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STATE DISTRIBUTIONS AND MINIMUM RELATIVE ENTROPY NOISE SEQ UENCES
IN UNCERTAIN STOCHASTIC SYSTEMS: THE DISCRETE TIME CASE ∗

IGOR G. VLADIMIROV† AND IAN R. PETERSEN†

Abstract. The paper is concerned with a dissipativity theory and robust performance analysis of discrete-time stochastic
systems driven by a statistically uncertain random noise. The uncertainty is quantified by the conditional relative entropy of
the actual probability law of the noise with respect to a nominal product measure corresponding to a white noise sequence.
We discuss a balance equation, dissipation inequality and superadditivity property for the corresponding conditional relative
entropy supply as a function of time. The problem of minimizing the supply required to drive the system between given
state distributions over a specified time horizon is considered. Such variational problems, involving entropy and probabilistic
boundary conditions, are known in the literature as Schrödinger bridge problems. In application to control systems, this
minimum required conditional relative entropy supply characterizes the robustness of the system with respect to an uncertain
noise. We obtain a dynamic programming Bellman equation forthe minimum required conditional relative entropy supply and
establish a Markov property of the worst-case noise with respect to the state of the system. For multivariable linear systems
with a Gaussian white noise sequence as the nominal noise model and Gaussian initial and terminal state distributions, the
minimum required supply is obtained using an algebraic Riccati equation which admits a closed-form solution. We propose
a computable robustness index for such systems in the framework of an entropy theoretic formulation of uncertainty and
provide an example to illustrate this approach.
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ity, minimum required supply, Markov noise strategies, system robustness index.
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1. Introduction. Design of feedback control for stochastic systems, which isusually aimed at
suppressing the effect of random disturbances on the performance of the system, often confronts the
situation where the statistical characteristics of the noise are not known precisely. Such statistical
uncertainty can arise both from inaccuracies in prior probabilistic information on the noise and from
variability of the random environment in which the control system operates. An approach which
is often practiced in optimal control design in this case (see, for example, [18, 19]), is to employ
a relatively simple model for the noise (sometimes upon augmenting the state of the system to
incorporate a noise shaping filter) and to optimize the feedback in the closed-loop system for the
case of the nominal noise.

A different paradigm is employed by robust control approaches, such as in [31], which are
aimed at achieving “uniformly” guaranteed performance of the system over a class of uncertainties
(especially, in worst-case scenarios). This is at the expense of loosing the optimality in the nominal
noise case (which often plays the role of a “center” of the uncertainty class). However, the robust
controller itself, and the performance of the resulting closed-loop system, depends on the particular
description of uncertainty which was used to design them. That is, the robustness of the closed-loop
system, which is secured against a particular class of uncertainties, may be less satisfactory with
respect to another class of uncertainties.

Therefore, the problem of robust performance analysis for agiven closed-loop system with re-
spect to different classes of uncertainties is important regardless of whether the system has been
obtained from a robust or optimal control design methodology. More precisely, the problems of in-
terest here are concerned with the performance deterioration of a system subject to uncertain random
noise in comparison to the performance of the system when subject to the nominal noise. The sta-
tistically uncertain noise can be viewed as resulting from the actions of a hypothetical noise player
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who has access to the current state of the system and employs this information in generating the
future noise inputs in order to drive the system away from itsnominal behavior. In this regard,
an important approach, which constitutes an important partof recent robust stochastic control and
filtering theory, is provided by formulations of statistical uncertainty using entropy theoretic con-
structs [10, 23, 30, 31, 32, 34, 38, 39, 40, 41, 47] (see also [7, 11, 12] for their connections with
the risk-sensitive control). Although entropy and relatedconcepts have a long history in equilibrium
statistical mechanics [22], their application to robust control are more reminiscent of nonequilibrium
statistical physics formulations and also have a bearing oninformation theory [8, 13]. The deviation
of the actual noise probability law from the nominal noise model, which results in a corresponding
deviation of the system from the equilibrium probability distribution under the nominal noise, can
be interpreted in terms of the supply-storage relations of dissipativity theory [45, 46].

The aim of the present paper is to combine the dissipativity theory viewpoint with an entropy
theoretic formulation of statistical uncertainty in orderto develop a tractablerobustness indexfor
discrete-time stochastic systems driven by an uncertain random noise. The uncertainty is quantified
by theconditional relative entropy[13] of the actual noise probability law, given the initial state
of the system, with respect to a nominal product measure corresponding to a white noise sequence,
independent of the initial state. This quantity measures not only the deviation of the noise from its
nominal model but also the extent to which the noise player uses knowledge of the current state of the
system for future noise generation. The conditional relative entropy can therefore be interpreted as
a resource which the noise player spends economically in performing the role of driving the system
away from its nominal behavior. This nominal behavior is characterized in terms of the existence of
anominal invariant state distributionwhich the system would have in the nominal white noise case.

Although the conditional relative entropy supply is apparently less symmetric in time than the
unconditional relative entropy, it satisfies a balance equation which involves time reversal through
a Bayesian term [4, 15]. A related dissipation inequality describes the influence of the conditional
relative entropy supply for the noise player on the deviation of the system from the nominal invariant
state distribution. The deviation of the system from the nominal invariant state distribution is also
measured in relative entropy terms and plays the role of astorage function. As a function of time, the
conditional relative entropy supply issuperadditive[33] in contrast to its deterministic counterpart in
[45, 46] (which is additive as the integral of a supply rate over the time interval). However, additivity
is recovered for a class of noise sequences which are Markov with respect to the state of the system
and play an important role as economical noise strategies.

A problem of minimizing the conditional relative entropy supply required for the noise player to
drive the system between given initial and terminal state distributions over a specified time horizon
is then considered. Variational problems, which are concerned with entropy minimization under
such probabilistic boundary conditions, are known as Schr¨odinger bridge problems [2, 29]. These
problems are usually treated in the context of reciprocal processes, that is, Markov random fields
on the time axis [17]; see also [1, 5, 9, 25, 43] for continuoustime formulations. Such problems
have also been studied for quantum systems [3] using the formalism of stochastic mechanics [27],
and conventional quantum mechanical settings [29]. In application to robust performance analysis,
the minimum required conditional relative entropy supply characterizes the robustness of the system
with respect to the uncertain noise. Indeed, the larger is the required supply, the more “sluggish”
the system is with respect to the actions of the noise player.We obtain a dynamic programming
Bellman equation for the minimum required conditional relative entropy supply and establish the
Markov property of the corresponding worst-case noise withrespect to the state of the system.

A relatedstate distribution trackingproblem leads to the minimum conditional relative entropy
supply rate (per time step), which is required for the noise player to maintain the system in a given
state distribution. In combination with aloss functional(which measures the system performance
deterioration associated with the deviation from the nominal invariant state distribution), the mini-
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mum supply rate, required to achieve a specified level of the system performance loss, provides a
useful robustness index.

The specialization of the above results to the case of multivariable linear systems with a white
Gaussian nominal noise sequence and Gaussian initial and terminal state distributions, allows the
minimum required supply to be determined using an algebraicRiccati equation which admits a
closed-form solution. For a class of one-step reachable linear systems, in the framework of the en-
tropy theoretic description of uncertainty, we propose a particular robustness index associated with
the increase in a weighted second moment of the state variables as the loss functional. Similar,
though different ideas, which combine the second moment increase with entropy theoretic formula-
tions of uncertainty, can be found in [7, 10, 23, 32, 34, 42, 39, 40]. The computation of the robust-
ness index is reduced to solving two coupled algebraic equations in a matrix and a scalar parameter,
which can be carried out numerically by using, for example, homotopy methods. As an illustration,
we provide an explicit calculation of the robustness index for one-dimensional linear systems.

The paper is organized as follows. Section 2 specifies the class of uncertain stochastic systems
being considered. Section 3 describes the nominal white noise model and the associated nominal
invariant state distribution of the system. Section 4 specifies a measure of statistical uncertainty
as the conditional relative entropy of the actual noise withrespect to the nominal noise. Section 5
discusses a dissipation inequality and a superadditivity property for the conditional relative entropy
supply and introduces Markov noise strategies. Section 6 describes a procedure which leads to
a Markov noise strategy with a decreased conditional relative entropy while preserving the state
distributions of the system. Section 7 employs this procedure to establish a dynamic programming
Bellman equation for the minimum conditional relative entropy supply, required to drive the system
between given initial and terminal state distributions, and introduces a system robustness index.
Sections 8 to 12 are concerned with the case of linear dynamics and a white Gaussian nominal noise
sequence. Section 8 establishes conditions for the reachability of Gaussian state distributions of the
linear system. Section 9 reduces the problem of computing the minimum required supply for the
case of Gaussian boundary conditions to an algebraic Riccati equation. A closed-form solution of
this equation is given in Section 10 and is used in Section 11 for computing the robustness index for
a class of linear systems. Section 12 provides an example which explicitly calculates the robustness
index for a one-dimensional linear system.

2. Stochastic systems with statistically uncertain noise.We consider a discrete-time system
with a state signalX := (Xk)k>0, driven by a noise inputW := (Wk)k>0. In order to capture various
special cases in a general formulation, the valuesXk andWk of these signals (at thekth time step)
are assumed to belong to Polish (complete separable metric)spacesX andW , endowed with Borel
σ -algebrasX andW, respectively. The dynamics of the system in thestate spaceX are governed
by a time-invariant equation

Xk+1 = f (Xk,Wk), k= 0,1,2, . . . , (2.1)

where f : X ×W → X is a given Borel measurableone-step state transition map. Thus, the states
of the system at any two moments of time are related by

Xt = Ft−s(Ys:t−1) = Ft−s(Xs,Ws:t−1) = Ft−s(Xs,Ws, . . . ,Wt−1), 06 s6 t. (2.2)

Here,Fk : X ×W
k → X denotes thek step state transition map, which satisfies the recurrence

relation

Fk+1(x0,w0, . . . ,wk) = f (Fk(x0,w0, . . . ,wk−1),wk) (2.3)

for all x0 ∈ X andw0, . . . ,wk ∈ W , with the initial condition thatF0 is the identity map on the state
spaceX . Also, for the time interval[s, t],

Ys:t := (Xs,Ws:t) = (Xs,Ws, . . . ,Wt) (2.4)
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denotes thestate-noise sequencewhich is formed from the initial stateXs of the system and thenoise
sequence

Ws:t := (Ws, . . . ,Wt). (2.5)

Randomness is introduced into the system (2.1) by assuming that the initial stateX0 and the noise
sequenceW are random elements. Their joint probability distributionPX0,W is a probability measure1

on the measurable space(X ×W
∞,X×W

∞). Accordingly, the state sequenceX is aX
∞-valued

random element with a probability distributionPX on (X ∞,X∞). SinceX depends onX0 andW in
a deterministic way, as described by (2.2) and (2.3), with the map(X0,W) 7→ X being completely
specified by the one-step state transition mapf , the probability distributionPX can be expressed in
terms ofPX0,W. In particular, consider thestate distribution

Pk := PXk (2.6)

of the system at timek, that is, an appropriate marginal probability distribution of Xk on the measur-
able space(X ,X) which corresponds toPX. In view of (2.2), the state distributions (2.6) are related
to the probability distributions

Qs,t := PYs:t−1 = PXs,Ws:t−1 = PXs,Ws,...,Wt−1 (2.7)

of the state-noise sequences (2.4), that is, the joint probability distributions of Xs andWs:t−1 on
(X ×W t−s,X×W

t−s):

Pt = Qs,t ◦F−1
t−s. (2.8)

The right-hand side of (2.8) is the image measure [33, pp. 51–52] of the probability distribution
Qs,t under thet − s step state transition mapFt−s, with F−1

k (S) := {y∈ X ×W k : Fk(y) ∈ S} the
pre-image of a setS∈X. In turn,Qs,t in (2.7) is completely specified by the initial state distribution
Ps and the conditional probability distributionPWs:t−1|Xs of the noise sequenceWs:t−1 givenXs in view
of the chain rule for probability measures

Qs,t(dx×dw) = Ps(dx)PWs:t−1|Xs(dw | x), x∈ X , w∈ W
t−s. (2.9)

The equations (2.1) may describe the dynamics of a closed-loop system obtained by applying a given
feedback controller to a given plant, in which caseX incorporates both the plant and controller state
variables. Then, the plant is subject to an external random noiseW. The design of such a controller
often employs a relatively simple statistical model for thenoise and is aimed at suppressing the
influence of the noise on the closed-loop system performance. Although thenominalnoise model
is not guaranteed to be accurate, the feedback is usually developed so as to make the system “well-
behaved” at least under the nominal noise (for example, by anappropriate choice of the mapf in
(2.1)). Whereas the meaning of this depends on a specific control context, the property of being
well-behaved (which is pursued by the control designer) is understood here as the existence of an
invariant probability measure for the system state sequenceX under the nominal noise.

3. Nominal noise model and nominal invariant state distribution. A typical nominal noise
model is thatW is a “white noise” sequence of independent identically distributed random elements
which are also independent ofX0.

1We denote byPξ the probability distribution of a random elementξ , and byPξ |η the conditional probability distribution
of ξ with respect to another random elementη , with ξ andη taking values in Polish spaces. Thus,Pξ |η (S| y) is a probability
measure of a Borel setS and a Borel measurable function ofy. The joint probability distribution ofξ andη is denoted by
Pξ ,η .
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DEFINITION 3.1. Suppose R is a given probability measure on the measurable space(W ,W).
The noise W is called nominal if W0,W1, . . . are independent R-distributed random elements, in-
dependent of the initial state of the system X0, so that the corresponding conditional probability
distribution is a product measure

P
∗
W|X0

= R∞ = R×R× . . .. (3.1)

The probability measureP∗
W|X0

in (3.1), under which the noiseW has a simple statistical struc-
ture (specified completely by thenominalmarginal distributionR of Wk), plays the role of a model
for the unknownactual noiseprobability measurePW|X0

. Under the nominal noise defined in Defi-
nition 3.1, the state sequenceX is a homogeneous Markov chain with transition probability measure

G(S| x) := R( f (x, ·)−1(S)), S∈ X, x∈ X , (3.2)

wheref (x, ·)−1(S) := {w∈W : f (x,w) ∈S}. In this case, the state distributionsPk from (2.6) satisfy
the recurrence equation

Pk+1(S) =
∫

X

G(S| x)Pk(dx) = (Pk×R)( f−1(S)), (3.3)

wheref−1(S) := {(x,w) ∈ X ×W : f (x,w) ∈ S} is the pre-image of a setS∈X under the one-step
state transition mapf . An invariant measure for the Markov chainX is a probability measureP∗
on (X ,X) which is a fixed point of the linear integral operator described by the right-hand side of
(3.3). That is,

P∗ = (P∗×R)◦ f−1. (3.4)

By induction, (2.8) allows (3.4) to be extended to the image measure under thek step state transition
mapFk in (2.2) and (2.3) as

P∗ = (P∗×Rk)◦F−1
k , k> 0. (3.5)

DEFINITION 3.2. An invariant measure P∗ of the Markov chain X under the nominal noise from
Definition 3.1 in the sense of (3.4) is referred to as a nominalinvariant state distribution for the
system.

In what follows, we assume that a nominal invariant state distribution P∗ for the system exists,
though is not necessarily unique. Any suchP∗ is an equilibrium point for the state distributions
P0,P1, . . . of the system, governed by (3.3) under the nominal noise. General criteria for the existence
of invariant measures for Markov chains are beyond the scopeof the present paper. However, we will
describe a version of Harris’s theorem from [14, 24], which guarantees the existence and uniqueness
of an invariant probability measure. In application to our specific context, the sufficient conditions
are as follows. Suppose there exist a Borel measurable functionV : X →R+ and constants 06q< 1
andr > 0 such that the inequality

EV( f (x,ω)) :=
∫

W

V( f (x,w))R(dw) =
∫

X

V(y)G(dy | x)6 qV(x)+ r (3.6)

holds for allx ∈ X . Here, the expectationE(·) is taken over anR-distributed random elementω
with values inW , andG is the Markov transition kernel (3.2) of the state sequenceX under the
nominal noise. Also, suppose

sup
x,y∈Xv

sup
g:X →[−1,1]

|E(g( f (x,ω))−g( f (y,ω)))| < 2 (3.7)
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for anyv> 0, whereXv := {x∈X : V(x)6 v} denotes the corresponding sub-level set of the func-
tion V from (3.6), and the second supremum is taken over Borel measurable real-valued functionsg
on X whose absolute value does not exceed one. The left-hand sideof (3.7) is the diameter of the
set{G(· | x) : x∈Xv} in the sense of the total variation distance between probability measures [36].
Then, in view of [14, Theorem 3.6 on p. 13], the conditions (3.6) and (3.7) (which correspond to
[14, Assumptions 3.1 and 3.4 on p. 12]) imply that the system (2.1) has a unique nominal invariant
state distributionP∗.

Theactualconditional distributionPW|X0
of the noise may differ from its nominal model (3.1).

In particular, there can be statisticaldependencebetweenWk’s at different times or between the
noiseW and the initial state of the systemX0. Also, the marginal distribution ofWk may differ
from R even ifW is indeed a white noise sequence. The discrepancy between the truePW|X0

and its
nominal model, present in all these cases, is interpreted asstatistical uncertaintyin the noiseW.

The dependence of the conditional distribution of the future noise on the current state of the sys-
tem (which depends on the past history of the noise) can arisein the case of a “colored” noise whose
values at different moments of time are statistically dependent. Without specifying a mechanism for
the memory effects in the random environment which produce such a noise2, we will interpret the
conditional probability distributionsPWs:t |Xs in (2.9) as the strategy of a hypotheticalnoise player
who opposes the control designer. More precisely, it is assumed that the noise player has access to
the current stateXs of the system at any moment of times and uses this information in generating
the future noise inputsWs,Ws+1, . . . so as to make the system deviate from the nominal behavior
described in Section 3. In particular, this process can be viewed as the noise player aiming to drive
the actual state distributionPt of the system away from the nominal invariant state distribution P∗.
That is, the noise player aims to drive the state distribution away from the probabilistic equilibrium
of the system under the nominal noise. The extent, to which the actual probability distributionPX of
the state sequence differs from the probability law of a Markov chain with the transition kernel (3.2)
and invariant measureP∗, depends on the amount of statistical uncertainty in the noise.

4. Conditional relative entropy to quantify statistical uncertainty. Similarly to stochastic
robust control settings such as in [30, 38, 47], the deviation of the conditional noise distribution
PW|X0

from its nominal model (3.1) will be quantified in terms of theconditional relative entropy
[13, Section 5.3].

Recall that for two conditional probability distributionsPξ |η andP∗
ξ |η of random elementsξ

andη with values in Polish spacesS1 andS2, the conditional relative entropy ofPξ |η with respect
to P

∗
ξ |η is defined as

D(Pξ |η‖P∗
ξ |η) :=E lnϕ(ξ | η) =

∫

S1×S2

lnϕ(x | y)Pξ ,η(dx×dy)

=

∫

S2

(∫

S1

L(ϕ(x | y))P∗
ξ |η (dx | y)

)
Pη(dy)

=

∫

S2

D0(Pξ |η (· | y)‖P∗
ξ |η(· | y))Pη (dy), ϕ(x | y) :=

Pξ |η (dx | y)

P
∗
ξ |η (dx | y)

, (4.1)

where the expectation is taken over the joint probability distributionPξ ,η of ξ andη , associated
with Pξ |η by the chain rulePξ ,η(dx×dy) = Pξ |η (dx | y)Pη(dy), and the functionalD0 is described
below. Here, the function

L(p) := pln p (4.2)

2A discussion of the generation of such noise can be found, forexample, in physics literature on open systems [6].
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is defined onR+, with the standard convention thatL(0) = 0. Also,ϕ : S1×S2 →R+ in (4.1) is a
Borel measurable function, which, for any fixed but otherwise arbitrary value of its second argument
y∈ S2, describes the Radon-Nikodym derivative [28, 33, 35] of theprobability measurePξ |η(· | y)
with respect to the reference probability measureP

∗
ξ |η(· | y), so thatPξ |η(S| y) = ∫Sϕ(x | y)P∗

ξ |η (dx |
y) for any Borel subsetS⊂ S1. This conditional probability density function (PDF)ϕ exists if and
only if the first measure is absolutely continuous with respect to the second one:

Pξ |η(· | y)≪ P
∗
ξ |η (· | y). (4.3)

That is, for all Borel subsetsS⊂ S1, the fulfillment ofP∗
ξ |η(S| y) = 0 impliesPξ |η (S| y) = 0. The

functionalD0 in (4.1), which is distinguished fromD, describes theunconditionalrelative entropy

D0(P‖P∗) =
∫

S

lnϕ(x)P(dx) =
∫

S

L(ϕ(x))P∗(dx), ϕ(x) := P(dx)/P∗(dx), (4.4)

for probability measuresP≪ P∗ on a common Polish spaceS with an appropriate PDFϕ : S →
R+. The conditional relative entropyD(Pξ |η‖P∗

ξ |η) in (4.1) is well-defined if the conditional abso-
lute continuity (4.3) holds forPη -almost all valuesy∈ S2 of the random elementη . It follows from
the properties of relative entropy [8, 13] that both functionalsD andD0 are always nonnegative and
vanish only on equal measures (so that, in particular,D0(P‖P∗) = 0 if and only ifP= P∗).

Now, when quantifying the deviation of the actual conditional probability distributionPWs:t−1|Xs

of the noise sequenceWs:t−1 on the time interval[s, t) from its nominal modelRt−s, the conditional
relative entropy (4.1) takes the form

Es,t := D(PWs:t−1|Xs‖Rt−s) = E lnϕs,t(Ws:t−1 | Xs)

=
∫

X ×W t−s
lnϕs,t(w | x)Qs,t(dx×dw)

=

∫

X

(∫

W t−s
L(ϕs,t (w | x))Rt−s(dw)

)
Ps(dx)

=

∫

X

D0(PWs:t−1|Xs(· | x)‖Rt−s)Ps(dx), ϕs,t(w | x) :=
PWs:t−1|Xs(dw | x)

Rt−s(dw)
, (4.5)

where the expectation is taken over the probability distributionQs,t of the state-noise sequenceYs:t−1

from (2.7) and (2.9). Here, the distribution of the noise sequenceWs:t−1, conditioned onXs, is
assumed to be absolutely continuous with respect to the corresponding nominal distributionRt−s in
the sense that

PWs:t−1|Xs(· | x)≪ Rt−s for Ps−almost allx∈ X . (4.6)

This ensures that the conditional PDFϕs,t : W t−s×X →R+ in (4.5) exists and the quantityEs,t is
well-defined. Further discussion will be concerned with a class of “admissible” probability distribu-
tions for the noise as specified below.

DEFINITION 4.1. A noise sequence W, which drives the system dynamics (2.1), is called ad-
missible if the conditional probability distributionPWs:t−1|Xs satisfies (4.6) for any times06 s< t.

The conditional relative entropyEs,t in (4.5), which is always nonnegative, vanishes for all
06 s< t if and only if the noise sequenceW is R∞-distributed and independent of the initial state
X0. In what follows, when considering the system on a time interval [s, t), we will always assume that
the distribution of the initial stateXs is absolutely continuous with respect to the nominal invariant
state distributionP∗. That is,

Ps ≪ P∗. (4.7)
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In view of the chain rule (2.9), the fulfillment of conditions(4.6) and (4.7) implies that the actual
probability distributionQs,t of the state-noise sequence from (2.7) is absolutely continuous with
respect to the corresponding product measure:

Qs,t ≪ P∗×Rt−s. (4.8)

Note that (4.8) implies that the property (4.7) will be inherited by the subsequent state distribution
Pt . Indeed, sincePt andP∗ = (P∗×Rt−s)◦F−1

t−s are the image measures ofQs,t andP∗×Rt−s under
the same mapFt−s in view of (2.8) and (3.5), then (4.8) implies thatPt ≪ P∗. Therefore, ifP0 ≪ P∗,
then for any admissible noiseW in the sense of Definition 4.1, the propertyPt ≪ P∗ holds for any
t > 0.

Although (4.5) requires only the conditional absolute continuity condition (4.6) for the noise,
the additional absolute continuity (4.7) for the state distributions will play a role in Section 5. Under
the conditions (4.6) and (4.7), the chain rule (2.9) allows the PDF ofQs,t with respect to the reference
measureP∗×Rt−s in (4.8) to be factorized as

Qs,t(dx×dw)
P∗(dx)Rt−s(dw)

= ϖs(x)ϕs,t (w | x), x∈ X , w∈ W
t−s. (4.9)

Here,ϕs,t is the conditional PDF of the noise sequenceWs:t−1 givenXs from (4.5), andϖs : X →R+

is the PDF of the actual state distributionPs with respect to the nominal invariant state distribution
P∗:

ϖs(x) := Ps(dx)/P∗(dx), x∈ X . (4.10)

In what follows, we will study several variational problemswhich involve the conditional relative
entropy (4.5). The quantityEs,t , which is a measure of deviation from the nominal noise model
(3.1), can be regarded as a resource which the noise player would prefer to spend economically in
performing the role of driving the system away from the nominal invariant state distribution.

5. Conditional relative entropy balance equation and dissipation inequality. For the pur-
poses of the subsequent sections, we will now discuss several properties of the conditional rela-
tive entropyE0,t , defined in (4.5), starting with its decomposition which employs time reversal and
Bayesian analysis ideas [4]. LetP∗

Y0:t−1|Xt
denote the conditional (givenXt) probability distribution

which the state-noise sequenceY0:t−1 would have if the system (2.1) were initialized at the nominal
invariant state distributionP∗ and were subjected to the nominal noiseW in the sense of Defini-
tion 3.1 (in which case, theunconditionalprobability distributionQ0,t of Y0:t−1 would beP∗×Rt).
The fact thatY0:t−1, associated with the time interval[0, t), is conditioned here on theterminalstate
of the systemXt = Ft(Y0:t−1) under the nominal noise, withFt the t step state transition map from
(2.2), motivates the following definition.

DEFINITION 5.1. The conditional probability distributionP∗
Y0:t−1|Xt

(· | x) of a P∗×Rt-distributed

random elementη , conditioned on Ft(η) = x, is called the nominal posterior distribution of the
state-noise sequence Y0:t−1.

Note that the nominal posterior distributionP∗
Y0:t−1|Xt

is uniquely determined by the integral
equation

∫

X ×W t
g(y,Ft(y))(P∗×Rt)(dy) =

∫

X

(∫

X ×W t
g(y,x)P∗

Y0:t−1|Xt
(dy | x)

)
P∗(dx),

which must be satisfied for Borel measurable functionsg : (X ×W t)×X →R and is closely related
to Bayes formula. Here, use is made of the property that the random elementFt(η) in Definition 5.1
has the nominal invariant state distributionP∗.
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LEMMA 5.2. Suppose the initial state distribution of the system (2.1) satisfies P0 ≪ P∗, and the
noise W is admissible in the sense of Definition 4.1. Then for any t > 0, the conditional relative
entropy E0,t , defined by (4.5), is representable as

E0,t = D0(Pt‖P∗)−D0(P0‖P∗)+D(PY0:t−1|Xt‖P∗
Y0:t−1|Xt

). (5.1)

Here,D0 is the relative entropy functional (4.4), andP∗
Y0:t−1|Xt

is the nominal posterior distribution
of the state-noise sequence Y0:t−1 from Definition 5.1.

Proof. The factorization (4.9) (see also the chain rule for the relative entropy [13, Lemma 5.3.1
on p. 94]) implies that

D0(Q0,t‖P∗×Rt) = E ln(ϖ0(X0)ϕ0,t(W0:t−1 | X0))

= E lnϖ0(X0)+E lnϕ0,t(W0:t−1 | X0)

= D0(P0‖P∗)+E0,t , (5.2)

where the expectation is taken over the actual probability distributionQ0,t of the state-noise sequence
Y0:t−1. Here,ϕ0,t is the conditional PDF ofW0:t−1 givenX0 from (4.5), andϖ0 is the PDF (4.10) of
the initial state distributionP0 with respect to the nominal invariant state distributionP∗. Further-
more, sinceXt = Ft(Y0:t−1) depends in a deterministic way onY0:t−1 in view of (2.2), so that the
conditional distributionPXt |Y0:t−1

(· | y) is an atomic probability measure [33, p. 46] concentrated on
the singleton{Ft(y)} for anyy ∈ X ×W t regardless of the probability distribution ofY0:t−1, then
the augmentation ofY0:t−1 by Xt does not change the relative entropy in (5.2). More precisely, by
using aP∗×Rt-distributed random elementη from Definition 5.1 and applying the relative entropy
chain rule again, it follows that

D0(PY0:t−1,Xt‖Pη,Ft(η)) = D0(PY0:t−1‖Pη)+D(PXt |Y0:t−1
‖PFt(η)|η)

= D0(Q0,t‖P∗×Rt). (5.3)

Here,D(PXt |Y0:t−1
‖PFt(η)|η ) = 0 because the conditional probability distributionsPXt |Y0:t−1

(· | y) and
PFt (η)|η(· | y) are identical to each other as discussed above. Now, application of the relative entropy
chain rule to the left-hand side of (5.3) in the opposite timedirection, withY0:t−1 being conditioned
onXt , yields

D0(PY0:t−1,Xt‖Pη,Ft(η)) = D0(PXt‖PFt(η))+D(PY0:t−1|Xt‖Pη|Ft(η))

= D0(Pt‖P∗)+D(PY0:t−1|Xt‖P∗
Y0:t−1|Xt

). (5.4)

Here, use is made of Definition 5.1 of the nominal posterior distributionP∗
Y0:t−1|Xt

and the property
that Ft(η) is P∗-distributed. Also, the absolute continuityPt ≪ P∗ is ensured by the assumption
thatP0 ≪ P∗ and the admissibility of the noise in the sense of Definition 4.1. By a straightforward
comparison of (5.2)–(5.4), it follows that

D0(Q0,t‖P∗×Rt) = D0(P0‖P∗)+E0,t = D0(Pt‖P∗)+D(PY0:t−1|Xt‖P∗
Y0:t−1|Xt

),

where the second equality is equivalent to the representation (5.1), and the proof of the lemma is
completed.

The conditional relative entropyE0,t in (4.5) can be interpreted as thesupplywhich the noise
player has to deliver to the system over the time interval[0, t) in order to make the state distributionPt

of the system deviate from the nominal invariant state distributionP∗. In view of the relative entropy
balance equation (5.1), only part of this “expenditure”, namely,D0(Pt‖P∗)−D0(P0‖P∗), contributes
directly to achieving this goal. The rest of theconditional relative entropy supply E0,t is “dissipated”
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into D(PY0:t−1|Xt‖P∗
Y0:t−1|Xt

) which quantifies the amount by which the actual conditional probability
distribution of the state-noise sequenceY0:t−1 givenXt can be distinguished from the nominal poste-
rior distributionP∗

Y0:t−1|Xt
. This dissipation is caused by an irreversible loss of information contained

in the state-noise sequenceY0:t−1, only a fraction of which is able to be encoded in the terminalstate
Xt = Ft(Y0:t−1) of the system in a bijective way. Omitting the termD(PY0:t−1|Xt‖P∗

Y0:t−1|Xt
) > 0, the

equality (5.1) implies that

D0(Pt‖P∗)6 D0(P0‖P∗)+E0,t . (5.5)

By analogy with deterministic dissipativity theory [45, pp. 327, 348], the relation (5.5) describes
a relative entropy dissipation inequality. Accordingly, thestate relative entropyD0(Pt‖P∗), which
quantifies the deviation of the actual state distributionPt from the nominal invariant state distribution
P∗, plays the role of astorage functionat timet. Note, however, that in the stochastic setting under
consideration, these entropy theoretic functionals do notinherit all the properties of the correspond-
ing concepts for deterministic dissipative systems. For example, unlike the deterministic integral
supply which, as a function of an interval of time, is additive [33, p. 23] with respect to the union of
disjoint time intervals, the conditional relative entropysupply (4.5) is, in general,superadditiveas
described below.

LEMMA 5.3. For any0< s< t, the conditional relative entropy supply E0,t over the time inter-
val [0, t), defined by (4.5), is not less than the sum of the supplies overthe constituent subintervals
[0,s) and[s, t):

E0,t > E0,s+Es,t . (5.6)

The inequality (5.6) becomes an equality if and only if threerandom elements Y0:s−1, Xs, Ws:t−1 form
a Markov chain.

Proof. The chain rule for joint PDFs with respect to product measures allows the conditional
PDFϕ0,t in (4.5) to be factorized as

ϕ0,t(w0, . . . ,wt−1 | x0) =
PW0:t−1|X0

(dw0× . . .×dwt−1 | x0)

R(dw0)× . . .×R(dwt−1)

=
PW0:s−1|X0

(dw0× . . .×dws−1 | x0)

R(dw0)× . . .×R(dws−1)

×
PWs:t−1|Y0:s−1

(dws× . . .×dwt−1 | x0,w0, . . . ,ws−1)

R(dws)× . . .×R(dwt−1)

=ϕ0,s(w0, . . . ,ws−1 | x0)ψs,t(ws, . . . ,wt−1 | x0,w0, . . . ,ws−1) (5.7)

for all x0 ∈ X andw0, . . . ,wt−1 ∈ W . Here,ψs,t : W t−s×X ×W s → R+ is the conditional PDF
of the noise sequenceWs:t−1, given the state-noise sequenceY0:s−1, with respect to the reference
measureRt−s:

ψs,t(ws, . . . ,wt−1 | x0,w0, . . . ,ws−1) :=
PWs:t−1|Y0:s−1

(dws× . . .×dwt−1 | x0,w0, . . . ,ws−1)

R(dws)× . . .×R(dwt−1)
. (5.8)

Therefore, substitution of (5.7) and (5.8) into the definition (4.5) of the conditional relative entropy
E0,t yields

E0,t = E lnϕ0,t(W0:t−1 | X0)

= E ln(ϕ0,s(W0:s−1 | X0)ψs,t(Ws:t−1 |Y0:s−1))

= E lnϕ0,s(W0:s−1 | X0)+E lnψs,t(Ws:t−1 |Y0:s−1)

= E0,s+D(PWs:t−1|Y0:s−1
| Rt−s). (5.9)
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The inequality (5.6), which describes the superadditivityof the conditional relative entropy supply,
can now be obtained by combining (5.9) with

D(PWs:t−1|Y0:s−1
‖Rt−s)> D(PWs:t−1|Xs‖Rt−s) = Es,t . (5.10)

The last inequality follows from the property thatXs = Fs(Y0:s−1) depends in a deterministic way on
Y0:s−1 through a Borel measurable map, whereby the conditioning onY0:s−1 is finer than that onXs.
For a rigorous proof of the inequality in (5.10), we considerthe conditional probability distribution
of Y0:s−1 givenXs:

θs(B | x) := PY0:s−1|Xs(B | x), B∈ X×W
s, x∈ X . (5.11)

Recall that such posterior distributions of the state-noise sequences were used in Lemma 5.2. In
view of (2.2), for any givenx ∈ X , the probability measureθs(· | x) on (X ×W s,X×W

s) is
concentrated on the pre-imageF−1

s (x) = {y∈ X ×W s : Fs(y) = x} of the pointx under thes step
state transition mapFs in the sense thatθs(F−1

s (x) | x) = 1. Then the conditional PDFϕs,t from (4.5)
is representable as an appropriate average of the conditional PDF (5.8) over the probability measure
(5.11) as

ϕs,t(w | x) = E(ψs,t (w |Y0:s−1) | Xs = x) =
∫

F−1
s (x)

ψs,t(w | y)θs(dy | x) (5.12)

for all w∈W t−s andx∈X . Since the functionL in (4.2) is strictly convex, then (5.12) and Jensen’s
inequality [36] imply that

L(ϕs,t(w | x))6 E(L(ψs,t (w |Y0:s−1)) | Xs = x) =
∫

F−1
s (x)

L(ψs,t(w | y))θs(dy | x). (5.13)

Moreover, the inequality in (5.13) becomes an equality if and only if ψs,t(w | y) =ϕs,t(w | x) holds for
θs(· | x)-almost ally∈ F−1

s (x). Hence, the conditional relative entropy supplyEs,t in (4.5) satisfies

Es,t =

∫

X

(∫

W t−s
L(ϕs,t (w | x))Rt−s(dw)

)
Ps(dx)

6

∫

X

(∫

W t−s

(∫

F−1
s (x)

L(ψs,t(w | y))θs(dy | x)
)

Rt−s(dw)
)

Ps(dx)

=

∫

X

(∫

F−1
s (x)

(∫

W t−s
L(ψs,t(w | y))Rt−s(dw)

)
θs(dy | x)

)
Ps(dx)

=

∫

X ×W s

(∫

W t−s
L(ψs,t(w | y))Rt−s(dw)

)
Q0,s(dy)

= D(PWs:t−1|Y0:s−1
‖Rt−s), (5.14)

which establishes the inequality in (5.10) and completes the proof of (5.6). Turning to the second
part of the lemma, note that (5.6) becomes an equality if and only if the inequality in (5.14) becomes
an equality. By the strict convexity of the functionL from (4.2), it follows from (5.12) and (5.13)
that the inequality in (5.14) becomes an equality if and onlyif

ψs,t(w | y) = ϕs,t(w | Fs(y)) for Q0,t−almost all(y,w) ∈ (X ×W
s)×W

t−s. (5.15)

In view of (4.5) and (5.8), the relation (5.15) holds if and only if PWs:t−1|Y0:s−1
depends onY0:s−1 only

throughXs = Fs(Y0:s−1), which is equivalent to the condition that the three random elementsY0:s−1,
Xs, Ws:t−1 form a Markov chain.

As can be seen from the above proof, Lemma 5.3 is closely related to the data processing
inequality and convexity of the relative entropy functional with respect to each of its arguments
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[8, 13]. The second assertion of Lemma 5.3 shows that the conditional relative entropy supplyEs,t

is additiveas a function of the time interval[s, t) (that is,Es,u = Es,t +Et,u for all 0 6 s< t < u)
if only if the noise sequenceW is Markov with respect to the state sequenceX of the system. The
Markov property means that, forevery time k > 0, the probability measuresPWk|Y0:k−1

(· | y) and
PWk|Xk

(· | Fk(y)) on (W ,W) are equal to each other forQ0,k-almost all valuesy ∈ X ×W k of the
state-noise sequenceY0:k−1. It turns out that the Markov property is important for noisestrategies to
be economical in the sense of the conditional relative entropy supply.

6. Markov noise strategies decrease the conditional relative entropy supply. We will now
introduce a specific change of measure which leads to the Markov property of the noise with respect
to the state of the system. More precisely, for anys> 0, consider an operatorMs which, for any
t > s, maps the probability distributionQ0,t of the state-noise sequenceY0:t−1, associated with an
admissible noiseW, to another probability distribution̂Q0,t := Ms(Q0,t) on the same measurable
space(X ×W t−s,X×W

t−s) as

Q̂0,t(dy×dw) = ϕs,t(w | Fs(y))Q0,s(dy)Rt−s(dw), y∈ X ×W
s, w∈ W

t−s. (6.1)

Here,ϕs,t is the conditional PDF of the noise sequenceWs:t−1 givenXs from (4.5), associated with
the original distributionQ0,t , andFs is thes step state transition map from (2.2) and (2.3). In order
to clarify the meaning of (6.1), note that

Q0,t(dy×dw) = ψs,t(w | y)Q0,s(dy)Rt−s(dw), (6.2)

in view of the factorization (5.7) and the definition of the conditional PDFψs,t in (5.8). Direct
comparison of (6.1) with (6.2) shows that the action of the operatorMs on Q0,t leads to the Markov
property of the state-noise sequenceY0:t−1 with respect to the intermediate stateXs by replacing the
left-hand sideψs,t(w | y) of (5.15) with its right-hand sideϕs,t(w | Fs(y)). Therefore, an equivalent
representation ofMs in terms of the conditional PDFs from (4.5) is

ϕ̂0,t(w0, . . . ,wt−1 | x0) := ϕ0,s(w0, . . . ,ws−1 | x0)ϕs,t (ws, . . . ,wt−1 | Fs(x0,w0, . . . ,ws−1)) (6.3)

for all x0 ∈X andw0, . . . ,wt−1 ∈ W , whereϕ̂0,t corresponds tôQ0,t in (6.1), whilstϕ0,s andϕs,t are
associated withQ0,s andQs,t . Under the new measurêQ0,t , the random elementsY0:s−1, Xs, Ws:t−1

form a Markov chain. The operatorMs is idempotent (that is,M2
s := Ms◦Ms= Ms), since those (and

only those) probability distributionsQ0,t , which are already Markov with respect toXs, are invariant
underMs.

LEMMA 6.1. For any0< s< t, the operator Ms, acting on the probability distribution Q0,t in
(6.2) as described by (6.1), leaves the probability distributions Q0,s and Qs,t and the state distribu-
tions P0, . . . ,Pt unchanged. The conditional relative entropy supplyÊ0,t on the time interval[0, t),
associated with the new measureQ̂0,t , satisfies

Ê0,t = E0,s+Es,t 6 E0,t . (6.4)

The inequality in (6.4) becomes an equality if and only if themeasure Q0,t is invariant under Ms,
that is, if and only if the three random elements Y0:s−1, Xs, Ws:t−1 form a Markov chain.

Proof. Throughout the proof, the probability distributions and other quantities associated with
the new measurêQ0,t will be marked by the “hat” symbol. The property that the operatorMs pre-
serves the probability distribution ofY0:s−1,

Q̂0,s = Q0,s, (6.5)
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is verified by using an appropriate marginal distribution obtained fromQ̂0,t via integrating both sides
of (6.1) overw∈ W t−s, since

∫
W t−s ϕs,t(w | x)Rt−s(dw) = 1 for anyx∈ X . Hence, the conditional

relative entropy supplyE0,s over the time interval[0,s), which is completely specified byQ0,s, re-
mains unaffected:

Ê0,s = E0,s. (6.6)

Furthermore, (6.5) implies that the state distributionsP0, . . . ,Ps of the system up until timesare also
preserved:

P̂k = Pk, k= 0, . . . ,s. (6.7)

It follows from (6.1) thatMs also preserves the conditional probability distributionPWs:t−1|Xs. Hence,
the conditional PDFϕs,t from (4.5) is also preserved:̂ϕs,t = ϕs,t . This property, combined with the
equalityP̂s = Ps from (6.7), yields

Q̂s,t(dx×dw) = ϕ̂s,t(w | x)P̂s(dx)Rt−s(dw)

= ϕs,t(w | x)Ps(dx)Rt−s(dw)

= Qs,t(dx×dw), x∈ X , w∈ W
t−s. (6.8)

Therefore, the conditional relative entropy supply over the time interval[s, t) is also invariant under
the action ofMs:

Ês,t = Es,t . (6.9)

Furthermore, (6.8) implies the invariance of the corresponding state distributionsPs, . . . ,Pt of the
system:

P̂k = Pk, k= s, . . . , t. (6.10)

Therefore, in view of (6.7) and (6.10), all the state distributionsP0, . . . ,Pt of the system on the time
interval[0, t] are invariant underMs. SinceY0:s−1, Xs, Ws:t−1 form a Markov chain with respect to the
new measurêQ0,t , then a combination of Lemma 5.3 with (6.6) and (6.9) yields

Ê0,t = Ê0,s+ Ês,t = E0,s+Es,t 6 E0,t , (6.11)

which proves (6.4). Using the second assertion of Lemma 5.3,it follows that the inequality in
(6.11) is an equality if and only ifY0:s−1, Xs, Ws:t−1 form a Markov chain under the original measure
Q0,t . Therefore, to prove the last assertion of Lemma 6.1, it remains only to recall the equivalence
between the Markov property of the probability measureQ0,t and its invarianceMs(Q0,t) = Q0,t

under the operatorMs defined in (6.1).
Using Lemma 6.1, it follows that the application of the operator Ms strictly decreasesthe con-

ditional relative entropy supply over the time interval[0, t), thereby leading to a more economical
strategy for the noise player, unless the original noise strategy is already Markov with respect toXs.
From (6.1), it follows that the operatorsMs andMu commute for any timess< u, and their compo-
sition Ms◦Mu = Mu ◦Ms leads to the Markov property of the noiseW with respect to the statesXs

andXu. More generally, the operator

M1,...,t−1 := M1◦ . . .◦Mt−1 (6.12)

leads to the Markov property of the noiseW with respect to the intermediate statesX1, . . . ,Xt−1. The
resulting probability distribution̂Q0,t := M1,...,t−1(Q0,t) of the state-noise sequenceY0:t−1, whose
conditional PDF is given by

ϕ̂0,t(w0, . . . ,wt−1 | x0) :=
t−1

∏
s=0

ϕs,s+1(ws | Fs(x0,w0, . . . ,ws−1)),
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similarly to (6.3), inherits the distributionsQk,k+1 = PXk,Wk from Q0,t for all k = 0, . . . , t −1. Fur-
thermore, the conditional relative entropy supplyÊ0,t , associated witĥQ0,t , is additive on the time
interval[0, t) in the sense of the equalities

Ês,u =
u−1

∑
k=s

Ek,k+1 6 Es,u, 06 s< u6 t.

The fact that the operatorM1,...,t−1 : Q0,t 7→ Q̂0,t in (6.12) decreases the conditional relative entropy
supply, while preserving the state distributions of the system, implies that a non-Markov noise strat-
egy, which drives the system along a given sequence of state distributionsP0, . . . ,Pt , can always be
made more economical by replacingQ0,t with the Markov strategŷQ0,t .

7. Bellman equation for the minimum required conditional relative entropy supply. Con-
sider the problem of minimizing the conditional relative entropy supplyE0,t in (4.5) required to drive
the system (2.1) from a given initial state distributionΦ to a given terminal state distributionΨ over
a time interval of specified lengtht > 0:

Jt(Φ,Ψ) := inf
{

E0,t : P0 = Φ, PW0:t−1|X0
≪ Rt , Pt = Ψ

}
. (7.1)

Here, both probability measuresΦ andΨ on (X ,X) are assumed to be absolutely continuous with
respect to the nominal invariant state distributionP∗, and the infimum is taken over those admissible
noise strategiesPW0:t−1|X0

in the sense of Definition 4.1, under which the state distribution of the
system evolves fromP0 = Φ to Pt = Ψ. Variational problems like (7.1), which involve entropy and
probabilistic boundary conditions, are known as Schrödinger bridge problems [2, 29] and are usually
treated in the context of reciprocal processes, that is, Markov random fields on the time axis [17];
see also [1, 5, 9, 25, 43] for continuous time formulations.

If the system is initialized at aP∗-distributed stateX0, then application of a nominal noise with
PW|X0

= R∞ (so thatE0,t = 0) leaves the state distribution unchanged, and hence,

Jt(P∗,P∗) = 0 (7.2)

for any time horizont > 0. However, ifΨ 6= P∗, thenJt(P∗,Ψ) is positive and quantifies the cost for
the noise player to drive the system fromP∗ to Ψ in time t. The largerJt(P∗,Ψ) is, the more robust
the system is with respect to the uncertain noise. Minimization of E0,t on the right-hand side of the
dissipation inequality (5.5) under the constraintsP0 = Φ andPt = Ψ yields a lower bound

Jt(Φ,Ψ) > max(D0(Ψ‖P∗)−D0(Φ‖P∗), 0), (7.3)

which also clarifies the role of the assumptionsΦ ≪ P∗ andΨ ≪ P∗ for the well-posedness of the
problem (7.1). However, these absolute continuity conditions are, in general, not enough to guar-
antee finiteness of the quantityJt(Φ,Ψ) since the discrete-time system (2.1) may lack reachability
with respect to the noise over short time intervals.

DEFINITION 7.1. A terminal state distributionΨ ≪ P∗ is said to be reachable from an initial
state distributionΦ ≪ P∗ in time t> 0 if the minimum required conditional relative entropy supply
Jt(Φ,Ψ) in (7.1) is finite.

The following theorem shows that the additivity of the conditional relative entropy supply for
Markov noise strategies, established in Lemma 5.3, plays animportant role in determining the min-
imum required supply in (7.1).

THEOREM 7.2. For any time horizon t> 0, intermediate time0< s< t and initial and terminal
state distributionsΦ andΨ, the minimum required conditional relative entropy supply(7.1) satisfies

Jt(Φ,Ψ) = inf
Θ
(Js(Φ,Θ)+ Jt−s(Θ,Ψ)) , (7.4)
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where the infimum is taken over all intermediate state distributionsΘ reachable fromΦ in time s
and for whichΨ is reachable fromΘ in time t− s. Furthermore, if the infimum in (7.1) is achieved,
then every optimal noise strategy is Markov with respect to the state of the system.

Proof. By using an intermediate state distributionΘ, it follows that the infimum in (7.1) can be
represented as

Jt(Φ,Ψ) = inf
Θ

Js,t(Φ,Θ,Ψ), (7.5)

where

Js,t(Φ,Θ,Ψ) := inf
{

E0,t : PW0:t−1|X0
≪ Rt , P0 = Φ, Ps= Θ, Pt = Ψ

}
(7.6)

involves an additional constraintPs = Θ. Application of the superadditivity (5.6) of the conditional
relative entropy supply to (7.6) yields

Js,t(Φ,Θ,Ψ)> Js(Φ,Θ)+ Jt−s(Θ,Ψ). (7.7)

We will now prove that the inequality (7.7) is, in fact, an equality from which (7.4) follows imme-
diately in view of (7.5). Suppose the probability distributionsQ0,s andQs,t are associated with an
admissible noise on the subintervals[0,s) and [s, t) satisfyingP0 = Φ, Ps = Θ, Pt = Ψ. Note that
Q0,s andQs,t are compatible since they ascribe toXs the same probability distributionΘ. Hence,
there exists a probability distribution̂Q0,t which is Markov with respect to the intermediate stateXs

and leads to the marginal distributionsQ0,s andQs,t described above. The corresponding conditional
PDF ϕ̂0,t : W t ×X → R+ from (4.5) is expressed in terms ofϕ0,s andϕs,t , associated withQ0,s

andQs,t , as described by (6.3). In addition toPs = Θ, the measurêQ0,t also satisfies the boundary
conditionsP0 = Φ andPt = Ψ for the state distribution. By Lemma 5.3, the Markov property of Q̂0,t

implies that the conditional relative entropy supply satisfies

Ê0,t = E0,s+Es,t . (7.8)

For anyε > 0, each of the measuresQ0,s andQs,t can be chosen so that the corresponding conditional
relative entropy supply isε-close to its minimal value in (7.1):

E0,s 6 Js(Φ,Θ)+ ε, Es,t 6 Jt−s(Θ,Ψ)+ ε. (7.9)

By combining (7.8) and (7.9), it follows that

Ê0,t 6 Js(Φ,Θ)+ Jt−s(Θ,Ψ)+2ε.

Therefore, by combining the suboptimal noise strategiesQ0,s andQs,t into the Markov strategŷQ0,t

as described by (6.3), the total conditional relative entropy supplyÊ0,t can be made arbitrarily close
to the right-hand side of the inequality (7.7). This impliesthat (7.7) holds as an equality, thus proving
(7.4) in view of (7.5). We now proceed to the proof of the second assertion of the theorem which
assumes that the infimum in (7.1) is achievable. LetQ0,t be an optimal noise strategy which leads to
the minimum conditional relative entropy supplyE0,t = Jt(Φ,Ψ). SupposeQ0,t is not Markov with
respect to the state signalX of the system on the time interval[0, t). Then application of the operator
(6.12) generates a different measureQ̂0,t := M1,...,t−1(Q0,t) 6= Q0,t . By Lemma 6.1,̂Q0,t satisfies the
boundary conditionsP0 = Φ andPt = Ψ for the state distribution and delivers a smaller conditional
relative entropy supplŷE0,t < E0,t . The latter, however, contradicts the optimality ofQ0,t . This
contradiction implies the Markov property ofQ0,t .
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Special cases of Theorem 7.2, which are obtained by lettings= 1 or s= t −1 in (7.4), lead to
a dynamic programming Bellman equation [19, pp. 319–320] for the minimum conditional relative
entropy supply in (7.1):

Jt+1(Φ,Ψ) = inf
Θ
(J1(Φ,Θ)+ Jt(Θ,Ψ)) = inf

Θ
(Jt(Φ,Θ)+ J1(Θ,Ψ)), (7.10)

Each of these equalities is a recurrence equation whose right-hand side is an operator acting on the
functionalJt . In particular, the minimum supplyJt(P∗,Ψ), required to drive the system from the
nominal invariant state distributionP∗ to adifferentstate distributionΨ in time t, is nonincreasing in
t. Indeed, (7.10) implies that

Jt+1(P∗,Ψ)6 J1(P∗,P∗)+ Jt(P∗,Ψ) = Jt(P∗,Ψ)

in view of (7.2). Here,Jt(P∗,Ψ) is analogous to therequired supplyin the sense of [45, Definition 5
on p. 329]. A similar monotonicity condition holds forJt(Φ,P∗), which quantifies the cost for the
noise player to drive the state distribution of the system from Φ to P∗ in time t. Another representa-
tion of (7.4) in a form, known in the Russian optimization literature as the “Kiev broom”, “walking
tube” or “local variation” method (see, for example, [26]),is

Jt(Φ,Ψ) = inf
P1,...,Pt−1

t−1

∑
k=0

J1(Pk,Pk+1), (7.11)

where the infimum is taken over appropriately reachable intermediate state distributionsP1, . . . ,Pt−1,
with P0 = Φ andPt = Ψ. The sum on the right-hand side of (7.11) is the minimum conditional
relative entropy supply over the time interval[0, t) required to drive the system along a specified
sequence of state distributionsP0,P1, . . . ,Pt−1,Pt . In this state distribution tracking problem, any
optimal noise strategy is Markov with respect to the stateX of the system. This can be verified by
the argument, employed in the proof of Theorem 7.2, that application of the operator (6.12) leads to
a more economical Markov noise strategy. In particular, theminimum conditional relative entropy
supply rate per time step, required to maintain the system ina fixed state distributionΦ (reachable
from itself in one step), is

t−1 inf
Q0,t :P0=P1=...=Pt=Φ

E0,t = J1(Φ,Φ). (7.12)

The fact that (7.12) holds not only in the infinite-horizon limit t → +∞ but also for anyt > 0, is
closely related to the additivity of the conditional relative entropy supply for Markov noise strategies
discussed in Lemma 5.3. The quantityJ1(Φ,Φ) is positive if the state distributionΦ is not invariant
under the nominal noise. In this case, in order to maintain the system inΦ, the noise player has to
persistently deviate from the nominal noise model (3.1). Indeed, any optimal noise strategy in (7.12)
is Markov with respect to the state of the system and is completely specified by the conditional
probability distributionsPWk|Xk

, k= 0, . . . , t −1. These distributions can be made identical toPW0|X0

which delivers the minimum valueJ1(Φ,Φ) in the problem (7.1) witht = 1 andΨ=Φ. The resulting
state sequenceX is a homogeneous Markov chain with an invariant measureΦ and a transition
kernel which is different fromG in (3.2). Suppose the loss in system performance, associated with
Φ being different from the nominal invariant state distribution P∗, is quantified by a real-valued
functionalΞ(P∗,Φ). For example, theloss functionalΞ(P∗,Φ) can describe the undesirable increase
in a momentEg(Xk) =

∫
X

g(x)Φ(dx) of the system variables (specified by a functiong : X →R+)
over a steady-state distributionΦ in comparison to the nominal value

∫
X

g(x)P∗(dx) of this moment
underP∗. Then the nonnegative quantity

Z(γ) := inf
Φ: Ξ(P∗,Φ)>γ

J1(Φ,Φ) (7.13)
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is the minimum cost for the noise player (in terms of the conditional relative entropy supply rate)
to achieve a given levelγ of the system performance loss. Therefore,Z(γ) can be interpreted as a
robustness index for the system: the largerZ(γ) is, the more robust the system is with respect to the
uncertain noise. A practically computable version of therobustness index Z(γ) in (7.13), associated
with the second moments of state variables, will be considered in Section 11 for a class of linear
systems.

8. Reachability of Gaussian state distributions in linear systems. We will now specialize
the results of the previous sections to linear systems with the state spaceX := R

n, input space
W := R

m, and dynamics (2.1) described by

Xk+1 = AXk+BWk. (8.1)

Here,A ∈ R
n×n, B ∈ R

n×m are given matrices, andA is assumed to be asymptotically stable (that
is, its spectral radius satisfiesρ(A) < 1). Unless specified otherwise, vectors are assumed to be
organized as columns. Also, suppose the nominal marginal distributionR of the noise is them-
dimensional standard normal distribution with zero mean and identity covariance matrix:

R := N (0, Im). (8.2)

Then the corresponding nominal invariant state distribution P∗ of the linear system (8.1) is also
Gaussian,

P∗ = N (0,Γ), (8.3)

where the covariance matrixΓ coincides with the infinite-horizon reachability Gramian of the pair
(A,B) and satisfies an algebraic Lyapunov equation:

Γ =
+∞

∑
k=0

AkBBT(Ak)T = AΓAT+BBT. (8.4)

The following theorem extends the condition for linear system reachability [18, 19] from signals to
probability distributions and is valid regardless of the asymptotic stability of the matrixA. Let

Γt :=
t−1

∑
k=0

AkBBT(Ak)T = HtH
T
t (8.5)

denote the reachability Gramian of the system (8.1) for a finite time horizont > 0, whereHt ∈R
n×mt

is an auxiliary matrix defined by

Ht :=
[
At−1B At−2B . . . AB B

]
. (8.6)

THEOREM 8.1. Suppose the linear system (8.1) is endowed with the nominal marginal distri-
bution (8.2) of the noise, and let

Φ := N (α,Σ), Ψ := N (β ,Θ), (8.7)

be any Gaussian distributions with covariance matricesΣ ≻ 0 andΘ≻ 0. Then the state distribution
of the system can be driven from P0 = Φ to Pt = Ψ by an admissible noise within any given time
horizon t> n if and only if(A,B) is reachable. Moreover, this can be carried out by using a Gaussian
noise sequence W0:t−1 with the conditional distribution

PW0:t−1|X0
= N

(
HT

t Γ−1
t

(
β −Atα +(

√
Θ− εΓt Σ−1/2−At)(X0−α)

)
, εImt

)
. (8.8)
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Here,Γt is the t step reachability Gramian with the associated matrix Ht from (8.5), (8.6), andε is
a real parameter satisfying

0< ε 6 1
/

ρ(ΓtΘ−1). (8.9)

Proof. For the linear dynamics (8.1) being considered, thet step state transition map takes the
form

Xt = AtX0+
t−1

∑
s=0

At−s−1BWs = AtX0+HtW0:t−1 = FtY0:t−1. (8.10)

Here, the state-noise sequenceY0:t−1 and the noise sequenceW0:t−1, defined by (2.4) and (2.5), are
organized as the vectors

Y0:t−1 =

[
X0

W0:t−1

]
, W0:t−1 =




W0
...

Wt−1


 (8.11)

of dimensionsn+mt andmt, respectively. Accordingly, the matrixFt , which describes the linear
state transition mapY0:t−1 7→ Xt in (8.10), is associated withHt from (8.6) by

Ft :=
[
At Ht

]
=
[
At At−1B . . . AB B

]
. (8.12)

The linearity of the system (8.1) allows the first two momentsof Xt to be related to those of the
state-noise sequenceY0:t−1 as

EXt = FtEY0:t−1 = AtEX0+HtEW0:t−1, (8.13)

cov(Xt) = Ftcov(Y0:t−1)F
T
t

= cov(AtX0+HtE(W0:t−1 | X0))+HtEcov(W0:t−1 | X0)H
T
t . (8.14)

Here,cov(ξ ,η) := E(ξ ηT)−Eξ EηT denotes the covariance matrix of square integrable random
vectorsξ andη , with cov(ξ ) := cov(ξ ,ξ ), andcov(ξ | ζ ) := E(ξ ξ T | ζ )−E(ξ | ζ )E(ξ | ζ )T is the
conditional covariance matrix ofξ given another random vectorζ . Also, use is made of the “total
covariance” identitycov(ξ ) = cov(E(ξ | ζ ))+Ecov(ξ | ζ ); cf. [36, Remark 4 on p. 214; Problem 2
on p. 83]. Now, suppose the time horizont is fixed and satisfiest > n, being otherwise arbitrary.
We will construct an admissible noise sequenceW0:t−1, which is jointly Gaussian withX0 and drives
the system (8.1) between the Gaussian state distributionsP0 = Φ andPt = Ψ in (8.7) with arbitrary
mean valuesα, β and nonsingular covariance matricesΣ, Θ. Sincet > n, the reachability of(A,B)
is equivalent to the positive definiteness ofΓt , the reachability Gramian in (8.5), which is equivalent
to the matrixHt in (8.6) being of full row rank. By substituting the initial and terminal state mean
valuesEX0 := α andEXt := β into (8.13), it follows that the noise sequenceW0:t−1 must satisfy

β = Atα +HtEW0:t−1. (8.15)

This equality can be fulfilled, for example, by using the following particular mean values for the
noise sequence

EW0:t−1 := HT
t Γ−1

t (β −Atα). (8.16)

The relation (8.15), which does not suppose the distribution of Y0:t−1 to be Gaussian, shows that at
the level of first moments, the reachability of(A,B) is not only sufficient but is also necessary for the
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reachability of state distributions. Indeed, if(A,B) is not reachable, then the image imHt := {Htw :
w∈ R

mt} of Rmt under the linear map specified by the matrixHt is a proper subspace of the system
state spaceRn. In this case, (8.15) can not be satisfied if, for example,α = 0 andβ 6∈ imHt , thus
proving the necessity. We will now consider the second moments. By substituting the initial and
terminal state covariance matricescov(X0) := Σ andcov(Xt) := Θ from (8.7) into (8.14), it follows
that the Gaussian noise sequenceW0:t−1 being constructed must also satisfy

Θ = (At +HtK)Σ(At +HtK)T +HtLHT
t , (8.17)

where the matrices

K := cov(W0:t−1,X0)Σ−1, L := cov(W0:t−1)− cov(W0:t−1,X0)Σ−1cov(X0,W0:t−1), (8.18)

together withΣ, parametrize the covariance matrix of the state-noise sequenceY0:t−1 computed in
accordance with (8.11) as

cov(Y0:t−1) =

[
Σ ΣKT

KΣ KΣKT +L

]
. (8.19)

SinceX0 andW0:t−1 are jointly Gaussian by construction, the matrixL in (8.18) coincides with the
conditional covariance matrixcov(W0:t−1 | X0) which does not depend on the conditioning random
vectorX0 in the Gaussian case. For a Gaussian state-noise sequenceY0:t−1, the admissibility of the
noise, that is, the conditional absolute continuity ofPW0:t−1|X0

in the sense of (4.6), is equivalent to
L ≻ 0. The covariance condition (8.17) is satisfied, for example, if the matrices (8.18) are chosen as

K = HT
t Γ−1

t

(√
Θ− εΓt Σ−1/2−At), L = εImt. (8.20)

Here,ε is a positive parameter small enough to ensure the positive semi-definiteness ofΘ− εΓt for
the real matrix square root to be well-defined, which is equivalent to (8.9). Thus, a Gaussian noise
sequenceW0:t−1 with the conditional distribution

PW0:t−1|X0
= N (E(W0:t−1 | X0),L), E(W0:t−1 | X0) = EW0:t−1+K(X0−α) (8.21)

whose parameters are given by (8.16) and (8.20), indeed drives the state distribution of the system
from P0 = Φ to Pt = Ψ as specified in (8.7). Here, use is made of well-known resultson conditional
distributions for jointly Gaussian random vectors [21, 36]. Now, (8.8) is obtained by substitution of
(8.16) and (8.20) into (8.21).

Remark. It follows from Theorem 8.1, that the noise player can drive the linear system (8.1)
with a reachable pair(A,B) between arbitrary nonsingular Gaussian state distributions by using
Gaussian noise sequences, provided the time horizont is not smaller than the state dimensionn. The
latter condition can be relaxed tot > τ, where

τ := min
{
t > 0 : Γt ≻ 0

}
(8.22)

is the first time when the matrixHt in (8.6) acquires full row rank. For example, ifn 6 m and
rankB= n, thenτ = 1. N

Although the specific choice of a noise sequence which was made in the proof of Theorem 8.1
is not unique, it turns out that the class of Gaussian noise strategies is large enough to contain an
optimal strategy for the problem (7.1) with Gaussian boundary conditionsΦ andΨ, so that more
general (non-Gaussian) noise strategies are not superior in this case.
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9. Computing the minimum conditional relative entropy supply for linear systems. The
significance of Gaussian noise sequences for minimizing theconditional relative entropy supply in
the case of linear dynamics (8.1) is clarified by the following lemma. This lemma, which is provided
for the sake of completeness, is an adaptation to the presentcase of the well-known results, which are
closely related to the maximum entropy principle [8, 22]; see also, [32, Lemma 4 on pp. 313–314].

LEMMA 9.1. Supposeξ is a square integrableRr -valued random vector with an absolutely
continuous probability distribution. Then its relative entropy (4.4) with respect to the r-dimensional
Gaussian distributionN (a,C) with mean a∈R

r and covariance matrix C≻ 0 satisfies

D0(Pξ‖N (a,C))>
1
2

(
‖Eξ −a‖2

C−1 +Trχ − lndetχ − r︸ ︷︷ ︸
“covariance” part

)
, χ :=C−1cov(ξ ), (9.1)

where‖v‖M :=
√

vTMv denotes the Euclidean norm generated by a real positive definite symmetric
matrix M. Furthermore, the inequality (9.1) becomes an equality if and only if the distributionPξ is
Gaussian.

The nonnegativeness of the covariance part of the right-hand side of (9.1) follows directly from
the positive definiteness ofC andcov(ξ ), whereby the eigenvaluesλ1, . . . ,λr of the matrixχ are all
real and positive [16, Theorem 7.6.3 on p. 465]:

Tr χ − lndetχ − r =
r

∑
k=1

(λk− lnλk−1)> 0. (9.2)

This quantity vanishes if and only ifC = cov(ξ ), since minλ>0(λ − lnλ ) = 1 is achieved only at
λ = 1. The following theorem provides a solution to the optimization problem (7.1) with Gaussian
boundary conditions.

THEOREM 9.2. Suppose the linear system (8.1) has a reachable pair(A,B), and the matrix
A is asymptotically stable. Then for any time horizon t> n and any initial and terminal Gaussian
state distributionsΦ and Ψ in (8.7) with nonsingular covariance matrices, the minimumrequired
conditional relative entropy supply (7.1) is computed as

Jt(Φ,Ψ) =
(
‖β −Atα‖2

Γ−1
t

+Tr(U +V −
√

In+4UV)− lndet℧
)/

2. (9.3)

Here,

U := Γ−1/2
t AtΣ(At)TΓ−1/2

t , V := Γ−1/2
t ΘΓ−1/2

t (9.4)

are real positive semi-definite symmetric matrices (with V≻ 0) defined using (8.5), and℧ is a real
positive definite symmetric matrix of order n satisfying thealgebraic Riccati equation

℧+℧U℧=V. (9.5)

Proof. Suppose the system under consideration is initialized at the state distributionP0 = Φ.
Then, in view of (5.2), the conditional relative entropy supply (4.5) over the time interval[0, t) takes
the form

E0,t = D0(Q0,t‖P∗×Rt)−D0(Φ‖P∗), (9.6)

where, as before,Q0,t is the probability distribution of the state-noise sequenceY0:t−1. In order to
ensure the terminal conditionPt = Ψ, the momentsEY0:t−1 andcov(Y0:t−1) must satisfy (8.13) and

(8.14). In view of (8.2) and (8.3), the probability measureP∗×Rt = N

(
0,
[

Γ 0
0 Imt

])
is a Gaussian
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distribution inRn+mt whose covariance matrix is nonsingular by the reachabilityof (A,B). Hence,
Lemma 9.1 implies that the minimum ofE0,t in (9.6) with respect toQ0,t with fixed EY0:t−1 and
cov(Y0:t−1) is achieved at the Gaussian distributionN (EY0:t−1,cov(Y0:t−1)). Also, by Theorem 8.1,
for Gaussian initial and terminal state distributions (8.7), there exist Gaussian noise sequences which
drive the system fromP0 = Φ to Pt = Ψ. Therefore, consideration can be restricted to Gaussian
state-noise sequences, so that Lemma 9.1 reduces the computation of Jt(Φ,Ψ) to the constrained
minimization of the conditional relative entropy

E0,t = D(PW0:t−1|X0
‖N (0, Imt))

= E
(
|E(W0:t−1 | X0)|2+TrL− lndetL−mt

)/
2

=
(
|EW0:t−1|2+Tr(KΣKT +L)− lndetL−mt

)/
2. (9.7)

Here, use is made of the property that if the state-noise sequenceY0:t−1 is Gaussian with covariance
matrix (8.19), then the conditional distributionPW0:t−1|X0

is given by (8.21), and hence,

E(|E(W0:t−1 | X0)|2) = |EW0:t−1|2+Tr(KΣKT).

The right-hand side of (9.7) is to be minimized over the meanEW0:t−1 subject to (8.15) and over the
matricesK andL from (8.18) and (8.19) subject to the covariance condition (8.17). The constrained
minimization of (9.7) overEW0:t−1 subject to (8.15) can be “decoupled” from the minimization with
respect toK andL. By applying the linearly constrained least squares methodand recalling (8.12)
and (8.5), it follows that

min
EW0:t−1 satisfying(8.15)

|EW0:t−1|2 = ‖β −Atα‖2
Γ−1

t
. (9.8)

Here, the minimum is achieved atEW0:t−1, described by (8.16), which can be represented in a
step-wise form asEWk = BT(At−1−k)TΓ−1

t (β −Atα) for k = 0, . . . , t −1. This can be obtained by
solving a linear-quadratic optimal control problem [18, 19] of minimizing the function∑t−1

k=0 |uk|2
for the dynamical systemEXk+1 = AEXk+Buk with respect touk := EWk subject to the boundary
conditionsEX0 = α andEXt = β . The latter system results from averaging the linear dynamics
(8.1). We will now minimize the remaining part

Tr(KΣKT +L)− lndetL (9.9)

of (9.7) with respect to the matricesK andL subject to the covariance constraint (8.17). SinceΣ ≻ 0,
and lndetL is strictly concave inL ≻ 0 [16, Theorem 7.6.7 on p. 466], the function in (9.9) is strictly
convex inK andL. The structure of the constraint (8.17) allows corresponding Lagrange multipliers
to be assembled in a real symmetric(n×n)-matrixN, so that the Lagrange function for minimizing
(9.9) subject to the constraint (8.17) is

Λ(K,L) :=Tr(KΣKT +L)− lndetL

−Tr
(
N((At +HtK)Σ(At +HtK)T +HtLHT

t )
)
. (9.10)

Here, the last trace is the Frobenius inner product [16] of the matrixN and a real symmetric matrix
on the right-hand side of (8.17). The equations for the Fréchet derivatives ofΛ (with respect to the
matricesK andL) to vanish are

∂KΛ(K,L) = 2((Imt−HT
t NHt)K −HT

t NAt)Σ = 0, (9.11)

∂LΛ(K,L) = Imt−HT
t NHt −L−1 = 0, (9.12)
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where use is made of the Fréchet derivative∂L lndetL= L−1. By solving (9.12) forL and substituting
the result into (9.11), it follows that the stationary pointof the Lagrange function (9.10) is described
by

K = LHT
t NAt , L = (Imt−HT

t NHt)
−1. (9.13)

Since the reachability Gramian in (8.5) satisfiesΓt ≻ 0 for t > n, the matrix inversion lemma [16,
pp. 18–19] yields

S:= HtLHT
t = Ht(Imt+HT

t (In−NHtH
T
t )

−1NHt)H
T
t

= Γt +Γt(In−NΓt)
−1NΓt = (Γ−1

t −N)−1, (9.14)

HtK = SNAt = (SΓ−1
t − In)A

t . (9.15)

Hence, the covariance relation (8.17) takes the form of an algebraic Riccati equation in the matrixS:

Θ = (In+SN)AtΣ(At)T(In+NS)+S

= SΓ−1
t AtΣ(At)TΓ−1

t S+S. (9.16)

SinceHt is of full row rank andL ≻ 0, then (9.14) implies thatS≻ 0. In view of (9.4), left and right

multiplication of both sides of (9.16) byΓ−1/2
t leads to an equivalent Riccati equation (9.5) in the

real positive definite symmetric matrix

℧ := Γ−1/2
t SΓ−1/2

t . (9.17)

SinceU < andV ≻ 0, the Riccati equation (9.5) has a unique solution℧≻ 0; see, for example, [20].
We will now express the minimum value of the function (9.9) interms of℧. Recall that for con-
forming matricesC andD, the matricesCD andDC share nonzero eigenvalues [16, Theorem 1.3.20
on p. 53]. Hence, by changing the order in whichHT

t andNHt are multiplied in the representation of
the matrixL in (9.13) and using (8.5) and (9.14), it follows that the spectrum of L differs from that
of

(Imt−NHtH
T
t )

−1 = (In−NΓt)
−1 = Γ−1

t S

only by ones. Since spectra are invariant under similarity transformations [16], the eigenvalues of

Γ−1
t S= Γ−1/2

t ℧
√

Γt are identical to those of℧ in (9.17). Therefore,

detL = det℧, TrL = Tr℧+mt−n. (9.18)

Furthermore, (9.11) and (9.15) imply thatK = HT
t N(At +HtK) = HT

t NSΓ−1
t At , and hence,

Tr(KΣKT) = Tr(HT
t NSΓ−1

t AtΣ(At)TΓ−1
t SNHt)

= Tr(ΓtNSΓ−1/2
t UΓ−1/2

t SN)

= Tr(
√

ΓtN
√

Γt℧U℧

√
ΓtN

√
Γt) = Tr(∆U∆). (9.19)

Here,

∆ :=
√

ΓtN
√

Γt℧=
√

Γt(Γ−1
t −S−1)

√
Γt℧= ℧− In (9.20)

is a real symmetric matrix associated with (9.17), and use has been made of (9.14) which implies
thatN = Γ−1

t −S−1. Now, by combining (9.20) with the Riccati equation (9.5), it follows that

∆U∆ =U −U℧−℧U+℧U℧=U −U℧−℧U+V−℧,
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and hence, (9.19) becomes

Tr(KΣKT) = Tr(U +V −2U℧−℧). (9.21)

Furthermore, Lemma 10.1, which will be established in Section 10 independently of the current
proof, implies that

2U℧= 4UV
(
In+

√
In+4UV

)−1
=
√

In+4UV− In. (9.22)

It now follows from (9.21), (9.22) and (9.18) that the minimum value of the function (9.9) is com-
puted as

min
K,L satisfying(8.17)

(
Tr(KΣKT +L)− lndetL

)

= Tr(U +V−2U℧)− lndet℧+mt−n

= Tr(U +V−
√

In+4UV)− lndet℧+mt. (9.23)

Finally, (9.3) is obtained by substituting (9.8) and (9.23)into the right-hand side of (9.7).
A closed-form solution of the Riccati equation (9.5) will beprovided in Section 10. The proof

of Theorem 9.2 shows that℧= cov(Γ−1/2
t Xt | X0), is the conditional covariance matrix of the “bal-

anced” terminal stateΓ−1/2
t Xt of the system under the optimal noise strategy on the time interval

[0, t) which delivers the minimum valueJt(Φ,Ψ) in the problem (7.1). The corresponding cross-

covariance matrix of the initial and balanced terminal states iscov(Γ−1/2
t Xt , X0) =℧Γ−1/2

t AtΣ. Sim-
ilarly to the inequality (9.2), the “covariance” part of theright-hand side of (9.3) is always nonnega-
tive: Tr(U +V −

√
In+4UV)− lndet℧= Tr(∆+∆U∆)− lndet(In+∆)> Tr∆− lndet(In+∆)> 0

in view of (9.20). It only vanishes if the solution of the Riccati equation (9.5) is℧ = In, or equiva-
lently, if the matrices (9.4) satisfyV = In+U . The latter equality holds if and only if the initial and
terminal state covariance matricesΣ andΘ in (8.7) are related by the Lyapunov equation

Θ = AtΣ(At)T +Γt .

The right-hand of this equation, as a function of timet, describes the evolution of the state covari-
ance matrixcov(Xt) which the linear system (8.1) would have under the nominal noise, provided
cov(X0) = Σ. Furthermore, ast → +∞, the minimum conditional relative entropy supply required
to drive the system to the terminal state distributionΨ = N (β ,Θ) ceases to depend on the initial
state distributionΦ from (8.7) and approaches the relative entropy ofΨ with respect to the nominal
invariant state distribution in (8.3),

lim
t→+∞

Jt(Φ,Ψ) =
(
‖β‖2

Γ−1 +Tr(Γ−1Θ)− lndet(Γ−1Θ)−n
)/

2= D0(Ψ‖P∗), (9.24)

whereΓ = limt→+∞ Γt is given by (8.4). This can be obtained from (9.3), sinceρ(A)< 1 implies that
the matrixU in (9.4) vanishes asymptotically, while bothV and the solution℧ of the Riccati equation
converge toΓ−1/2ΘΓ−1/2. Since the infinite-horizon limit ofJt(Φ,Ψ) in (9.24) is independent ofΦ,
it could not be less thanD0(Ψ‖P∗), in view of the lower bound (7.3).

Remark. In view of Lemma 9.1, the proof of Theorem 9.2 shows that the right-hand side of
the equality (9.3), which is computed in terms of the first twomomentsα, Σ andβ , Θ of the initial
and terminal state distributionsΦ andΨ, remains valid as a lower bound forJt(Φ,Ψ) if Φ or Ψ are
not Gaussian.N
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10. Closed-form solution of the Riccati equation.The following lemma provides an explicit
solution to the Riccati equation (9.5), which will allow theresult of Theorem 9.2 to be given in a
closed form.

LEMMA 10.1. The algebraic Riccati equation (9.5), with U< 0 and V≻ 0, has a unique
positive definite solution which is computed as

℧= 2V
(
In+

√
In+4UV

)−1
. (10.1)

Proof. Since℧ ≻ 0, then by left multiplying both sides of (9.5) by℧−1 and right multiplying
them by a matrix

T := ℧
−1V, (10.2)

the Riccati equation is transformed to℧−1
℧(In+U℧)T =℧

−1VT, which is a quadratic equation in
the matrixT:

T2−T =UV. (10.3)

The latter can, in principle, be solved by completing the square asT2−T = (T − In/2)2− In/4, so
that (10.3) yields

T = In/2+
√

In/4+UV =
(
In+

√
In+4UV

)/
2. (10.4)

However, a more rigorous way to arrive at (10.4), which givesthe correct meaning to the square root,
is as follows. The properties℧ ≻ 0 andV ≻ 0 imply that the matrixT in (10.2) is diagonalizable
and its eigenvaluesd1, . . . ,dn are all real and positive in view of [16, Theorem 7.6.3 on p. 465].
Moreover,

dk > 1, k= 1, . . . ,n. (10.5)

Indeed, from (9.5) and the conditionU < 0, it follows thatV < ℧, and hence,C := ℧
−1/2V℧

−1/2 <

In, whereby the eigenvalues of the matrixC are not less than 1. It remains to note that the matrixT
in (10.2) is related toC by a similarity transformationT = ℧

−1/2
℧
−1/2V℧

−1/2
√
℧ = ℧

−1/2C
√
℧,

wherebyT has the same spectrum asC, thus proving (10.5). Due to its diagonalizability, the matrix
T can be represented as

T = EDE−1, D := diag
16k6n

(dk), (10.6)

where the columns ofE are the corresponding eigenvectors ofT. Substitution of (10.6) into (10.3)
yields

EΩE−1 =UV, Ω := D2−D = diag
16k6n

(ωk), d2
k −dk = ωk. (10.7)

Hence, the columns ofE are also the eigenvectors ofUV, which correspond to the eigenvalues
ω1, . . . ,ωn. SinceUV is a diagonalizable matrix whose spectrum is all real and nonnegative (in
view of U < 0 andV ≻ 0), then each of then quadratic equations in (10.7) has a unique admissible
solutiondk = (1+

√
1+4ωk)/2 which satisfies (10.5). Substitution of these solutions into (10.6)

yields

T =
1
2

E
(

In+ diag
16k6n

(
√

1+4ωk)
)

E−1 =
(
In+

√
In+4UV

)/
2, (10.8)
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thus proving (10.4). The second equality from (10.8) was used in the proof of Theorem 9.2 in the
form of (9.22). Now, (10.2) allows℧ to be uniquely recovered fromT as℧=VT−1, so that (10.1)
follows from (10.8).

Substitution of (10.1) into (9.3) leads to an explicit form for the minimum required conditional
relative entropy supply, computed in Theorem 9.2:

Jt(N (α,Σ),N (β ,Θ)) =
(
‖β −Atα‖2

Γ−1
t

+Tr(U +V −
√

In+4UV)

+ lndet
(
In+

√
In+4UV

)
− lndet(2V)

)/
2, (10.9)

where, as before, the matricesU andV are given by (9.4). In the next section, we will apply
the representation (10.9) to computing the robustness index Z in (7.13) for the loss functionalΞ
associated with the second moments of the state variables.

11. Computing the robustness index for one-step reachable linear systems. Suppose the
state dimension of the system (8.1) does not exceed the inputdimension, that is,n 6 m, and the
matrixB is of full row rank. Then the one-step reachability Gramian

Γ1 = BBT (11.1)

from (8.5) is positive definite, so thatτ = 1 in (8.22). By Theorem 9.2, the minimum conditional
relative entropy supply rateJ1(Φ,Φ), required for the noise player to maintain such a system in a
state distributionΦ with meanα ∈ R

n and covariance matrixΣ ≻ 0, satisfies

J1(Φ,Φ) > J1(N (α,Σ),N (α,Σ)) =: J̃(α,Σ). (11.2)

This inequality follows from the remark made at the end of Section 9 and becomes an equality if
Φ is a Gaussian distribution. The right-hand side of (11.2) iscomputed by lettingt := 1, β := α,
Θ := Σ in (9.4) and (10.9) as

J̃(α,Σ) =
(
‖(In−A)α‖2

Γ−1
1
+ lndet(Γ1/2)

+Tr((ATΓ−1
1 A+Γ−1

1 )Σ)− lndetΣ

+ lndet(In+
√

In+4M)−Tr
√

In+4M
)/

2, (11.3)

whereM is an(n×n)-matrix which depends quadratically onΣ through the matricesU andV from
(9.4) as

M :=UV = Γ−1/2
1 AΣATΓ−1

1 ΣΓ−1/2
1 U = Γ−1/2

1 AΣATΓ−1/2
1 , V = Γ−1/2

1 ΣΓ−1/2
1 . (11.4)

Now, consider a particular variant of the robustness indexZ in (7.13) associated with the following
loss functional

Ξ(P∗,Φ) :=
‖α‖2

Π +Tr(ΠΣ)
Tr(ΠΓ)

, (11.5)

whereα andΣ are the mean vector and covariance matrix of the state distributionΦ, which is not
necessarily Gaussian. Here,Π is a given real positive definite symmetric matrix of ordern, andΓ is
the infinite-horizon reachability Gramian from (8.4). The numerator and denominator of the fraction
in (11.5) are the expectationsE(‖Xk‖2

Π) of the state vectorXk of the system overΦ and the nominal
invariant state distributionP∗ from (8.3), respectively, withΠ playing the role of a weighting matrix.
It is assumed that small values of the weighted second momentof the state variables are beneficial
for system performance under the nominal noise, so that an increase in this moment, described by
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(11.5), quantifies the deterioration of the system performance when the statistical uncertainty leads
to a different steady-state distributionΦ 6= P∗. Also,Z(γ) = 0 for all γ 6 1, and the robustness index
Z(γ) is positive forγ > 1. Z(γ) will be of interest for those (sufficiently large) values ofγ which
represent a “critical” level of system performance loss in terms of (11.5). Similar ideas, which are
concerned with second moment increases in the framework of entropy theoretic formulations of
uncertainty, can be found in [7, 10, 23, 32, 34, 42, 39, 40]. The following theorem outlines the
computation of the robustness index being considered here.Its formulation employs a function

σ(z) :=
(

ln(1+
√

1+4z)−
√

1+4z
)′
=−2/(1+

√
1+4z) (11.6)

of a complex variablez. Sinceσ is analytic in a neighbourhood ofR+, thenσ(M) is well-defined
for the matrixM in (11.4) whose eigenvalues are real and nonnegative. In fact, the functionσ was
already used in this role in (10.1).

THEOREM 11.1. Suppose the matrix A in the linear system (8.1) is asymptotically stable and
the matrix B is of full row rank, that is,rankB = n 6 m. Then for anyγ > 1, the robustness index
(7.13), which corresponds to the loss functional (11.5) with a weight matrixΠ ≻ 0, can be computed
as

Z(γ) = J̃(0,Σλ ). (11.7)

Here, J̃ is the function, defined by (11.3), and the matrixΣλ ≻ 0 is a solution to the algebraic
equation

Σλ =
(
ATΓ−1/2

1 (In+Vσ(M))Γ−1/2
1 A+Γ−1/2

1 (In+σ(M)U)Γ−1/2
1 −λ Π

)−1
, (11.8)

which is defined in terms of (11.1), (11.4), (11.6) and depends on a scalar parameterλ to be found
from the equation

Tr(ΠΣλ )/Tr(ΠΓ) = γ. (11.9)

Proof. The loss functionalΞ(P∗,Φ) in (11.5) depends on the state distributionΦ only through
its first two momentsα andΣ and so does the right-hand side of the inequality in (11.2) which is
achieved for Gaussian state distributionsΦ. Hence, the minimization in (7.13) can be reduced to the
class of Gaussian distributionsΦ without affecting the minimum value. This allows the robustness
index Z(γ), which corresponds to (11.5), to be computed by solving a constrained optimization
problem

Z(γ) = min
{

J̃(α,Σ) : α ∈ R
n, Σ ≻ 0, Ξ̃(α,Σ)> γTr(ΠΓ)/2

}
, (11.10)

where

Ξ̃(α,Σ) := (‖α‖2
Π +Tr(ΠΣ))/2, (11.11)

and the 1/2 factor is introduced for the sake of convenience. In view of(11.3) and (11.11), the
Lagrange function for the constrained minimization problem (11.10) takes the form

ϒ(α,Σ) :=J̃(α,Σ)−λ Ξ̃(α,Σ)

=
(
‖α‖2

(In−AT)Γ−1
1 (In−A)−λ Π+ lndet(Γ1/2)

+Tr((ATΓ−1
1 A+Γ−1

1 −λ Π)Σ)− lndetΣ

lndet(In+
√

In+4M)−Tr
√

In+4M
)/

2, (11.12)
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whereλ ∈R is a Lagrange multiplier. The dependence of the Lagrange functionϒ onα is quadratic
and can be decoupled from the dependence onΣ. The corresponding quadratic form is positive
definite if and only if

λ < 1/ρ(Π(In−A)−1Γ1(In−AT)−1).

In this case, minα∈Rn ϒ(α,Σ) is achieved at the unique pointα = 0, so that the minimization of the
Lagrange functionϒ in (11.12) reduces to

min
α∈Rn, Σ≻0

ϒ(α,Σ) = min
Σ≻0

ϒ(0,Σ). (11.13)

We will now find a stationary point of the functionϒ(0,Σ). In view of the identity lndetN = Tr lnN
for a matrixN with positive real spectrum, the application of [43, Lemma 4] (see also [37, p. 270])
yields the following first variation

δ
(

lndet(In+
√

In+4M)−Tr
√

In+4M
)
= Tr(σ(M)δM), (11.14)

where the functionσ is defined by (11.6). Since the first variation of the mapΣ 7→ M, described by
(11.4), is

δM = Γ−1/2
1 A((δΣ)ATΓ−1

1 Σ+ΣATΓ−1
1 δΣ)Γ−1/2

1 ,

then the Fréchet derivative of the function in (11.14), as acomposite function of the matrixΣ, can
be computed as

∂Σ
(

lndet(In+
√

In+4M)−Tr
√

In+4M
)

=ATΓ−1
1 ΣΓ−1/2

1 σ(M)Γ−1/2
1 A+Γ−1/2

1 σ(M)Γ−1/2
1 AΣATΓ−1

1

=ATΓ−1/2
1 Vσ(M)Γ−1/2

1 A+Γ−1/2
1 σ(M)UΓ−1/2

1 . (11.15)

The right-hand side of (11.15) is a real symmetric matrix, which inherits its symmetry fromΣ in view
of the identitiesσ(UV)U =Uσ(VU) andVσ(UV) = σ(VU)V and the symmetry of the matricesU
andV in (11.4). From (11.15), it follows that the equation∂Σϒ(0,Σ) = 0 for a stationary pointΣ of
the Lagrange function (11.12) in the minimization problem (11.13) takes the form

ATΓ−1
1 A+Γ−1

1 −λ Π−Σ−1+ATΓ−1/2
1 Vσ(M)Γ−1/2

1 A+Γ−1/2
1 σ(M)UΓ−1/2

1 = 0,

which is equivalent to (11.8). The solutionΣλ of this equation depends on the Lagrange multiplier
λ , which, by the standard procedure, is to be found from (11.9)in accordance with the constraint in
(11.10).

Note that (11.8) and (11.9) form a complete set of equations for finding the pair(λ ,Σλ ) for a
given γ > 1. In particular, the solution of these equations forγ = 1 is λ = 0 andΣ0 = Γ, which
corresponds to the nominal noise model, withZ(1) = 0. Properties of the solution forγ > 1, includ-
ing existence and uniqueness, require additional investigation and will be discussed elsewhere. A
numerical scheme for solving (11.8)–(11.9) forγ > 1 can be based on the ideas of homotopy meth-
ods, whereby (11.8) is solved iteratively for gradually increasing values of the Lagrange multiplier
λ starting fromλ = 0. A closed-form calculation of the robustness index for a one-dimensional
example is given in the next section.
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12. Illustrative example: one-dimensional linear systems. In order to avoid reachability is-
sues for short time horizonst, which are associated with the conditiont > n in Theorems 8.1 and 9.2
(or its refined versiont > τ based on (8.22)), consider the one-dimensional casen= m= 1. Here,
bothA andB in (8.1) are scalars, with|A|< 1 andB 6= 0, and the nominal marginal distributionRof
the noise in (8.2) isN (0,1). In this case, the variance of the nominal invariant state distributionP∗
in (8.3) is

Γ =
B2

1−A2 . (12.1)

The equations (8.5) and (9.4) give

Γt = (1−A2t)Γ, U =
A2tΣ
Γt

, V =
Θ
Γt
. (12.2)

The solution (10.1) of the Riccati equation (9.5) takes the form

℧=
2V

1+
√

1+4UV
=

2Θ
Γt +

√
Γ2

t +4A2tΣΘ
. (12.3)

By substituting these formulae into (9.3) or (10.9), it follows that the minimum required conditional
relative entropy supply for the noise player to drive the system from an initial state distribution
Φ := N (α,Σ) to a terminal state distributionΨ :=N (β ,Θ) (both with positive variancesΣ andΘ)
in a given timet is

Jt(Φ,Ψ) =
1
2

(
(β −Atα)2+A2tΣ+Θ−

√
Γ2

t +4A2tΣΘ
Γt

− ln℧

)
. (12.4)

The minimum conditional relative entropy supply rateJ̃(α,Σ) in (11.2), required to maintain the
system in the fixed Gaussian state distributionN (α,Σ), is calculated by lettingt := 1, β := α,
Θ := Σ in (12.2)–(12.4) which yields

J̃(α,Σ) =
1
2


1−A

1+A
α2

Γ
+

1+A2

1−A2γ −

√

1+

(
2Aγ

1−A2

)2

− ln℧


 , (12.5)

where

℧=
2γ

1−A2+
√
(1−A2)2+4A2γ2

, γ :=
Σ
Γ
. (12.6)

The discrepancy betweenN (α,Σ) and the nominal invariant state distributionP∗ = N (0,Γ) with
variance (12.1) enters (12.5) only throughα2/Γ and the variance ratioγ in (12.6). In this one-
dimensional case, the weightΠ in the loss functional (11.5) can be cancelled out and the functional
takes the form

Ξ(P∗,Φ) =
α2+Σ

Γ
=

α2

Γ
+ γ. (12.7)

In view of (11.7) in Theorem 11.1, the robustness index (7.13), which corresponds to (12.7), reduces
to J̃(0,Σ) and is computed by lettingα := 0 in (12.5):

Z(γ) =
1
2


1+A2

1−A2γ −

√

1+

(
2Aγ

1−A2

)2

− ln℧


 , γ > 1; (12.8)
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FIG. 12.1. The graphs of the robustness index Z(γ) in (12.8), as a function of the variance ratioγ from (12.6), for
the one-dimensional linear system (8.1) with|A| = 0.1, . . . ,0.9. Its asymptotic behavior is Z(γ)∼ (1−|A|)γ/(2(1+ |A|)) as
γ →+∞.

see Fig. 12.1. Note thatZ(γ) vanishes forγ = 1 and is strictly decreasing in|A| for any variance
ratio γ > 1. That is, the less stable the system is, the easier it is for the noise player (in the sense
of the minimum required conditional relative entropy supply rate) to maintain the system in a state
distributionΦ with a given larger variance compared to the nominal invariant state distributionP∗.
This is in agreement with the intuitive expectation that thedeviation of the system from the nominal
behavior can be achieved by smaller deviations of the noise from its nominal model since their
accumulation is more efficient if the system is less stable.
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