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Abstract

We prove a discrete Sobolev-Poincaré inequality for functions with arbitrary boundary
values on Voronoi finite volume meshes. We use Sobolev’s integral representation
and estimate weakly singular integrals in the context of finite volumes. We establish
the result for star shaped polyhedral domains and generalize it to the finite union
of overlapping star shaped domains. In the appendix we prove a discrete Poincaré
inequality for space dimensions greater or equal to two.

1 Introduction and notation

In this paper we study discrete Sobolev inequalities. In the continuous situation the
Sobolev embedding estimates

‖u‖Lq(Ω) ≤ cq‖u‖H1(Ω) ∀u ∈ H1(Ω) (1.1)

for q ∈ [1,∞) in two space dimensions and for q ∈ [1, 2n
n−2 ] in n ≥ 3 space dimensions are

well known [1, 7, 10].

For the finite volume discretized situation some results can be found in [2, 4]. But these
estimates concern the case of zero boundary values only. The 2d case for admissible finite
volume meshes (see [4, Definition 9.1]) is treated in [4, Lemma 9.5]. The corresponding 3d
result is proven in [2, Lemma 1]. For p ∈ [1, 2], a discrete Sobolev inequality estimating
the Lp∗-norm (p∗ = np

n−p if p < n and p∗ < ∞ if n = p = 2) by the discrete W 1,p-norm
is presented in [3, Proposition 2.2]. Moreover, also for the zero boundary value case and
1 ≤ p < ∞, the discrete embedding of W 1,p

0 into Lq for some q > p, 1 ≤ p < ∞ is
established in [5, Section 5]. A corresponding result for discontinuous Galerkin methods
working in the spaces of piecewise polynomial functions on general meshes is obtained in
[11, Theorem 6.1]. The idea there is to follow Nirenberg’s proof of Sobolev embeddings.

According to our knowledge and to the information of the authors of these papers discrete
versions of the Sobolev inequality (1.1) for functions with arbitrary boundary values are
an open question up to now. Only a discrete Poincaré inequality (q = 2) is available in
[4, Lemma 10.2, Lemma 10.3] and [6, Lemma 4.2]. But in both papers the second step of
the proof is done for two space dimensions only.

The aim of the present paper is to prove a discrete Sobolev-Poincaré inequality for func-
tions with nonzero boundary values on Voronoi finite volume meshes. Such results can be
applied to more general boundary value problems, for instance, for problems with inho-
mogeneous Dirichlet, Neumann or mixed boundary conditions. The technique used here is
an adaption of Sobolev’s integral representation and the treatment of weakly singular in-
tegrals in the concept of Voronoi finite volume meshes. The Voronoi property of the mesh
comes essentially into play in the proofs of the potential theoretical results Lemma 3.1 –
Lemma 3.3.
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The plan of the paper is as follows. In the remaining of this section we introduce our
notation. In Section 2 we formulate our assumptions and prove our main result, the
discrete Sobolev inequality for star shaped domains (see Theorem 2.1 and Theorem 2.2
for a uniform estimate for a class of Voronoi finite volume meshes having comparable
mesh quality). The proof of three potential theoretical lemmas is contained in Section 3.
In Section 4 we generalize the discrete Sobolev inequality to domains which are a finite
union of overlapping star shaped domains (see Theorem 4.1). The last section contains
some remarks and open questions. In the Appendix we prove a discrete Poincaré inequality
for space dimensions greater or equal to two.

Let Ω ⊂ B(0, R̃) ⊂ Rn, n ∈ N, n ≥ 2, be a bounded, open, polyhedral domain and ∂Ω its
boundary. We work with Voronoi finite volume meshes of Ω and our notation is basically
taken from [2, 4]. Moreover, for set valued arguments we write diam(·) for the diameter
of the corresponding set. And by mes(·) and mesd(·) we denote the n and d-dimensional
Lebesgue measure, respectively.

A Voronoi finite volume mesh of Ω denoted by M = (P, T , E) is formed by a family of
grid points P in Ω, a family T of Voronoi control volumes and a family of relatively open
parts of hyperplanes in Rn denoted by E (which represent the faces of the Voronoi boxes).
For a Voronoi mesh we use the following notation, see Figure 1.

K

LxK

xL

mσ

dσ

DKσ

K ′

L′

xK′

xL′

σ′ = K ′|L′

dK′σ′

xσ′

Figure 1: Notion of Voronoi finite volume meshes M = (P, T , E).

For each grid point xK of the set P the control volume K of the Voronoi mesh belonging
to the point xK is defined by

K = {x ∈ Ω : |x− xK | < |x− xL| ∀xL ∈ P, xL 6= xK}, K ∈ T .

For K, L ∈ T with K 6= L either the (n−1)-dimensional Lebesgue measure of K∩L is zero
or K ∩L = σ for some σ ∈ E . In the latter case the symbol σ = K|L denotes the Voronoi
surface between K and L. We introduce the following subsets of E . The sets of interior
and external Voronoi surfaces are denoted by Eint and Eext, respectively. Additionally,
for every K ∈ T we call EK the subset of E such that ∂K = K \ K = ∪σ∈EK

σ. Then
E = ∪K∈T EK .
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Moreover, for σ = K|L ∈ E we use the following notation: mσ represents the (n − 1)-
dimensional measure of the Voronoi surface σ, xσ corresponds to the coordinates of the
center of gravity of σ. For σ = K|L ∈ Eint let dσ be the Euclidean distance between xK

and xL.

For K ∈ T , σ ∈ EK we define dK,σ to be the Euclidean distance between xK and the
hyperplane containing σ. Then, in the case of (isotropic) Voronoi meshes we have dK,σ =
dσ
2 for σ ∈ Eint.

We work with the half-diamonds DKσ = {txK + (1 − t)y : t ∈ (0, 1), y ∈ σ}, where
n mes(DKσ) = mσdK,σ. Then due to our definitions

n mes(K) =
∑

σ∈EK

mσdK,σ ∀K ∈ T .

The mesh size is defined by size(M) = supK∈T diam(K).

Definition. Let Ω be an open bounded polyhedral subset of Rn and M a Voronoi finite
volume mesh.

1. X(M) denotes the set of functions from Ω to R which are constant on each Voronoi
box of the mesh. For u ∈ X(M) the value at the Voronoi box K ∈ T is denoted by uK .

2. For u ∈ X(M) the discrete H1-seminorm of u, |u|1,M, is defined by

|u|21,M =
∑

σ∈Eint

mσ

dσ
(Dσu)2,

where Dσu = |uK − uL|, uK is the value of u in the Voronoi box K and σ = K|L.

2 Main result

First we formulate our assumptions on the geometry and the grid:

(A1) We assume that the open, polyhedral domain Ω ⊂ B(0, R̃) ⊂ Rn is

star shaped with respect to some ball B(0, R).

Let % be the function % : Rn → [0, 1] given by

%(y) =

{
exp

{
− R2

R2−|y|2
}

if |y| < R,

0 if |y| ≥ R.

We introduce the piecewise constant approximations %M ∈ X(M) as

%MK (x) = min
y∈K

%(y) for x ∈ K. (2.1)

(A2) Let M = (P, T , E) be a Voronoi finite volume mesh of Ω with the property

that EK ∩ Eext 6= ∅ implies xK ∈ ∂Ω. The mesh size size(M) is assumed to

be so small that there exists a constant %0 > 0 such that
∫
Ω %M(x) dx ≥ %0.
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Under assumption (A2) there exist minimal constants κ1(M) > 0, κ2(M) ≥ 1 such that
the geometric weights fulfill

0 < diam(σ) ≤ κ1(M) dσ for all σ ∈ Eint (2.2)

and
max

σ∈EK∩Eint

max
x∈σ

|xK − x| ≤ κ2(M) min
σ∈EK∩Eint

dK,σ for all xK ∈ P. (2.3)

Remark 2.1. Having in mind that

RK,out := max
σ∈EK∩Eint

max
x∈σ

|xK − x|, RK,inn := min
σ∈EK∩Eint

dK,σ

are the smallest radius of a circumscribed ball of K centered at xK and the greatest radius
of a ball fully contained in K and centered at xK , respectively, the inequality (2.3) implies
that

RK,out ≤ κ2(M)RK,inn.

Moreover, the inequality (2.3) supplies that

max
σ∈EK∩Eint

|xK − xσ| ≤ κ2(M) min
σ∈EK∩Eint

dK,σ for all xK ∈ P. (2.4)

In this prescribed setting of a Voronoi finite volume mesh we establish the discrete Sobolev-
Poincaré inequality.

Theorem 2.1. We assume (A1) and (A2). Let q ∈ (2,∞) for n = 2 and q ∈ (2, 2n
n−2) for

n ≥ 3, respectively. Then there exists a constant cq > 0 only depending on n, q, Ω and
the constants %0, κ1(M) and κ2(M) such that

‖u−mΩ(u)‖Lq(Ω) ≤ cq |u|1,M ∀u ∈ X(M) where mΩ(u) =
1

mes(Ω)

∫
Ω

u(x) dx.

Proof. We adapt the techniques used in [12, 13] to the discretized situation using Voronoi
diagrams. We establish some discrete analogon for Sobolev’s integral representation (see
[12, §116]) and of the treatment of weakly singular integral operators (see [12, §115]).

1. First, let us introduce some notation we need in this proof and later on: We denote by

[x, y] = {(1− s)x + sy : s ∈ [0, 1]}

the line segment connecting the points x ∈ Rn and y ∈ Rn. Further, for σ ∈ Eint we define
the function χσ : Rn × Rn → {0, 1} by

χσ(x, y) =

{
1 if x, y ∈ Ω and [x, y] ∩ σ 6= ∅,
0 if x /∈ Ω or y /∈ Ω or [x, y] ∩ σ = ∅.

(2.5)

Finally, for u ∈ X(M) and σ = K|L ∈ Eint we introduce the function ∆σu : Ω× Ω → R,

(∆σu)(x, y) =

{
uL−uK if (1−s)x+sy ∈K and (1−t)x+ty ∈L for some 0 ≤ s < t ≤ 1,

0 otherwise.
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Set T0 = {K ∈ T : K ⊂ B(0, R)} and let u ∈ X(M) be arbitrarily fixed. Considering
K0 ∈ T and K ′ ∈ T0, for almost all x ∈ K ′ the intersection [xK0 , x]∩σ consists of at most
one point for every σ ∈ Eint. Hence, for almost all x ∈ K ′ we can substitute uK0 −mΩ(u)
by the difference

uK0 −mΩ(u) = (u(x)−mΩ(u))−
∑

σ∈Eint

(∆σu)(xK0 , x)χσ(xK0 , x).

Multiplying by %M ∈ X(M) and integrating over x ∈ Ω for every K0 ∈ T we obtain

(uK0 −mΩ(u))
∫

Ω
%M(x) dx =

∫
Ω
(u(x)−mΩ(u))%M(x) dx

−
∑

K′∈T0

∫
K′

∑
σ∈Eint

(∆σu)(xK0 , x)χσ(xK0 , x)%M(x) dx,

which corresponds to a discrete version of Sobolev’s integral representation. According to
(A2) we estimate

|uK0 −mΩ(u)| ≤ I1

%0
+

I2(K0)
%0

, (2.6)

where
I1 :=

∫
Ω
|u(x)−mΩ(u)|%M(x) dx

and
I2(K0) :=

∑
K′∈T0

∫
K′

∑
σ∈Eint

Dσu χσ(xK0 , x) %MK′ dx,

remembering that Dσu = |uK − uL| for σ = K|L ∈ Eint.

2. Since |%M(y)| < 1 for almost all y ∈ Ω we find

I1 ≤ ‖%M‖L2(Ω)‖u−mΩ(u)‖L2(Ω) ≤ mes(Ω)1/2‖u−mΩ(u)‖L2(Ω).

Due to the discrete Poincaré inequality (see Theorem A.1) there is a constant C0 > 0
depending only on Ω such that

‖u−mΩ(u)‖L2(Ω) ≤ C0|u|1,M ∀u ∈ X(M). (2.7)

Therefore we obtain

I1 ≤ mes(Ω)1/2C0 |u|1,M. (2.8)

3. Now we rearrange the sums in I2(K0). We write

I2(K0) =
∑

σ∈Eint

Dσu
∑

K′∈T0

∫
K′

χσ(xK0 , x) %MK′ dx

≤
∑

σ∈Eint

Dσu
∑

K′∈T0

∫
K′

χσ(xK0 , x) dx

≤
∑

σ∈Eint

Dσu mes
(
{x ∈ B(0, R) : σ ∩ [xK0 , x] 6= ∅}

)
,



6 A. Glitzky, J. A. Griepentrog

xK0

σ

Figure 2: Parts of Voronoi boxes included in the ball B(0, R) and shaded by the Voronoi
surface σ with respect to the view point xK0 .

see Figure 2, too. We use now Lemma 3.1 and obtain

I2(K0) ≤ An

∑
σ∈Eint

Dσu
mσ

|xK0 − xσ|n−1
.

Let q ∈ (2,∞) for n = 2 and q ∈ (2, 2n
n−2) for n ≥ 3. We introduce the exponent β > 0 by

2β =
n

q
− n

2
+ 1. (2.9)

Applying Hölder’s inequality for three factors with α1 = q, α2 = 2q/(q − 2), α3 = 2 we
find

I2(K0)
An

≤
∑

σ∈Eint

|Dσu||xK0 − xσ|1−nmσ

=
∑

σ∈Eint

(
|Dσu|2/q|xK0 − xσ|−

n
q
+β

d
− 1

q
σ

)(
|Dσu|1−2/qd

2−q
2q

σ

)(
|xK0 − xσ|−

n
2
+βd

1
2
σ

)
mσ

≤
( ∑

σ∈Eint

|Dσu|2|xK0 − xσ|−n+qβ mσ

dσ

)1/q( ∑
σ∈Eint

|Dσu|2 mσ

dσ

) q−2
2q

×
( ∑

σ∈Eint

|xK0 − xσ|−n+2β mσdσ

)1/2

≤
( ∑

σ∈Eint

|Dσu|2|xK0 − xσ|−n+qβ mσ

dσ

)1/q( ∑
σ∈Eint

|Dσu|2 mσ

dσ

) q−2
2q

×
( ∑

K∈T

∑
σ∈EK

|xK0 − xσ|−n+2β mσdK,σ

)1/2
.

According to the definition of the discrete H1-seminorm and to Lemma 3.2 we continue
our estimate by

I2(K0) ≤ AnB1/2
n |u|1−2/q

1,M

( ∑
σ∈Eint

|Dσu|2|xK0 − xσ|−n+qβ mσ

dσ

)1/q
.
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This estimate can be obtained for all K0 ∈ T . We consider I2 as an element of X(M)
with value I2(K0) in K0 ∈ T . Taking now the qth power and adding the terms for all
Voronoi boxes K0 ∈ T we get

‖I2‖q
Lq(Ω) :=

∑
K0∈T

∑
σ0∈EK0

I2(K0)q mes(DK0σ0)

≤ Aq
nBq/2

n |u|q−2
1,M

∑
σ∈Eint

|Dσu|2 mσ

dσ

∑
K0∈T

∑
σ0∈EK0

|xK0−xσ|−n+qβ mes(DK0σ0).

Due to Lemma 3.3 we evaluate at first the last two sums on the right hand side and obtain

‖I2‖q
Lq(Ω) ≤

1
n

Aq
nBq/2

n |u|q−2
1,M

∑
σ∈Eint

|Dσu|2 mσ

dσ
Dn

≤ 1
n

Aq
nBq/2

n Dn|u|q1,M.

(2.10)

4. Because of (2.6), (2.8) and (2.10) we find for u ∈ X(M) that

‖u−mΩ(u)‖Lq(Ω) ≤
1
%0

[
‖I1‖Lq(Ω) + ‖I2‖Lq(Ω)

]
≤ 1

%0
mes(Ω)

1
q
+ 1

2 C0 |u|1,M +
An

%0

(Dn

n

) 1
q
B

1
2
n |u|1,M

with the constants %0, C0, An, Bn and Dn from (A2), (2.7), Lemma 3.1, Lemma 3.2 and
Lemma 3.3. Taking into account the definition of Bn and Dn in Lemma 3.2 and Lemma 3.3
this estimate yields a constant cq > 0 depending only on n, q, Ω and the constants %0,
κ1(M) and κ2(M) such that

‖u−mΩ(u)‖Lq(Ω) ≤ cq |u|1,M ∀u ∈ X(M)

which proves the theorem.

After deriving the discrete Sobolev inequality for fixed meshes M and pointing out the
dependence of the constants on the quality of the meshM we generalize our result to a class
of Voronoi finite volume meshes having a unified mesh quality. Namely, we additionally
assume for the meshes

(A3) There exist constants κ1 > 0 and κ2 ≥ 1 such that the geometric weights fulfill

0 < diam(σ) ≤ κ1 dσ for all σ ∈ Eint and

maxσ∈EK∩Eint |xK − xσ| ≤ κ2 minσ∈EK∩Eint dK,σ for all xK ∈ P.

Now we can formulate our main theorem of the paper, the discrete Sobolev inequality
uniformly on a class of Voronoi finite volume meshes M characterized by (A2) and (A3).

Theorem 2.2. Let Ω be an open bounded polyhedral subset of Rn and let M be a Voronoi
finite volume mesh such that additionally (A1) – (A3) are fulfilled. Let q ∈ (2,∞) for
n = 2 and q ∈ (2, 2n

n−2) for n ≥ 3, respectively. Then there exists a constant cq > 0 only
depending on n, q, Ω and the constants in (A1) – (A3) such that

‖u−mΩ(u)‖Lq(Ω) ≤ cq |u|1,M ∀u ∈ X(M).
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Corollary 2.1. The discrete Sobolev-Poincaré inequalities

‖u−mΩ(u)‖Lq(Ω) ≤ cq |u|1,M ∀u ∈ X(M)

for q ∈ [1, 2], are a direct consequence of Theorem 2.2 and Hölder’s inequality.

Corollary 2.2. Let Ω be an open bounded polyhedral subset of Rn and let M be a Voronoi
finite volume mesh such that additionally (A1) – (A3) are fulfilled. Let q ∈ [1,∞) for
n = 2 and q ∈ [1, 2n

n−2) for n ≥ 3, respectively. Then there exists a constant cq > 0 only
depending on n, q, Ω and the constants in (A1) – (A3) such that

‖u‖Lq(Ω) ≤ cq |u|1,M + mes(Ω)
1
q
−1

∣∣∣ ∫
Ω

u dx
∣∣∣ ∀u ∈ X(M).

3 Potential theoretical lemmas

In the proof of the following lemma we work with the solid angle which is related to the
surface of a sphere in the same way as an ordinary angle is related to the circumference
of a circle. The solid angle ωσ

xK0
of the Voronoi surface σ ∈ Eint with respect to the grid

δ

2δ

σ

F

xK0

Ω̃

Figure 3: Notation for the calculation of the solid angle.

point xK0 is the surface area of the projection of σ onto a sphere centered at xK0 , divided
by the (n− 1)th power of the spheres radius. It can be calculated by

ωσ
xK0

=
∫

σ

(x− xK0 |nσ)
|x− xK0 |n

dσ, (3.1)

where nσ denotes the unit vector normal to σ and (·|·) is the scalar product in Rn. This
formula results by the following consideration. Let 2δ = dist(xK0 , σ) > 0. We denote by

Ω̃ =
{
(1− t)xK0 + ty : t ∈ (0, 1), y ∈ σ with t|y − xK0 | > δ

}
⊂ Rn

the domain which is traced by σ, the part of the sphere with radius δ and lines passing
through xK0 and points of ∂σ (see Figure 3). Let at first n > 2. Then x 7→ |x− xK0 |2−n
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is a harmonic function on Ω̃. Denoting by n(x) the outer unit normal at the point x we
obtain by the Gauss Theorem

0 =
∫

∂ eΩ
∂

∂n(x)
1

|x− xK0 |n−2
d∂Ω̃ = −(n− 2)

∫
∂ eΩ

(x− xK0 |n(x))
|x− xK0 |n

d∂Ω̃.

Having in mind that (x − xK0 |n(x)) = 0 on that part of ∂Ω̃ which is formed by the rays
from xK0 through ∂σ and that (x − xK0 |n(x)) = −|x − xK0 | = −δ on that part F of ∂Ω̃
which belongs to the sphere with radius δ we find that∫

σ

(x− xK0 |n(x))
|x− xK0 |n

dσ =
∫

F

1
δn−1

d∂Ω̃ = ωσ
xK0

.

If n = 2 we start with the harmonic function x 7→ ln 1
|x−xK0

| on Ω̃ and apply the Gauss
Theorem

0 =
∫

∂ eΩ
∂

∂n(x)
ln

1
|x− xK0 |

d∂Ω̃ = −
∫

∂ eΩ
(x− xK0 |n(x))
|x− xK0 |2

d∂Ω̃.

Using similar arguments as in the higher dimensional case we obtain (3.1), too. In both
cases we find the upper estimate for the solid angle given in (3.1) by

ωσ
xK0

≤
∫

σ

|x− xK0 ||nσ|
|x− xK0 |n

dσ ≤
∫

σ

dσ

|x− xK0 |n−1
. (3.2)

Lemma 3.1. Let n ∈ N, n ≥ 2. We assume (A1) and (A2). Let xK0 ∈ P be a fixed grid
point and σ ∈ Eint an internal Voronoi surface with gravitational center xσ. Then

mes
(
{x ∈ B(0, R) : [xK0 , x] ∩ σ 6= ∅}

)
≤ 1

n
max{2, 4 κ1(M)}n−1diam(Ω)n mσ

|xK0 − xσ|n−1
=: An

mσ

|xK0 − xσ|n−1
.

(3.3)

Proof. 1. At first we calculate the solid angle ωσ
xK0

corresponding to σ and the reference
point xK0 . We distinguish two cases.
Case A: 2 diam(σ) < |xσ − xK0 |:
For all x ∈ σ we find

|xσ − xK0 | ≤ |x− xK0 |+ diam(σ),

therefore |xσ − xK0 | − diam(σ) ≤ |x− xK0 |, and in case A we obtain

1
2
|xσ − xK0 | ≤ |x− xK0 | ∀x ∈ σ.

Using (3.2) this leads to an upper estimate of the solid angle

ωσ
xK0

≤
∫

σ

dσ

|x− xK0 |n−1
≤

∫
σ

2n−1 dσ

|xσ − xK0 |n−1
≤ 2n−1mσ

|xσ − xK0 |n−1
.

Case B: 2 diam(σ) ≥ |xσ − xK0 |:
For x ∈ σ = K|L we have x ∈ K and due to the definition of Voronoi boxes, (2.2) and the
situation in case B we can estimate

|x− xK0 | ≥ |x− xK | ≥ dK,σ ≥
1

2κ1(M)
diam(σ) ≥ 1

4κ1(M)
|xσ − xK0 | ∀x ∈ σ.
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According to (3.2) this yields

ωσ
xK0

≤
∫

σ

dσ

|x− xK0 |n−1
≤

∫
σ

(4 κ1(M))n−1 dσ

|xσ − xK0 |n−1
≤ (4 κ1(M))n−1mσ

|xσ − xK0 |n−1
.

Therefore, in cases A and B the solid angle ωσ
xK0

of σ with respect to the grid point xK0

can be estimated by

ωσ
xK0

≤ max{2, 4 κ1(M)}n−1 mσ

|xσ − xK0 |n−1
. (3.4)

0

xK0

σ

R

|xK0 | + R

0

xK0

σ

R

2R

Figure 4: Subsets {x ∈ B(0, R) : [xK0 , x] ∩ σ 6= ∅} of the ball B(0, R) shaded by the
Voronoi surface σ with respect to the view point xK0 ; (a) Far-point case: xK0 /∈ B(0, R),
shaded set included in a sector with radius |xK0 |+R; (b) Near-point case: xK0 ∈ B(0, R),
shaded set belongs to a sector with radius 2R.

2. We estimate the measure of the subset

{x ∈ B(0, R) : [xK0 , x] ∩ σ 6= ∅}

of points, which are shaded by the beams starting from the view point xK0 and passing
through the Voronoi surface σ. To do so, first, we discuss the far-point case xK0 /∈ B(0, R):
In that case the above subset is included in the sector of the ball B(xK0 , |xK0 |+ R) with
solid angle ωσ

xK0
, see Figure 4. Using Fubini’s Theorem we obtain

mes
(
{x ∈ B(0, R) : [xK0 , x] ∩ σ 6= ∅}

)
≤

∫ |xK0
|+R

0
ωσ

xK0
rn−1 dr =

1
n

ωσ
xK0

(|xK0 |+ R)n.

In the near-point case we have xK0 ∈ B(0, R). Here, the shaded subset under consideration
is part of the sector of the ball B(xK0 , 2R) with solid angle ωσ

xK0
, see Figure 4, again. By

the same argument as before we get

mes
(
{x ∈ B(0, R) : [xK0 , x] ∩ σ 6= ∅}

)
≤

∫ 2R

0
ωσ

xK0
rn−1 dr =

1
n

ωσ
xK0

(2R)n.

In view of |xK0 |+ R ≤ diam(Ω) and 2R ≤ diam(Ω), from the discussion of the two cases
in Step 2 and the estimate of the solid angle in Step 1 we obtain the desired result.
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Lemma 3.2. Let n ∈ N, n ≥ 2. We assume (A1) and (A2). Let q ∈ (2,∞) for n = 2
and q ∈ (2, 2n

n−2) for n ≥ 3. Moreover, let β be given in (2.9). Let xK0 ∈ P be a fixed grid
point. Then∑

K∈T

∑
σ∈EK

|xK0 − xσ|−n+2β mσdK,σ ≤ n max{1 + 2κ1(M), 2}n−2β mn−1

2β
(2R̃)2β =: Bn,

where mn−1 denotes the measure of the (n− 1)-dimensional unit sphere in Rn.

Proof. 1. The idea is to prove that∑
K∈T

∑
σ∈EK

|xK0 − xσ|−n+2β mσdK,σ ≤ c

∫
Ω
|xK0 − x|−n+2β dx,

where the right hand side is known to be finite for β > 0, which is fulfilled for q ∈ (2,∞)
if n = 2 and for q ∈ (2, 2n

n−2) if n ≥ 3. The factor c > 0 in front depends on n, q, κ1(M).
We estimate the integrand pointwise.

2. Let K ∈ T and σ ∈ EK be given. Since σ belongs to the closure of the Voronoi box
K, we have due to the definition of the Voronoi boxes that |xK − xσ| ≤ |xL − xσ| for all
L ∈ T , also for L = K0. Thus

|xK − xσ| ≤ |xK0 − xσ|.

For x ∈ DKσ we estimate |xK0 − x| from above. Let xi, i ∈ Iσ, denote the set of vertices
of σ. Due to (2.2) and |xK − xσ| ≥ dK,σ, for the points xi, i ∈ Iσ and xK we can estimate

|xK0 − xi| ≤ |xK0 − xσ|+ diam(σ)
≤ |xK0 − xσ|+ 2κ1(M)dK,σ ≤ (1 + 2κ1(M)) |xK0 − xσ|, i ∈ Iσ,

|xK0 − xK | ≤ |xK0 − xσ|+ |xσ − xK | ≤ 2|xK0 − xσ|.

Since all x ∈ DKσ are convex combinations of xK , xi, i ∈ Iσ, we find

|xK0 − x| ≤ max
{
1 + 2κ1(M), 2

}
|xK0 − xσ| ∀x ∈ DKσ.

3. Now we derive the desired estimate. We apply the estimate from Step 2,∑
K∈T

∑
σ∈EK

|xK0 − xσ|−n+2βmσdK,σ

=
∑

K∈T , σ∈EK , |xK0
−xσ |≥|xK−xσ |

|xK0 − xσ|−n+2β mσdK,σ

≤ n
∑

K∈T , σ∈EK , |xK0
−xσ |≥|xK−xσ |

max
{
1 + 2κ1(M), 2

}n−2β
∫

DKσ

|xK0 − x|−n+2β dx

= n max
{
1 + 2κ1(M), 2

}n−2β
∑
K∈T

∑
σ∈EK

∫
DKσ

|xK0 − x|−n+2β dx

≤ n max
{
1 + 2κ1(M), 2

}n−2β
∫

Ω
|xK0 − x|−n+2β dx.

Hence, the result follows from
∫
Ω |xK0 − x|−n+2β dx ≤ mn−1

2β (2R̃)2β.
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Lemma 3.3. Let n ∈ N, n ≥ 2. We assume (A1) and (A2). Let q ∈ (2,∞) for n = 2 and
q ∈ (2, 2n

n−2) for n ≥ 3. Moreover, let β be given in (2.9). Let σ ∈ Eint be a fixed inner
Voronoi surface and let xσ denote its center of gravity. Then∑
K0∈T

∑
σ0∈EK0

|xK0−xσ|−n+qβ mσ0dK0,σ0≤n
(
1+κ2(M)(1+2κ1(M))

)n−qβ mn−1

qβ
(2R̃)qβ =:Dn.

Proof. 1. Similar as in the proof of Lemma 3.2 we now look for an inequality∑
K0∈T

∑
σ0∈EK0

|xK0 − xσ|−n+qβ mσ0dK0,σ0 ≤ c

∫
Ω
|x− xσ|−n+qβ dx.

We estimate the integrand pointwise.

2. Let K0 ∈ T and σ0 ∈ EK0 ∩ Eint be given and let the half-diamond DK0σ0 be described
by its vertices xi, i ∈ Iσ0 , and xK0 . Taking into account (2.2), (2.4) and diam(σ0) ≤
2κ1(M)|xσ0 − xK0 | we can estimate

|xσ − xi| ≤ |xσ − xK0 |+ |xK0 − xi|
≤ |xσ − xK0 |+ |xK0 − xσ0 |+ diam(σ0)
≤ |xσ − xK0 |+ (1 + 2κ1(M))|xσ0 − xK0 |
≤ |xσ − xK0 |+ κ2(M)(1 + 2κ1(M)) mineσ0∈EK0

∩Eint

dK0,eσ0
.

Since xσ is the gravitational center of some internal Voronoi surface we have

|xσ − xK0 | ≥ mineσ0∈EK0
∩Eint

dK0,eσ0
.

Hence, we get

|xσ − xi| ≤
(
1 + κ2(M)(1 + 2κ1(M))

)
|xσ − xK0 |, i ∈ Iσ0 .

Since all x ∈ DK0σ0 are convex combinations of xi, i ∈ Iσ0 , and xK0 we obtain

|xσ − x| ≤
(
1 + κ2(M)(1 + 2κ1(M))

)
|xσ − xK0 | ∀x ∈ DK0σ0 .

3. Due to n− qβ > 0 and the estimates in Step 2, for all K0 ∈ T , σ0 ∈ EK0 we have

1
|xσ − xK0 |n−qβ

≤
(
1 + κ2(M)(1 + 2κ1(M))

)n−qβ 1
|xσ − x|n−qβ

∀x ∈ DK0σ0 .

Therefore∑
K0∈T

∑
σ0∈EK0

|xK0 − xσ|−n+qβ mσ0dK0,σ0

≤ n
(
1 + κ2(M)(1 + 2κ1(M))

)n−qβ
∑

K0∈T

∑
σ0∈EK0

∫
DK0σ0

1
|xσ − x|n−qβ

dx

= n
(
1 + κ2(M)(1 + 2κ1(M))

)n−qβ
∫

Ω

1
|xσ − x|n−qβ

dx.

Because of n− qβ > 0 and
∫
Ω |xσ − x|−n+qβ dx ≤ mn−1

qβ (2R̃)qβ this finishes the proof.
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4 Discrete Sobolev-Poincaré inequalities for more general domains

In this section we discuss how the results of Theorem 2.1 and Theorem 2.2 which hold true
for star shaped domains Ω can be used to obtain assertions for a more general situation.
In the nondiscretized situation the result can be carried over to domains Ω which are a
finite union of star shaped domains Ωi (see [12, §118], [13, p. 69/70]). In our discretized
situation we suppose

(A4) The open, connected, polyhedral domain Ω ⊂ B(0, R̃) is a finite union of open,

polyhedral Ωi, i = 1, . . . , N , and there are δ > 0, R > 0, and points zi ∈ Ω

such that Ωi as well as the set Ωiδ := Ωi ∪ ∪j 6=i{x ∈ Ωj : dist(x,Ωi) < δ}

are star shaped with respect to the ball B(zi, R), i = 1, . . . , N .

We introduce the functions

%i : Rn → [0, 1], %i(y) =

{
exp

{
− R2

R2−|y−zi|2
}

if |y − zi| < R,

0 if |y − zi| ≥ R,

and their piecewise constant approximations %Mi ∈ X(M). Concerning the mesh we
assume

(A5) Let M = (P, T , E) be a Voronoi finite volume mesh of Ω with the property

that EK ∩ Eext 6= ∅ implies xK ∈ ∂Ω. Moreover, size(M) of the Voronoi mesh

of Ω is assumed to be less than δ and to be so small that there exists a

constant %0 > 0 such that
∫
Ω %Mi (x) dx ≥ %0, i = 1, . . . , N .

Then the discrete Sobolev-Poincaré inequalities remain true also for finite unions of δ-
overlapping star shaped domains.

Theorem 4.1. We assume (A3) – (A5). Let q ∈ (2,∞) for n = 2 and q ∈ (2, 2n
n−2) for

n ≥ 3, respectively. Then there exists a constant Cq > 0 only depending on n, q, Ω and
the constants in (A3) – (A5) such that

‖u−mΩ(u)‖Lq(Ω) ≤ Cq |u|1,M ∀u ∈ X(M).

Proof. We illustrate the idea of the proof for a composition of Ω by only two star shaped
subdomains Ω1 and Ω2. We introduce

Ti := {K ∈ T : K ⊂ Ωiδ, K ∩ Ωi 6= ∅}, Ti0 := {K ∈ T : K ⊂ B(zi, R)}

and apply the estimates of Step 1 and 2 in the proof of Theorem 2.1 for each subdomain
separately. For each K0 ∈ Ti, we write∫

Ω
(uK0 −mΩ(u))%Mi (x) dx =

∫
Ω
(u(x)−mΩ(u))%Mi (x) dx

−
∑

K′∈Ti0

∫
K′

∑
σ∈Eint

(∆σu)(xK0 , x)χσ(xK0 , x)%Mi (x) dx,
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and find

|uK0 −mΩ(u)| ≤ Ii
1

%0
+

Ii
2(K0)
%0

, K0 ∈ Ti,

where

Ii
1 :=

∫
Ω

∣∣u(y)−mΩ(u)
∣∣%Mi (y) dy =

∑
K′∈Ti0

∫
K′

∣∣u(x)−mΩ(u)
∣∣%MiK′ dx,

Ii
2(K0) :=

∑
K′∈Ti0

∫
K′

∑
σ∈Eint

Dσu χσ(xK0 , x) %MiK′ dx.

Here, since the discrete Poincaré inequality (A.1) works on Ω,

Ii
1 ≤ mes(Ω)1/2 ‖u−mΩ(u)‖L2(Ω) ≤ C0 mes(Ω)1/2 |u|1,M.

The expression for Ii
2(K0) can be estimated according to Step 3 of the proof of Theorem 2.1

by

Ii
2(K0) ≤ Ai

n(Bi
n)1/2 |u|1−2/q

1,M

( ∑
σ∈Eint

|Dσu|2|xK0 − xσ|−n+qβ mσ

dσ

)1/q
, K0 ∈ Ti,

where the constants Ai
n, Bi

n now contain the geometric data from Ti, i = 1, 2, which can
be estimated from above by those of T . Following the estimates in (2.10) we get

2∑
i=1

∑
K0∈Ti

∑
σ0∈EK0

Ii
2(K0)qmσ0dK0,σ0 ≤

2∑
i=1

(Ai
n)q(Bi

n)q/2Di
n|u|

q
1,M.

Note that in Ai
n, Bi

n and Di
n now the constants κ1 and κ2 (see (A3)) are used. Then

estimates like in Step 4 of the proof of Theorem 2.1 give the desired result.

5 Remarks and open questions

Remark 5.1 (The anisotropic setting). Let H be a positive definite symmetric n × n
matrix, let κ3, κ4 > 0 be the smallest and largest eigenvalue of H, that is

κ3|y|2 ≤ (Hy|y) ≤ κ4|y|2 for all y ∈ Rn.

Then the inverse matrix H−1 is positive definite and symmetric, too, and by means of the
matrix H−1 we define the modified distance function d : Rn × Rn → R,

d(x, y) :=
√

(x− y|H−1(x− y)).

We consider corresponding anisotropic Voronoi finite volume meshes Ma = (P, T a, Ea).
Belonging to the grid points xK ∈ P the set T a of anisotropic Voronoi boxes is given by

Ka := {x ∈ Ω : d(x, xK) < d(x, xL) for all xL ∈ P, xL 6= xK}, Ka ∈ T a.
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The set Ka then is traced by Voronoi surfaces σa ∈ EKa . And mes(σa) is denoted by
mσa . Note that in this anisotropic context the face σa = Ka|La in generally is no more
perpendicular to the line [xK , xL]. But, if nσa denotes the unit normal vector to σa,
then Hnσa is parallel to the line [xK , xL]. For the Euclidean distance dK,σa of xK to the
hyperplane containing σa we find that

dK,σa =
dσa

2
(nσa | Hnσa

|Hnσa |), (5.1)

where dσa = |xK − xL|. For the corresponding (anisotropic) half diamonds DKσa :=
{txK + (1− t)y, t ∈ (0, 1), y ∈ σa} we obtain

n mes (DKσa) = mσadK,σa = mσa
dσa

2
(nσa | Hnσa

|Hnσa |). (5.2)

Let X(Ma) denote the set of functions from Ω to R which are constant on each anisotropic
Voronoi box of the mesh. For u ∈ X(Ma) the value at the box Ka is denoted by uK again.
For u ∈ X(Ma) we define a discrete (anisotropic) H1-seminorm by

|u|21,Ma =
∑

σa∈Ea
int

mσa

dσa
|Hnσa |(Dσau)2, (5.3)

where Dσau = |uK − uL| and σa = Ka|La.

For this anisotropic setting and more general boundary conditions one has to prove a
discrete (anisotropic) Poincaré inequality using the discrete H1-seminorm defined in (5.3)
by modifying the proof of the discrete isotropic Poincaré inequality, see Theorem A.1.
Namely, taking into account that in the anisotropic situation we have∑

σa∈Ea
int

dσacσa,y−xχσa(x, y) ≤ κ4

κ3
diam(Ω)

instead of (A.4) and κ3 ≤ |Hnσa | we get the discrete anisotropic Poincaré inequality

‖u−mΩ(u)‖2
L2(Ω) ≤

κ4

κ2
3

C2
0 |u|21,Ma ∀u ∈ X(Ma),

where C0 is the constant in the isotropic Poincaré inequality (A.1).

Moreover, one has to prove anisotropic versions of Lemma 3.1, Lemma 3.2 and Lemma 3.3,
respectively. There in the distinction of cases we have now to use the distance function
introduced by the anisotropy. For the space integration now (5.2) has to be applied.
Having in mind all these changes an anisotropic discrete Sobolev inequality of the form

‖u−mΩ(u)‖Lq(Ω) ≤ c̃q|u|1,Ma ∀u ∈ X(Ma)

can be proved, too.

Such estimates are for example of interest in the treatment of finite volume discretized
electro-reaction-diffusion systems where for each species a different anisotropic mobility
should be taken into account. Such problems can be found in [8, 9].
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Remark 5.2 (Critical exponent). For n ≥ 3, the discrete version of the Sobolev embed-
ding H1(Ω) ↪→ L2n/(n−2)(Ω) (the critical Sobolev exponent) can not be obtained by the
presented technique using the Sobolev integral representation, only. This is exactly the
same situation as for the continuous case (see [7, Chap. 7.8], [12, §§114 – 116]), [13, §8].

Remark 5.3 (More general finite volume meshes). Lemma 1 in [2] gives a discrete Sobolev
inequality for functions with zero boundary values for more general finite volume meshes,
not only Voronoi diagrams. There the class of admissible finite volume meshes is restricted
by the demand that for some ζ > 0 it has to be fulfilled

dK,σ > ζ dσ, dK,σ > ζ diam(K) ∀σ ∈ EK ∀K ∈ T . (5.4)

In [4] Lemma 9.5 (for space dimension n = 2) uses only the first inequality in (5.4). It
arises the question to generalize our result of Theorem 2.1 for functions with nonzero
boundary values to more general finite volume meshes.

A The discrete Poincaré inequality for functions with nonzero boundary
values

The discrete Poincaré inequality for functions with nonzero boundary values can be found
in [4, Lemma 10.2], [6, Lemma 4.2]. There the proof is decomposed in three steps, but
the second step works only for two space dimensions. We give here an alternative proof
which works for higher space dimensions, too.

Theorem A.1. Let Ω ⊂ Rn, n ≥ 2, be open, bounded, polyhedral and connected and let
Ω1, . . . ,Ωr ⊂ Rn be nonempty, open, convex sets with Ω = ∪r

i=1Ωi. Then there exists a
constant C0 > 0 depending on Ω1, . . . ,Ωr, only, such that for all Voronoi finite volume
meshes M

‖u−mΩ(u)‖L2(Ω) ≤ C0 |u|1,M ∀u ∈ X(M) where mΩ(u) =
1

mes(Ω)

∫
Ω

u dx. (A.1)

Proof. We decompose the proof into two steps. If Ω is convex itself, the proof results from
Step 1 alone.

1. Estimation on a nonempty, open, convex subset ω ⊂ Rn of Ω: We show that there
exists a constant CΩ > 0 such that

‖u−mω′(u)‖2
L2(ω) ≤

CΩ

mes(ω′)
|u|21,M ∀u ∈ X(M), (A.2)

whenever ω′ ⊂ Rn is a measurable subset of ω with mes(ω′) > 0. Here mω′(u) denotes the
mean value of u on ω′. Because of∫

ω
|u(x)−mω′(u)|2 dx ≤ 1

mes(ω′)

∫
ω

∫
ω′
|u(x)− u(y)|2 dy dx

it suffices to prove ∫
ω

∫
ω′
|u(x)− u(y)|2 dy dx ≤ CΩ|u|21,M.
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Using the convexity of ω ⊂ Rn we have

|u(x)− u(y)|2 ≤
∣∣∣ ∑

σ∈Eint

Dσu χσ(x, y)
∣∣∣2

for almost all x ∈ ω and y ∈ ω′, where the function χσ is defined in (2.5). We apply the
Cauchy-Schwarz inequality to obtain

|u(x)− u(y)|2 ≤
∑

σ∈Eint

|Dσu|2

dσcσ,y−x
χσ(x, y)

∑
σ∈Eint

dσcσ,y−xχσ(x, y) (A.3)

for almost all x ∈ ω and y ∈ ω′, where cσ,η = |( η
|η| |nσ)| is defined for η ∈ Rn \ {0} and nσ

is a unit vector normal to σ ∈ Eint. Since xK − xL = ±dσnσ for σ = K|L ∈ Eint we find
for some K∗ and L∗ (depending on x ∈ ω, y ∈ ω′) such that∑

σ∈Eint

dσcσ,y−xχσ(x, y) =
∣∣( y−x
|y−x| |xK∗ − xL∗)

∣∣ ≤ diam(Ω). (A.4)

Integration over x ∈ ω and y ∈ ω′ in (A.3) yields∫
ω

∫
ω′
|u(x)− u(y)|2 dy dx ≤ diam(Ω)

∫
ω

∫
ω′

∑
σ∈Eint

|Dσu|2

dσcσ,y−x
χσ(x, y) dy dx.

By a change of variables, y = x + z, we obtain∫
ω′

∫
ω
|u(x)− u(y)|2 dxdy ≤ diam(Ω)

∫
Rn

∑
σ∈Eint

|Dσu|2

dσcσ,z

∫
ω

χσ(x, x + z) dxdz.

Because for all x ∈ ω we have χσ(x, x + z) = 0 if z ∈ Rn, |z| > diam(Ω) and∫
ω

χσ(x, x + z) dx ≤ mσ|z|cσ,z ∀z ∈ Rn

we end up with∫
ω′

∫
ω
|u(x)− u(y)|2 dxdy ≤ diam(Ω)2

∫
B(0,diam(Ω))

∑
σ∈Eint

|Dσu|2

dσ
mσdz

≤ diam(Ω)n+2 mes(B(0, 1))|u|21,M,

that means, we can choose CΩ = diam(Ω)n+2 mes(B(0, 1)).

2. Estimate (A.1) for the general case: We consider the intersections Ωij = Ωi ∩ Ωj for
i, j ∈ {1, . . . , r} and set

B := {(i, j) ∈ {1, . . . , r}2 : i 6= j, Ωij 6= ∅}.

Then, following (A.2) for ω = Ωi, ω′ = Ωi and ω′ = Ωij , respectively, in Step 1 we get

‖u−mΩi(u)‖2
L2(Ωi)

≤ CΩ

mes(Ωi)
|u|21,M, i = 1, . . . , r, (A.5)
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‖u−mΩij (u)‖2
L2(Ωi)

≤ CΩ

mes(Ωij)
|u|21,M ∀(i, j) ∈ B.

Hence, for every (i, j) ∈ B we obtain

|mΩi(u)−mΩij (u)|2mes(Ωi) ≤ 2
∫

Ωi

|u−mΩi(u)|2 dx + 2
∫

Ωi

|u−mΩij (u)|2 dx

≤
( 2CΩ

mes(Ωi)
+

2CΩ

mes(Ωij)

)
|u|21,M.

(A.6)

Since Ω = ∪r
i=1Ωi is both connected and a finite union of bounded, open, convex sets

Ω1, . . . ,Ωr, for every pair (i, j) ∈ {1, . . . , r}2 with i 6= j we find some ` ∈ N, 2 ≤ ` ≤ r
and pairwise disjoint indices k1, . . . , k` ∈ {1, . . . , r} with k1 = i, k` = j and (kl, kl+1) ∈ B
for all l = 1, . . . , ` − 1. Hence, using the triangle inequality and (A.6) we can find some
constant M > 0 depending on Ω1, . . . ,Ωr, only, such that

|mΩi(u)−mΩj (u)| ≤ M |u|1,M ∀(i, j) ∈ {1, . . . , r}2. (A.7)

Introducing the averaged quantity

m(u) =

∑r
j=1 mΩj (u) mes(Ωj)∑r

k=1 mes(Ωk)

we see that for every i = 1, . . . , r we have

|m(u)−mΩi(u)| ≤
r∑

j=1

|mΩj (u)−mΩi(u)| mes(Ωj)∑r
k=1 mes(Ωk)

.

Because of (A.7) we obtain

|m(u)−mΩi(u)| ≤ M |u|1,M, i = 1, . . . , r.

Together with (A.5) we find some constant c0 > 0 depending on Ω1, . . . ,Ωr, only, such
that

‖u−m(u)‖2
L2(Ωi)

≤ c0|u|21,M, i = 1, . . . , r.

Summing up, this yields

‖u−m(u)‖2
L2(Ω) ≤

r∑
i=1

‖u−m(u)‖2
L2(Ωi)

≤ r c0 |u|21,M.

Since α = mΩ(u) ∈ R minimizes the function α 7→ ‖u− α‖2
L2(Ω), the assertion of the

theorem follows.
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