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Abstract

Let ® be a uniformly distributed randoiSAT formula withn variables andn clauses. We present
a polynomial time algorithm that finds a satisfying assignta# ® with high probability for constraint
densitiesm/n < (1 — e1)2" In(k)/k, wheree, — 0. Previously no efficient algorithm was known
to find solutions with non-vanishing probability beyond/n = 1.817 - 2* /k [Frieze and Suen, J. of
Algorithms 1996].
Key words:random structures, efficient algorithms, phase transtiiSAT.

1 Introduction
1.1 Solving random k-SAT

Thek-SAT problem is well known to be NP-hard fbr> 3, and in fact no algorithm with a sub-exponential
worst-case running time is known to decide whether a gi+&AT formula has a satisfying assignment.
Nevertheless, thdt-SAT is NP-hard merely indicates that no algorithm can salv@ossible inputs effi-
ciently. Therefore, there has been a significant amountsgfaieh orheuristicsfor k-SAT, i.e., algorithms
that solve “most” inputs efficiently, where the meaning ofdsti depends on the scope of the respective
paper. While some heuristics fbrSAT are very sophisticated, virtually all of them are basedat least)
one of the following basic paradigms.

Pureliteral rule. If avariabler occurs only positively (resp. negatively) in the formulet isto true (resp.
false). Simplify the formula by substituting the newly agsd value for: and repeat.

Unit clause propagation. If the formula contains a clause that contains only a siritdedll (“unit clause”),
then set the underlying variable so as to satisfy this clalisen simplify the formula and repeat.

Walksat. Initially pick a random assignment. Then repeat the folloyvi While there is an unsatisfied
clause, pick one at random, pick a variable occurring in thesen clause randomly, and flip its
value.

Backtracking. Assign a variabler, simplify the formula, and recurse. If the recursion faisfind a
satisfying assignment, assigrthe opposite value and recurse.

Heuristics based on these paradigms can be surprisingtessiul (given that-SAT is NP-hard) on
certain types of inputs (e.g[, [10,116]). However, it rensaiemarkably simple to generate formulas that
elude all known algorithms/heuristics. Indeed, the sirsiptenceivable type aihndominstances does the
trick: let & denote &-SAT formula over the variable sét = {z1, ..., z,} thatis obtained by choosing
m clauses uniformly at random and independently from the &all §2n)* possible clauses. Then for a
large regime of constraint densities/n satisfying assignments are known to exist due to non-coctste
arguments, but no algorithm is known to find one in sub-exptiatime with a non-vanishing probability.
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To be precise, keepingfixed and lettingn = [rn| for a fixedr > 0, we say tha® has some property
with high probability(*w.h.p.”) if the probability that the property holds tenttsone as: — ~. Via the
(highly non-algorithmic) second moment method and thegstraeshold theorem [3] 4, 114] it can be shown
that® has a satisfying assignment w.h.puif'n < (1 — £;)2" In 2. Heres;, tends ta0 for largek. On the
other hand, a first moment argument shows that no satisfygsigrament exists w.h.p. if./n > 2% In 2.

In summary, the threshold f@ being satisfiable is asymptoticaldy In 2.

But for densitiesn /n beyondO(2* /k) no algorithm has been known to find a satisfying assignment
in polynomial time with probability¥2(1) — neither on the basis of a rigorous analysis, nor on the basis
of experimental or other evidence. In fact, many algorithinsluding Pure Literal, Unit Clause, and
DPLL-type algorithms, are known to fail or exhibit an expatial running time beyond(2* /k). There
is experimental evidence that the same is true of Walksaedd, devising an algorithm to solve random
formulas with a non-vanishing probability for densitiegn up to2*w(k)/k for anyw(k) — oo has been
a well-known open problem[3] 4] 8,121], which the followirigebrem resolves.

Theorem 1.1 There are a sequeneg — 0 and a polynomial time algorithrai x such thatFi x applied
to a random formula® with m/n < (1 — £;,)2% In(k) /k outputs a satisfying assignment w.h.p.

Fix is a combinatorial, local-search type algorithm. It canrbplemented to run in timé(n + m)?3/2.

The recent paper[2] provides evidence that beyond density = 2* In(k)/k the problem of finding
a satisfying assignment becomes conceptually significamtire difficult (to say the least). To explain this,
we need to discuss a concept that originates from statigiigesics.

1.2 A digression: replica symmetry breaking

For the last decade randdmSAT has been studied by statistical physicists using stighited, insightful,
but mathematically highly non-rigorous techniques from theory of spin glasses. Their results suggest
that below the threshold densify In 2 for the existence of satisfying assignments various otiheise
transitions take place that affect the performance of @lyois.

To us the most important one is tbgnamic replica symmetry breaki(@RSB) transition. Lef (®) C
{0,1}" be the set of all satisfying assignments of the random faardul We turnS(®) into a graph by
considerings, T € S(®) adjacent if their Hamming distance equals one. Very rougpbaking, according
to the dRSB hypothesis there is a density s such that forn/n < rrsp the correlations that shape the
setS(®) are purely local, whereas for densitiegn > rrsp long range correlations occur. Furthermore,
TRSB ™~ 2k hl(k)/k

Confirming and elaborating on this hypothesis, we recerghatdished a good part of the dRSB
phenomenon rigorously [2]. In particular, we proved tharéhis a sequence, — 0 such that for
m/n > (1 + €;)2%In(k)/k the values that the solutions € S(®) assign to the variables are mutu-
ally heavily correlated in the following sense. Let us callaaiablex frozenin a satisfying assignment
o if any satisfying assignment such thatr(z) # 7(z) is at Hamming distanc@(n) from o. Then for
m/n > (1+¢;)2% In(k)/k in all but ao(1)-fraction of all solutionsr € S(®) all but ans;,-fraction of the
variables are frozen w.h.p., wherg — 0.

This suggests that on random formulas with density. > (1+¢,)2* In(k)/k local search algorithms
are unlikely to succeed. For think of tfector graph whose vertices are the variables and the clauses, and
where a variable is adjacent to all clauses in which it occlinen a local search algorithm assigns a value
to a variabler on the basis of the values of the variables that have dist@tgfrom x in the factor graph.
But in the random formul@ with m/n > (1 +¢;)2% In(k) /k assigning one variableis likely to impose
constraints on the values that can be assigned to variatdéstance(Iln n) from « in the factor graph.

The above discussion applies to “large” value& ¢fay,k > 10). In fact, non-rigorous arguments as
well as experimental evidendel [5] suggest that the pictigite different and rather more complicated
for “small” k£ (say,k = 3,4,5). In this case the various phenomena that occur at (or veas) tige point
2% In(k)/k for k > 10 appear to happen at vastly different points in the satisfiedgime. To keep matters
as simple as possible we focus on “largeth this paper. In particular, no attempt has been made toaleri
explicit bounds on the numbers in Theoreni_LI for “small” values df.
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Algorithm Densitym/n < --- Success probability Ref., year

Pure Literal (“PL") o(1) ask — oo w.h.p. [19], 2006

Walksat, rigorous =28 /K2 w.h.p. [9], 2009

Walksat, non-rigorous 2F /k w.h.p. [22], 2003

k—2 .

Unit Clause (“UC") 1 (k—;;) .2 Q1) [7], 1990
E—3 N

Shortest Clause (“SC”) | 1 (k—:é) kel 2o w.h.p. [8], 1992

SC+backtracking (“SCB”) ~1.817- 2 w.h.p. [15], 1996

BP+decimation (“BPdec” e-2F/k w.h.p. [21], 2007

(non-rigorous)

Table 1: Algorithms for randorh-SAT

1.3 Reéated work

Quite a few papers deal with efficient algorithms for rand8AT, contributing either rigorous results,
non-rigorous evidence based on physics arguments, oriex@®al evidence. Tablg 1 summarizes the
part of this work that is most relevant to us. The best rigen@msult (prior to this work) is due to Frieze
and Suen([I5], who proved that “SCB” succeeds for densiti@s /k, wheren,, is increasing tal.817
ask — oo. SCB can be considered a (restricted) DPLL-algorithm. Mmexisely, SCB combines the
shortest clause rule, which is a generalization of Unit €&awith (very limited) backtracking. Conversely,
it is known that DPLL-type algorithms require an expondntienning time w.h.p. for densities beyond
O(2%/k) .

Montanari, Ricci-Tersenghi, and Semerjianl[21] providielence that Belief Propagation guided dec-
imation may succeed up to density 2*/k. This algorithm is based on a very different paradigm than
the others mentioned in Tallé 1. The basic idea is to run aagegsassing algorithm (“Belief Propaga-
tion”) to compute for each variable the marginal probapifitat this variable takes the value true/false in a
uniformly random satisfying assignment. Then, the dedionattep selects a variable, assigns it the value
true/false with the corresponding marginal probabilityd @implifies the formula. Ideally, repeating this
procedure will yield a satisfying assignment, provided tBelief Propagation keeps yielding the correct
marginals. Proving (or disproving) this remains a majorropeblem.

Survey Propagation is a modification of Belief Propagatioat aims to approximate the marginal
probabilities induced by a particular (non-uniform) prbibigy distribution on the set of satisfying assign-
ments [6]. It can be combined with a decimation procedure @l t@ obtain a heuristic fofinding a
satisfying assignment. There is (non-rigorous) evideheg for most of the satisfiable regime (actually
m/n < 2¥1n2 — O(1)) Belief and Survey Propagation are essentially equivdEdjt Hence, there is no
evidence that Survey Propagation finds satisfying assigisieyond)(2* /&) for generak.

In summary, various algorithms are known/appear to sucfeeatensities: - 2% /k, where the constant
¢ depends on the particulars of the algorithm. But | am not ewéprior evidence (either rigorous results,
non-rigorous arguments, or experiments) that some algorgiucceeds for densities/n = 2*w(k)/k
with w(k) — oc.

The discussion so far concerns the case of geketaladdition, a large number of papers deal with the
casek = 3. Flaxman[[138] provides a survey. Currently the best rigshpanalyzed algorithm for random
3-SAT is known to succeed up ta/n = 3.52 [17]. This is also the best known lower bound on the 3-SAT
threshold. The best current upper bound.iz06 [11], and non-rigorous arguments suggest the threshold
to bex 4.267 [6]. As mentioned in Section 1.2, there is non-rigorous ewite that the structure of the
set of all satisfying assignment evolves differently indam 3-SAT than in randork-SAT for “large” k.
This may be why experiments suggest that Survey Propagatiidled decimation for 3-SAT succeeds for
densitiesn/n up to4.2 [6].

1.4 Techniques and outline
The algorithms for randorh-SAT from [7,/8[15] all follow a very simple scheme:
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Initially all variables are unassigned. In each step appiyesrule (referring to the previously
assigned variables/values only) to select a currentlysigasd variable. Assign the selected
variable for good, simplify the formula, and proceed.

The Unit Clause algorithm is the prototypical example: theerlying rule is to check if there is a clause
that hask — 1 false literals due previous decisions; if so, the algorigets the last unassigned variable
S0 as to satisfy the clause. Otherwise the algorithm picksnassigned variable randomly and assigns it
a random value. (The algorithm SCB from [15] deviates froim gattern slightly as it may backtrack to
revise previous assignments, but this happens at @@st n) times w.h.p.)

The analysis of such algorithms is based on the “method adrced decisions”. Suppose we apply
the algorithm to a random formula and condition on the o@nes of the variables assigned in the first
t steps. Assume that these are precisely the varialjles ., z;. Then all the literals whose underlying
variable is none ot 4, ..., z; remain stochastically independent and uniformly disteluover set of the
remaining2(n — t) literals. This fact makes it possible to either model thecexien of the algorithm by
differential equations]7.18], or by a Markov chain[15]. Gfurse, this type of analysis crucially exploits
the fact that the algorithm (almost) never revises previrgsions.

Instead of assigning one variable at a time, the Walksatitigo starts from a complete (e.g., randomly
chosen) assignment of truth values to all the variables.oDfs®, this initial assignment is very unlikely to
be satisfying. Hence, while there is an unsatisfied clatrgealgorithm picks one of them at random and
flips the value of a randomly chosen variable occurring in theause. Since Walksat actually starts from
a complete assignment and may flip the value of the same \egalkeral times, the method of deferred
decisions does not apply. In fact, although experimental (@n-rigorous) evidence suggests that Walksat
finds a satisfying assignment in linear time w.h.p.ifofn < 2% /k, the best current rigorous analysis only
shows this form /n < 2% /(6k2) [9]. (The proof is based on relating Walksat to a branchiraepss.)

The algorithnFix for Theoreni LI is similar to Walksat in that it starts withaanplete assignment —
say, for the sake of concreteness, the one that sets alblesito true. The number of unsatisfied clauses is
(14 0(1))2~%m w.h.p. To reach a satisfying assignmentx will have to flip (at least) one variable from
each of these clauses. But in contrast to Walksat; does not choose this variable randomly. Instead
Fix applies a greedy rule: whenever possible choose a variabtethat flippingz does not generate
new unsatisfied clauses. Thus, one could congidera greedy version of Walksat. We will describe the
algorithm precisely in Sectidd 3.

The analysis of i x is based on a blend of probabilistic methods (e.g., mar@syand combinatorial
arguments. We can employ the method of deferred decisiansadain extent: the analysis “pretends” that
the algorithm exposes the literal occurrences of the ranidgon formula only when it becomes strictly
necessary, so that the unexposed ones remain “random”. \ldowthe picture is not as clean as in the
analysis of, say, Unit Clause. The reason is that we will havigack certain rather non-trivial random
variables throughout the process, for which we will resoraitdirect combinatorial analysis. Sectdn 3
contains an outline of the analysis, the details of whichcareied out in Sectionl43-6. Before we come to
this, we need a few preliminaries.

2 Preliminaries and notation

In this section we introduce some notation and present a ésiclfacts. Although most of them (or closely
related ones) are well known, we present some of the prooteéosake of completeness.

2.1 Ballsand bins

Consider a balls and bins experiment wheistinguishable balls are thrown independently and unifgr
at random intoe bins. Thus, the probability of each distribution of ballsibins equals —*.

Lemma 2.1 Let Z(u,n) be the number of empty bins. Let= nexp(—u/n). ThenP [Z(u,n) < A/2] <
O(\/1) - exp(—A/8) asn — oo.
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The proofis based on the followirghernoff bounan the tails of a binomially distributed random variable
X with mean) (seel[18, pages 26-28]): for any- 0

t2

2(\ + t/3)

P(X > A+1t) <exp ( o)

) and P(X <X—t)<exp (ﬁ) . Q)

Proof of Lemm&2Z]1Let X; be the number of balls in bin In addition, let(Y;):<;<, be a family of

mutually independent Poisson variables with mggn, and letY = """ | ¥;. ThenY has a Poisson
distribution with meary.. Therefore, Stirling’s formula showB [Y = u] = ©(u~'/2). Furthermore,
the conditionaljoint distribution ofY7,...,Y,, given thatY” = p coincides with the joint distribution of
X1,...,X, (see, e.q.[T12, Section 2.6]). As a consequence,

P[Z(u,n) <A/2] = P[{ie[n]:Y; =0} <\/2]Y =y]

P{ien]:Yi=0} <)2] _ . o
- PY =/ =0(Vnr)-P{ie[n]:Yi =0} <A/2](2)

Finally, sinceY,...,Y, are mutually independentaiY; = 0] = A/n forall 1 < i < n, the number of
indicesi € [n] such that; = 0 is binomially distributed with meah. Thus, the assertion follows frofl (2)
and the Chernoff boundl(1). a

2.2 Random k-SAT formulas

Throughout the paper we 1&t = V,, = {z1,...,z,} be a set of propositional variables.4f C V, then
Z = {z : x € Z} contains the corresponding set of negative literals. Megedf [ is a literal, then||
signifies the underlying propositional variableplfs an integer, lefu] = {1,2, ..., u}.

We letQy (n, m) be the set of alk-SAT formulas with variables frol = {x1,...,z,} that contain
preciselym clauses. More precisely, we consider the formula an orderddple of clauses and each
clause an orderekttuples of literals, allowing both literals to occur repadily in one clause and clauses
to occur repeatedly in the formula. LEY(n,m) be the power set a2, (n,m), and letP = Py (n,m)
be the uniform probability measure (which assigns proltgibin)~*™ to each formula). We obtain a
probability spacéQy (n, m), X (n, m), P).

Throughout the paper we denote a random elemef¥,0f, m) by ®. Unless otherwise specifie®,
is uniformly distributed. In addition, we uskto denote specific (i.e., non-random) elementQpfn, m).

If @ € Qx(n,m), then®; denotes théth clause of>, and®;; denotes thgth literal of @,.

Lemma 2.2 For anydé > 0 and anyk > 3 there isng > 0 such that for alln > ng the following is
true. Suppose that > on and thatX; : Qi (n,m) — {0,1} is a random variable for eache [m]. Let
= [1112 n} If there is a numbeA > § such that for any set/ C [m] of sizey we have

E lH Xi] <\ then P lz X; > (14 5))\m] <n710
ice M i=1

Proof. Let M be the number of sets/ C [m] of sizey such thaf [, ,, X; = 1. ThenE [M] < (T)M.
If X =", X;>L=/[(1+03)Am], thenM > (ﬁ) Consequently, by Markov’s inequality

o = vl (O] B SR () < (e

SinceAm > §%n we see thatl + d)\m — u > (1+ §/2) Am for sufficiently largen. HenceP [X > L] <
(1+6/2)~* < n~'0 for large enough. ]

Although we allow variables to appear repeatedly in the salagse, the following lemma shows that
this occurs very rarely w.h.p.
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Lemma 2.3 Suppose that, = O(n). Then w.h.p. there are at mdstn indicesi € [m] such that one of
the following is true.

1. There arel < j; < j» < ksuchthai®;;, | = [P, |.
2. There i’ # i and indicesj; # jo, j1 # jp suchthaf®;;, | = [®; ;| and|®;;,| = [, |.
Furthermore, w.h.p. no variable occurs in more tHan » clauses.

Proof. Let X be the number of such indicé$or which 1. holds. For eache [m] and any paif < j; <
jo < k the probability that®;,;, | = |®,;,| is 1/n, because each of the two variables is chosen uniformly
at random. Hence, by the union bound the probability thaktlaeej, , j» such thaf®,;, | = |®;,,]| is at
most(¥) /n. Consequentlyi [X] < m (%) /n = O(1), and thusX < 1 Innw.h.p. by Markov’s inequality.

Let Y be the number of € [m] for which 2. is true. For any givef i, j1, j;, j2, 75 the probability
that|®;;,| = |®; ;| and|®;;,| = |®; ;| is 1/n?. Furthermore, there are* ways to choosé, i’ and then
(k(k —1))* ways to choosg, ji, j, j5. HenceE [Y] < m%k*n=2 = O(1). Thus,X < 1Innw.h.p. by
Markov’s inequality.

Finally, for any variabler the number of indice$ € [m] such thatz occurs in®; has a binomial
distributionBin(m, 1 — (1 — 1/n)*). Since the meam - (1 — (1 —1/n)*) is O(1), the Chernoff bound{1)
implies that the probability that occurs in more thaim? n clauses i$(1/n). Hence, by the union bound
there is no variable with this property w.h.p. ]

Recall that diltration is a sequencéF; )o<:< of o-algebrasF, C X (n, m) such thatF;, C F;4, for
all0 <t < 7. For arandom variabl& we letE [ X |F;] denote theconditional expectatiofwhich is a
random variable). Remember thaf:| ;] assigns a probability measurd:| F;] (®) to any® € Q(n,m),
namely

P[|F](®): A€ Zk(n,m) — E[La|F] (D),

wherel (p) = 1if ¢ € Aandl4(p) = 0 otherwise.

Lemma 2.4 Let(F;)o<:<- be afiltration and le{ X;);<;<. be a sequence of random variables such that
eachX, is F;-measurable. Assume that there are numliers 0 such thatk [X;|F;,_1] < &, for all ¢.

ThenE[[[, <, <, X¢|Fol < Tli<i<r &t

Proof.Forl < s < 7 we letY, = Hle X;. Lets > 1. SinceY,_; is F,_1-measurable, we obtain
E[Ys|Fo] = E[Yso1XsFo] = E[E[Yso1 X[ Fsa]|Fo] = E[Ys1 E[Xs|Fs—1] [Fo] < &E[Yso1[Fo],
whence the assertion follows by inductiam We also need the following tail bound (“Azuma-Hoeffding”,
e.g. [18, p. 37]).

Lemma 2.5 Let(M,)o<i<, be a martingale such that/y, = E [M;]. Suppose thdi\/, — M;_1| < ¢, for
all1 <t <. Thenforany\ > 0P [[M, — Mo| > \] < exp [-A?/(2> 7, ¢f)] .

Finally, we need the following bound on the number of claubashave “few” positive literals in total
but contain at least one positive variable from a “small’ set

Lemma 2.6 There is a constant > 0 such that for allk > 3 andm/n < 2¥k~!Ink the following
is true. Letl < [ < vk and setd = ak~*. ForasetZ C V let X; be the number of indices
i € [m] such that®; is a clause with preciseli positive literals that contains a variable fromi. Then
max {Xz : |Z| < én} < Von w.h.p.

Proof. Let u = [v/dn]. We use a first moment argument. Clearly we just need to censitsZ of size
[6n]. Thus, there are at mogf, ) ways to chooseZ. OnceZ is fixed, there are at mogt]) ways to
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choose a seX C [m] of sizep. For each € 7 the probability that®; contains a variable fror¥ and has
preciselyl positive literals is at moszl—kk(’l“)é Hence, by the union bound

stz s (2)(0) 100 < O (PFE)
< (g)én <w>u [asm < 26k~ 1n k]
< (g)én (4e In(k) - &' - \/5)“ [becausg: = [V/dn]]
< (%)M oH/8 [asé = ak—* for a smallo > 0]

exp {n\/g <\/5(1 o)+ élnaﬂ .

The last expression ig(1), becausa/5(1 — In §) + % Ind is negative for sufficiently smadl. O

3 Thealgorithm Fix

In this section we present the algorittfmx. To establish Theorem 1.1 we will prove the following: for
any0 < ¢ < 0.1 there iskg = ko(e) > 3 such that for alk > k the algorithm ix outputs a satisfying
assignment w.h.p. when applieddowith m = [(1 — €)2¥k~!Ink|. Thus, we assume thatexceeds
some large enough numbky depending orx only. In addition, we assume throughout that> ng for
some large enoughy = ng(e, k). We set

w=(1—-¢)lnkandk; = [k/2].

Let ® € Q(n,m) be ak-SAT instance. When applied t the algorithm basically tries to “fix” the
all-true assignment by setting “a few” variablgsC V' to false so as to satisfy all clauses. Obviously,
the setZ will have to contain one variable from each clause congjstinnegative literals only. The key
issue is to pick “the right” variables. To this end, the altfon goes over the all-negative clauses in the
natural order. If the present all-negative cladsedoes not contain a variable frof yet, Fix (tries to)
identify a “safe” variable inb;, which it then adds t&. Here “safe” means that setting the variable to false
does not create new unsatisfied clauses. More precisehgywhat a clause; is Z-uniqueif ®; contains
exactly one positive literal frory \ Z and no negative literal whose underlying variable iginMoreover,

x € V'\ Zis Z-unsaféf it occurs positively in aZ-unique clause, and-safeif this is not the case. Then
in order to fix an all-negative clauge we preferZ-safe variables.

To implement this idea i x proceeds in three phases. Phase 1 performs the operatmibeesn the
previous paragraph: try to identifyA-safe variable in each all-negative clause. Of course lithappen
that an all-negative clause does not contaifi-aafe variable. In this caseix just picks the variable
in positionk;. Consequently, the assignment constructed in the firstepvils not satisfyall clauses.
However, we will prove that the number of unsatisfied clause®ry small, and the purpose of Phases 2
and 3 is to deal with them. Before we come to this, let us diesd?hase 1 precisely.

Algorithm 3.1 Fix(®)
Input: A k-SAT formula®. Output: Either a satisfying assignment or “fail”.

la. LetZ =0.

1b. For:=1,...,mdo

1lc. If @, is all-negative and contains no variable from Z

1d. Ifthereis 1 < j < k1 such that |®;;| is Z-safe, then pick the least such j and add |®;;| to Z.
le. Otherwise add |®; 4, | to Z.
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The following proposition, which we will prove in Sectibh gymmarizes the analysis of Phase 1. &gt
be the assignment that sets all variable¥’iky Z to true and all variables iZ to false.

Proposition 3.2 At the end of the first phase B x(®) the following statements are true w.h.p.
1. We haveZ| < 4nk~'lnw.
2. Atmost(1 + £/3)wn clauses areZ-unique.
3. At mosexp(—k®/®)n clauses are unsatisfied undey.

Since the probability that a random clause is all-negative#*, under the all-true assignmefit +
o(1))27%*m ~ wn/k clauses are unsatisfied w.h.p. Hence, the outcomef Phase 1 is already a lot
better than the all-true assignment w.h.p.

Step 1d only considers indicés< j < k;. This is just for technical reasons, namely to maintain a
certain degree of stochastic independence to facilitheeghalysis of) Phase 2.

Phase 2 deals with the clauses that are unsatisfied updéihe general plan is similar to Phase 1: we
(try to) identify a setZ’ of “safe” variables that can be used to satisfy #heunsatisfied clauses without
“endangering” further clauses. More precisely, we sayahdauseb, is (Z, Z')-endangeredf there is no
1 < j < ksuch thatthe litera®;; is true undet; and|®,;| € V'\ Z’. In words,®; is (Z, Z')-endangered
if it relies on one of the variables i’ to be satisfied. Caib; (Z, Z')-securefitis not (Z, Z’)-endangered.
Phase 2 will construct a sét such that for alll < i < m one of the following is true:

e O,is(Z,7")-secure.
e There are at least three indices< j < k such thai®;,| € Z".

To achieve this, we say that a variablés (7, Z')-unsafef «: € ZUZ' or there are indice§, 1) € [m] x [k]
such that the following two conditions hold:

a. Forallj #1lwehaved;; €« ZUZ' UV \ Z.
b. (I)il =Xx.

(In words,z occurs positively inP;, and all other literals ob, are either positive but if U Z’ or negative
but not inZ.) Otherwise we calk (Z, Z’)-safe In the course of the processi x greedily tries to add as
few (Z, Z')-unsafe variables td’ as possible.

2a. LetQ consist of all i € [m] such that ®; is unsatisfied under oz. Let Z’ = 0.

2b. While@Q # 0

2c. Leti = min Q.

2d. If there are indices k1 < j1 < j2 < j3 < k — 5 such that |®;, | is (Z, Z')-safe for 1 = 1,2, 3,
pick the lexicographically first such sequence and add |®;;, |, |®ij, |, |P:j4] tO Z’.

2e. else
let k — 5 < ji < j2 < js < k be the lexicographically first sequence such that |®;;,| ¢ Z’
and add |®;;,|to Z' (1 =1,2,3).

2f. Let Q be the set of all (Z, Z’)-endangered clauses that contain less than 3 variables from Z’.

Note that the While-loop gets executed at megs times, becausg’ gains three new elements in each
iteration. Actually we prove in Sectidn 5 below that the firatZ’ is fairly small w.h.p.

Proposition 3.3 The setZ’ obtained in Phase 2 afi x(®) has sizd Z'| < nk~'? w.h.p.

After completing Phase 2;ix is going to set the variables ¥ \ (Z U Z’) to true and the variables
in Z \ Z' to false. This will satisfy al(Z, Z’)-secure clauses. In order to satisfy {t# Z’)-endangered
clauses as welkix needs to set the variablesiff appropriately. Since eacl’, Z’)-endangered clauses
contains three variables frond, this is essentially equivalent to solving3eSAT problem, in whichZ’
is the set of variables. As we shall see, w.h.p. the resulliS\T instance is sufficiently sparse for the
following “matching heuristic” to succeed: set up a bipargraphG(®, Z, Z’) whose vertex set consists of
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the(Z, Z’)-endangered clauses and theBetEach(Z, Z’)-endangered clause is adjacent to the variables
from Z’ that occur in it. If there is a matchiny in G(®, Z, Z’) that covers al( Z, Z')-endangered clauses,
we construct an assignmeri; z: 5 as follows: for each variable € V' we define

false ifxeZ\Z
ozz m(x) =< false if{®;,z} € M for somel < i < m andx occurs negatively i®;,
true  otherwise.

To be precise, Phase 3 proceeds as follows.

3.  1fG(®,7,7") has a matching that covers all (7, Z')-endangered clauses, then compute an (arbitrary)
such matching M and output oz 2/ ;. If not, output “fail”.

The (bipartite) matching computation can be performediitn + m)3/?) time via the Hopcroft-Karp
algorithm. In Sectiofil6 we will show that the matching exists.p.

Proposition 3.4 W.h.p.G(®, Z, Z’) has a matching that covers dlZ, Z')-endangered clauses.

Proof of Theoreni I]1.Fix is clearly a deterministic polynomial time algorithm. Itnmains to show
thatrix(®P) outputs a satisfying assignment w.h.p. By Propos{tioh $idse 3 will find a matching/
that covers allZ, Z’)-endangered clauses w.h.p., and thus the output will besfigrament = 02 2/
w.h.p. Assume that this is the case. Thesets all variables i¥ \ Z' to false and all variables W\ (ZUZ")
to true, thereby satisfying allZ, Z')-secure clauses. Furthermore, for eé2hZ’)-endangered clauge;
there is an edgé®,, |®;;|} in M. If ®,; is negative, thena (|®,;|) = false, and if if®,; is positive, then
o(®,;) = true. In either case satisfies®;. O

4 Proof of Proposition

Throughout this section we 16t < ¢ < 0.1 and assume that > k, for a sufficiently largeky = ko (e).
Moreover, we assume that = | (1 —¢)2*k~!In k| and that, > n, for some large enoughy = no (e, k).
Letw = (1 —¢)Ink andk, = [k/2].

4.1 Outline

Before we proceed to the analysis, it is worthwhile givingri@tintuitive explanation as to why Phase 1
“works”. Namely, let us just consider thiest all-negative claus@; of the random input formula. Without
loss of generality we may assume that 1. Given that®; is all-negative, thek-tuple of variables
(|®1,])1<j<r € V* is uniformly distributed. Furthermore, at this poiit= (). Hence, a variable is
Z-unsafe iff it occurs as the unique positive literal in sorteuse. The expected number of clauses with
exactly one positive literal i582~*m ~ wn. Thus, for each variable the expected number of clauses in
whichz is the only positive literal i¢:2~*m /n ~ w. In fact, for each variable the number of such clauses
is asymptotically Poisson. Consequently, the probalitiii« is not Z-supporting i1 + o(1)) exp(—w).
Returning to the claus®,, we conclude that thexpectechumber of indiced < j < k; such thai®;|

is Z-safe is(1 4+ o(1))k; exp(—w). Sincew = (1 — ) In k, we have

(1+0(1))ky exp(—w) > k°/3.

Indeed, the number of indicés< j < k; so that|®,| is Z-safe is binomially distributed, and hence the
probability that there is n@-safe|® ;| is at most(1+o(1)) exp(—k®/3). Thus, itis “quite likely” that®,
can be satisfied by setting some variable to false withouwtticrg any new unsatisfied clauses. Of course,
this argument only applies to the first all-negative claise,(Z = 0), and the challenge lies in dealing
with the stochastic dependencies that arise in the courthe @xecution.

To this end, we need to investigate how the Betomputed in Steps 1 evolves over time. Thus, we
will analyze the execution of Phase 1 as a stochastic procestich the setZ corresponds to a sequence
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(Z+)e>0 Of sets. The time parameters the number of all-negative clauses for which either Seéprile
has been executed. We will represent the execution of Phasénput® by a sequence of (random) maps

s fm) % [k] = {~1,1}UV UT.

The mapm, is meant to capture the information that has determined thetfsteps of the process. If
m(i,j) = 1 (resp.m(i,j) = —1), thenFix has only taken into account thd;; is a positive (negative)
literal, but not what the underlying variable is.7if(i, 7) € V UV, thenFix has revealed the actual literal
Qij-

Let us define the sequengg(i, j) precisely. LetZ, = (). Moreover, let/; be the set of all such that
there is exactly ong such that®;; is positive. Further, define, (i, j) for (¢, j) € [m] x [k] as follows. If
i € Uy and®,; is positive, then letry (i, j) = ®,;. Otherwise, letry (i, j) bel if ®,; is a positive literal
and—1if ®;; is a negative literal. In addition, far ¢ V' let

Uo(x) =|{i € Uy :3j € [k] : mo(i,j) = x}]
be the number of clauses in whigtis the unique positive literal. Far> 1 we definer; as follows.

PI1 If there is no indexi € [m] such that®; is all-negative but contains no variable fraf_;, the
process stops. Otherwise lgtbe the smallest such index.

PI2 Ifthereisl < j < ky such that/;_1(|®4,;]) = 0, then choose the smallest such index; otherwise
|et] =ky. Letz; = (I)d)tjt andZt =Z; 1 U {Zt}

P13 Let U, be the set of alf € [m] such that®, is Z;-unique. Forx € V let U;(z) be the number of
indicesi € U, such that: occurs positively in®,.

Pl4 Forany(i,j) € [m] x [k] let

7T(i .)7 ‘I>ij if (i:¢tAj§k1)V|‘I’ij|EZtV(iEUt/\WQ(i,j):l),
D)= m_i(iyj)  otherwise.

Let T" be the total number of iterations of this process beforeopstand definer, = np, Z; = Zr,
Uy =Urp, Ut(w) = UT(m), ¢t =2z =0 forallt > T.

Let us discuss briefly how the above process mirrors Phase 1:0f StepPI 1 selects the least index
¢+ such that claus@,, is all-negative but contains no variable from the_; of variables that have been
selected to be set to false so far. In terms of the descripfien x, this corresponds to jumping forward to
the next execution of Steps 1d—e. Sifige (x) is the number o, _;-unique clauses in which variahle
occurs positively, Stepl 2 applies the same rule as 1d—erafx to select the new elemegtto be included
in the setZ;. StepPI3then “updates” the numbet§ (z). Finally, stepPl4 sets up the map; to represent
the information that has guided the process so far: we rekedlrstk; literals of the current claus@,;,,
all occurrences of the variablg, and all positive literals of;-unique clauses.

Observe that at each time< 7' the proces$11-Pl4 adds precisely one variable to Z;. Thus,
|Z:| =t foranyt < T'. Furthermore, foi. < ¢ < T the mapr, is obtained fromr;_; by replacing some
+1s by literals, but no changes of the opposite type are madellfifor any: € [m] there is either ng
such thatr; (i, j) = 1, or there are at least two such indigeS his is because stéjl 4 ensures that for any
i such that®; is Z;-uniquer, (z, j) equals the literad,; if it is positive.

Of course, the proceddl1-P14 can be applied to any concreteSAT formula ® (rather than the
random®). It then yields a sequenee [®] of maps, variables; [P], etc.

For each integer > 0 we define an equivalence relatien on the sef(n, m) of k-SAT formulas by
letting® =; U iff =, [P] = 7, [V] forall 0 < s < t. Let F; be thes-algebra generated by the equivalence
classes of,. The family (F;):>¢ is a filtration, and the following is immediate from the caoustion.

Fact 4.1 For anyt > 0 the random mag, the random variableg,, andz;, the random set§; and 7,
and the random variableB;(x) for x € V are F;-measurable.

Intuitively, that a random variabl& is F;-measurable means that its value is determined by tinféhe
following is the key fact about the sequencé, j).



4 PROOF OF PROPOSITIOR? 11

Proposition 4.2 Let &; be the set of all pairgi, j) such thatr:(i,j) € {—1,1}. The conditional joint
distribution of the variableg|®;;|); ;)ce, givenF; is uniform over(V \ Z;)¢. Thatis, for any formula
® and for any mapf fromé&, [®]to V' \ Z, [®] we have

PIV(i,§) € & [®]: [By] = £(i. )7 (®) = [V'\ 2 (2] |15,

Proof. Let [®], signify the=;-equivalence class df. LetP4 denote the conditional probability distribution
P [-|F:] (®). Then for any evenk we have

Pg [X] =P [X][®],] = [[®], 0 X[/ [[®],]- (3)

That is, the conditional distributioR¢ is uniform over[®],. Hence, we just need to determifj@],|.
Givenamapf : & [®] — V' \ Z, [®], we define a formul@; by letting

f(lvj) if (Z7j)egt [(I)] andﬂ-O(ivj):_lv
(®r)ig = [f(i,4) i (i,)) € & [®]andmo (i, j) =1, (i € [m],j € [K]).
®,;  otherwise

Then®d; =, ®. Hence, we obtain a bijectioiV \ Z; [®])%[*] — [®],, f +— ®;, and thus the assertion
follows from (3). a

In each step of the proceB$1-Pl 4 one variable;; is added taZ;. There is a chance that this variable
occurs in several other all-negative clauses, and therél@ stopping tim&” should be smaller than the
total number of all-negative clauses. To prove this, we rieedollowing lemma.

Lemma 4.3 W.h.p. the following is true for all < ¢ < min{7,n}: the number of indices € [m] such
thatm:(i,j) = —1forall 1 < j < kis at mosnw exp(—kt/n)/k.

Proof. We consider the random variables

. L B
Nuj = {1 if 7w (4,7) landt < T,

0 otherwise (ie[m],jelk],t>0).

Lett < n, u = [In’n], and letZ C [m] be a set of siz@. LetY; = 1if t < T andm,(i,5) = —1 for all
j € [k], and letY; = 0 otherwise. Set/ = [t] x Z x [k]. If Y; = 1foralli € Z, thenN,;; = 1 for all
(i,j) € Z x [k] andN;; = 1 forall (s,1, j) € J, and we will prove below that

E[ IT Moo I M| <27 —1/m)0, (4)

(i,5) €L X [K] (t,5,5)eT

Hence,

E < [27F@ - 1/m)M)" < Ar, wherel = 27 exp(—kt/n). (5)

[Iv:

i€l

Combining the bound{5) with Lemnia 2.2, we see that with pdity at leastl — n~1° there are no
more thar2\m indicesi € [m] such thatr: (i, j) = —1 for all j € [k]. Hence, by the union bound the
probability that this holds for al < min{7',n} is at leastl — n=?. As2Am < 2nwexp(—kt/n)/k, this
implies the assertion.

To complete the proof, we need to establish (4). Let

Xo= ] Mo i ={(i.5): (ti,j) € T}, andX, = [ M-

(i,7) €T [K] (4,§)€Ts

Since the signs of the literafB;; are mutually independent, we have

E[Xo = 27%7. (6)
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Furthermore, we claim that
E[X|F-1] < (1-1/n); -

then [4) follows by pluggind(6) andl(7) into Lemihal2.4.

To prove[T), let > 1. If " < t or my_1 (i, j) # —1 for some(i, j) € J;, then clearlyX; = N;; = 0.
Hence, suppose that > ¢ andm;_1(i,j) = —1 for all (i,j) € J;. Then at timet P12 selects some
variablez, € V'\ Z;_1, andN;; = 1 only if |®,;| # 2. Asm_1(i,5) = —1forall (¢,5) € T, given
Fi—1 the variableg|®;|); j)es, are mutually independent and uniformly distributed ovex, Z; _; by
Propositiol 4.P. Therefore, for eath j) € J; independently we hav&, ;| = z; with probability at least
1/n, whencel[(7) follows. a

Corollary 4.4 W.h.p. we hav@" < 4nk~!Inw.

Proof. Letty = 2nk~! Inw and letl; be the number of indicessuch thatr, (i, j) = —1forall 1 < j < k.
ThenPI2 ensuresthal, < I,_, — 1 forallt < T. Consequently, if" > 2ty, then0 < Iy < I, — to, and
thusl,, > to. Since2nk=!Inw > 3nw exp(—kto/n)/k for sufficiently largek, LemmdZB entails that

P[T >2t] < PlL, >t =PI >2nk " Inw|] <P[I > 3nwexp(—kty/n)/k] = o(1).
HenceT < 2ty w.h.p. O For the rest of this section we let
0 = [4nk ' Inw].

The next goal is to estimate the numberffunique clauses, i.e., the size of the Bgt For technical
reasons we will consider a slightly bigger set: gtbe the set of ali € [m] such that there is an indgx
such thatrg (i, j) # —1 but there exists ng such thatr (i, j) € {1} U Z;. That is, clause; contains a
positive literal, but by time there is at most one positive literdl;; left that does not belong t8;, and®;
has no negative literal whose underlying variable lieginIn Sectiof 4.2 we will establish the following
bound.

Lemma4.5 W.h.p. we haveiaxo<;<7 [U:| < (1 +¢/3)wn.

Let us think of the variables € V' \ Z; as “bins” and of the clause®; with i € U, as “balls”. If we
place each ballinto the (unique) bin: such that: occurs positively ir®;, then by Lemmi4]5 the average
number of balls in a bin is at most

(14+¢/3)wn (1 +¢/3)w
V\Z| — 1-t/n

w.h.p.

Asw < (1 —¢)lnk andt < T < 4nk~'Inw w.h.p. by Corollan’4}, for large enoughwe have
(1+¢/3)(1—t/n)"'w < (1-0.6¢) In k. Hence, if the “balls” were uniformly distributed over thigifis”,
we would expect

VA Zi|exp(=|Us|/|V \ Zi]) = (n — k57 > nk=/27!

“bins” to be empty. The next corollary shows that this is afifutrue. We defer the proof to Sectibn4.3.
Corollary 4.6 LetQ; = [{x € V'\ Z; : Uy(x) = 0}|. Thenmin;<7 Q; > nk*/?>~! w.h.p.

Now that we know that there are “a lot” of variabless V' \ Z;_; such thatU;(xz) = 0 w.h.p., we can
prove that it is quite likely that clause,, contains one. More precisely, we have the following.

Corollary 4.7 Let

g [ 1 ifmingic, Ui—1(|®4,5]) >0, Qi1 > nks/271 |U| < (1 +¢/3)wn, andT > t,
"1 0 otherwise.

ThenB; is Fi-measurable andl [B| F;_1] < exp(—k/6) forall 1 <t <.
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Proof. Since the evenf’ < ¢ and the random variabl@,_; areF,_;-measurable and d%_1(|®, ;) is
F;-measurable for any < &y by Fac{4.1B; is F;-measurable. Leb be such thaf’ [®] > ¢, Q; 4 [P] >
nke=1, and|U;_; [®]| < (1 + ¢/3)wn. We condition on the ever® =, ; ®. Then at timef the process
PI1-P14 selectsp; such thatr, (¢, j) = —1 for all j € [k]. Hence, by Propositidn 4.2 the variables
|®,, ;| are uniformly distributed and mutually independent eletseifiV’ \ Z,_,. Consequently, for each
j < ki the event/;,_ (|®,,;]) = 0 occurs with probabilityQ, 1 |/|V \ Z:—1| > k°/2~' independently.
Thus, the probability thal;_; (|®,;|) > 0 forall j < &y is at most(1 — k¥/271)F1~=1 < exp(—k®/6). D
Proof of Propositioli 312The definition of the proce$3 1-Pl 4 mirrors the execution of the algorithm, i.e.,
the setZ obtained after Steps 1la—1dbof x equals the sefr. Therefore, the first item of Propositibn B.2
is an immediate consequence of Corollary 4.4 and the faci #ha= ¢ for all ¢ < 7. Furthermore, the
second assertion follows directly from Lemmal4.5.

To prove the third claim, we need to bound the number of ckatisat are unsatisfied under the as-
signmentoz,. that sets all variables ifv \ Z to true and all variables i, to false. By construction
any all-negative clause contains a variable frdmand is thus satisfied undeg,.. We claim that for any
i € [m] such tha®®, is unsatisfied under,. one of the following is true.

a. Thereig < T suchthat € U;_; andz; occurs positively in®,.
b. Thereard < j; < j» < ksuchthat®;;, = ®,;,.

To see this, assume that b. does not occur. Let us assumeuwlitiss of generality tha®,;, ..., &, are
positive and®,; 1, ..., ®;, are negative for somé > 1. Since®; is unsatisfied underz,, we have
®;;,..., Py € Z7. Hence, for each < j < [thereist; < T such that®;; = z;,. As®;y,..., Py
are distinct, the indices, .. ., t; are mutually distinct, too. Assume that < --- < #;, and letty = 0.
Then®; contains precisely one positive literal frovh\ Z;,_,. Hence;i € U;,_,. Since®; is unsatisfied
underoz, no variable fromZy occurs negatively i; and thus € U for all t;_1 < s < t;. Therefore,
i € Uy,—1 andz, = ®,;, i.e., a. occurs.
Let X be the number of indiceisc [m] such that a. occurs. We claim that

X < nexp(—k/T) w.h.p. (8)

Since the number of € [m] for which b. occurs i€(Inn) w.h.p. by Lemm&2]3[18) implies the third
assertion.
To establish[(B), leB; be as in Corollariz4]7 and set

D, — Ut_l(zt) if B:=1 andUt_l(zt) < 1n2 n,
L 0 otherwise

Then by the definition of the random variableg D, either

X< ) D (9)
1<t<0
or one of the following events occurs:
i. T >0.
ii. O, <nks/2~1 forsome0) <t < T.
iii. |Uy > (1+¢/3)wnforsomel <t¢<T.
iv. |Us_1(2)| > In®n for somel <t < 6.

The probability of i. iso(1) by Corollary{4.4. Moreover, ii. does not occur w.h.p. by Qlany[4.6, and the
probability of iii. is o(1) by LemmdZ.5b. If iv. occurs, then the variakleoccurs in at leasin® n clauses
for somel < ¢ < 6, which has probability(1) by Lemmd2.B. Hencd ](9) is true w.h.p.

Thus, we need to bounyl’, _,_, D;. The random variabl®, is F;-measurable an®, = 0 for all

t > 0. LetD; = E[Dy|Fi_1] andM; = 3'_| Dy — D,. Then(M;)i<i<p is @ martingale. As all
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incrementsD, — D, are less thamn? n in absolute value by the definition @, LemmaZ}b (Azuma-
Hoeffding) entails that\lg = o(n) w.h.p. Hence, w.h.p. we have

Z Dy =o(n)+ Z D. (10)

1<t<0 1<t<0
We claim that -
D; < 2wexp(—k/%)  foralll <t <. (11)
For by Corollary 4.7 we have
E[By|Fi—1] < exp(—k*/°). (12)
Moreover, givenF;_, we haver;_1 (¢, k1) = —1, whencez; is uniformly distributed ove¥” \ Z;_; by

Propositiof 4R. Sinc8; = 1 implies|U;—1| < (1 + ¢/3)wn, this means that the conditional expectation
of U;_1(z:) is at most
1+¢/3)wn
[Ue-al/IV\ Zp—a| < % < 2w. (13)
Combining [12) and{13), we obtain{11). Further, plugghf)(into [10), we get

Z D; = 2wexp(—k/2/3)0 + o(n) < 3w exp(—k/%)0 < nexp(—k/7) w.h.p.

1<t<6

Thus, [B) follows from[(P). a

4.2 Proof of Lemmal4.5

Forintegerg > 1,4 € [m], j € [k] let

o 1 ifm_1(i,j) =1andm(i,j) = 2 _J 1 it T >tandm(i, j) € {1,
i { 0 otherwise, Stij 0 otherwise. %]}4)

Lemma 4.8 For any two setg, 7 C [0] x [m] x [k] we have

E |: H Htij . H Stz]|‘/—'.0

(t,4,5)€T (ti.5)eT

< (-0 a—-1/mM

Proof. LetZy = {(i, ) : (t.i,5) € I}, o = {(i,4) : (t,4,5) € T} X = [1i jyex, Heis i jyeq Stis-
If X; =1, thent < T (as otherwise,;; = 0 by definition and{;; = 0 becauser, = m;_1). Furthermore,
X: = 1 implies that

m—1(i,7) = 1forall (i,5) € Z, andm 1 (i, 7) € {—1,1} forall (4, 5) € F;. (15)
Thus, let® be ak-SAT formula such thal’ [®] > ¢ andr,_; [®] satisfies[(T5). We claim that
E [X¢|F-1] (@) < (n—0)"Fl(1 — 1/n)I . (16)

To show this, we condition on the evelit=, ®. Then at time stepsPl1-PI2 select a variable; from

the the all-negative clausg,,. As for each(s,j) € Z;, clause®; contains a positive literal, we have
¢ # 1. Furthermore, we may assume thafdt, j) € J; thenj > k;, because otherwisg; = S;4,; =0

(cf. PI4). Hence, due td(15) and Proposition]4.2 in the conditiorstibutionP [-|F;_] () the variables
(1®41)¢i,j)ez,u7, are uniformly distributed over\ Z; _; and mutually independent. Therefore, the events
|®,;| = z occur independently with probability/ |V \ Z,_1| = 1/(n — ¢ + 1), whence

B [X¢|Fioa] (@) < (n—t +1)"F (1 = 1/(n — t + 1) < (n — )" FI(1 — 1/n) 72,

This shows[(16). Finally, the assertion follows from Lenind&nd [(16). O Armed with Lemm&4.8, we
can now bound the number of indices U, such tha®, has “few” positive literals.
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Lemma 4.9 With probability 1 — o(1/n) the following is true for alll < I < vk andalll < ¢t <

min{T, 0}. Let l
M) w<l;_11> <%> Tty

There are at mostl + ¢/9)A;(¢)n indicesi € U, such that®; has precisely positive literals.

Proof. Let M C [m] be a set of sizgy = [1112 n] and letP; C [k] be a set of sizé — 1 for eachi € M.
Let P = (P;)iem be the family of all sets?,. Furthermore, let; : P, — [t] for all i € M, and let
T = (ti)iesm comprise all maps;. LetEx((P, T) be the event that the following statements are true:

a. ®; has exactly positive literals for ali € M.
b. ®;; = 2, foralli € Mandj € P;.
c. t < T and no variable fron¥; occurs negatively ip,.

Moreover, let

7z IM(PvT):{(Saiaj):iEMijPivs:ti(j)}’
J IM(P,T) ={(s,i,j) i € M,j € [k]\ P;}
LetY; = 1if clause®; has exactly positive literals, including the literak®;; for j € P, (i € M). Then

P[Y; = 1] = (k — [+ 1)27% for eachi € M. Moreover, the evenfs; = 1 are mutually independent and
Fo-measurable. Therefore, by Lemmal4.8

PEM(P,T) < E H Y| -E H Hiij - H Stij|Fo
ieEM (t,i,7)€T (t,5,5)eT
k—1+1 _ _ "
< [ wmota-amet] ar)

Let E,q be the event that < T and ®; has exactly positive literals and € U, forall i € M. If Exq
occurs, then there exi®, 7 such tha(P, T) occurs. Furthermore, for ea¢he M there are(lfl)
ways to choose a sét; and thent/~! ways to choose the map. Therefore, the union bound arld]17)
yield

PlEm] < D PEMP.T) <M where
P.T
_ ENjgoy  B—0+1 0 g (k—1+1)t
A= <l_1)t X~ (n—t) " (1-1/n) :

Hence, by LemmBa2]2 with probability— o(1/n) there are at mostl + o(1))Am indicesi € [m] such
that®, has precisely positive literals and € ;. Thus, the remaining task is to show that

Am < (1 +¢/10)An. (18)

To show [IB), we estimate

-1
A< k2R <k 1) (—t ) (1 —1/n)t—1=0=1)
= 1—1 —t

n
k27" <I;_ 11) (%)ll (1 —t/n)*1=0=Dy wheren = <%>l1<(11_71t//2)t) kag)

We can bound) as follows:

IN

k—1
(1+t/(n—1t) (exp(e’?;(n_’f/g;nm) < (1+ 2t/n) exp(k(t/n)?)

exp(200/n + k(0/n)?) < exp(8lk~ Inw + 16k~ In* w).

3
IN

N
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Sincel < vk andw < Ink, the last expression is less thant /10 for sufficiently largek. Hence,
n < 1+ ¢/10, and thus[(IB) follows froni{19). O The following lemma deals with € I{; such that®;

contains “a lot” of positive literals.

Lemma 4.10 W.h.p. the following is true for all > In k. There are at most exp(—1) indicesi € [m]
such that®; has exactly positive literals among which at leakt- 1 are in Zy.

Proof. Let M C [m] be a set of sizgg = [In® n| and letP; C [k] be a set of sizé — 1 for eachi € M.
Furthermore, let; : P, — [0] foralli € M, and setl = (¢;)iem. LetEx (P, T) be the event that the
following two statements are true for ale M:

a. ®; has exactly positive literals.

b. Forallj € P; we have®;; = z,(;).
Let £o¢ be the event that for all € M clause®; has exactly positive literals among which— 1 are in
Zy. If Epq Occurs, then there af@, 7 such that the everdty (P, T) occurs.

Fori € M we letY; = 1if clause®; has exactly positive literals, including the litera®;; for j € P;.
SetZ = {(s,i,j) :i € M,j € P,s =t:(j)}. If Exa(P,T) oceurs, theq [ ; ez Haij - [Lieam Yo = 1.
BoundingE [T, . Yi] as in the proof of Lemmia4.9 and applying Lenimd 4.8, we obtain

k—1+1 s
HYl E|: H Hsij|f0 §|:72k ~(n79)1l .

ieM (s,i,j)€T

PlEM(P,T) < E

Hence, by the union bound

PlEm] < P[EP,T:EM(P,T)occur$§ZP[EM(P,T)]SA“, where
P.T

kN k=141 -
A = (z-1>9 x g (n =0, (20)

Lemma 2.2 implies that w.h.p. there are at mdsin indices: € [m] such that®; has exactly positive
literals of whichl — 1 lie in Zy. Thus, the estimate

ok+lun E\ k—1+1 o\
Im < . .
Amo s X(z1) of (no)

ek =1 12lnw)\!
< B b <9 0 =4nk=11
< 2wn ((l—l)(n—@)) < 2wn < / ) [as n nw]
< nexp(-I) [becausé > In k]
completes the proof. ]

Proof of Lemm&4]5SinceT < 6 w.h.p. by Corollary 4}, it suffices to show that w.h.p. fdr@k ¢ <
min{T, 0} the boundi{;| < (1 + ¢/3)wn holds. Letd;; be the number of indiceise U, such tha®, has
preciselyl positive literals. Then by Lemm&as4]10 dnd 4.9 w.h.p. fot @l min{7,0} and alll <1 < k
simultaneously
nexp(—k) if 1 > Vk,
Uy < .
(1+¢/9)A;(t) otherwise

Therefore, w.h.p.

k k
< < — 1 A (t
OSt;ﬁ?{ﬁTﬁ} | < OStSHrrllziirf{Tﬁ} Zutl < nkexp(—k) + Ogt;ﬁ?ﬁ({Tﬁ} Z (14+¢e/9)A(¢)
=1 1<I<VE
< n4+(1+e/9wn < (1+¢/3)wn,

as desired. O
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4.3 Proof of Corollary4.8

Define a map); : U; — V as follows. Fori € U, let s be the least index suche U,; if there isj such
that®,; € V' \ Z,, letyy (i) = ®,;, and otherwise let, (i) = zs. Thus, ifi € U, theny, (i) is the unique
positive literal of®; that does not belong t4,. The following lemma shows that the (random) maps

not too far from being “uniformly distributed”.

Lemma4.11 Lett > 0,4, C [m], andyy : Uy — V. ThenP [wt = ulthy = Uy | < (n—t)" 1.

Proof. SetZ_, = (). Moreover, define random variables

i) ={ G e T o (i €l x 1,

Thus,y; is obtained by “forgetting” the literals; (i, j) € V U V that the procesBI 1-PI4 has revealed up
to timet. Observe that for any e [m]

ielU, & ?é?ﬁw(i,j)z()/\(we[k]!%(i,j)=min{%(i,j),0})- (21)

Fix a set4; C [m], let® be any formula such that, [®] = I, and lety, = ~, [®]. Fors < t letT', be
the event that,, = 4, for all u < s. The goal is to prove that

P[4 = dolly] < (n— )71, (22)
Letr : U, — [0, ] assign to eache U, the leasts such that € I/,. We claim that

P [w e Uy : (i) = @/St(i)|rt] < [ n—r())". (23)
ieb?r,
Sincer(i) < t forall i € ;, (Z3) implies[2R).

Let 7, be the event that,, (i) = (i) forall 0 < u < s and alli € 7~ (u), and letr_, = Qx(n, m).
In order to prove[(23), we will show that for dll< s < ¢

Plrlre-1NT] < (n—s)17 © and (24)
p [7_5|7_571 N Fs] = P [7_5|Tsfl N Ft] . (25)
Combining [2#) and(25) yields
PViet: vu) = h@] = PN = [] Plrlnanr
0<s<t
= H Prs|ms—1 NT) < H (n—s)fhil(S)\7
0<s<t 0<s<t

which shows[(283). Thus, the remaining task is to estallidh &d [25).
To prove [2%) it suffices to show that

Prs NTs|Fs—1] (¥) =)

P ATl F] () <(n-s) forallp € 7,1 NT. (26)
Note that the I.h.s. is just the conditional probabilityofgivenr,_1 N I"; with respect to the probability
measureP [-|Fs_1] (). Thus, let us condition on the evet=,_; ¢ € 7,_1 NT's. Then® € I, and
thereforey, = 4o andy, = 4s. Hence,[[21L) entailsl; = U, [p] = U, [®], and thusr—(s) C U,. Let
i € 771(s), and letJ; be the set of indiceg € [k] such thaty;_1(i,j) = 1. Recall that) (i) is defined
as follows: if®;; = z, for all j € J;, theny(i) = z,; otherwisey, (i) = ®;; for the (unique) € J;
such that®;; # z,. By Propositiofi.4.R in the measubd-| 7, 1] (¢) the variable§®;;);c,-1(s) je, are
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independently uniformly distributed ovéf \ Z,_, (becauser,_1(i,j) = vs-1(4,5) = 1). Hence, the
events), (i) = v (i) occur independently for all e 7—1(s). Thus, letting

pi = Pls(i) = (i) AVj € Ji 2 v4(i,5) = 0| Fs—1] (),
qi = P[VJEJi-'Ys(Zvj):()"FS—l]()

fori € 771(s), we have

P[Téﬂr |.7:5 1 ) H pz (27)

P[’T‘S 1 NIy |]:S 1 (p ens 1(5)

Observe that the eveltj € J; : v5(,j) = 0 occurs iff ®;; = z, for at least|J;| — 1 elementsj € J;
(cf. P14). Therefore,

¢ = |Gl IV Zea| DA =V Zoa [T + [V Zeoa |
To boundp; for i € 7=1(s) we consider three cases.
Case 1: wt( )EV\Zs_1. As®,;; € V\ Z,_; forall j € J; the event) (i) = z/;t( ) has probability0.

Case2: 1[%(@') = z,. The eventy,(i) = wt(i) occurs iff ®;; = z, for all j € J;, which happens with
probability|V \ Z,_|~”:l in the measur® [| F,_1] (»). Hencep; = (n — s + 1)~ 17:l.

Case3: ¢y (i) € V \ Z,. If 14(i) = (i), then there ig € .J; such tha'®;; = v (i) and®,;, = z, for
all j' € J, \ {j}. Hencep; = |Ji| - [V \ Zs_1| Vil = |Ji|(n — s + 1)1l

In all three cases we have

[ |Jil(n — s+ 1) 1il(1 —1/(n — s+ 1))

p = [Ji(n — s+ 1) 17 S
Thus, [26) follows from[(27).
In order to provel[(Z5) we will show that
P[CylmNTe] =P [Ty|T] (28)
for any0 < b < ¢ < a. This implies[(2b) as follows:
Prs NTY] P[[¢rs NTs] P [1s N T
P s s— m 1—‘ = =
[rsl7s-1 0T Plro_1NTy] Py re_i NI P [re_1 ATy
@ PNl
— 713[7-5 101_‘] [TS|7'5 1ﬂF]

To show [Z8) it suffices to consider the case ¢ + 1, because for > ¢ + 1 we have

P[Fa|TbﬂFc] = P[Fa|7’bﬂFchl]P[TbﬂFchﬂTbﬁrc]
Pl N Test] P [Tesa|m N T4

Thus, suppose that= ¢ + 1. Attimea = ¢+ 1 Pl1 selects an index,, € [m]. This is the least index
i such thaty.(i,j) = —1 for all j; thus,¢, is determined once we condition @. Then,PI2 selects a
variablez, = |®,,;,| with j, < k1. Now,~, is obtained fromy, by setting the entries for soni& j) such
that+.(i,j) € {—1,1} to 0 (cf. P14). More precisely, we have,(¢,,j) = 0 for all j < k. Furthermore,
fori € [m]\ {¢a} let J; be the set of alj € [k] such thatr, (i, j) = v.(4,7) € {—1,1}, and fori = ¢,
let 7; be the set of alk; < j < k such thatr,(¢,7) = v.(4,5) € {—1,1}. Then for anyi € [m] and
anyj € J; the eventy. (4, j) = 0 only depends on the even®,;; | = z, for j* € 7;. By Propositioi 42
the variableg|®;;/|)ic[m,jes, are independently uniformly distributed oviér, Z.. Therefore, the events
|®,;/ | = z, for j’ € J; are independent of the choice of and of the event;,. O
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Proof of Corollary[Z6. Let ;. < (1 + ¢/3)wn be a positive integer and 18, C [m] be a set of size..
Suppose that < 6. Letr = nk~</2, and letB be the set of all maps : ¢/, — [n] such that there are less
thanv + ¢t numberse € [n] such that)~!(z) = (). Furthermore, leB3; be the event that there are less than
v variablesr € V'\ Z, such that/(x) = 0. Since|Z;| = t, we have

PBlh=th| < D Plev=vlth =th| <[Bl(n—t)7" by LemmdZIL]
$eB
B t " B B _
= |n_#| . (1 + ﬁ) < |n_“| ~exp(20p/n) < |n_#| -exp(Ink~tIn* k). (29)

Furthermore|B|/n* is just the probability that there are less thaempty bins if . balls are thrown
uniformly and independently inte bins. Hence, we can use Lemfnal2.1 to bolgh . To this end,
observe that because we are assunirg0.1 the bound

2¢ g2
3

exp(—pu/n) > exp(—(1 +¢/3)w) = k>~ holds, wherey = 3" > 0.6e.

Therefore, Lemm@a2l 1 entails that
[Bln™" < P[Z(p,n) < exp(—p/n)n/2]
< O(Vn)exp[— exp(—pu/n)n/8] < exp [k /9] (30)
Combining [29) and(30), we see that
P = P[Bilth =y : U C [m), th] = p| < exp [nk™" (9107 k — k*/9)] = o(1/n).
Thus, CorollaryZ ¥4 and Lemma#.5 imply that
PEt<T:{zeV\Z:U(z)=0} <

< P[T>0+P |:Olilta<XT | > (1 +€/3)wn] + Z P, =o(1),

as desired. O

5 Proof of Proposition

Let0 < ¢ < 0.1. Throughout this section we assume that k, for a large enougl, = ko(e), and
thatn > n, for some large enoughy = ng (e, k). Letm = [(1 — &)2k ' Ink|,w = (1 — ¢)Ink, and
k1 = [k/2]. In addition, we keep the notation introduced in Secfioh 4.1

5.1 Outline

Similarly as in Sectiofil4, we will describe the execution bbBe 2 ofrix(®) via a stochastic process.
Recall thatl” denotes the time when the proc&4—P14 from Sectiori  (i.e., Phase 1) stops. &t= 0
andn, = mp. LetU), = Up, and letU{(z) be the number of indicesc U such that: occurs positively
in ®;. Moreover, letQ)(, be the set of indicese [m] such that®; is unsatisfied under,.. Fort > 1 we
proceed as follows.

PI1 If Q;_, =0, the process stops. Otherwisedgt= min Q;_;.

P12 If there are three indicels; < j < k — 5 such thatr;_ (¢, j) € {1,—1} andU;_;(|Dy,;|) = 0,
thenletk; < j1 < jo < j3 < k—5 be the lexicographically first sequence of such indicese@ifse
letk — 5 < j1 < j2 < j3 < k be the lexicographically first sequence of indiées 5 < j < k such
that®y,; € Z;_,. LetZ] = Z]_, U{|®y,;|: 1 =1,2,3}.
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P13 LetU] be the set of all € [m] that satisfy the following condition. There is exactly dne [k] such
that®; € V' \ (Z; U Zr) and for allj # [ we have®,; € Zp U Z; UV \ Zp. LetU/(z) be the
number of indices € U] such that: occurs positively in®; (z € V).

Pl4 Let

I (I’ij if(’L':’L/Jt/\j>k/’1)\/|‘1>ij|EZ{UZT\/(’L'EUt//\TFQ(’L',j):l),
m (i, J) = m_ (i, ] th ;
+_1(i,j4) otherwise.

Let @} be the set of allZr, Z})-endangered clauses that contain less than three varfaties’;.

LetT” be the stopping time of this process. Bar T’ andx € V letn, = 7/, U, = UL, Z] = Z7,, and

We define an equivalence relatierj by letting® =} U iff & =, ¥ forall s > 0, andr’, [®] = «/, [¥]
forall0 < s < ¢. Let F| be theos-algebra generated by the equivalence classes ofThen(F);>¢ is a
filtration.

Fact 5.1 Foranyt > 0 the mapr;, the random variable); , ,, the random set§/ and Z;, and the random
variablesU{(x) for z € V are F/-measurable.

The same argument that we used to prove Propositidn 4.2 tio8EE1 shows the following.

Proposition 5.2 Let £ be the set of all pairgi, j) such thatr,(i,7) € {£1}. The conditional joint
distribution of the variable$|®;;|)(;,jes, givenF; is uniform over(V' \ AR

Let
0" = |exp(—k*/'%)n|, and recall that = [4nk ™ Inw].

To prove Proposition3]3 it is sufficient to show tH&t < ¢’ w.h.p., becausg?;| = 3t forall ¢t < T". To

this end, we follow a similar program as in Section|4.1: wd shiow that|U]| is “small” w.h.p. for all

t < ¢, and that therefore far < ¢’ there are plenty of variables such that//(x) = 0. This implies
that fort < 0’ the process will only “generate” very fe(Z -, Z;)-endangered clauses. This then entails a
bound onI”, because each step of the process removes (at leagty@n€;)-endangered clause from the
set@;. In Sectior 5.2 we will infer the following bound q&;|.

Lemma5.3 W.h.p. for allt < 6’ we havdU/ \ Ur| < n/k.

Corollary 5.4 W.h.p. the following is true for all < ¢’: there are at leastk*/~! variablesz € V' \
(Z; U Zr) such thatU/(z) = 0.

Proof. By Corollary[46 there are at leask*/?>~! variablesz € V \ Zr such thatUr(z) = 0 w.h.p.
Furthermore, by Lemmiad.3 we ha\é \ Ur| < n/k w.h.p. Moreover)Z;| < 3t. Hence, w.h.p. the
number ofr € V' \ (Z, U Z7) such that//(x) = 0 is at leastk*/>~' — n/k — 30’ > nks/3~1, O

Corollary 5.5 Let) be the set of all < ¢’ such that there are less thanindicesk; < j < k — 5 such
thatm,_, (¢1,5) € {—1,1} andU/_,(|®,,;]) = 0. Then|Y| < 30" exp(—k/*) w.h.p.

We defer the proof of Corollafy 3.5 to Sectionls.3. Furtherenm Sectioi 54 we will prove the following.
Corollary 5.6 W.h.p. the total number ¢¥ 1, Z), )-endangered clauses is at maést

Proof of Propositiol 313We claim thatl” < ¢’ w.h.p.; this implies the proposition becay&e- | = 37".
To see thafl” < ¢’ w.h.p., letX,, be the total number dfZr, Z), )-endangered clauses, and ¥t be the
number of(Zr, Z;, )-endangered clauses that contain less than 3 variablesAfoithen the construction
PI1'—P14’ ensures thal < X; < Xy —tforallt <T’. HenceI’ < X,, and thus the assertion follows
from Corollary[5.6. a
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5.2 Proof of Lemmalk.3
Let Hyi5, Stij be as in[(I4) and let in addition

V- 1oifm (i) =1, (i, j) € Z{, andT <0,
tij 0 otherwise.

Lemma5.7 ForanyZ’ C [0'] x [m] x [k] we havell [T, ; ez ”H;ij|}‘6} < (3/(n—0—30' )T,
Proof. LetZ; = {(i,j) : (t,4,7) € I'} and Xy = [[; ;yez, Hiij- Dueto Lemma2l4 it suffices to show

B [Xi|F ] < (3/(n—0-30)" forat<y. (31)

To see this, let < ¢ < #" and consider a formuka such thafl’ [®] < 6,¢ < 77 [®], andr;_,(i,7) [®] =1
for all (i,7) € Z;. We condition on the everi® =, _, ®. Then at timef stepsPI1'—PI2’ obtain Z; by
adding three variables that occur in cladg,, which is(Zr, Z;_,)-endangered. L€, j) € Z;. Since
® =, ®andm_1(i,7) [®] = 1, the literal®,; & Zr U Z;_, is positive, and thu®; is not(Zr, Z,_,)-
endangered. Hence, # i. Furthermore, by Propositign’.2 in the conditional disttionP [-|7/_,] (®)
the variableg®;); j)cz; are independently uniformly distributed over the Bet (Zr U Z;_,). Hence,

P[®; € Z||F_,] (@] =3/[V\ (ZrU Z,_,)| forany(i,j) € I}, (32)

and these events are mutually independent. Siige= n—T andT < 0, and becausgZ;_,| = 3(t—1),

(32) implies[[31). O

Lemma58 Let2 <1<k, 1<I'<I—-1,1<t<#6,andl <t <@ Foreachi € [m]let X; = 1if
T >t, 7" > t', and the following four events occur:

a. ®, has exactly positive literals.
b. I’ of the positive literals o, lie in Z,, \ Z;.
c. | — 1’ — 1 of the positive literals ofp; lie in Z;.

d. No variable fromZ; occurs in®; negatively.

60'k\" k—1—1\ [t\ ! .

ThenP [>7" X; > B(I,I',t)] = o(n™?).

Let

Proof. We are going to apply Lemnia2.2. Set= [In* n] and letM C [m] be a set of sizg. LetEy be
the event thalX; = 1 forall i € M. Let P, C [k] be a set of sizé, and letH,;, H! C P; be disjoint sets
such that H; U H/| = | — 1 and|H]| = I’ for eachi € M. LetP = (P;, H;, H!);em. Furthermore, let
t; : H; — [t] andt} : H] — [t'] foralli € M, and setl = (t;,t,)icm. LetEa (P, T) be the event that
T >t,T" >, and the following statements are true foriadt M:

. The literal®;; is positive for allj € P; and negative for alj € [k] \ P;.
b'. ®i; € Z), ;)\ Zj,(;)-, foralli € Mandj € Hj.
. @y = 2,y foralli € Mandj € H;.

d’. No variable fromZ; occurs negatively i®,.
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If £aq OcCcurs, then there exi$P, T) such tha€ (P, T) occurs. Hence, we are going to use the union
bound. For each € [M] there are

k
ways to choose the sef3, H;, H!.
(1,1/,11/1) Y ef%, Hi, H;
Once these are chosen, there are

/L

¢ ways to choose the map, and¢'~"'~1 ways to choose the map

Thus,
k - —1 "
PlEm] < ;P[EM(P,T)]SKLZ/JZ/1)15 t ] maxP [Em(P. 7). (393)

Hence, we need to boul[Ea (P, T)] for any givenP, 7. To this end, let

I = IM,P,T)={(s,i,j) i € M,j € P, s =t:(j)},
T = T(MP,T)={(si.§):i€MjePls=tj)},
J = JMP,T)={(si,§) i€ M,j € [k]\ (P,UP),s<t}.
If Em(P,T) occurs, then the positive literals of each cladse i € M, are precisely®;; with j € P,

which occurs with probabilit ~* independently. In addition, we hadé,;; = 1 for all (s,4,5) € Z,
' =1forall (s,4,j) € 7', andS,;; = 1 forall (s,4,j) € J. Hence, by Lemmds 4.8 ahdb.7

sij

PEm(P. T < 2% B [ iy II Hei- I SuilFo
(ti,5)ET’ (t,i,5)€T (ti,j)eTg
3 Uu (1—1'=1) (k—1)
< —kp U= =D o —tp )
< 2 (771 — 39/) (n—20) (1-1/n) (34)

Combining [3B8) and(34), we see tHafEr(] < M\, where

k 3t v N
=27 1 — 1/n) k=0t
A (1,[’7ll’1) (TLHBH’) (TLG) ( /n) ,
whence LemmB22 yield3 [}" | X; > 2\m] = o(n~?). Thus, the remaining task is to estimae:
k—1 3t I ] NG
Am = mk27* L ot L 1Dt
o= () Germ) (Cen) () o
60'k\Y [kl 1
wn - _ .
n I~ -1
T \nze 1—t/n

-1'—1
<1 N %) exp(kt?/n?) < exp(201/n + k62 /n?).
—

IN

-'—1
i) (1—t/n)kt.n,  where (35)
n
k1

<_
|

IN

Sincef < 4k~ 'nlnk andl < vk, we havey < 2 for largek. Thus, the assertion follows frofi{35). O

Lemmab5.9 Letlnk <1<k, 1<V <[, 1<t<#0 andl <t <¢. Foreachi € [m]letY; = 1if
T >t,T" > t', and the following three events occur:

a. ®,; has exactly positive literals.
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b. I of the positive literals ofp; lie in Z}, \ Z,.
c. | — I’ — 1 of the positive literals ofp; lie in Z;.
ThenP [}, Y; > nexp(—1)] = o(n™3).

Proof. The proof is similar to (and less involved than) the proof eMmd5.D. Set = [In?n] and let
M C [m] be a set of size.. Let £ be the event that; = 1 for all i € [M]. Let P, C [k] be a set of
sizel, and letH;, H! C P, be disjoint sets such that; U H| = [ — 1 and|H|| = I’ for eachi € M.
Let P = (P, H;, H!)iem. Furthermore, let; : H; — [t] andt; : H] — [t'] forall i € M, and set
T = (ti,t;)iem. LetEap (P, T) be the event thal > ¢, T" > t/, and the following statements are true for
alls e M:

a'. ®;; is positive for allj € P; and negative for alf ¢ P;.

b. &;; € Zéi(j) \Zég(j)—1 foralli € M andj € H,.
C. ®;; = 2z, foralli e Mandj € H;.

If £r4 OcCcurs, then there a@, 7') such that (P, T) occurs. Using the union bound as[in}(33), we get
PlEm] < D PEMMP.T) < K gl =1 ' max P [Ep(P,T)].  (36)
M= M - -1 P MU

Hence, we need to boul[Ea (P, T)] for any givenP, 7. To this end, let

T = I(Mvva):{(Sv’Lv])ZEMv.]GPz;S:tz(j)}v
' = IT'M,P,T)=A{(s,i,5) :i e M,j € Pl,s =t;(j)}.

If Eam(P, T) occurs, then the positive literals of each clad@seare precisely®;; with j € P; (i € M). In
addition,H ;; = 1forall (s,,j) € T and#,;; = 1 forall (s,4, ) € Z'. Hence, by Lemmds 4.8 ahdb.7

o

4 —1'—1
3 1
< |27k .
- [2 (n939’) (n@) }37)
Combining [36) and (37), we see tHafEr ] < M, where

N k 3¢/ v " 1-'—1
N LUl —1—1)\n—60-30 n—~0

PIEM(P,T) < Q_k”E|: H Hzlfij H Heij| Fo

(t,i,5)€T’ (t,i,5)€T

o (k1 3\ (k-1 t\ T
= v )\n—0-30 1—v-1)\n—9
6k0'\" [e(k — 1 — 1o\
< K27k :
< (%) (Tror) @)

Invoking LemmdZR, we obtaiRt 37" | Y; > 2Am] = o(n™3). Thus, we just need to show thzkm <
exp(—l)n. Sincef/n < 4k~ 'Inw andd’ /n < k=2, in the casé’ > [/2, (38) yields

Am < wn (delnw - t9'/n)l//2 < exp(—l)n/2.
Furthermore, if’ < /2, then we obtain fron{{38)
Am < wnexp(—20') (10e Inw/1)! ™1 < exp(—1)n/2.

Hence, in either case we obtain the desired bound. O
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Proof of Lemm&bl3Let X (1,7, ¢,t') be the number of indiceise [m] such that®; satisfies a.—d. from
Lemmd58 ift < T andt’ < 77, and setX (1,1, t,t') = 0if ¢ > T ort’ > T’. Let& be the event that
T <OandX(l,l',t,t') < B(l,l',;t)forall2 <1 < VE, 1 <U'<1—1,t <6, andt’ < ¢. Then by
Corollaryl4.3 and Lemma’.8

P[] < P[T>0]+k00 -o(n3) =o(1). (39)

Let I; be the number of indiceise Uy \ Ur and®; has precisely < v/k positive literals. Ifi has these
properties, then satisfies the condition a.—d. from Lemmal5.8#et 7" and somd < I’ < [. Therefore,

k
|Up \ Ur| SZIl- (40)

=1

If the event€ occurs, we have

-1 kol1-1
> > XU, ZZ B(@,I',T

1<I<VE 1<ISVEV=1 =1

“E()E ) <>

U'=1 7=0

IN

IN

P60k
= 4 < b &’ k4. 41
wnlz_:l( - ) < 5wn [becaus®’ < n/k%] (41)
Furthermore, by Corollafy 4.4 and Lemfal5.9 we have
o< Y exp(-n<n/k> whp. (42)
VE<I<k VE<I<k
Thus, the assertion follows from (39)={42). a

5.3 Proof of Corollary[5.5

As a preparation we need to estimate the number of clausehdlia contain a huge number of literals
from Z, for somet < 6.

Lemma5.10 Lett < . With probability at least — o(1/n) there are no more than exp(—k) indices
i€ [m]suchthat{j: k1 <j <k, |®i| € Z;} > k/4.

Proof. For anyi € [m], j € [k], andl < s < @ let

zo 1 if|<I>ij|:z5,7r5,1(i,j)6{71,1},ands§T,
7771 0 otherwise.

Then for any sef C [t] x [m] x ([k] \ [k1]) we have
E| J[ 2| <@m-0)71" (43)

(s,i,)€T

To see this, leT, = {(i,J) : (s,i,7) € 7} and setZ, = [], (i.j)ez. Zsij- Then for alls < 6 the random
variableZ is F,-measurable by Fact4.1. Moreover, we claim that

E[Z,|Fe1] < (n—0)" /%] (44)



5 PROOF OF PROPOSITIOR? 25

for anys < 6. To prove this, consider any formudasuch thats < 7' [®] andm,_1(i,5) [®] € {—1,1}
for all (i,7) € Zs. Then by Proposition 412 in the probability distributi®n-|Fs_1] (®) the variables
(®i5)(i,5)ez, are mutually independentand uniformly distributed dv&rZ, ;. They are also independent
of the variablez,, becausg > k; forall (i, j) € Z, and the variable, is determined by the firgt, literals

of some clause; (cf. PI2). Therefore, for all(z, j) € Z, the event®,; = z, occurs with probability
1/|V \ Zs—1| independently. A$Z,_;| = s — 1, this shows[(44), and(#3) follows from Lemial2.4
and [44).

Let X; = 1if t < T and there are at least= [k /4] indices;j € [k] \ [k1] such thati®,;| € Z;, and
setX; = 0 otherwise. LetM C [m] be a set of size = [In? n] and let€,, be the event thak; = 1 for
all: € M. Furthermore, leP; C [k] \ [k1] be a set of size — 1 for eachi € M, and lett; : P, — [t] be a
map. LetP = (P;)iesm andT = (t;)iem, and let€ (P, T) be the event that < T'and Z,, ;),; = 1 for
alli e Mandallj € P;. Let

Then [43) entails that for ari?, 7
PEm(P,T)] <E { 11 zsij] <(n—0)"F < (n—g)nrb), (45)
(s,i,7)€ET

Moreover, if€q occurs, then there exi®, 7 such that (P, T) occurs. Hence, by the union bound

PlEm] < D) PEMMPT)I<N  where

P,T
A= <i_k11>t“1(n —9) < <%>1 < (126/n)" L.

Finally, LemmdZ.P implies that with probability— o(n~!) we have
ZXi < 2m\ < n-27(120/n)""! < nexp(—k),
i=1

as desired. |
Proof of Corollary[5.5.We use a similar argument as in the proof of Corollary 4.7. Let

Ui = {x e V\(Zru Zj) : Ui(x) = 0},

seta = ¢/3, and definé) /1 random variables; for ¢ > 1 by letting 5; = 1 iff the following statements
hold:

a. T >t.
b. U _, >nko L.
c. There are less thay4 indicesk; < j < k such that®,, ;| € Zr.
d. Thereis: € Z;\ Z,_, such thatU;_,(z) > 0.
This random variable ig;-measurable by FatiB.1. Lét= exp(—k“/6). We claim
E[B|F_1] <6 for anyt > 1. (46)

To see this, le® be a formula for which a.—c. hold. We condition on the ev@nt;_; ®. Then at time
t the proces$11'-P14’' chooses); such that®,, contains less than three variables fréff ;. Since
o satisfies c., there are less thajd indicesj > k; such that|®,,;| € Zp. Further, since®,, is
(Zr, Z]_,)-endangered, there is nosuch thatr,_, (¢, j) = 1. Consequently, there are at legst —
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k1 — 6 > k/5indicesk; < j < k — 5 such thatr;,_,(¢r,j) = —1. LetJ be the set of all these indices.
Then PropositioR 5]2 entails that in the distributidf|7;_, | () the variableg|®., ;|);cs are mutually
independent and uniformly distributed oWiél (Zr U Z;_,). Therefore, the number of indicgs= 7 such
thatU;_, (|®,,]) = 0 has a binomial distributioBin(|.7 |, [U{_,|/|V \ (Zr U Z{_,)]). If d. occurs, then
there are less than three indiges 7 such that//_, (|®,;|) = 0. Since|J| > k/5, b. and the Chernoff
bound[(1) yield

E [Bi|F_4] () P [Bin(|7|, [t _1|/IV\ (Zr U Z{_,)]) < 3]

P [Bin ([k/5],k*"") < 3] <6

IA A

(provided that is sufficiently large). Thus, we have establisHed (46).
LetY = |{t € [¢'] : B; = 1}|. We are going to show that

V' <205 w.h.p. (47)

To this end, letting: = [Inn], we will show that
pn—1
B3] < (@0)"  where()), = [TY" - (48)
7=0

This implies[(4Y). Forif)’ > 26’6, then for largen we have(X"),, > (20’5 — p)* > (1.9-6'6)*, whence
Markov's inequality entail® [}’ > 26'0] < P [()'), > (1.96'6)#] <1.97# = o(1).

In order to establisi {48), we define a random varidiefor any tuple7 = (t1,...,t,) of mutually
distinctintegers, ..., t, € [0]’ by lettingY’- = [T\, B;.. Since()’),, equals the number gf-tuplesT
such thaf/}- = 1, we obtain

B[] €Y BVl < 0" maxE[Yy]. (49)
T

To bound the last expression, we may assumefhatsuch that, < --- < ¢,. As B} is F;-measurable,
we have for all < u

l l @s) -1
E [H B, E [H B;i|f;l1] <0-E [H B,
i=1 i=1 i=1

Proceeding inductively frorh= 1 down tol = 1, we obtainE [V/-] < ¢, and thus[(48) follows froni (49).
To complete the proof, 1€¢” be the number of indicese [m] such thai®;,| € Zr for at leastk /4

indicesk; < j < k. Combining Corollary 4]4 (which shows thigfr| = T < 6 w.h.p.) with Lemm&5.70,

we see tha)” < nexp(—k) < 06 w.h.p. As|Y| < V' + V", the assertion thus follows from (47). O

< E =E

-1
HB; : E [Bél|]:tllflj|
i=1

5.4 Proof of Corollary[5.6

Recall that a claus®; is (Zr, Z})-endangered if for any such that the literad®;; is true under, the
underlying variablg®;;| lies in Z;. Let) be the set from Corollafy 5.5, and &t = Usey Zs\ Zs—1.
We claim that if®; is (Zr, Z;)-endangered, then one of the following statements is true:

a. There are two indicels< j; < jo < ksuchthai®;;, | = |®;;,|.

b. There are indice8 # i, j1 # jz2, j1 # Jjs Such that®;;, | = |® ;| and|®;;, | = [P |-
c. ®, is unsatisfied underz,..

d. ®; contains more than = |k | positive literals, all of which lie inz; U Zr-.

e. ®, has at mosk positive literals, is satisfied undet;,., and contains a variable frof.
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To see this, assume th@t; is (Zr, Z;)-endangered for some< 7’ and a.—d. do not hold. Also observe
that Z > Zp N Z] by construction (cfP12’); hence, if there is an indeksuch that®;; = z for some

x € Zp,thenz € Z, and thus e. holds. Thus, assume that no variable #fgnoccurs negatively irb,.
Then®; containg > 1 positive literals froml” \ Zr, and we may assume without loss of generality that
these are just the firgliterals ®;1, . . ., ®;;. Furthermore®;,, ..., ®;, € Z,. Hence, for each < j <
thereisl < t; < tsuchtha®,; € Z; \ Z; _,. Since®; satisfies neither a. nor b., the numbars ..., #;

are mutually distinct. (For if, say, = to, then either®;; = ®;5, or ®; and®,, have at least two
variables in common.) Thus, we may assume without loss cérgdity thatt, < --- < ¢;. Theni € U/, _,

by the construction in stefpl 3', and thus®,;; € Z. Hence, e. holds.

Let X,,...,X. be the numbers of indices € [m] for which a.,...,e. above hold. W.h.iX, +
X, = O(Inn) by LemmaZB. Furthermorel, < exp(—k%/®)n w.h.p. by Propositioi 312. Moreover,
Lemmad 410 and 3.9 yield; < 2exp(—x/2)n w.h.p. Finally, since) < 36’ exp(—k*/*) w.h.p. by
Corollaryl5.% and a&Z| = 3|Y|, Lemmd2.6 shows that w.h.p.

X <0 - 9exp(—ke/1yn < 0'/2.

Combining these estimates, we obtaip + - - - + X, < 6’ w.h.p.

6 Proof of Proposition3.4

As before, we let) < ¢ < 0.1, and we assume that > k, for a large enouglty = ko(e), and that
n > ng for some large enoughy = no(e, k). Furthermore, we letn = [(1 — )2k~ ' Ink], w =
(1 —e)Ink andk; = [k/2]. We keep the notation introduced in Section]4.1. In particukcall that
0= |4nk tlnw].

In order to prove that the grafghi(®, Z, Z’) has a matching that covers &f, Z’)-endangered clauses,
we are going to apply the marriage theorem. Basically we aiieggto argue as follows. Lét ¢ Z’ be
a set of variables. Sincg’ is “small” by Propositiod 313} is small, too. Furthermore, Phase 2 ensures
that any(Z, Z')-endangered clause contains three variables 6mro apply the marriage theorem, we
thus need to show that w.h.p. for aiy C Z’ the number of(Z, Z’)-endangered clauses that contain
only variables fromY” U (V' \ Z’) (i.e., the set of al(Z, Z’)-endangered clauses whose neighborhood in
G(®,7,7')is asubsetot’) is at mostY'|.

To establish this, we will use a first moment argument (ovex ¥¢. This argument does actually not
take into account that” ¢ Z’, but it works for any “small” set” c V. Thus, letY” C V be a set of size
yn. We define a family(y;; )ic(m),;e[x) Of random variables by letting

o 1 if |(I>1J| S K
7771 0 otherwise.

Moreover, define for each intege> 0 an equivalence relatios)” on Qy(n,m) by letting® =) &’ iff

7s [®] = 7y (@] forall0 < s < tandy;; [] = y;; [®'] forall (i, 5) € [m] x [k]. Thisis a refinement of the
equivalence relatiors; from Sectioi 4. LefF} be theo-algebra generated by the equivalence classes
of =Y. Then the family(F} );>¢ is a filtration. SinceF} contains ther-algebraF; from Sectiof 41, all
random variables that afg;,-measurable ar&) -measurable as well.

Proposition 6.1 Let & be the set of all pairgs, j) such thatr;(i,j) € {1,—1} andy;; = 0. The
conditional joint distribution of the variable§®;;); j)cex givenF} is uniform over(V \ (Z; U V)£

Proof. Let [@]z/ be the=} -class of a formul@. ThenPg = P [|F}'] (®) is just the uniform distribution
over [@]Z. Let D) (®) be the set of all pairgi, j) € [m] x k such tha®,;;| € Y andm(i,j) [®] €
{—1, 1}. We will actually prove the following stronger statementthwespect to the measuR, the joint
distribution of the variable§®;|); jcey upy is uniformover(V'\ (Z; U Y))E x (Y'\ Z)Pe.
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To show this, we use a similar argument as in the proof of Fibpa[42. For any two map$ :
EY (@) = V\ (Y ULZ(®))andg : DY (®) — Y \ Z,(®) we define a formula

it (i, j) € £(®) andmo(i, j) = —1,
if (i,7) € &(P) andm(i,j) =1
g9(i,j) if (i,5) € Dy(®) andmo (i, j) = —1,
g(i,j) i (i) € Dy(®) andmo (i, ) = 1,
®,;;  otherwise.

(q)fyg)ij =

Then®; , =} ®. Therefore, the map

(V\(Z:UY))E x (Y \ Z)P = [@],, (f.9)— ®f,

is bijection. ]
Foranyt > 1,i € [m], j € [k] we define &/1 random variablé{};; by letting#(};; = 1 if y;; = 0,

t<T,m_1(4,j) = 1andm (i, j) = 2.

Lemma 6.2 For any setZ C [0] x [m] x [k] we havel [H(m_’j)ez HIIFY | < (n—0)7 17

Proof. Due to Propositiof 611 the proof of Leminal4.8 carries ovexdadly. a

For a given set” we would like to bound the number ofe [m] such that®; contains at least three
variables fromY” and®; has no positive literal iV \ (Y U Zr). If for any “small” setY” the number of
such clauses is less thgr|, then we can apply this resulti6 = Z’ and use the marriage theorem to show
thatG(®, Z, Z') has the desired matching. We proceed in several steps.

Lemma6.3 Lett < 0, let M C [m] be a set of sizg, and letL, A be maps that assign a subsetfkffto
eachi € M such that
L(H)NA®i) =0 and|A(i)| > 3forall i € M. (50)

LetE(Y,t, M, L, A) be the event that the following statements are true fof allM:
a. |®;;| e Yforall j € Az).
b. ®;; is a negative literal for allj € [k] \ (L(7) U A(7)).
c. ®;; €z \Yforallje L(7).
Letl =Y, o v |L(i)| andX = 3. o [A()]. ThenP [E(Y, ¢, M, L, A)] < 27%(2t/n)! (2y)*.

Proof. Let& = £(Y,t, M, L, A). Lett; be a mapL(i) — [t] for eachi € M, letT = (¢;)icm, and let
E(T) be the event that a. and b. hold adg; = 2, ;) foralli € M andj € L(i). If £ occurs, then there
is 7 such that (7)) occurs. Hence, by the union bound

£l <) PlEM) <t max P [£(T)]. (51)

To bound the last term fix anfy. LetZ = {(s,i,7) :i € M,j € L(i),s = t;(j)}. If £(T) occurs, then
HY.. = 1forall (s,i,5) € Z. Therefore, by Lemma®.2

sij

PEMIF] < [H HEANFS | < (n—0)"" =(n—-0)" (52)

(s,4,5)€ET

Furthermore, the event that a. and b. hold foriaf M is f(}/-measurable. Since the literads;; are
chosen independently, we have

Pla.andb. hold forall € M] < 23 he = (29)* 2~ ku (53)
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Combining [52) and[{33), we obtaiR [£(T)] < 27 F(n — )¢ (2y)’\. Finally, plugging this bound

into (&1), we get
t\' 2\
5) et <2 (2 e,

n —

P[E] < 27ke (
as desired. O

Corollary 6.4 Lett < 6, and letM C V have sizd M| = u. Letl, A be integers such that > 3.
LetE(Y,t, M, 1, \) be the event that there exist mapsA that satisfy [(5D) such thdt= ", |L(i)|,
A= ienm [A(D)], and the evenf (Y, ¢, M, L, A) occurs. Then

PE(Y,t, M,1,\)] < 277 F1(2k%y) .

Proof. Givenl, \ there are at mos(tlk’;) ways to choose the mags A (because the clauses.m contain
a total number of:y literals). Therefore, by Lemnia®.3 and the union bound

l A l
2P E(Y, 1, M,1, V)] < (fﬁ)@t/n)l@y)kgz—l (4fj“) (2€§“y) <o (—50";““) (2ky)*

= 27(2ky)* WSO alna " whereq =

. 54
50 Inw (54)
Since—alna < 1/2, we obtainw—50#alne < ;=250 < (Ink)25* < kA, Plugging this last estimate
into (54) yields the desired bound. O

Corollary 6.5 Lett < 60 and let&(t) be the event that there are sétsC V, M C [m] of size3 <
Y| = |M| = u < nk~'2 and integerd > 0, A > 3u such that the everd(Y, ¢, M, [, \) occurs. Then
PE(t)] = o(1/n).

Proof. Let us fix an integeil < u < nk~'2 and let€(t, 1) be the event that there exist s@fsM of
the given sizeu = yn and numberg, A such thate(Y,t, M, 1, \) occurs. Then the union bound and

Corollary[6.2 yield

Pl < Y S rlemiaanin] = (1) (1)
A>3 Y, M:|Y |=|M|=p 1>0 H7 K
22 Inw\" _, 4 oo
8 (T) 2R < 4 [k <y
Summing oves < p < nk~'%, we obtainP [£(t)] < 3, P [E(t, p)] = O(n=3/2). O

Proof of Propositio-3}4.Assume that the grap&(®, Z, Z’) does not have a matching that covers all
(Z, Z")-endangered clauses. Then by the marriage theorem themesaté C Z’ and a seiM of (Z, Z')-
endangered clauses such thet| = |Y'| > 0 and all neighbors of indicesc M in the graphG(®, Z, Z')

lie in Y. Indeed, as eactZ, Z')-endangered clause contains at least three variables Z/'omwe have
|Y'| > 3. Therefore, for each clause= M the following three statements are true:

a. Thereisasek(i) C [k] of size at leasB such thai®;,;| € Y forall j € A(7).
b. Thereis a (possibly empty) skfi) C [k] \ A(¢) such that®;; € Z for all j € L(i).
c. Forallj € [k] \ (L(7) U A(¢)) the literal ®,; is negative.
As a consequence, at least one of the following events occurs
1.7>0= 4k Inw|.
2. |Z'| > nk~12.
3. Thereig < 6 such tha€(t) occurs.

The probability of the first event is(1) by Propositio 312, the second event has probabiliy) by
Propositio 318, and the probability of the third ever iss(n=!) = o(1) by Corollary[&5. ]
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