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STABILIZATION OF SYSTEMS WITH ONE DEGREE OF
UNDERACTUATION WITH ENERGY SHAPING, A GEOMETRIC

APPROACH∗

BAHMAN GHARESIFARD†

Abstract. A geometric formulation for stabilization of systems with one degree of underactua-
tion which fully solves the energy shaping problem for these system is given. The results show that
any linearly controllable simple mechanical system with one degree of underactuation is stabilizable
by energy shaping, possibly via a closed-loop metric which is not necessarily positive-definite. An
example of a system with one degree of underactuation is provided for which the stabilization by
energy shaping method is not achievable using a positive-definite closed-loop metric.
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1. Introduction. One of the recent developments for stabilization of simple me-
chanical systems is stabilization by energy shaping method. The central idea concerns
the construction of a feedback for which the closed-loop system inherits the structure
of a mechanical system. If such a feedback exists, the stability of the equilibria can
be guaranteed if the Hessian of the closed-loop potential function is positive-definite.
An important feature of the method, in case it is applicable, is providing a procedure
that allows the design of nonlinear stabilizing feedbacks.

The first classical appearance of the notion of potential energy shaping problem
is in [34]. The investigation on the capabilities of this method continued in the
Hamiltonian framework by looking at the properties of interconnected mechanical
systems. The method is modified into the IDA-PBC method by introducing the
notion of kinetic energy shaping [27]. An equivalent version of the IDA-PBC method
in Lagrangian framework, so-called the Controlled Lagrangian method, is initiated
by Bloch, Leonard, Marsden and Chang, [10, 9] and its equivalence to the IDA-PBC
has been proved in [14, 7]. In recent work, Chang, Woolsey and others have realized
that the space of possible kinetic energy feedbacks can be enlarged by considering
the addition of appropriate gyroscopic forcing [12, 35]. It turns out that a necessary
condition for stabilization of simple mechanical control systems by energy shaping
method is linear controllability. For linear systems, linear controllability is also a
sufficient condition for existence of a stabilizing feedback [36, 30]. In both methods,
the question of energy shaping for a mechanical system reduces to solving a nonlinear
system of partial differential equations. A large number of papers on energy shaping
method deals with finding a parametrization of solutions to this system of partial
differential equations for a particular class of mechanical systems, for examples see [8,
37, 28, 26].

A differential geometric approach to the kinetic energy shaping problem—the
so-called λ-method—has been presented in [6, 4, 5]. A system of linear partial differ-
ential equations is proposed for the kinetic energy shaping problem in terms of a new
variable, λ = G

♯
clG

♭
ol, where Gol and Gcl are the open-loop and closed-loop metrics,

respectively. The main idea of the λ-method is that it transforms the set of quasi-
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linear equations for kinetic energy shaping into a set of overdetermined linear partial
differential equations [4]. This method is extended to systems with gyroscopic forces,
see [12].

Lewis [24] has introduced an affine differential geometric approach to energy shap-
ing. In recent work, sufficient conditions for the existence of potential energy shaping
are derived assuming that kinetic energy shaping has been performed [25]. The results
are based on the integrability theory for linear partial differential equations developed
by Goldschmidt [16] and Spencer [33]. Gharesifard, et al. [15] initiated a more system-
atic geometric exploration of the kinetic energy shaping partial differential equations.
The authors provide a set of sufficient conditions for the kinetic energy shaping. More-
over, the kinetic energy shaping results are coupled with the integrability results of
potential energy shaping [25] in order to provide a general approach for the total
energy shaping. The technicalities of the geometric analysis of partial differential
equations in [15] and [25] might make it hard to comprehend the importance of these
sufficient conditions. The results of the current paper fully relies on the integrability
analysis of energy shaping partial differential equations and clarifies the importance
of such results.

Numerous systems considered in the literature on energy shaping have one degree
of underactuation. In [3] the authors partially show that, under some conditions,
systems with one degree of underactuation can be stabilized using energy shaping
feedback. The results rely on a transformation of the system of partial differential
equations and do not give any geometric insight into the energy shaping partial dif-
ferential equations. In [15] the authors show that if Σol is a simple mechanical control
system with one degree of underactuation, for each bundle automorphism which sat-
isfies the λ-equation [6, 4], there exists a closed-loop metric and a closed-loop poten-
tial function which satisfy the energy shaping system of partial differential equations.
Chang in [13] proves this result independently using the Cauchy–Kowalevski theorem.
Note that this does not guarantee that such solutions are stabilizing ones. In fact, as
we will demonstrate in this paper, the claim of [13] that the existence of such solutions
to the kinetic energy shaping guarantees the existence of a positive-definite closed-
loop metric which gives rise to an stabilizing energy shaping feedback is not true.
However, in the current paper, we show that a linearly controllable simple mechanical
control system with one degree of underactuation can be stabilized using an energy
shaping feedback, possibly via a closed-loop metric which is not positive-definite.

The paper is organized as follows. In Section 2 we recall the affine geometric
formulation of the energy shaping problem. We give a summary of the integrabil-
ity results for the partial differential equations in potential energy shaping in Sec-
tion 3. We, directly and without proof, use the results of [15] and [25]; thus we do
not review the main integrability theorem of Goldschmidt [16]. A reader interested
in understanding the formal integrability of partial differential equations is referred
to [16, 17, 18, 19, 33, 29, 20, 21, 32]. Furthermore, we recall the λ-method for kinetic
energy shaping problem. Section 4 contains the main contribution of this paper: we
show that all linearly controllable simple mechanical control systems with one degree
of underactuation are stabilizable using energy shaping method. We fully character-
ize a set of solutions to the kinetic energy shaping problem which is large enough to
guarantee the stabilization by energy shaping method.

Notation. The differential geometric notions used in modeling of simple mechanical
systems are assumed here, and the unfamiliar reader is referred to [11, 2, 1, 23, 22]



STABILIZATION OF SYSTEMS WITH ONE DEGREE OF UNDERACTUATION 3

for more details. The identity map for a set S is denoted by idS and the image of
a map f : S → W by Im(f). For a vector space V the set of (r, s)-tensors on V is
denoted by Tr

s(V). By SkV and ΛkV we denote, respectively, the set of symmetric
and skew-symmetric (0, k)-tensors on V. Let A be a (0, 2)-tensor on V. We define the
flat map A♭ : V → V∗ by 〈A♭(u); v〉 = A(u, v), u, v ∈ V. The inverse of the flat map is
denoted by A♯ : V∗ → V in case A♭ is invertible. We also define a similar notation for
a (0, 3)-tensor A on V by

〈A♭(u), w〉 = A(w, u, u), u, w ∈ V.

For S ⊂ V and W ⊂ V∗ we denote

ann(S) = {α ∈ V∗ | α(v) = 0, ∀ v ∈ S},

coann(W) = {v ∈ V | α(v) = 0, ∀ α ∈ W}.

We denote by (E, π,Q) a fibered manifold π : E → Q. The vertical bundle of the
fibered manifold π is the subbundle of Tπ : TE → TQ given by Vπ = ker(Tπ). We
denote by Jkπ the bundle of k-jets [31]. A local section of π is a pair (U, ξ), where U
is an open submanifold of Q and ξ is a map ξ : U → E such that π ◦ ξ = idU . If (ξ, U)
is an analytic local section of π, we denote its k-jet by jkξ. We denote an element
of Jkπ by jkξ(x), where x ∈ U . For more information about geometric properties
of jet bundles see [31]. A partial differential equation is a fibered submanifold Rk ⊂
Jkπ. Goldschmidt theorem investigates the conditions under which one can construct
formal solutions of a given partial differential equation by constructing their Taylor
series order by order [16].

2. Statement of the energy shaping problem. We assume that the reader
is familiar with the affine geometric setup for simple mechanical systems [11]. A
forced simple mechanical system is a quadruple Σ = (Q,G, V,Fe), where Q is an n-
dimensional manifold called the configuration manifold, G is a Riemannian metric on
Q, V is a function on the configuration manifold called the potential function and
Fe : TQ → T∗Q is a bundle map over idQ called the external force. We denote by ∇G

the covariant derivative with respect to the associated Levi-Civita connection. The
governing equations for a forced simple mechanical system are

∇G

γ′(t)γ
′(t) = −G

♯ ◦ dV (γ(t)) +G
♯Fe(γ

′(t)),

where γ : I → Q is an analytic curve on Q.
Similarly, a simple mechanical control system is a quintuple Σ = (Q,G, V,Fe,W)

where Q is an n-dimensional manifold called the configuration manifold, G is a Rie-
mannian metric on Q, V is a function on the configuration manifold called the potential
function, Fe : TQ → T∗Q is a bundle map over idQ called the external force and W
is a subbundle of T∗Q called the control subbundle [11]. The governing equations for
a simple mechanical control system are

∇G

γ′(t)γ
′(t) = −G

♯ ◦ dV (γ(t)) +G
♯Fe(γ

′(t)) +G
♯u(γ′(t)),

where γ : I → Q is a curve on Q and u : TQ → W is the control force.
Given an open-loop simple mechanical control system Σol = (Q,Gol, Vol,Fol,Wol),

we seek a control force such that the closed-loop system is a forced simple mechanical
system Σcl = (Q,Gcl, Vcl,Fcl), possibly with some external force. The reason for
seeking this as the closed-loop system is that the stability analysis of the equilibria
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for mechanical systems is well understood [11, Chapter 6]. In this paper we assume
that the open-loop external force Fol is zero.

It is well-known that presence of gyroscopic forces enlarges the space of possible
closed-loop metrics [12, 24] while it does not change the total energy of the closed-loop
system. As we see in next sections, systems with one degree of underactuation can
be stabilized using energy shaping feedback without gyroscopic forces and thus our
statement of energy shaping problem in this paper does not involve gyroscopic forces.
In following, we present the statement of the energy shaping problem in the absence
of gyroscopic forces.

Definition 2.1 (Energy shaping problem in the absence of gyroscopic forces).
Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical control system
with Fol = 0. If there exists a bundle map ushp : TQ → Wol (called control) with
ushp = −ukin − upot such that the closed-loop system is a forced simple mechanical
system Σcl = (Q,Gcl, Vcl, 0) and

1. G
♯
ol ◦ ukin(γ

′(t)) = ∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t),

2. upot(γ(t)) = G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t)),

then the control ushp is called an energy shaping feedback.
Throughout this work, we assume that the equilibrium point q0 ∈ Q is a regular

point for Wol. Moreover, we assume that the control codistribution Wol is integrable.
This assumption is common in the literature and many examples fall into this case.
The conditions of Definition 2.1 contain as unknowns the closed-loop metric Gcl. One
can observe that these equations involve the first jet of the unknowns. One can
construct concretely a set of first-order partial differential equations as necessary and
sufficient conditions for the existence of an energy shaping feedback. Let W ⊂ T∗Q

be a given subbundle and define the associated Gol-orthogonal projection map P ∈
Γω(T∗Q⊗ TQ) by

Ker(P ) = G
♯
olW .

Note that P completely prescribes W . We apply P to the equation from part 1
of Definition 2.1 to arrive at the following equation:

P (∇Gcl

γ′(t)γ
′(t)−∇Gol

γ′(t)γ
′(t)) = 0.

Assume Q is an n-dimensional manifold and W is an integrable codistribution of
dimension n − m. In adapted local coordinates the kinetic energy shaping partial
differential equation is given by

P a
r (G

rl
cl(Gcl,lj,k +Gcl,lk,j −Gcl,kj,l)−G

rl
ol(Gol,lj,k +Gol,lk,j −Gol,kj,l)) = 0, (2.1)

where i, j, k, l, r ∈ {1, · · · , n}, a ∈ {1, · · · ,m} and we denote the first derivative of
Gcllj with respect to qk byGcl,lj,k. Similarly, let P̂ : T∗Q → T∗Q/Wol be the canonical
projection on to the quotient vector bundle. We have

P̂ (G♭
ol ◦G

♯
cldVcl(γ(t))− dVol(γ(t))) = 0.

In local coordinates we have

P̂ i
a(Gol,ijGcl

jkVcl,k − Vol,k) = 0, (2.2)

where i, j, k ∈ {1, · · · , n}, a ∈ {1, · · · ,m} and we denoted the first derivative of Vcl

with respect to qk by Vcl,k. For more details on the affine differential geometric setup
of energy shaping problem see [24].
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3. Summary of some integrability results. In [25] the potential energy shap-
ing partial differential equation has been shown to be formally integrable under a
surjectivity condition. An important corollary of this is that the choice of Gcl affects
the set of solutions that one might get for potential energy shaping. A bad choice
of Gcl might make it impossible to find any potential energy shaping feedback. In a
recent paper [15], the authors show that the system of partial differential equations for
kinetic energy shaping is formally integrable under a surjectivity condition. Moreover,
they investigate the obstruction for integrability of the total energy shaping partial
differential equations.

Since the integrability conditions of the potential energy shaping partial differen-
tial equations is an integral part of Theorem 4.3, we review this result in this section,
without mentioning the proofs. Furthermore, we briefly recall the λ-method for pro-
ceeding with the kinetic energy shaping. We refer an interested reader to [15] for more
details on the integrability character of the partial differential equations in λ-method.

3.1. Potential energy shaping. In this section, we explore aspects of potential
energy shaping. We recall the results for potential energy shaping after kinetic energy
shaping from [25]. Denote the bundle automorphism G♭

ol ◦ G
♯
cl by Λcl. Define a

codistribution Wcl = Λ−1
cl (Wol) and assume that this codistribution is integrable.

Let PS
.
= (Q × R, π,Q) be the trivial vector bundle over Q, so that a section of

π corresponds to a potential function via the formula q 7→ (q, V (q)). We define a
T∗Q-valued differential operator Dd(V ) = dV which induces a vector bundle map
Φpot : J1π → T∗Q such that Dd(V )(q) = Φpot(j1V (q)). We denote by

πWcl
: T∗Q → T∗Q/Wcl

the canonical projection.
Definition 3.1. Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechan-

ical control system. The submanifold Rpot ⊂ J1π defined by

Rpot = {p ∈ J1π | πWcl
◦ Φpot(p) = πWcl

◦ Λ−1
cl dVol}

is called the potential energy shaping submanifold. One can easily observe that the
“equation” representation of Rpot is given by Equation (2.2).

Let π1 : J1π → Q be the canonical projection. Lewis [25] gives a set of sufficient
conditions under which the potential shaping problem has a solution. The proof
follows from the integrability theory of partial differential equations; in particular,
the potential energy shaping partial differential equation has an involutive symbol,
see [20, 17, 15] for definition of involutivity. We recall the definition of (Gol-Gcl)-
potential energy shaping feedback from [25].

Definition 3.2. A section F of W is called a (Gol-Gcl)-potential energy shaping
feedback if there exists a function Vcl on Q such that

F(q) = ΛcldVcl − dVol, q ∈ Q.

The following theorem establishes sufficient conditions for construction of a Taylor
series solution to the potential energy shaping partial differential equation order-by-
order.

Theorem 3.3. Let Σol = (Q,Gol, Vol,Fol,Wol) be an analytic open-loop simple
mechanical control system. Let Gcl be a closed-loop analytic metric. Let p0 ∈ Rpot

and let q0 = π1(p0). Assume that q0 is a regular point for Wol and that Wcl = Λ−1
cl Wol

is integrable in a neighborhood of q0. Then the following statements are equivalent:
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1. there exists a neighborhood U of q0 and an analytic (Gol-Gcl) -potential energy
shaping feedback F ∈ Γω(W) defined on U which satisfies

Φpot(p0) = ΛcldV (q0)− dVol(q0) + Λ−1
cl dVol(q0),

for a solution V to Rpot;
2. there exists a neighborhood U of q0 such that d(Λ−1

cl dVol)(q) ∈ I2(Wcl|q), where
we denote I2(Wcl|q) = I(Wcl|q) ∩ Λ2(T

∗
qQ) and the algebraic ideal I(Wcl|q) of

Λ(T∗
qQ) is generated by elements of the form γ ∧ ω with γ ∈ Wcl|q.

The theorem gives a set of compatibility conditions for the existence of a (Gol-
Gcl)-potential energy shaping feedback. Moreover, one can give a full description of
the set of achievable potential energy shaping feedbacks. Let αcl = Λ−1

cl dVol. Let us
use a coordinate system (q1, . . . , qn) on U a neighborhood of q0 such that

Wcl|q0 = span(dqm+1, · · · , dqn).

In these local coordinates we write the one form αcl as αcl = αjdq
j and compatibility

conditions become:

∂αj

∂qi
−

∂αi

∂qj
= 0 , i, j ∈ {1, . . . ,m}. (3.1)

3.2. Kinetic energy shaping (the λ-method). In following, we recall the
so-called λ-method in the absence of gyroscopic forces. The idea is to transform
the kinetic energy shaping partial differential equations to an overdetermined linear
partial differential equation, so-called the λ-equation [6, 12, 15].

Theorem 3.4. Let Σol = (Q,Gol, Vol,Fol,Wol) be an open-loop simple mechanical
control system. Let P ∈ Γω(T∗Q⊗TQ) be the Gol-orthogonal projection as above. Let
Gcl ∈ Γω(S+2 T

∗Q). If G♭
ol = G

♭
cl◦λ for λ ∈ Γω(T∗Q⊗TQ), the following two conditions

are equivalent:

1. P (∇Gcl

X X −∇Gol

X X) = 0 , ∀X ∈ Γω(TQ);

2. (a) ∇Gol

Z (Golλ)(PX,PY ) = 0, and

(b) ∇Gol

λPXGcl(Z,Z) + 2Gcl(∇
Gol

Z λPX,Z) = 2Gol(∇
Gol

Z PX,Z),
where X,Y, Z ∈ Γω(TQ).

For a complete version of the theorem and the proof, in the presence of gyroscopic
forces, see [12, 15]. The set of λ-equations have been proved to be formally integrable
under a surjectivity condition [15].

3.3. An important corollary for systems with one degree of underac-
tuaion. For systems with one degree of underactuation the potential energy shaping
partial differential equations is always formally integrable. The main idea of the proof
is that Equation (3.1) vanishes for m = 1, for details of the proof see [15].

Theorem 3.5. If Σol is a simple mechanical control system with one degree
of underactuation, for each bundle automorphism that satisfies the λ-equation, there
exists a closed-loop metric and a closed-loop potential function that satisfy the energy
shaping partial differential equations.

In the rest of these paper, we focus on stabilization of the closed-loop system. Ba-
sically, we seek a solution to the energy shaping partial differential equation for which
the Hessian of the closed-loop potential function can be guaranteed to be positive-
definite.
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4. Stabilization of systems with one degree of underactuation. In this
section, we wish to determine the stabilizing solutions to the energy shaping partial
differential equations for systems with one degree of underactuation. Throughout this
section, let Q be an n-dimensional analytic manifold and Σol = (Q,G, Vol,Wol) be an
open-loop simple mechanical control system with one degree of underactuation. We
denote the Hessian of a potential function V at q0 ∈ Q by Hess(V )(q0) ∈ S2T

∗
q0
Q. In

particular, we denote the Hessian of the open-loop potential function and the closed-
loop potential function at the equilibrium point q0 by Hess(Vol)(q0) and Hess(Vcl)(q0),
respectively.

Since the compatibility conditions of Theorem 3.3 are always satisfied for systems
with one degree of underactuation, Theorem 3.5, one can study the prolongation of the
potential energy shaping partial differential equations instead of the original partial
differential equations. Let (q1, . . . , qn) be local coordinates in a neighborhood U of
q0 ∈ Q such that Wol = span{dq2, . . . , dqn} and let P be the projection of T∗Q onto
span{dq1}.

If we prolong the potential energy shaping partial differential equation and eval-
uate the result at the origin, noting that dVcl(q0) = 0, we have

P
(

G
♭(q0)G

♯
cl(q0)d

2Vcl(v)(q0)− d2Vol(v)(q0)
)

= 0,

where v ∈ Tq0Q, i.e.,

G
♯
cl(q0)Hess

♭(Vcl)(q0)−G
♯(q0)Hess

♭(Vol)(q0) = G
♯(q0)(u|q0), (4.1)

where u : TQ → Wol. If the system is linearly controllable, then one can design a
control such that G♯(q0)Hess

♭(Vol)(q0) + G♯(q0)(u|q0) is diagonalizable and positive-
definite. It is important to note that this does not necessarily imply that there exist
Gcl and Vcl such that G♯

cl(q0)Hess
♭(Vcl)(q0) is positive-definite, since the kinetic energy

shaping partial differential equation puts restrictions on the achievable closed-loop
metrics. However, we will show that, for systems with one degree of underactuation,
the space of solutions of the kinetic energy shaping partial differential equations is
large enough so that G♯

cl(q0)Hess
♭(Vcl)(q0) can be made positive-definite. We do this

in the following steps.

1. We first identify a simple class of solutions to the λ-equation using Proposi-
tion 4.1.

2. We show that this class of solutions is large enough to ensure that Equa-
tion (4.1) holds withG

♯
cl(q0)Hess

♭(Vcl)(q0) diagonalizable and positive-definite.

Let U be a neighborhood of the equilibrium point q0 ∈ Q and let (q1, . . . , qn) be local
coordinates on U . In order to find the class of solutions mentioned in 1, we need to
make some observations about the kinetic energy shaping partial differential equations
for systems with one degree of underactuation. For these systems, the λ-equation in
the adapted local coordinate is given by

∂

∂qk
(G1iλ

i
1)− 2Ss

k1Gsiλ
i
1 = 0, (4.2)

where Si
jk, for i, j, k ∈ {1, . . . , n}, are the Levi-Civita connection coefficients associated

to G and i, k, s ∈ {1, . . . , n}. Suppose we are seeking solutions to the λ-equation that
in local coordinates look like λ(q) = λj

idq
i ⊗ ∂

∂qj
, where λj

i ∈ R and q ∈ U , i.e., λ is
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constant. Then one can write Equation (4.2) as follows:

(

∂G11

∂qk
− 2Si

k1Gi1

)

λ1
1 +

(

∂G12

∂qk
− 2Si

k1Gi2

)

λ2
1 + · · ·+

(

∂G1n

∂qk
− 2Si

k1Gin

)

λn
1 = 0.

(4.3)
Because S is the Levi-Civita connection for G, the first term vanishes, leaving λ1

1

arbitrary. One can rewrite Equation (4.3) in the following fashion:

n
∑

i=1

n
∑

j=2

(Si
kjGi1 − Si

k1Gij)λ
j
1 = 0, (4.4)

where k ∈ {1, . . . , n}. Thus, if λj
2 = 0 for j ∈ {2, . . . , n}, λ(q) is a solution to the

λ-equation. Note that we further require that λ(q) ◦ G♯(q) is symmetric. In the
following, we describe the space of such solutions of the λ-equation in an algebraic
fashion.

Let V be an n-dimensional R-vector space and let G ∈ S2V be a nondegenerate
symmetric tensor. Let ΦG : V∗ ⊗ V → Λ2V be the map defined by

ΦG(A)(v1, v2) = A ◦ G(v1, v2)− A ◦ G(v2, v1),

where v1, v2 ∈ V. The space of all tensors, A ∈ V∗ ⊗ V, such that A ◦ G is symmetric

belongs to the kernel of ΦG and thus is of dimension n(n+1)
2 , we denote this subspace

by SG.
Let {ei}

n
i=1 be a basis for V and let {ei}ni=1 be its dual. Let W ⊂ V∗ be the vector

subspace generated by {e2, . . . , en} and denote its complement by E. We denote by
S̃ the space of all A ∈ V∗ ⊗ V such that, if v ∈ coann(W), then A(v) ∈ coann(W), for
all v ∈ V. A tensor A ∈ S̃ can be written as

A = A1
1e

1 ⊗ e1 +

n
∑

i=2

n
∑

j=1

A
j
ie

i ⊗ ej,

where A1
1 ∈ R and A

j
i ∈ R for i ∈ {2, . . . , n} and j ∈ {1, . . . , n}. Thus the dimension

of S̃ is n(n−1)+1. If we denote the restriction of the map ΦG to S̃ by ΦG|S̃ : S̃ → Λ2V,

then ker(ΦG|S̃) is of dimension n(n−1)
2 +1. If we additionally require that A ∈ ker(ΦG|S̃)

be nondegenerate, we obtain a n(n−1)
2 -dimensional subspace of V∗ ⊗ V.

Let Q be an n-dimensional analytic manifold and Σol = (Q,G, Vol,Wol) be an
open-loop simple mechanical control system with one degree of underactuation. Let
U be a neighborhood of the equilibrium point q0 ∈ Q and let (q1, . . . , qn) be local
coordinates on U such that Wol|q = span{dq2, . . . , dqn}, where q ∈ U . In following,
we define a subspace of T∗

qQ⊗TqQ which is large enough for stabilization of systems
with one degree of underactuation. Consider the space of solutions to the λ-equation
that in local coordinates look like λ(q) = λj

idq
i ⊗ ∂

∂qj ∈ T∗
qQ ⊗ TqQ, where λj

i ∈ R

and q ∈ U , and satisfies the followings

1. λ(q) ◦G♯(q) is symmetric and nondegenerate;
2. if v ∈ coann(span{dq1}) then λ(v) ∈ coann(span{dq1}) for all v ∈ TqQ.

We denote this subspace by S . The following proposition is a corollary of the algebraic
discussion above.

Proposition 4.1. S is an n(n−1)
2 -dimensional subspace of T∗

qQ⊗ TqQ.
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We wish to show that the space of solutions of the λ-equation, described in Propo-
sition 4.1, are large enough to guarantee that G

♯
cl(q0)Hess

♭(Vcl)(q0) can be made di-
agonalizable and with positive real eigenvalues. If λ(q) ∈ S , then Equation (4.1)
gives

Hess♭(Vcl)(q0)(
∂

∂q1
,

∂

∂qj
) =

1

λ1
1

Hess♭(Vol)(q0)(
∂

∂q1
,

∂

∂qj
), (4.5)

G
♯
cl(q0)(dq

1, dqj) = λ1
1G

♯(q0)(dq
1, dqj), (4.6)

where j ∈ {1, . . . , n}. As a result, we have the following proposition.
Proposition 4.2. Let Q be an n-dimensional analytic manifold and Σol =

(Q,G, Vol,Wol) be an open-loop simple mechanical control system with one degree
of underactuation. Let U be a neighborhood of the equilibrium point q0 ∈ Q and let
(q1, . . . , qn) be local coordinates on U such that Wol|q = span{dq2, . . . , dqn}, where
q ∈ U . Suppose that

A = G
♯(q0)Hess

♭(Vol)(q0) +G
♯(q0)(u|q0)

is diagonalizable with real eigenvalues, where u|q0 : Tq0Q → Wol|q0 . Then there exists
a closed-loop metric Gcl and a potential function Vcl such that

1. G♭ = G♭
cl ◦ λ, where λ ∈ S ,

2. G
♯
cl(q0)Hess

♭(Vcl)(q0) = A.
Proof. We only need to show that if 1 holds, then Gcl and Vcl can be selected so

that 2 holds. Using Equations (4.5) and (4.6), we can write G
♯
cl(q0) in coordinates as

(

λ1
1a λ1

1B

λ1
1B

T C

)

,

where a ∈ R, B ∈ L(Rn−1,R), and C ∈ S2R
n−1 are such that a = G

♯(dq1, dq1) and

B(dq1, dqj) = G♯(dq1, dqj) for all j ∈ {2, . . . , n}. Similarly, Hess♭(Vcl)(q0) can be
written as

(

1
λ1

1

k 1
λ1

1

B
1
λ1

1

BT C

)

,

where k ∈ R, B ∈ L(Rn−1,R), and C ∈ S2R
n−1 are such that k = Hess♭(Vol)(q0)(

∂
∂q1

, ∂
∂q1

)

and B( ∂
∂q1

, ∂
∂qj

) = Hess♭(Vol)(q0)(
∂

∂q1
, ∂
∂qj

) for all j ∈ {2, . . . , n}. Thus we have

G
♯
cl(q0)Hess

♭(Vcl)(q0) = G
♯
ol(q0)Hess

♭(V0l)(q0) +

(

0 0
L1 L2

)

,

where
1. L1 = kBT + 1

λ1

1

CBT ∈ L(R,Rn−1) and

2. L2 = λ1
1BB

T + CCT ∈ L(Rn−1 × Rn−1)
can be set to any value by appropriate choice of C and C.

Theorem 4.3. Let Σol = (Q,Gol, Vol,Wol) be a linearly controllable open-loop
simple mechanical control system with one degree of underactuation and with q0 ∈ Q

an equilibrium point. Then the system is stabilizable at q0 using an energy shaping
feedback.
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Proof. The integrability of the energy shaping partial differential equations en-
sures that formal solutions exist. Furthermore, Theorem 3.5 implies that the ob-
structions of Theorem 3.3 are satisfied for systems with one degree of underactua-
tion. If the system is linearly controllable, then one can design a control such that
G

♯(q0)Hess
♭(Vol)(q0) + G

♯(q0)(u|q0) is diagonalizable and positive-definite. Proposi-
tion 4.2 then guarantees that Gcl can be found such that it satisfies the kinetic energy
shaping partial differential equations, by choosing λ ∈ S , and taking

G
♯
cl(q0)Hess

♭(Vcl)(q0) = G
♯(q0)Hess

♭(Vol)(q0) +G
♯(q0)(u|q0)

to be diagonalizable with positive real eigenvalues.

Note that this proof does not require that the closed-loop metric be positive-
definite and in fact, there are cases for which energy shaping is not possible with
positive-definite closed-loop metrics; an example of this is presented in Example 5.
The following proposition clarifies when it is necessary to perform kinetic energy
shaping for systems with one degree of underactuation.

Proposition 4.4. Let Q be an n-dimensional manifold and let Σol = (Q,G, Vol,Wol)
be a linearly controllable simple mechanical system. Let U be a neighborhood of q0 ∈ Q

such that Wol = span{dq2, . . . , dqn}. If Hess(Vol)(
∂

∂q1 ,
∂

∂q1 ) > 0, the system can be sta-
bilized around its equilibrium point q0 without kinetic energy shaping.

Proof. We shall show that Σol is stabilizable using an energy shaping feedback
with Gcl = G. Equation (4.1) then reads

Hess♭(Vcl)(q0) = Hess♭(Vol)(q0) + u|q0 ,

where u is a feedback. Note that since Hess(Vcl) is symmetric, it is positive-definite
if and only if all of its principal minors are positive. The first principal minor of
Hess♭(Vcl) is positive. Then, by linear controllability, one can choose the controls so
that the system is stabilizable at the equilibrium point q0, similar to Proposition 4.2.

Next, we present an example of energy shaping for simple mechanical systems
with one degree of underactuation for which the energy shaping is possible only via
a closed-loop metric that is not positive-definite.

5. Example. Consider the stabilization problem for a simple mechanical control
system Σ = (R2,G, Vol, 0,Wol) at the origin q0 = 0 ∈ R

2, where

1. G = ((q2)2 + 1)dq1 ⊗ dq2 + ((q1)2 + 1)dq2 ⊗ dq2,
2. Vol = −(q1)2 + 2q1q2 + (q2)2, and
3. Wol = span{dq2}.

This system is linearly controllable at the origin. We show that, for any solution of
the λ-equation, the constant term in the Taylor expansion of λ2

1 is always zero. In
order to show this, we need to modify Equation (4.4) by adding an extra term, since
λ, in a neighborhood of q0, is not necessarily chosen from S . We have

n
∑

i=1

(G1i
∂λi

1

∂qk
+

n
∑

j=2

(Si
kjGi1 − Si

k1Gij)λ
j
1) = 0,
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for all k ∈ {1, . . . , n}. For this example, by substituting the nonzero Christoffel
symbols, we have

((q2)2 + 1)
∂λ1

1

∂q1
+ 2q2λ2

1 = 0, (5.1)

((q2)2 + 1)
∂λ1

1

∂q2
− 2q1λ2

1 = 0. (5.2)

It is clear that λ1
1(q0) can be chosen arbitrarily. Consider formal expressions for λ2

1

and λ1
1:

λ1
1 = C00 + C10q

1 + C01q
2 + C20(q

1)2 + C02(q
2)2 + C11q

1q2 + · · · ,

λ2
1 = D00 +D10q

1 +D01q
2 +D20(q

1)2 +D02(q
2)2 +D11q

1q2 + · · · ,

where Cij , Dij ∈ R for i, j ∈ Z≥0. If λ1
1 and λ2

1 satisfy Equations (5.1) and (5.2),
then C11 = D00 = 0, i.e., λ2

1(q0) = 0. Thus the closed-loop metric at the origin has
the form Gcl(q0) = 1

a
dq1 ⊗ dq1 + 1

c
dq2 ⊗ dq2, where a, c ∈ R\{0} and λ1

1(q0) = a.
Equation (4.5) implies that

Hess♭(Vcl)(q0) =

(

−2
a

2
a

2
a k

)

,

where k ∈ R. Thus

G
♯
cl(q0)Hess

♭(Vcl)(q0) =

(

−2 2
2c
a

ck

)

.

It is easy to see that one has to choose 2c
a

< 0 and ck > 2 in order to make

G
♯
cl(q0)Hess

♭(Vcl)(q0) positive-definite, i.e., none of the achievable closed-loop metrics

is positive-definite. However, one can choose a, c, k ∈ R so that G♯
cl(q0)Hess

♭(Vcl)(q0)
is positive-definite, for example a = − 191

100 , c =
43
10 , and k = 1.

Remark. If we take the open-loop metric given by

G = ((q2)2 + 1)dq1 ⊗ dq2 + ((q1)2 + 1)dq2 ⊗ dq2 + 2q1q2(dq1 ⊗ dq2 + dq2 ⊗ dq1),

then λ2
1(q0) need not be zero and the system can be shown to be stabilizable by the

energy shaping method with a positive-definite closed-loop metric. This reveals that
a slight change in the structure of the open-loop Levi-Civita connection has a huge
impact on the achievable closed-loop metrics.

6. Summary. In this paper, we fully solved the problem of stabilization of sys-
tems with one degree of underactuation. The result completely relies on the inte-
grability analysis of partial differential equations involved in energy shaping. We
illustrated that all linearly controllable simple mechanical control systems with one
degree of underactuation can be stabilized using an energy shaping feedback, with
closed-loop metrics which are not necessarily positive-definite. We also characterized
the simple mechanical systems for which the energy shaping is achievable without
kinetic energy shaping. Finally, we gave an example of a simple mechanical control
system with one degree of underactuation for which there exists no solution to the
energy shaping problem with positive-definite closed-loop metric. The results give
some useful insight about the structure of kinetic energy shaping.
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