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Abstract. For the approximation of time-dependent data tensors and of solutions to tensor
differential equations by tensors of low Tucker rank, we study a computational approach that can
be viewed as a continuous-time updating procedure. This approach works with the increments
rather than the full tensor and avoids the computation of decompositions of large matrices. In this
method, the derivative is projected onto the tangent space of the manifold of tensors of Tucker
rank (r1, . . . , rN ) at the current approximation. This yields nonlinear differential equations for the
factors in a Tucker decomposition, suitable for numerical integration. Approximation properties of
this approach are analyzed.
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1. Introduction. Tensor approximation is an active research area with both
interesting theoretical questions and numerous applications in the compression and
retrieval of large structured data; see, e.g., [3, 4, 6, 11, 19] and references therein.
While these papers deal with the approximation of a fixed tensor, we here consider
the approximation of time-varying (or parameter-dependent) tensors by tensors of low
Tucker-rank. There arises the question as how to update a given tensor approximation,
a problem that has been addressed in a different, discrete-time setting in [16, 17]. The
approach considered in the present paper can be viewed as a continuous-time updating
technique, which works only with the increments in the tensors rather than the tensors
themselves and does not require to compute any decompositions of large matrices. It
extends the dynamical low-rank approximation of matrices [8, 15] to the higher-order
tensor case.

Consider a time-varying family of tensors A(t) ∈ RI1×...×IN , for 0 ≤ t ≤ t. Let
Mr denote the manifold of all order-N tensors of Tucker rank r = (r1, . . . , rN ) (see
§2 below for the notion of Tucker rank or mode rank), where rn ≤ In (and typically
rn ≪ In) for n = 1, . . . , N . The best approximation to A(t) in Mr (with respect to
the Frobenius norm ∥ · ∥) is

X(t) ∈ Mr such that ∥X(t) − A(t)∥ = min . (1.1)

Here, we consider instead the dynamical tensor approximation Y(t) ∈ Mr determined
from the condition that for every t the derivative Ẏ(t), which is in the tangent space
TY(t)Mr, be chosen as

Ẏ(t) ∈ TY(t)Mr such that ∥Ẏ(t) − Ȧ(t)∥ = min . (1.2)

This is complemented with an initial condition, ideally Y(0) = X(0). Note that for
given Y(t), the derivative Ẏ(t) is obtained in (1.2) by a linear projection, though
onto a state-dependent vector space. Problem (1.2) yields an initial value problem of
nonlinear ordinary differential equations on Mr, which becomes numerically efficiently
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accessible as differential equations for the factors in the Tucker decomposition of
tensors of Tucker rank (r1, . . . , rN ).

In a different context, a closely related approach was developed in the multicon-
figuration time-dependent Hartree method of multi-particle quantum dynamics [2, 14],
where the multidimensional time-dependent wave function is approximated by a linear
combination of products of functions depending only on a single spatial variable.

We will study theoretical properties of the dynamical tensor approximation (1.2)
in this paper: in §2 we derive the differential equations that are to be solved numer-
ically, and after an auxiliary section on the tangent space projection (§3) we study
approximation properties in §4. Some numerical experiments are given in §5 (see also
[15] for further numerical experiments with time-dependent 3-tensors that arise from
a discretized reaction-diffusion PDE in 3 space dimensions).

The present paper extends the dynamical low-rank approximation of matrices,
studied in our paper [8], to tensors. Though there are many conceptual similarities
with the matrix case, the analysis of the tensor case is not simply a straightforward
extension and therefore requires a careful discussion. While we have kept the general
organisation of the paper largely parallel to [8] to make similarities and differences
easily visible, we note that the material in §2 is quite apart from the matrix case
in both notation and techniques, and the analysis of the tangent space projection in
§3 requires different arguments. Once the projection estimates from §3 are available,
some of the results in Section 4 then have essentially the same proof as the corre-
sponding results in the matrix case (Theorems 4.1 and 4.2), whereas the proof of
Theorem 4.3 follows a different line.

2. Differential equations for dynamical tensor approximation.

2.1. Prerequisites. We use the tensor notation of the review article [9], to
which we refer for further details, results and numerous references.

Norm and inner product of tensors. The norm of a tensor Y ∈ RI1×···×IN is
the Euclidean norm of the vector y that carries the entries yi1,...,iN of Y. The inner
product ⟨X, Y⟩ of two tensors X, Y ∈ RI1×···×IN is the Euclidean inner product of the
two corresponding vectors x and y.

Unfolding and reconstruction. The nth unfolding of a tensor Y ∈ RI1×···×IN is
the matrix Y(n) ∈ RIn×In+1...IN I1...In−1 that aligns all entries yi1,...,iN with fixed in in
the in-th row of the matrix, ordered lexicographically. We denote

Y(n) = [Y](n) ,

and clearly the tensor Y can be reshaped from its unfolding Y(n): we write

Y = [Y(n)](n) .

The n-mode product. For a tensor Y ∈ RI1×···×IN and a matrix V ∈ RJn×In , the
n-mode product

Y ×n V ∈ RI1×...×In−1×Jn×In+1×...×IN

is defined by the relation

[Y ×n V](n) = VY(n). (2.1)

In particular, we then have, for another matrix W of appropriate dimension,

(Y ×n V) ×n W = Y ×n (WV) . (2.2)
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2.2. Manifold of rank-(r1, . . . , rN ) tensors and Tucker decomposition.
The n-rank of a tensor Y ∈ RI1×···×IN is

rn = rank (Y(n)) ,

and the vector r = (r1, . . . , rN ) is known as the Tucker rank of the tensor. For given
n-rank rn ≤ In (and typically rn ≪ In), the set

Mr =
{
Y ∈ RI1×···×IN : Y has n-rank rn for n = 1, . . . , N

}
is a manifold that will serve as an approximation manifold for general tensors A ∈
RI1×···×IN . As is known (see [10]), every tensor Y ∈ Mr can be written as a Tucker
decomposition

Y = S ×1 U1 . . . ×N UN =: S
N

X
n=1

Un , (2.3)

where the core tensor S ∈ Rr1×···×rN is of full Tucker rank r = (r1, . . . , rN ), and the
matrices Un ∈ RIn×rn have orthonormal columns u(n)

jn
(jn = 1, . . . , rn). In terms

of the entries of S = (sj1...jN ), the above expression can be rewritten as a linear
combination of rank-1 tensors that are formed as the outer products of the column
vectors:

Y =
∑

j1,...,jN

sj1...jN
u(1)

j1
◦ . . . ◦ u(N)

jN
.

In terms of the nth unfolding, we have the useful matrix formula

Y(n) = UnS(n)(UN ⊗ . . . ⊗ Un+1 ⊗ Un−1 ⊗ . . . ⊗ U1)T =: UnS(n)

⊗
k ̸=n

UT
k , (2.4)

where ⊗ denotes the Kronecker matrix product.
The representation (2.3) is not unique: replacing Un by Ũn = UnQn with orthog-

onal matrices Qn and S by S̃ = SXN
n=1 QT

n , yields the same tensor Y = SXN
n=1 Un =

S̃XN
n=1 Ũn.

2.3. Tangent tensors. As a substitute for the non-uniqueness in the decompo-
sition (2.3), we will use a unique decomposition in the tangent space. Let VI,r denote
the Stiefel manifold of real I × r matrices with orthonormal columns. The tangent
space at U ∈ VI,r is

TUVI,r = {U̇ ∈ RI×r : U̇
T
U + UT U̇ = 0} = {U̇ ∈ RI×r : UT U̇ ∈ so(r)},

where so(r) denotes the space of skew-symmetric real r × r matrices. Consider the
extended tangent map of (S,U1, . . . ,UN ) 7→ Y = SXN

n=1 Un,

Rr1×...×rN ×
N∏

n=1

TUnVIn,rn → TYMr ×
N∏

n=1

so(rn)

(Ṡ, U̇1, . . . , U̇N ) 7→
(
Ṡ

N

X
n=1

Un +
N∑

n=1

S ×n U̇n X
k ̸=n

Uk, UT
1 U̇1, . . . ,UT

NU̇N

)
.
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This linear map turns out to be an isomorphism, since its inverse can be constructed
explicitly by an argument similar to the proof of (2.7) below. Hence, every tangent
tensor Ẏ ∈ TYMr is of the form

Ẏ = Ṡ
N

X
n=1

Un +
N∑

n=1

S ×n U̇n X
k ̸=n

Uk , (2.5)

where Ṡ ∈ Rr1×...×rN and U̇n ∈ TUnVIn,rn . Moreover, it follows that Ṡ and U̇n

are uniquely determined by Ẏ and the chosen S and Un in (2.3) if we impose the
orthogonality constraints

UT
n U̇n = 0 . (2.6)

We now show that then Ṡ and U̇n are actually given by the following formulas:

Ṡ = Ẏ
N

X
n=1

UT
n

U̇n = P⊥
n

[
Ẏ X

k ̸=n
UT

k

]
(n)

S†
(n)

(2.7)

with the projection P⊥
n = I−UnUT

n and the pseudo-inverse S†
(n) = ST

(n)

(
S(n)S

T
(n)

)−1.

The rn × rn matrix S(n)S
T
(n) is invertible since S(n) is of rank rn by assumption.

Proof of (2.7): When we multiply (2.5) by XN
n=1 UT

n , then we obtain by (2.2)
and the orthogonality relations UT

nUn = I and (2.6) the first equation of (2.7). For
the second equation, we multiply (2.5) by Xk ̸=n UT

k , and again using (2.2) and the
orthogonality relations we obtain

Ẏ X
k ̸=n

UT
k = Ṡ ×n Un + S ×n U̇n. (2.8)

By the equation for Ṡ and once again (2.2), the first expression on the right-hand side
becomes

Ṡ ×n Un = Ẏ ×n (UnUT
n ) X

k ̸=n
UT

k ,

or in its mode-n unfolding,

UnṠ(n) = UnUT
n

[
Ẏ X

k ̸=n
UT

k

]
(n)

.

Taking the mode-n unfolding on both sides of (2.8) and rearranging terms then gives

U̇nS(n) =
(
I − UnUT

n

)[
Ẏ X

k ̸=n
UT

k

]
(n)

.

Multiplying this relation from the right with S†
(n) yields the second equation of (2.7).

2.4. Dynamical tensor approximation. We now turn to the approximation
(1.2) of time-dependent tensors A(t). The minimization condition (1.2) on the tan-
gent space is equivalent to an orthogonal projection: find Ẏ ∈ TYMr (we omit the
argument t) satisfying

⟨Ẏ − Ȧ, V⟩ = 0 for all V ∈ TYMr. (2.9)
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This is a Galerkin condition on the tangent space TYMr. With this formulation we
derive differential equations for the factors in the Tucker decomposition (2.3).

Theorem 2.1. For a tensor Y = SXN
n=1 Un ∈ Mr with n-rank rn for n =

1, . . . , N , with core tensor S ∈ Rr1×···×rN and n-mode factors Un ∈ RIn×rn having
orthonormal columns, condition (1.2) or (2.9) is equivalent to

Ẏ = Ṡ
N

X
n=1

Un +
N∑

n=1

S ×n U̇n X
k ̸=n

Uk , (2.10)

where the factors in the decomposition satisfy the system of differential equations

Ṡ = Ȧ
N

X
n=1

UT
n

U̇n = P⊥
n

[
Ȧ X

k ̸=n
UT

k

]
(n)

S†
(n)

(2.11)

with the projection P⊥
n = I − UnUT

n onto the orthogonal complement of the range
of Un and with the pseudo-inverse S†

(n) = ST
(n)

(
S(n)S

T
(n)

)−1 of the n-mode unfolding
S(n) of S.

Equations (2.11) are formally like (2.7), with Ẏ replaced by Ȧ.
The differential equations (2.11) are solved numerically, starting from an approx-

imation to the tensor A(0) at the initial time given in the low-rank Tucker format.
Notice that a time step with these differential equations requires no decompositions of
large matrices (the matrices S(n)S

T
(n) are of small dimension rn × rn). The main com-

putational work is in the computation of the dimension-contracting n-mode products
appearing on the right-hand side of (2.11). These require inner products of length
In and can exploit possible sparsity in Ȧ(t) so that only the actually time-varying
entries of A(t) are addressed.

Proof. We know from Section 2.3 that Ẏ can be written in the form (2.10) with
U̇n satisfying the orthogonality condition (2.6). Choosing V = T XN

n=1 Un ∈ TYMr

with an arbitrary T ∈ Rr1×···×rN , we have

⟨Ȧ, T
N

X
n=1

Un⟩ = ⟨Ȧ
N

X
n=1

UT
n , T⟩

⟨Ẏ, T
N

X
n=1

Un⟩ = ⟨Ṡ, T⟩ .

Since this holds for every T ∈ Rr1×···×rN , (2.9) yields the first equation of (2.11).
We now choose V = S ×n Vn Xk ̸=n Uk which is in TYMr if Vn satisfies the

orthogonality relation UT
nVn = 0. We then have

⟨Ȧ, S ×n Vn X
k ̸=n

Uk⟩ = ⟨Ȧ X
k ̸=n

UT
k , S ×n Vn⟩

= ⟨
[
Ȧ X

k ̸=n
UT

k

]
(n)

, VnS(n)⟩ = ⟨
[
Ȧ X

k ̸=n
UT

k

]
(n)

ST
(n) , Vn⟩ ,

where the matrix inner product in the second line is the Frobenius inner product. On
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the other hand we have, using (2.10) and the orthogonality relations,

⟨Ẏ, S ×n Vn X
k ̸=n

Uk⟩ = ⟨Ṡ ×n Un + S ×n U̇n , S ×n Vn⟩

= ⟨UnṠ(n) + U̇nS(n) , VnS(n)⟩
= ⟨Ṡ(n),U

T
nVnS(n)⟩ + ⟨U̇nS(n)S

T
(n) , Vn⟩

= ⟨U̇nS(n)S
T
(n) , Vn⟩ .

By (2.9), we thus have

⟨U̇nS(n)S
T
(n) −

[
Ȧ X

k ̸=n
UT

k

]
(n)

ST
(n) , Vn⟩ = 0

for all Vn with UT
nVn = 0, that is, for all matrices Vn = (I − UnUT

n )Wn with an
arbitrary matrix Wn ∈ RIn×rn . We therefore obtain

(I − UnUT
n )U̇nS(n)S

T
(n) = (I − UnUT

n )
[
Ȧ X

k ̸=n
UT

k

]
(n)

ST
(n) .

Since UT
n U̇n = 0 by condition (2.6), this yields the second equation of (2.11).

Remark 2.1. Related differential equations were derived earlier in the chemical
physics literature in [2] for the multiconfiguration time-dependent Hartree method
of quantum mechanics, where an approximation to the multivariate wave function is
sought for in the form of a linear combination of products of univariate functions.

Remark 2.2. In this paper we only deal with the Tucker format of tensor ap-
proximation. Another familiar format is the canonical format (for tensors of canonical
rank K)

A(t) ≈
K∑

k=1

v(1)
k (t) ◦ . . . ◦ v(N)

k (t)

where no orthogonality relation is required between the vectors v(n)
k (t). While this

approach appears attractive in that it has no built-in exponential scaling with the
order N of the tensor, it leads to a number of theoretical difficulties even in the
time-independent approximation problem [3] and does not appear to lend itself to the
dynamical tensor approximation approach. The set of all tensors of canonical rank
K does not have a manifold structure that allows us to give differential equations for
the vectors v(n)

k (t) such that the analogue of (1.2) is fulfilled.
Remark 2.3. The dynamical tensor approximation approach for the Tucker

format can be extended to the hierarchical tensor format described in [2, 5, 13, 18],
which has only cubic scaling with N . This is, however, outside the scope of the present
paper.

3. Tangent space projection and curvature bounds. In operator notation,
(2.9) can be written as

Ẏ = P(Y)Ȧ , (3.1)

where P(Y) is the orthogonal projection onto the tangent space TYMr. For a the-
oretical understanding of the dynamical low-rank approximation, an analysis of the
properties of this projection operator is therefore essential. We begin by giving an
explicit formula.
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Lemma 3.1. Let Y = SXN
n=1 Un ∈ Mr with n-mode factors Un having orthonor-

mal columns. With the orthogonal projections

Pn = UnUT
n , P⊥

n = I − Pn ,

Qn =
⊗
k ̸=n

Uk S†
(n)S(n)

⊗
k ̸=n

UT
k ,

the orthogonal projection onto the tangent space TYMr is given by

P(Y)B = B
N

X
n=1

Pn +
N∑

n=1

[
P⊥

n B(n)Qn

](n)

(3.2)

for B ∈ RI1×···×IN , with B(n) = [B](n) the nth unfolding of B.
Proof. Theorem 2.1 gives an expression for Ẏ determined by (2.9), that is, for

Ẏ = P(Y)Ȧ. With B in place of Ȧ, this reads

P(Y)B = B
N

X
n=1

UT
n

N

X
n=1

Un +
N∑

n=1

S ×n

(
P⊥

n

[
B X

k ̸=n
UT

k

]
(n)

S†
(n)

)
X

k ̸=n
Uk

= B
N

X
n=1

Pn +
N∑

n=1

[
P⊥

n B(n)

⊗
k ̸=n

Uk S†
(n)S(n)

⊗
k ̸=n

UT
k

](n)

,

where we have used (2.2) and (2.4). This is (3.2).
The next lemma is the key tool for the approximation results of the following

section.
Lemma 3.2. There are constants c and C (depending only on the order N and

satisfying Cc ≤ 1
2) such that the following holds true. Let the rank-(r1, . . . , rN ) tensor

X ∈ Mr be such that the smallest nonzero singular value of the nth unfolding satisfies
σrn(X(n)) ≥ ρ > 0 for n = 1, . . . , N , and let X̃ ∈ Mr with ∥X̃ − X∥ ≤ cρ. Then, for
all B ∈ RI1×···×IN ,

∥
(
P(X̃) − P(X)

)
B∥ ≤ Cρ−1 ∥X̃ − X∥ · ∥B∥, (3.3)

∥P⊥(X)(X̃ − X)∥ ≤ Cρ−1 ∥X̃ − X∥2 , (3.4)

where P⊥(X) = I − P(X) is the projection onto the orthogonal complement of the
tangent space TXMr.

Proof. (a) Writing X ∈ Mr in Tucker form as X = SXN
n=1 Un, we note that the

non-zero singular values of X(n) are those of S(n), and hence

∥S†
(n)∥ =

1
σrn(S(n))

=
1

σrn(X(n))
≤ 1

ρ
.

Since we have, by [7, p. 448],

|σrn(X̃(n)) − σrn(X(n))| ≤ ∥X̃(n) − X(n)∥2 ≤ ∥X̃(n) − X(n)∥F = ∥X̃ − X∥,

we obtain for ∥X̃ − X∥ ≤ 1
2ρ that

σrn(X̃(n)) ≥ σrn(X(n)) − |σrn(X̃(n)) − σrn(X(n))| ≥ 1
2ρ ,
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and hence X̃ = S̃XN
n=1 Ũn with ∥S̃†

(n)∥ ≤ 2ρ−1.
(b) We decompose the tensors on the straight line connecting X and X̃ as

X + τ(X̃ − X) = Y(τ) + Z(τ) with Y(τ) ∈ Mr, Z(τ) ⊥ TXMr.

A smooth such decomposition exists at least for small τ , but the arguments below
show that it exists in fact for 0 ≤ τ ≤ 1. We denote

∆ = P(X)(X̃ − X) ∈ TXMr, with ∥∆∥ ≤ δ := ∥X̃ − X∥.

We then have P(X)(Y(τ) − X) = τ∆, which yields

P(X)Ẏ(τ) = ∆.

Since P(Y)Ẏ = Ẏ, we have

Ẏ(τ) = ∆ +
(
P(Y(τ)) − P(X)

)
Ẏ(τ) .

(c) As long as the operator norm of
(
P(Y(τ)) − P(X)

)
is bounded by 1

2 , we thus
have

∥Ẏ∥ ≤ 2δ .

This yields ∥Y(τ) − X∥ ≤ 2δ for 0 ≤ τ ≤ 1, and for the Tucker factors of Y(τ) =
S(τ)XN

n=1 Un(τ) with UT
n U̇n = 0 we therefore have by (2.7)

∥Ṡ∥ ≤ 2δ , ∥U̇nS(n)∥ ≤ 2δ .

If 2δ ≤ 1
2ρ, then the argument of (a) applied to Y(τ) instead of X̃ shows that

∥S†
(n)(τ)∥ ≤ 2ρ−1, and hence

∥U̇n∥ ≤ ∥U̇nS(n)∥ · ∥S†
(n)∥ ≤ 4δρ−1 =: γ .

With this estimate we further obtain for Pn = UnUT
n that

∥Ṗn∥ ≤ 2γ .

Using the product rule for d
dτ

(
ST

(n)(S(n)S
T
(n))−1S(n)

)
and the estimates for the norms

of Ṡ(n) and S†
(n) by 2δ and 2ρ−1, respectively, we find that the norm of this derivative

is bounded by 4γ, and hence we have for the projection Qn of Lemma 3.1

∥Q̇n∥ ≤ 2(N − 1)γ + 4γ = 2(N + 1)γ .

Expressing Un(τ) − Un(0) =
∫ τ

0
U̇n(s) ds and similarly for the increments of S, Pn,

and Qn, we obtain from the formula of Lemma 3.1 and the above estimates

∥
(
P(Y(τ)) − P(X)

)
B∥ ≤

(
N · 2γ + N · (2γ + 2(N + 1)γ)

)
τ∥B∥

= 2N(N + 3)γ · τ∥B∥ = 8N(N + 3) δρ−1 τ ∥B∥ .

The operator norm of P(Y(τ)) − P(X) thus does not exceed 1
2 for 0 ≤ τ ≤ 1 if

δ ≤ cρ with c =
1

16 N(N + 3)
,
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and at τ = 1 we then obtain the bound (3.3) with C = 8N(N + 3).
(d) We note

P⊥(X)(X̃ − X) = P⊥(X)
∫ 1

0

Ẏ(τ) dτ =
∫ 1

0

(
P(Y(τ)) − P(X)

)
Ẏ(τ) dτ .

By the above estimates, this is bounded by

∥P⊥(X)(X̃ − X)∥ ≤ 8N(N + 3) ρ−1δ2 ,

which yields (3.4).

4. Approximation properties. We give approximation results that are exten-
sions to tensors of results for the matrix case in [8].

4.1. Local quasi-optimality. If the low-rank approximation problem (1.1) has
a continuously differentiable best approximation X(t) ∈ Mr, then the error of (1.2)
can be bounded in terms of the best-approximation error ∥X(t) − A(t)∥. The result
requires a bound on Ȧ(t):

∥Ȧ(t)∥ ≤ µ for 0 ≤ t ≤ t. (4.1)

Theorem 4.1. Suppose that a continuously differentiable best approximation
X(t) ∈ Mr to A(t) exists for 0 ≤ t ≤ t. Let ρ > 0 be such that the smallest nonzero
singular value of the nth unfolding of X(t) satisfies σrn(X(n)(t)) ≥ ρ for n = 1, . . . , N ,
and assume that the best-approximation error is bounded by ∥X(t) − A(t)∥ ≤ cρ for
0 ≤ t ≤ t, with c of Lemma 3.2. Then, the approximation error of the dynamical
low-rank approximation (1.2) with initial value Y(0) = X(0) is bounded by

∥Y(t) − X(t)∥ ≤ 2β eβt

∫ t

0

∥X(s) − A(s)∥ ds with β = Cµρ−1

for t ≤ t and as long as the right-hand side remains bounded by cρ. Here, C and c
are the constants of Lemma 3.2.

Proof. With Lemma 3.2 at hand, the proof is essentially the same as that of
Theorem 5.1 in [8]. The error of the best approximation X − A is orthogonal to the
tangent space TXMr, or equivalently, P(X)(X−A) = 0. We differentiate this relation
with respect to t and denote (P′(X) · B)Ẋ = d

dtP(X(t))B to obtain

P(X)(Ẋ − Ȧ) +
(
P′(X) · (X − A)

)
Ẋ = 0.

Since Ẋ ∈ TXMr, we have P(X)Ẋ = Ẋ, and the equation becomes(
I − P′(X) · (X − A)

)
Ẋ = P(X)Ȧ. (4.2)

Lemma 3.2 and the condition d := ∥X − A∥ ≤ cρ yield

∥P′(X) · (X − A)∥ ≤ Cρ−1d ≤ Cc ≤ 1
2 ,

and hence (4.2) can be solved for Ẋ to yield

Ẋ = P(X)Ȧ + D with ∥D∥ ≤ 2Cρ−1dµ = 2βd.
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We subtract this equation from (3.1), viz., Ẏ = P(Y)Ȧ, and integrate from 0 to t. As
long as e(t) := ∥Y(t) − X(t)∥ ≤ cρ, Lemma 3.2 yields

∥
(
P(Y) − P(X)

)
Ȧ∥ ≤ Cρ−1eµ = βe,

and hence we obtain

e(t) ≤ β

∫ t

0

e(s) ds + 2β

∫ t

0

d(s) ds.

The result now follows with the Gronwall inequality.

4.2. A farther-reaching error bound. Smaller errors over longer time inter-
vals are obtained if not only X − A, but also its derivative is small. We assume that
A(t) is of the form

A(t) = X(t) + E(t), 0 ≤ t ≤ t, (4.3)

where X(t) ∈ Mr (now this need not necessarily be the best approximation) with

∥Ẋ(t)∥ ≤ µ (4.4)

and the derivative of the remainder term is bounded by

∥Ė(t)∥ ≤ ε (4.5)

with a small ε > 0.
Theorem 4.2. In addition to the above assumptions, suppose that the smallest

singular values of the unfoldings of X(t) are bounded from below by ρ > 0. Then, the
approximation error of (1.2) with initial value Y (0) = X(0) is bounded by

∥Y(t) − X(t)∥ ≤ 2tε for t ≤ ρ

C
√

µε
,

provided that t ≤ cρ
2ε and t ≤ t. The constants C and c are those of Lemma 3.2.

Proof. The proof follows that of Theorem 5.2 in [8]. We note Ẋ = P(X)Ẋ, rewrite
(3.1) as Ẏ = P(Y)Ẋ + P(Y)Ė, and subtract the two equations. We observe(

P(Y) − P(X)
)
Ẋ = −

(
P⊥(Y) − P⊥(X)

)
Ẋ = −P⊥(Y)Ẋ = −P⊥(Y)2Ẋ.

We take the inner product with Y − X to obtain

⟨Y − X,
(
P(Y) − P(X)

)
Ẋ⟩ = −⟨Y − X,P⊥(Y)Ẋ⟩ = −⟨P⊥(Y)(Y − X),P⊥(Y)Ẋ⟩

= ⟨P⊥(Y)(Y − X),
(
P(Y) − P(X)

)
Ẋ⟩.

With Lemma 3.2 and (4.4), (4.5) this yields

⟨Y − X, Ẏ − Ẋ⟩ = ⟨P⊥(Y)(Y − X),
(
P(Y) − P(X)

)
Ẋ⟩ + ⟨Y − X, P(Y)Ė⟩

≤ C2ρ−2µ ∥Y − X∥3 + ∥Y − X∥ · ε,

and on the other hand we have

⟨Y − X, Ẏ − Ẋ⟩ =
1
2

d

dt
∥Y − X∥2 = ∥Y − X∥ d

dt
∥Y − X∥.
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Taken together, we obtain for e(t) = ∥Y(t) − X(t)∥ the differential inequality

ė ≤ γe2 + ε, e(0) = 0,

with γ = C2ρ−2µ. Hence, e(t) is majorized by the solution of

ẏ = γy2 + ε, y(0) = 0,

which equals y(t) =
√

ε/γ tan(t
√

γε) and is bounded by 2tε for t
√

γε ≤ 1. Lemma 3.2
remains applicable as long as 2tε ≤ cρ.

4.3. Systems without gaps between the singular values. The results of
the preceding subsections only give satisfactory error bounds when there is a gap in
the distribution of the singular values of the unfoldings so that essential and inessential
singular values are widely separated. We now consider a situation where such a gap
need not exist. We make the assumptions of Theorem 4.2 and further that X(t) ∈ Mr

with all singular values of all unfoldings greater than ρ > 0 has a Tucker decomposition

X(t) = S(t)
N

X
n=1

Un(t) (4.6)

such that the following bounds hold for n = 1, . . . , N and 0 ≤ t ≤ t :∥∥∥S†
(n)Ṡ(n)

∥∥∥ ≤ κ , ∥U̇n(t)∥ ≤ ν . (4.7)

Under these conditions we can show an O(ε) error over times O(1) even with ρ ∼ ε.
Theorem 4.3. Under the conditions of Theorem 4.2 and with (4.6)–(4.7), the

approximation error of (1.2) with initial value Y(0) = X(0) is bounded by

∥Y(t) − X(t)∥ ≤ 2tε for t ≤ 1√
c1κ + c2ν

√
ρ

ε

with constants c1 and c2 that depend only on the order N . This holds as long as the
right-hand side remains bounded by cρ with c of Lemma 3.2.

Proof. From the proof of Theorem 4.2 we have the equation

⟨Y − X, Ẏ − Ẋ⟩ = −⟨P⊥(Y)(Y − X), P⊥(Y)Ẋ⟩ + ⟨Y − X, P(Y)Ė⟩. (4.8)

For e(t) = ∥Y(t)−X(t)∥ ≤ cρ, the proof of Lemma 3.2 shows that there is a homotopy

Y(t, τ) = S(t, τ)
N

X
n=1

Un(t, τ)

with

Y(t, 1) = Y(t), Y(t, 0) = X(t) ,

for which the Tucker factors are bounded by∥∥∥∂S

∂τ
(t, τ)

∥∥∥ ≤ 2e(t)∥∥∥∂Un

∂τ
(t, τ)S(n)(t, τ)

∥∥∥ ≤ 2e(t) (4.9)∥∥∥∂Un

∂τ
(t, τ)

∥∥∥ ≤ 4e(t)ρ−1 ≤ 4c .
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We write

P⊥(Y(t))Ẋ(t) = P⊥(Y(t))
(
Ṡ(t, 0)

N

X
n=1

Un(t, 0) +
N∑

n=1

S(t, 0) ×n U̇n(t, 0) X
k ̸=n

Uk(t, 0)

− Ṡ(t, 0)
N

X
n=1

Un(t, 1) +
N∑

n=1

S(t, 1) ×n U̇n(t, 0) X
k ̸=n

Uk(t, 1)
)

,

noting that P⊥(Y(t)) annihilates the terms in the second line, since they are in TYMr.
We have ∥∥Ṡ(t, 0)

N

X
n=1

Un(t, 1) − Ṡ(t, 0)
N

X
n=1

Un(t, 0)
∥∥

=
∥∥∥∫ 1

0

∂

∂τ

(
Ṡ(t, 0)

N

X
n=1

Un(t, τ)
)

∂τ
∥∥∥

=
∥∥∥∫ 1

0

N∑
n=1

Ṡ(t, 0) ×n
∂Un

∂τ
(t, τ) X

k ̸=n
Uk(t, τ)

)
dτ

∥∥∥
≤

∫ 1

0

∥∥∥∂Un

∂τ
(t, τ) Ṡ(n)(t, 0)

⊗
k ̸=n

Uk(t, τ)T
∥∥∥ dτ

≤
∫ 1

0

∥∥∂Un

∂τ
(t, τ)S(n)(t, 0)

∥∥ ·
∥∥S(n)(t, 0)†Ṡ(n)(t, 0)

∥∥ dτ .

Writing

∂Un

∂τ
(t, τ)S(n)(t, 0) =

∂Un

∂τ
(t, τ)S(n)(t, τ) − ∂Un

∂τ
(t, τ)

∫ τ

0

∂S(n)

∂σ
(t, σ) dσ

and using the bounds (4.7) and (4.9) thus yields

∥∥Ṡ(t, 0)
N

X
n=1

Un(t, 1) − Ṡ(t, 0)
N

X
n=1

Un(t, 0)
∥∥ ≤

(
2e(t) + 8ce(t)

)
κ = c̃1κe(t)

with c̃1 = 2 + 8c. In the same way, the remaining terms in the above expression for
P⊥(Y(t))Ẋ(t) are bounded by c̃2νe(t), and hence we have

∥P⊥(Y(t))Ẋ(t)∥ ≤ (c̃1κ + c̃2ν)e(t) .

Using this inequality in (4.8) and also the second estimate of Lemma 3.2, we obtain
the differential inequality, as long as e(t) ≤ cρ,

ė ≤ γe2 + ε (4.10)

with γ = ρ−1C(c̃1κ + c̃2ν). With c1 = Cc̃1 and c2 = Cc̃2, the result now follows as at
the end of the proof of Theorem 4.2.

4.4. Low-rank approximation of tensor differential equations. For the
low-rank approximation to a solution of the tensor differential equation

Ȧ = F (A), (4.11)

condition (1.2) is replaced, at every time t, by

Ẏ ∈ TYMr such that ∥Ẏ − F (Y)∥ = min! (4.12)
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Equivalently, condition (2.9) is replaced by the Galerkin condition

⟨Ẏ − F (Y), V⟩ = 0 for all V ∈ TYMr, (4.13)

and correspondingly, the expression Ȧ is replaced by F (Y) for Y = SXN
n=1 UN ∈ Mr

in the differential equations (2.11).
Theorems 4.1–4.3 extend to the low-rank approximation of matrix differential

equations (4.11). We assume that F has a moderate bound along the approximations,

∥F (X(t))∥ ≤ µ, ∥F (Y(t))∥ ≤ µ for 0 ≤ t ≤ t, (4.14)

and satisfies a one-sided Lipschitz condition: there is a real λ (positive or negative or
zero) such that

⟨F (Y) − F (X), Y − X⟩ ≤ λ ∥Y − X∥2 (4.15)

for all matrices X, Y ∈ Mr. We further assume that for the best approximation X(t),

∥F (X(t)) − F (A(t))∥ ≤ L ∥X(t) − A(t)∥ for 0 ≤ t ≤ t, (4.16)

which is in particular satisfied if F is Lipschitz continuous with Lipschitz constant L.
Furthermore, assume that the best-approximation error is bounded by ∥X(t)−A(t)∥ ≤
cρ for 0 ≤ t ≤ t, with c of Lemma 3.2.

We then have the following extension of the quasi-optimality result of Theo-
rem 4.1.

Theorem 4.4. Suppose that a continuously differentiable best approximation
X(t) ∈ Mr to a solution A(t) of (4.11) exists for 0 ≤ t ≤ t, and assume the bounds
(4.14)–(4.16). Let ρ > 0 be such that the smallest nonzero singular value of the nth
unfolding of X(t) satisfies σrn(X(n)(t)) ≥ ρ for n = 1, . . . , N , and assume that the
best-approximation error is bounded by ∥X(t) − A(t)∥ ≤ cρ with c of Lemma 3.2, for
0 ≤ t ≤ t. Then, the approximation error of (4.13) with initial value Y(0) = X(0) is
bounded in the Frobenius norm by

∥Y(t) − X(t)∥ ≤ (2β + L) e(2β+λ)t

∫ t

0

∥X(s) − A(s)∥ ds with β = Cµρ−1

for t ≤ t and as long as the right-hand side is bounded by cρ.
Proof. Equation (4.13) rewritten as in (3.1) reads

Ẏ = P(Y)F (Y). (4.17)

As in the proof of Theorem 4.1, we have the equation

Ẋ = P(X)F (A) + D with ∥D∥ ≤ 2βd

for d = ∥X − A∥. We subtract the two equations, write

P(Y)F (Y) − P(X)F (A) − D = (P(Y) − P(X))F (X) + P(X)(F (X) − F (A))
+ (F (Y) − F (X)) − P⊥(Y)(F (Y) − F (X)) − D,

and take the inner product with Y − X. With Lemma 3.2 we obtain

⟨Ẏ − Ẋ, Y − X⟩ ≤ β ∥Y − X∥2 + Ld ∥Y − X∥
+λ ∥Y − X∥2 + β ∥Y − X∥2 + 2βd ∥Y − X∥.
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For e = ∥Y − X∥ this gives the differential inequality

ė ≤ (2β + λ)e + (2β + L)d, e(0) = 0, (4.18)

which yields the result.
We refer to [12, Theorem 4.1] for a related quasi-optimality result in a situation

of a linear differential equation with an unbounded operator.
In the differential equation analogue of Theorem 4.2 with the splitting (4.3), we

start from the equations Ẏ − Ẋ = P(Y)F (Y) − P(X)Ẋ and Ẋ = F (A) − Ė, yielding

Ẏ − Ẋ = (P(Y) − P(X))Ẋ − P⊥(Y)(F (Y) − F (X))
+ (F (Y) − F (X)) + P(Y)(F (X) − F (A)) + P(Y)Ė,

where we now take the inner product with Y − X. If it is additionally assumed that
F has Lipschitz constant L, then this leads to the differential inequality

ė ≤ Cρ−1(β + L)e2 + λe + Ld + ε, e(0) = 0. (4.19)

With γ̂ = Cρ−1(β +L) and ε̂ = ε+Lmax0≤t≤t d(t), and with φ(x) = (ex −1)/x, this
yields the error bound

∥Y(t) − X(t)∥ ≤ 2t φ(λt) ε̂ for tφ(λt) ≤ 1
2 (γ̂ε̂)−1/2 (4.20)

and as long as t ≤ t and 2tφ(λt)ε̂ ≤ cρ.
Theorem 4.3 is similarly extended to tensor differential equations.

5. Numerical Experiment. To illustrate the theoretical error analysis, we
compute the dynamical low rank approximation of a time-dependent tensor A(t) ∈
R15×15×15×15, which is constructed to give control over the order of magnitude of
the approximation error: With U = (U1, . . . , U4) a set of matrices in R15×10 with or-
thonormal columns, B a random core tensor in R10×10×10×10, and C ∈ R15×15×15×15

a random perturbation, the time-dependent data tensor is constructed as

A(t) = exp(t)B ×1 U1 ×2 · · · ×4 U4 + ε(t + 1 + sin(3t))C, t ∈ [0, 1]. (5.1)

We compute the dynamical tensor approximation (2.9), where Y is defined with a
core tensor of dimension 10 × 10 × 10 × 10. We numerically solve the differential
equations (2.11), taking as initial value an approximate best approximation computed
by alternating least squares [1]. As time integrator, we use the implicit midpoint rule
(yn+1 = yn + hf

(
1
2 (yn + yn+1)

)
for a differential equation y′ = f(y)) with step size

h = 10−4, where the nonlinear equations in each step are solved by fixed point iteration
with a stopping criterion in a norm combining the tensor norm for the core tensor and
the Frobenius norms of the factor matrices. Figure 5 shows the approximation errors
∥Y(t) − A(t)∥ as functions of t for (5.1) with ε ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. We
observe that indeed the error of the approximation is proportional to ε and grows
only moderately as a function of t (note the logarithmic scaling of the vertical axis).

To demonstrate the potential computational advantage of dynamical tensor ap-
proximation versus pointwise approximation, we compare the computation time for
our dynamical tensor approximation to pointwise approximation by alternating least
squares as implemented in the MATLAB routines [1]. In the same setting as above,
the tensor from (5.1) (with ε = 10−2) is approximated by a tensor with a core tensor
of dimension 10 × 10 × 10 × 10. Figure 5 shows that the computation time is about



DYNAMICAL TENSOR APPROXIMATION 15

0 0.2 0.4 0.6 0.8 1

1e−3

1e−2

1e−1

1

10

100

t

E
rr

or

 

 

eps=1e−1
eps=1e−2
eps=1e−3
eps=1e−4
eps=1e−5

Fig. 5.1. Error of the approximation of rank (10, 10, 10, 10) for A from (5.1) with ε ∈
{10−5, 10−4, 10−3, 10−2, 10−1}. Interval t ∈ [0, 1], step-size h = 10−4.
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Fig. 5.2. Comparison of the computation times for Dynamical Low Rank Tensor Approximation
(DLRTen) and pointwise approximation by Alternating Least Squares (ALS). Approximations of
rank (10, 10, 10, 10) for A from (5.1) with ε = 10−2. Interval t ∈ [0, 1], step-size h = 10−4.

halved by adopting our approach. In other examples that we computed, this gain is
larger when the size of the core tensor is smaller as compared to the original tensor
size or when Ȧ is significantly sparser than A, as has similarly been observed in the
dynamical low-rank approximation of large data matrices [15].

For further numerical examples and comparisons, we refer to [15], where in par-
ticular the dynamical low-rank approximation of the 3-tensors arising from the spatial
discretization of a 3-dimensional reaction-diffusion PDE is considered.
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