik)ik = 13 2|21 o1 §2 ;
1 0 2 1 1 1 3

with upper bounds I3y = 1, ls = 2, and I3 = 1. The two candidate solutions are
thus given by A = (0,0,0) and A = (1,2,1), they correspond to solutions

xy = (2°3%5°, 233153 213352 21305%) = (1,81.000, 1.350, 50)
and
ro = (213251, 213051 2093151 223253) = (90, 10, 15, 4.500) .
The corresponding objective values are 4.102 and 4.725. a

It remains open whether Problem (10) can be solved in polynomial time for
general objective functions. We conjecture that the problem is NP-hard. In fact,
the problem becomes NP-hard if instead of the prime factorization of b we fix
an arbitrary decomposition into factors that may be distributed to the variables
on the left hand sides. This problem is NP-hard even in dimension two.

10



Problem 1. Given a set of integers s1, ..., Sy, minimize x; + z2 subject to

n

T1T2 = H Si

=1

and x1 = [[,o; s; for some I C {1,...,n}.

i€l
Theorem 4. Problem 1 is NP-hard.

Proof. To prove our claim, we will make use of the fact that the subset product
problem is NP-complete [3], which is defined as follows:

(Q) Given a finite set A = {1,...,n}, positive weights s, € Z, a € A, and a
positive integer B € Z, is there a subset A’ C A such that [] . 4 sa = B?

Assume that there exists an algorithm that solves any instance of Problem 1 in
polynomial time and that an arbitrary instance of the subset product problem
(Q) is given. As for B = 1 problem (Q) can be easily solved we may assume
that B > 2 and s, > 2, a € A.

We first introduce a new item n+1 and define its weight as 5,41 := 35, where
Sp = HaeA Sq. Note that if B is not a divisor of sy then it follows that there
cannot exist a subset A" C A with [[,c 4 s« = B. Therefore, we may assume
that B divides sg implying that s,+1 € Z.

Now for fixed a € A, we define a new item n + 2 with weight s,42 := s, B
and consider the following optimization problem:

V, := min x1 + 29
s.t. x170 = ( H Si) Sn+1 Sn+2,
i€ A\{a}
21 € X = {Hsi IC (A\{a})u{n+1,n+2}}.
el

We have that (HieA\{a} Si)Snt1Sn42 = (HieA\{a} si)%%s,B = s3. Thus, if we
drop the condition x; € X, then simple arguments from analysis show that v,
equals 2sp which can be only attained at (s, so). For the discrete case, we now
claim that v, = 2sg if and only if there exists a subset A’ C A\ {a} with
B = [];c s si- Clearly, if there exists an A" C A\ {a} with B =[], 4/ si, we can
choose s
T1 = Sp+1 si=—B=s0,

ol
yielding xo = so and v, = 2sg.

Now assume that v, = 2sg with optimal solution (x1,z2) = (s0, So). Without
loss of generality, s,41 is assigned to x;. Then s,45 cannot be assigned to x1,
as otherwise x1 > Sp4+1Sn42 = %saB > sg. Thus we have z; = s,11w; and
Ty = Sptowz with wywy = HieA\{a} s;. From the condition x; € X we derive

11



that w; € {[T;c;si | I € A\ {a}} for j =1,2. From x1 = x2 = sp, it moreover
follows that

S0 S0 HieA\{a} i

B
=s0— =B and wy = =
Sn41 S0 Sn+2 B

wp =

We can hence conclude that there must exist an A" C A\{a} with B =[],/ si-
This shows that for answering question (Q) it suffices to compute the value v,
for all @ € A. Therefore, Problem 1 is NP-hard. a

4 Pseudopolynomial reduction to quadratic programming

The proof of Theorem 1 shows that Problem (1) remains NP-hard even if b; < 2
for all j. In this section, we aim at a further transformation of Problem (1) under
the assumption that all b; are small. Our objective is to obtain an equivalent
formulation that can be addressed by standard techniques for quadratic 0-1
programming. In the following, we consider the polytope P given as the convex
hull of feasible solutions of Problem (1), i.e.,

P:conv{x€Z1|Hx?i’j =b; forallj:l,...,m} CR".
i=1

Problem (1) is equivalent to the maximization of an arbitrary linear objective
function over P, so our aim is to derive tight linear relaxations of P.
For this, let P* denote the convex hull of vectors (z,y) € Z'} x Z’jf satisfying

zi = [ ™ Vi,
ik € {0, .., vkt Vi, k.

By Proposition 1, an integer vector x € Z'} belongs to P if and only if there is
a vector y € ZT that satisfies

n
Zai,jyi,k = pkj, Yk, J
i=1
such that (z,y) € P*. It is thus desirable to understand the polyhedral structure

of P*.

Theorem 5. The polytope P* is a projection of a face of a boolean quadric
polytope Q*. The latter can be constructed in time quadratic in the input length
of Problem (1) plus b.

Proof. First, we introduce z-variables as in the proof of Theorem 2, which is
possible in quadratic time, yielding a polytope P** given as the convex hull of
feasible solutions of

i = Doy TTEA (14 (k= 1)21,), Vi,
7 € 40,13, V ki,

12



As for every i € {1,...,n} thereis a j € {1,...,m} with o; ; > 1, we have

t t t
Z%,k < Zai,j%,k < Zﬂk,j <logb; .
k=1 k=1 k=1

The number of subsets of J; = {(k,r) | k = 1,...,¢,r = 1,...,v,} is thus

bounded by B = max{b; | j = 1,...,m}. In particular, we can introduce new
binary variables
ziL = H Zik
(k,r)eL

for every ¢ and every L C J;. Then

t ik
Ti = H H (1+ (e — D)ziy) = Z CLZi,L
k=1r=1 LCJ;

with ¢ = J[ 4 er(pe — 1). Let P*** denote the convex hull of all feasible
solutions of the new model, i.e.,

P** = conv {(x,z) € Z" x A0, I}B” | z; = Z cinﬁL} .
LCJ;
By construction, P* is a projection of P***  via

Yik

Yi,k
r
Yik = E ik = E Zi {(k,r)} -
r=1 r=1

Moreover, as each variable z; is an affine combination of variables z; 1, the
polytope P*** is isomorphic to its own projection to the space of z-variables. The
latter projection corresponds to the standard linearization of an unconstrained
polynomial 0-1 optimization problem over the basic variables z; ,, with a set of
monomials z; 1, that is closed under taking submonomials. By Corollary 3.4 in [1],
it follows that P*** is isomorphic to a face of a boolean quadric polytope Q*.
Following the construction given in [2], the dimension of @* can be bounded
by four times the dimension of P***. As the latter is at most quadratic in the
dimension of the original problem plus b, the result follows. a

Example 3. Consider the single monomial constraint x3zs2% = 2252 = 100.
Then P* is defined as the convex hull of all vectors (z,y) € ZY satisfying

Py = WIIBYLR gy = QURIRYRE gy — QUSLGUR
Y1,1,91,2,¥3,1, 93,2 € 10,1}, y2.1,922 €{0,1,2},
and P** is spanned by the feasible solutions of
Ty = (Z%l + 1)(4'2%,2 +1)
T2 = (2211 + 1)(25,1 + 1)(425,2 + 1)(423,2 +1)
w3 = (231 +1)(4z32 +1)
z € {0,1}%.

13



The polytope P*** obtained from multiplication and linearization is then defined
over 21 binary variables z; 1,, corresponding to the monomials

(degl) Z},la Z%,2’ Z%,la Z%,la z21,2a Z%,Qa Z::jl’,la Z’;,Q

(deg2) thiza Z%,M%,h 25,125,% 221,125,% Z%,lz%,% Z%,lzg,% 221,225,27 Z:%,lz?{,z
(deg3) Z%,1Z§,1Z21,2a Z%,1Z§,1Z§,2a 221,175%,22%,% 23,125,2Z§,2

(deg4) 25,123,1'221,223,2 .

It is isomorphic to a face of a boolean quadric polytope, corresponding to a
quadratic function over 20 binary variables [2]. O

Theorem 5 shows that Problem (1) can be polynomially reformulated as a
binary quadratic programming problem with additional linear constraints

n Yi,k

_— .
E Qg E Zik = Hk,js Yk, J
=1 r=1

whenever the right hand sides of the monomial constraints are polynomially
bounded in the input length. For binary quadratic programming problems, many
well-studied and practically fast solution methods exist, based on integer or
semidefinite programming techniques. Moreover, this approach remains feasible
even when monomial constraints as in Problem (1) are combined with arbitrary
linear constraints.

Theorem 6. The polytope P is a projection of a face of a boolean quadric
polytope Q. If all multiplicities uy ; are bounded by a constant, then Q) can be
constructed in polynomial time.

Proof. By construction, the polytope P is a projection of the convex hull of
integer points in the intersection of the polytope P*** constructed in the proof
of Theorem 5 with the constraints

Yi,k

Z Y. Z Zi{(kr)} = Hkj (13)
=1

r=1

for all k and j. We extend P*** by introducing further monomials over the same
set of basic variables z7, as follows. For each k and j, let My ; be the set of
minimal subsets of {(¢,7) |¢=1,...,n,r=1,...,v%} with

Z Q4523 {(k,r)} = Mk, -
(i,r)el

For each subset J of some set I € M, ;, we introduce a variable z; modeling the
monomial H(i T)erf,k. Let P**** denote the resulting polytope. Then P****

is isomorphic to a face of a boolean quadric polytope @ by [1] and P*** is a
projection of P****. Now the equation (13) implies z;y = 0 for all I € M}, ;. The
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set of constraints z; = 0 for I € My, ;, for all k and j, induces a face F' of P****,
In this face, the inequality

n Yi,k
Z Qi Z Zi (k) S Hkj
=1 r=1

is valid, so adding (13) induces a face F'* of F and hence of ). This proves the
first statement. The second statement follows from the fact that the cardinality
of the set Mj, ; is polynomial for constant py ;. O

Ezxample 4. Continuing Example 3, we have the linear constraints
1 1 2 1 _
2201+ 231 + 25, + 223, =2
1 1 2 1 _
221,2 T2+ 259+ 223,2 =2
and eliminate the minimal infeasible solutions by adding
T .1 1.2 .11 .11 .2 1
21,1721 = #1,1%2,1 = ?1,173,1 = #2,1%3,1 — ?2,173,1 = 0
1.1 1.2 11 .11 21
Z1,1%2,1 = ?1,172,1 = ?1,173,1 = #2,1%3,1 — ?2,173,1 = 0.

After linearizing all 13 4+ 10 non-linear monomials of the problem and reducing
it to a binary quadratic optimization problem according to [1, 2], the constraints

22%,1 + 221,1 + 23,1 + 223{,1 >2
22%,2 + Z21,2 + Z%,Q + 229{,2 >2

are face-inducing. a
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