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SHARP STABILITY ESTIMATES FOR THE FORCE-BASED
QUASICONTINUUM APPROXIMATION OF HOMOGENEOUS
TENSILE DEFORMATION*

M. DOBSON't, M. LUSKIN, AND C. ORTNER$

Abstract. The accuracy of atomistic-to-continuum hybrid methods can be guaranteed only for
deformations where the lattice configuration is stable for both the atomistic energy and the hybrid
energy. For this reason, a sharp stability analysis of atomistic-to-continuum coupling methods is
essential for evaluating their capabilities for predicting the formation of lattice defects. We formulate
a simple one-dimensional model problem and give a detailed analysis of the linear stability of the
force-based quasicontinuum (QCF) method at homogeneous deformations. The focus of the analysis
is the question of whether the QCF method is able to predict a critical load at which fracture
occurs. Numerical experiments show that the spectrum of a linearized QCF operator is identical to
the spectrum of a linearized energy-based quasi-nonlocal quasicontinuum (QNL) operator, which we
know from our previous analyses to be positive below the critical load. However, the QCF operator is
nonnormal, and it turns out that it is not generally positive definite, even when all of its eigenvalues
are positive. Using a combination of rigorous analysis and numerical experiments, we investigate in
detail for which choices of “function spaces” the QCF operator is stable, uniformly in the size of the
atomistic system.

Key words. atomistic-to-continuum coupling, quasicontinuum method, sharp stability esti-
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1. Introduction. Low energy equilibria for crystalline materials are typically
characterized by localized defects that interact with their environment through long-
range elastic fields. Atomistic-to-continuum coupling methods seek to make the ac-
curate computation of such problems possible by using the accuracy of atomistic
modeling only in the neighborhood of defects where the deformation is highly nonuni-
form. At some distance from the defects, sufficient accuracy can be obtained by the
use of continuum models, which facilitate the reduction of degrees of freedom. The
accuracy of the atomistic model at the defect combined with the efficiency of a con-
tinuum model for the far field enables, in principle, the reliable simulation of systems
that are inaccessible to pure atomistic or pure continuum models.

Typical test problems for atomistic-to-continuum coupling methods have been
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dislocation formation under an indenter, crack tip deformation, and deformation and
fracture of grain boundaries [17]. In each of these problems, the crystal deforms
quasistatically until the equilibrium equations become singular, for example, when
a dislocation is formed or moves or when a crack tip advances. Depending on the
nature of the singularity, the crystal will then generally undergo a dynamic process
when further loaded.

The quasicontinuum (QC) method, one such atomistic-to-continuum coupling
scheme, models the continuum region by constructing an energy density that equals
the atomistic energy density for any uniform strain (the Cauchy—Born rule). During
the past several years, many variants of the QC approximation have been proposed
that differ in the coupling between the atomistic and continuum regions [3, 5, 11, 13,
17,19, 23, 25, 26]. Analyses of QC approximations have been given in [7, 12, 15, 16,
18, 20]. We refer the reader to [8] for a detailed review of the formulation and analysis,
relevant to the present work, of different QC methods. Other coupling models are
analyzed in [1, 21, 22].

In [8], we have begun to investigate whether the QC method can reliably predict
the formation of defects. The main ingredient to establish whether or not this is the
case is a sharp analysis to predict under which conditions the QC method is “stable.”
More precisely, we ask whether there exist “stable” solutions of the QC method up to
a critical load for the atomistic energy. We have begun to investigate this question
in some depth for the most common energy-based QC formulations in [8]. In the
present paper, we present a corresponding sharp stability analysis for the force-based
quasicontinuum (QCF) method [4, 5, 23].

We focus on a homogeneous one-dimensional periodic chain with next-nearest
neighbor pair interactions, which is introduced in section 2.1. For this model, the
homogeneous configuration ceases to be stable for the atomistic energy when the
applied tensile strain reaches a critical value (fracture).

For the atomistic model and for energy-based QC formulations, coercivity (pos-
itivity) of the second variation evaluated at the equilibrium solution provides the
natural notion of stability. However, the QCF method, which we describe in sections
2.3 and 2.5, leads to nonconservative equilibrium equations, and therefore positivity
of the linearized QCF operator may be an inappropriate notion of stability. Indeed,
we prove in section 4.1 that, generically, the linearized QCF operator is indefinite.

As a consequence, we consider two further notions of stability. First, we in-
vestigate for which choices of discrete function spaces (that is, for which choices of
topologies) does the linearized QCF operator have an inverse that is bounded uni-
formly in the size of the atomistic system. In section 4.2, we present several sharp
stability results as well as interesting counterexamples. However, these operator sta-
bility results do not necessarily correspond to any physical notion of stability. Hence,
in section 4.4, we propose the notion of dynamical stability, which can be reduced to
certain properties of the eigenvalues. Our notion of dynamical stability is meant only
as a methodology to determine stability, not as a method to actually approximate
the Hamiltonian dynamics of the exact atomistic system. A careful numerical study
suggests that the spectrum of the linearized QCF operator and that of the linearized
quasi-nonlocal QC (QNL) operator (see [25] and section 4.3) are identical. Combined
with our previous results [8], this indicates that the QCF method is dynamically stable
up to the critical load for fracture of the atomistic energy.

2. The force-based QC method.

2.1. The atomistic model problem. We consider deformations from the ref-
erence lattice eZ, where € > 0 is a scaling that we will fix below. To avoid technical dif-
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ficulties caused by infinite domains or by boundary layers, we admit only deformations
that are periodic displacements from the homogeneous lattice yp = FeZ = (Fel)pez;
that is, we admit deformations from the space

Yr=yr+U, where

N
U= {ueRzzu“gN:wforEEZ, and Z UgZO}.
f=—N+1

We call F' the macroscopic deformation gradient, and we set ¢ = 1/N throughout.
Although the energies and forces are defined for general 2/N-periodic displacements,
we admit only those with zero mean, as is common for continuum problems with
periodic boundary conditions, in order to obtain unique solutions to the equilibrium
equations.

We consider only nearest neighbor and next-nearest neighbor pair interactions so
that the scaled potential energy per period of a deformation y € Vp is given by

N

Ealy) =2 D (8) + Wi +vis1)),

{=—N+1

where ¢ is a Lennard-Jones-type interaction potential such that
(i) ¢ € C*((0, +00); R),
(ii) there exists r. > 0 such that ¢ is convex in (0,7.) and concave in (r,, +00),
(iii) ¢ (r) — 0 rapidly as r oo for k=0, ...,3,
and where 3 denotes the discrete backward difference

vy =¢ " (ye — yo-1).

For future use, we additionally define the centered second difference

v/ = 2 (Yos1 — 290 + Yo—1).

Assumption (iii) on the interaction potential is not strictly necessary for our analysis
but serves to motivate that next-nearest neighbor interactions are typically dominated
by nearest neighbor terms.

We assume that the atomistic system is subject to 2/N-periodic external forces
(fe)eez with zero mean, i.e., f € U, so that the total energy per period takes the form

N
ENy) =Ealy) —c > feve
4

=—N+1

Equilibria y € Vg of the atomistic total energy are solutions to the equilibrium
equations

(2.1) Far(y) + fe =0, —o00 < £ < o0,
where the (scaled) atomistic forces F, : Yr — U* are defined by

_19&(y)

—Fa,f(y) = c aye

, —00 < £ < 00,
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and where U* is the space of linear functionals on U/. We remark that the translational
invariance of the atomistic energy implies that F, ¢(y) has zero mean,

= O’
s=0

al d s
(2:2) Z Fauly) = Eé'a (y — ge)

r=—N+1

where e = (1)¢ez is the unit translation vector. Thus, we see that choosing f to have
zero mean is necessary for the existence of solutions.
We note, moreover, that yp is an equilibrium of the atomistic energy, that is,

Farelyr) =0, —xo<l<oo VF>0.

The question which we will investigate in this paper, beginning in section 3, is for
which F'is yp a stable equilibrium and whether the force-based QC method is able to
predict the stability of yp.

2.2. The local QC approximation. We begin by observing that the atomistic
energy can be rewritten as a sum over the contributions from each atom:

N
Ely)=¢ > Ejy), where
=—N+1

E}(y) = 3[oWe) + ¢Wirr) + 0Wo_1 +yo) + W1 + Yora)]-

(2.3)

If y is “smooth,” that is, if y; varies slowly, then the atomistic energy can be accurately
approximated by the Cauchy-Born or local QC energy

N

Eqa(y) = ¢ > Ef(y),  where
f=—N+1

Ef(y) = 3[6() + ¢Wiy1) + ¢(2y0) + 6(20411)] = 3 [eb (i) + deb(Wig1)]s

where ¢ep(r) = (1) + ¢(2r) is the Cauchy—Born stored energy function.

In this approximation we have replaced the next-nearest neighbor interactions by
nearest neighbor interactions to obtain a model with stronger locality. This makes it
possible to coarsen the model (to remove degrees of freedom), which eventually leads
to significant gains in efficiency [5, 17]. However, in the present work we will not
consider this additional step.

An equilibrium y € Vg of the local QC energy is a solution to the equilibrium
equations

(2.5) Feoly)+ fe=0, —o00 < £ < o0,
where the (scaled) local QC forces F. : Yp — U* are defined by

19&(y)
e Oy

Feoly) == , —00 < £ < 0.

As in (2.2) it follows that the vector F¢(y) has zero mean.
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2.3. The force-based QC approximation. If a deformation y is “smooth”
except in a small region of the domain, then it is desirable to couple the accurate
atomistic description with the efficient continuum description. The force-based qua-
sicontinuum (QCF) approximation achieves this by mixing the equilibrium equations
of the atomistic model with those of the continuum model without any interface or
transition region.

Suppose that y is “smooth” except in a region A := {—K, ..., K}, where K > 1.
We call A the atomistic region and C = {—N+1,..., N}\\/Athe continuum region. The
force-based QC approximation is obtained by evaluating the forces in the atomistic
region by the full atomistic model (2.1) and the forces in the continuum region by
the local QC model (2.5). This yields the QCF operator for the (scaled) forces Fye
Yr — U*, defined by

 Fauly) ifle A,
(2.6) Fact,e(y) = { Feuly) iflec.

Force-based coupling methods such as (2.6) are trivially consistent (provided the
continuum model is consistent with the atomistic model) and are therefore a natural
remedy for the inconsistencies one observes when formulating simple energy-based
coupling methods such as the original QC method [19]. Similar constructions have
appeared in the literature under several different names and for various applications
(e.g., FeAt [14], CADD [24], or brutal force mizing [2]). The force-based QC method
arose out of the desire to correct ghost forces present in the original QC method [23],
and QCF was identified to be the underlying model of the proposed ghost-force correc-
tion method in [4, 5]. A rate of convergence and basin of attraction for the convergence
of the ghost-force correction iteration to the force-based QC method were given in [5].
Sharp stability estimates for the ghost-force correction iteration are given in [9].

Unfortunately, the forces generated by the QCF method are nonconservative and
hence cannot be associated with an energy. Moreover, even though both the atomistic
forces F,(y) and the local QC forces F.(y) have zero mean, it turns out that this is
false for the mixed forces Fqct(y). A straightforward computation shows that

N
Y Faers) = e 282 k) = W re TV 1) — S W ki1 + V)]
=—N41

- 5_1[2¢/(29/K+1) - ¢/(y}<+2 + y/KH) - (b/(y/KJrl + yll{)]v

which is in general nonzero. After introducing the necessary notation, we will over-
come this difficulty by defining a variational form of the QCF method, which effec-
tively projects the QCF forces onto the correct range.

2.4. Norms and variational notation. We recall the backward first difference
vy, = e (vg —ve—1) and the centered second difference v} = e72(vep1 — 200 + vo_1).
For displacements v € U and 1 < p < oo, we define the ¢£ norms,

1/p
N
v]ler == { (8 D= Nt1 |W|p) . 1<p< oo,
€
maxe—_nN+1,...N |Ve|, D= 00,

and we let %P denote the space U equipped with the /2 norm. We further define the
UYP norm

[vllere = [V lez,
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and we let /1P denote the space U equipped with the /P norm. Similarly, we define
the space U?P and its associated %P norm.
The inner product associated with the £2 norm is

N
(v,w) :==¢ Z VpWp for v,w € U.
(=—N+1
We have defined the norms || - [|;» and the inner product (-,-) on U, though we will

also apply them for arbitrary vectors from RV,

The external force f = (f¢)eez is a zero mean 2N-periodic vector, and we have
seen that the atomistic forces and the forces in the QCL method are also zero mean
2N-periodic vectors. Using the inner product, we can view f; as a linear functional
on U. We recall that the space of linear functionals on U is denoted by U*, and we
note that each such 7' € U* has a unique representation as a zero mean 2/N-periodic
vector gr € U:

(2.7) Tw] = (g7, v) Yoel.

We will normally not make a distinction between these representations. For example,
an external force vector f may be equally interpreted as a linear functional (i.e.,
f € U*) or identified with its Riesz representation (i.e., f € U).

For g e U*, s = 0,1, and 1 < p < oo, we define the negative norms ||g|ly-s.» as
follows:

(2.8) lgllzg=s» :=  sup {g,v),

S
[olleqsa =1

where 1 < ¢ < oo satisfies  + ¢ = 1. We let ~*? denote the space U* equipped
with the &/~%P norm.

Since we can identify elements of U* with elements of U, we can investigate the
relationship between the 4 ~%? and U°P norms. This will be useful later on in our
analysis. It turns out that || - ||yy—0.» # || - |ly0.» in general but that the following
equivalence relation holds:

(2.9) [ulle—or < lullyor < 2fully—0r  Yuell.

To see this, we note that the inequality ||u|yi-0» < ||ullygo.» follows from (2.8) and
Holder’s inequality. To prove the second inequality, we use that fact that, for v € U,

ullyor = sup (u,v) = sup (u,v—17),
vER veR2N
ol pg =1 lollpg=1

- 1 N ) .
where ¥ = 55 >>;_ v, vj. Thus, we can estimate

[ullgor < llully-or  sup |lv—0llp < 2ully-o.r,

vER?
ol pa=1

where we also used the fact that, by Holder’s inequality, ||o]|,2 < [v]|, for any v €
R2V,
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2.5. Projection of nonconservative forces. If we interpret forces as elements
of U*, then it is natural to consider the following variational formulation of the QCF
method:

(2.10) (Faet(y) + fru)y=0  Vuel.

In other words, (2.10) requires that Fyer(y) + f = 0 as a functional in &*. This
formulation guarantees that the QCF operator has the correct range.

To obtain an atom-based description of the equilibrium equations, we explicitly
compute the representation of Fyce(y) € U* as an element of U (see also (2.7)), that
is, as a zero mean 2N-periodic vector Py Fqct(y), where Py is defined by

1 N
(Puv)é =ve— o vj.
j=—N+1
With this notation, the variational equilibrium equations can be understood as pro-
jected equilibrium equations in atom-based form:

(2.11) (PuFact)), + fe =0,  —00< (<.

The equivalent formulations (2.10) and (2.11) define the correct force-based QC
method for the periodic model problem defined in section 2.1.

Remark. The projection of the QCF equilibrium system is, in some sense, an ar-
tifact of the periodic boundary conditions. For the displacement boundary conditions
that we analyzed in [10], or for the mixed boundary conditions that are considered
in [6], this projection is not necessary.

3. Stability of homogeneous deformations. It is easy to see that, in the
absence of external forces, the homogeneous lattice y = yp is an equilibrium of the
atomistic energy as well as the local QC energy, that is,

]:a(yF):O and ]:c(yF):O VF>0.

For some values of F', this equilibrium will be stable, by which we mean that the
second variation

N
Elymu,o] = D> {dpupp + dhp(up +up ) (W) +vjy)}  forueld,
f=—N+1

where
Y= ¢"(F) and oy i= ¢"(2F),
is positive definite, that is,
E'Nyr)u,ul >0  Yuel)\{0}.

(We note that a second variation, e.g., £ (yr), may be understood either as a bilinear
form on U or a linear operator from U to U*. It can also be expressed as a Hessian
matrix with respect to a given basis for the vector space U.)

In order to avoid having to distinguish several cases, we will assume throughout
our analysis that F' > r./2, which implies by property (ii) of the interaction potential



SHARP STABILITY ESTIMATES FOR QCF METHODS 789

that ¢4 < 0. This assumption holds for most realistic interaction potentials so long
as the chain is not under extreme compression.
As above, we can evaluate the second variation of the local QC energy at y = yr,

qcl(yF U, U =€ E AFUZ’Uév
—N+1

where Ar is the elastic modulus of the continuum model:
Ap = 9o, (F) = ¢ + 4dsp

Thus, we say that yr is stable for the local QC approximation if &y (yr)[u,u] > 0
for all u € U \ {0}.

In [8], we have given explicit characterizations for which F' the equilibrium yr is
stable in the atomistic model and in several energy-based QC models. The results for
the atomistic and the local QC models are summarized in the following proposition.

PRrROPOSITION 3.1 (cf. Props. 1 and 2 in [8]). Let F > r./2; then the second
variations EY/(yr), respectively, £, (yr), are positive definite if and only if

Ap — N2l >0,  respectively, if Ap >0,

where 2 < Ay <.

If we denote the critical strains which divide the regions of stability for the atom-
istic and QCL models, respectively, by Fy and FY, then a relatively straightforward
error analysis [8, sec. 5] shows that F¥ = F* + O(g?); that is, the QCL model ac-
curately reproduces the onset of a fracture instability. In the following section, we
investigate whether or not the QCF method has a similar property.

4. Sharp stability of the force-based QC method. A trivial consequence of
the definition of Fucr in (2.6) is that y = yr is also a solution of the QCF equilibrium
equations (2.11):

-Fqcf(yF)ZO VF>O

(As a matter of fact, this means that the QCF method is consistent; though this is
not the focus of the present work.)
To investigate the stability of the QCF method we define the linearized QCF

operator Lqcf p := —fécf(yp) U — U* by

<chf)FU,’U> = _<‘F(;cf(yF)[u]7’U> Vu,vel.

The equilibrium equations for the linearized force-based approximation are then given
by u € U satisfying

<chf,Fu7'U> = <f,'U> Yo e Z/{,

or in functional form

PquCf,Fu = f7
where
_ Ul + dop(uy_y +2uy +uy ), €A,
(4'1) (Lqu Fu)é = { ((b” + 4¢2F)ue’ lecC.

We remark that, while Lqes,r € L(U,U*), the projected operator Py Lqcs, p may be
interpreted as a map from U to U.
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4.1. Lack of coercivity. Since the force field Fqct(y) is nonconservative and the
linearized QCF operator Lqc,r is not the second variation of an energy functional,
positivity (or coercivity) of Lqct,7 may be the incorrect notion of stability for the
QCF model. Indeed, it turns out that if N is large, then Ly cannot be positive
definite.

THEOREM 4.1. Let ¢/, > 0 and ¢4 # 0; then there exist constants Cq,Ca > 0,
which may depend on ¢%. and ¢y, such that, for N sufficiently large and for 2 <
K < N/2,

—CNY? < inf (Lget, pu,u) < —CoNY2,
ue
llu'll 2 =1

In [10], we have established this result for a Dirichlet boundary value problem.
The proof carries over from the Dirichlet case almost verbatim and is therefore omit-
ted. As a matter of fact, the test function which we explicitly constructed in the proof
of Lemma 4.1 in [10] is already periodic and, after shifting it to have zero mean, can
therefore be used again to prove Theorem 4.1.

Theorem 4.1 forces us to consider alternative notions of stability. For example,
one could understand Ly, r as a linear operator between appropriately chosen dis-
crete function spaces, determine for which values of F' it is bijective, and estimate
the norm of its inverse. Physically, this measures the magnitude of the response of
the equilibrium configuration to perturbations in external forces. In section 4.2 we
attempt to find the largest interval surrounding F' = 1 for which Lyt  is bijective
and consider this region to be the approximation of the stable region given by opera-
tor stability of Lqcf . However, an operator can be bijective and its inverse can have
bounded norm even when it has negative eigenvalues, so for a general equilibrium
state such as yp, invertibility alone is not a suitable criterion for determining the
“physical” stability. To be able to decide whether a stable equilibrium of the QCF
equations is also stable in a physical sense, we propose a notion of dynamical stability
in section 4.4.

4.2. Stability as a linear operator. Since U is a finite-dimensional linear
space, the choice of topology with which we equip it is unimportant to the question
of whether Lyt 7 is invertible. However, it has significant repercussions when we
analyze an operator norm of the inverse, that is, ||L;le)F||7 in the limit as N — oo.

Our strongest and simplest result is obtained when we view Py Lqcr,r as a map
from U?>® to U,

THEOREM 4.2. If |9 — (4 + 2¢)|¢h | > 0, then PyLqet,r : U — U is bijective
and

1
—1
1PetLeact.r)™ o, ine) < =@ amyamy

Proof. By (4.1) we can rewrite Lqcf r in the form
PyLqet,r = ¢ L1 + ¢y Pulo,
where L; and Ly are given by

(Liu)e = —5_2(u4+1 —2up +up—1) and

(E U) = _572(u5+2_2ul+ul—2)7 éZ—K,...,K,
2L —4e72(upy1 — 2up +up—1) otherwise.
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We note that Py L; = L1, which is why we have included the projection only in the
second-neighbor operator. }
The projection of Lo given by Py Lo is

N
~ ~ e ~
(PuLau)e = (Lowe — 5 D (Lou);.
J=—N+1
We will prove below that
(4.2) H'PL{EQHL(Z/{z,m, U000y < 4+ 2e.

Assuming that this bound is established, we obtain

|5 Lrulle= — |65 | PuLaul|e
(105 = (4+ 26)|g5p )l|u"[le,

which is equivalent to the statement of the theorem.
To prove (4.2), we note that, for { = —K, ..., K, we have

Pt Let, Ful| e

ARV

(Lou)r = —(uf 1 + 2ulf +ulf_)) = —4ul) — (ull,; — 2uf +uf_)).

Using the first representation of (Lyu), above, we immediately see that (for ¢ from
the continuum region this statement is trivial)

|(I~Jgu)g‘ < 4||u"| g for{=—-N+1,...,N.

From the second representation of (izu)e, we obtain

N N K
T " " " "
E (Lou)e = —4 E Up — E (Wipr — 2up +uy_yq)
(=—N+1 {=—N+1 (=—K

1 " 1 "
= —Ug4 TUK U — U,
and hence

N

% > (Law);

j=—N+1

|(PuLou)e| < |(Lau)e| +

IN

9
Al + 5 (ks + e + o2 o] + [0’ )

IN

(4 + 2¢)||u"|| ¢ -

This establishes (4.2) and thus concludes the proof of the theorem. O

Remark. With a small modification, Theorem 4.2 remains true for an arbitrary
choice of the atomistic region A. The correction 2¢ then needs to be replaced by n;e,
where n; is the number of interfaces between the atomistic and the continuum region.

Remark. Theorem 4.2 also holds in the case of the artificial Dirichlet boundary
conditions analyzed in [10]. In that case, the projection P is not required, and
therefore the correction 2 does not occur at all.

Theorem 4.2 is, in many respects, a very satisfactory result. It shows that, except
for a small error, QCF is stable whenever the atomistic model is. However, the choice
of function space Y>> is somewhat unusual, and it is highly unlikely that such a
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result would remain true in higher dimensions, as it requires a regularity that is not
normally exhibited by linear elliptic systems.

It is therefore also interesting to analyze the QCF operator as a map from U?
to U=1P = (UM9)*, where 1 < p < co. However, we saw in [10, Thm. 7.1] for a
Dirichlet problem that, for 1 < p < oo, the stability of Lyct s is not uniform in N.
The following theorem, whose proof is contained in Appendix B, establishes the same
result for the periodic model we consider in the present paper.

THEOREM 4.3. Suppose that ¢ > 0, ¢4 € R\ {0}, and 1 <p < co. Then there
exists a constant C > 0, depending on ¢ and ¢yp, such that, for 2 < K < N — 2,

||L;c]%,F||L(Z,{f1,p) uLey > CN/P.

It remains to investigate the case p = co. The following result is an extension of
[10, Thm. 5.1] to periodic boundary conditions. Its proof is contained in Appendix A.
THEOREM 4.4. If F > r,/2 and ¢}, + 8¢ > 0, then

2
ILZE ol oo, ey < —— .
qcf, FILL( ) (b/[{' + 8¢/2/F

Theorem 4.4 establishes operator stability of the Lqcs  operator, uniformly in N,
provided that ¢% + 8¢5, > 0. Compared with Proposition 3.1 this result predicts a
significantly smaller stability region than either the atomistic model or the continuum
model. We employ numerical experiments to see whether the condition ¢+ 8¢5, > 0
is sharp.

The norm HL;clf,F”L(u—lvoa uteey is difficult to calculate explicitly, so we will
estimate it in terms of the £°°-operator norm of a related matrix. To that end, we
note that, according to Lemma A.1, Lyt can be represented in terms of a conjugate
operator, Eyct r, by

(Loet, pu, v) = (Eqet,pu’, v") Yu,v € U.

The explicit matrix representation of Eqcf r provided in formula (A.4) is such that
Eqget,re = Arpe, where e = (1,...,1)T, and where we recall that Ap = ¢y + 4¢4 . Tt
thus follows that the projected operator Py Eqct, r : R?Y — R2V satisfies

PuBgt,r:U = U and PyFqrre =0.

Here, and for the remainder of the section, we identify I/ with the subspace of R?Y of
zero mean vectors. After these preliminary remarks, we establish the following result.

PROPOSITION 4.5. The QCF operator Lgc,r : U — U™ is invertible if and only
if (PuEqct,r+e®e)€ R2NX2N s invertible, and

31T loo < Lot pllL-1oe, uroey < 20T ||sos
where
T = Pu(PuFEqgct,r +e®e) ' Py,

and where ||T || denotes the £>°-operator norm of T.

Proof. The first statement follows from the discussion above.

To prove the upper and lower bounds for ||Lgclf7F | =120 1.0y, we first note that,
by definition of T, it follows that

TPMchf,Ff = PZ/lchf,FTf = f Vf € U;
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that is, T = (PyEqet,r) " on U. In addition, we also have Te = 0.
Next, we note that

1
= inf sup {(Lgcr,7v, w)
L_1 1,00 oo veu u ’
I qu’F”L(u oo, Ub) llv'[lego=1 ”wy]”ep:l
= inf sup  (BEger,pv’, w') = !
= qcf, ) - 1 .
veU u E —0,00 00
1" lege =1 ”wy]”ep:l | qu’F”L(u ©o, UO)
Since T = (PuEqet,p) "' on U, it follows that
||chf F||L(Z/{—1,oo) Z/{l,oo) = ||T||L(Z/{_0v°°, MO,oo).
To prove the upper bound, we use (2.9) to estimate
0,00 [T e T flleg
||THL(U 0,00, 1f0,00) = SUP H Fllu <sup ——= <2 sup ——— = 2[|T -
reu | fllu-o0 = reu 511 fllese rerey | fllee
720 170 J#0

To prove the lower bound, we first note that TPy, = T. We will also use the fact that
[Peflless < 2||f|le for all f € R?N. Employing also (2.9) again, we can deduce that

_ | TPuflluo= o [ TPuflluo= _ 1T flle
1Tl oo, ooy = sup oo MU= gy I e gy T
fFeR?N HPMfHZ/l—OvOO ferR?N HPMfHZ/{Ov"O fFer?N ”PZ/IfHZS"
Pu f#0 Pu f#0 Pu f#0
T fl|goo 1
2 Sup || f||é5 - Sup || f||é _ %HT”OO
fFeER?N 2||fH€§° fe]R2 ||f||
Pu f#0 f#0

The penultimate equality holds because Py f = 0 implies that T'f = 0. d

In Proposition 4.5 we have reduced the estimation of the operator norm of L_ qcf r
to the computation of the £*°-operator norm (which is simply the largest row sum of
the absolute value of the entries) of a matrix 7' € R2V>*2¥ which is explicitly available
(note that Py = I — e ® e € R2V*2N),

In Figure 4.1, we plot the norm of T as a function of Ap/¢% = 1+ 4¢55 /.
We clearly observe that Ly r is in fact stable for all macroscopic gradients F' for
which Ap > 0; that is, the bound required in Theorem 4.4 is not sharp. Moreover,
the numerical experiments shown in Figure 4.1 support the following conjecture.

CONJECTURE 1. If ¢} + 495 > 0, then Lqct,r is invertible. Furthermore, there
exists a positive, real-valued function n(r) : Rso — Rsg independent of N, K, &%,
and @5, such that whenever ¢} + 4oL >0

L s, ey < (1 + 4% )

We note that n(1 + 4423’,? ) > ooas 1+ 4%;%%“ — 0. In fact, the numerical exper-
F F

. 1 1

iments suggest that ||L ¢ pllL@-1., y1.) grows faster than T

imply that an estimate such as the one in Theorem 4.4, but with the constant 8

replaced by 4, would be false.

which would
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Stability Bound for Lqc¢ r

171

0 0.2 04 0.6 0.8 1
1+ 495/

Fic. 4.1. Computation of ||T|lco, where T = P (Py chf’p+€®€)7lpu, which gives lower and
upper bounds for ||L;clf F”L(uflvw, Ut.o0) (cf. Proposition 4.5). The graphs indicate that Lgce r is

stable as an operator from UL to U1 uniformly in N, for all macroscopic strains F up to the
critical strain for QCL and QNL.

4.3. The quasi-nonlocal coupling method. In preparation for the following
section, where we introduce another notion of stability for the QCF method, we review
a popular energy-based coupling method. In the next section, we will make numerical
comparisons between this method and the QCF method.

The quasi-nonlocal quasicontinuum (QNL) approximation [25] was derived as a
modification of the energy-based QC approximation [19] in order to correct the incon-
sistency at the atomistic-to-continuum interface [5, 23]. In the case of next-nearest
neighbor pair interaction, the QNL method can be formulated as follows. Nearest
neighbor interaction terms are left unchanged. A next-nearest neighbor interaction
term ¢(e 1 (ypr1 — ye—1)) is left unchanged if atom ¢ belongs to the atomistic region
but is replaced by a Cauchy—Born approximation

d(e (yer1 — ye—1)) = 2o(2y)) + 6(2yp4,)] ifLEC.

This process yields the QNL energy functional

N
Eay) =2 > o) +ed oW +yir) +e Y 5[6(200) + 6(20541)].

{=—N+1 leA Lec

We remark that the QNL method is consistent for our next-nearest neighbor pair
interaction model, and in particular, y is an equilibrium of the QNL energy functional
in the absence of external forces. Moreover, in [8] we have established the following
sharp stability result for the QNL method, which shows that the QNL method is
predictive up to the limit load for fracture.

PROPOSITION 4.6 (Prop. 3 in [8]). Suppose that F > r,/2 and that K < N —1;

then &, (yr) is positive definite in U if and only if Ap > 0.

4.4. Dynamical stability. We have pointed out in section 4.1 that operator sta-

bility for Lqcs, p cannot guarantee that the equilibrium y is a stable equilibrium of the
atomistic model (e.g., a local minimum). To obtain at least a theoretical methodology
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TABLE 4.1
The spectra of PyLqct,r and 5&',11(311:) are computed for the tabulated values of N and K, as
well as for Ap = —0.5,-0.4,...,0.9,1 with ¢, =1 fized. In each case, the £>° norm of the ordered
vectors constructed from the difference of the eigenvalues is computed and the maximum over the
different values of Ap is formed. The resulting number is displayed below. All entries are zero to
numerical precision of the eigenvalue solver.

N 8 16 32 64 128

K =4|6.54e-13 4.2le-12 1.82e-11 9.28e-11  4.66e-10

K =|NY2] | 7.11e-13 4.21e-12 1.96e-11 8.73e-11  4.95¢-10
K = |N2/3] | 8.24e-13 3.75e-12  2.4le-11  9.09e-11  4.37e-10
K = N/2 | 6.54e-13 3.75e-12 2.23e-11 8.55e-11  5.53e-10

to determine stability of yr from the QCF operator alone, we propose the notion of
dynamical stability. We stress that we do not propose the following dynamical sys-
tem as an approximation to the exact Hamiltonian dynamics for the atomistic energy
functional but only as a means to study the stability of the equilibrium y = ypg.

The dynamical system

(t) + Py Lger. ru(t) =0,
(4.3) ()_uqf,/F (_)
u(0) =ug, ' (0)=0
has a unique solution u € C°°([0,4+00); U). We call this dynamical system stable if
there exists a constant C, possibly dependent on N, such that

(4.4) [u(®)llez < Clluollez V¢ >0, Yug €U.

This condition can be best understood in terms of the spectrum of PyLqcs,r. In
numerical experiments, which are shown in Table 4.1, we have made the surprising
observation that Py Lqet,r and €é’nl(yp) appear to have the same spectrum. This has
led us to make the following conjecture.

CONJECTURE 2. For all N > 4, and F > 0, the operator PyLqct,r s diagonal-
izable and its spectrum is identical to the spectrum of é’nl(yp),

Since &£(yr) is positive if and only if Ap > 0 (cf. Proposition 4.6), the validity
of the conjecture would imply that P/ L., has positive real eigenvalues if and only
if Ap > 0.

To see how this observation implies dynamical stability (4.4) for Ay > 0, let V
denote the matrix whose columns are the eigenvectors for Py Lqct, 7. Then V' has full
rank and V‘1731,{chf, rV is a diagonal matrix with the eigenvalues of Py Lqct,F on its
diagonal. If we define z(t) = V~1u(t), then

() + V' Py Laer pV2(t) = 0,
2(0) =V tug, 2/(0) = 0.

The solution to the above system of equations is z;(t) = 2;(0) cos(y/A;t), which clearly
satisfies the bound [|z(t)[|¢z < ||V~ ug||g2 for all £. Thus, we can estimate

u(®)llez < IVILez,e) IV u(t)]le
IVl Lgez,e2) IV ol o2
cond(V)|[uol| ¢z,

IAN A
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Condition Number of V

8 16 32 64 128 256 512 1024
N
F1a. 4.2. For each value of N, data points are plotted which represent cond (V') - A;/:s/log(N)
for K = 4, N1/2,N2/3,N/2 and Ap = 1/2,1/4,1/8. Here, PyLqct,r = VATY =1 is the spectral
decomposition of PyLqct, . We note the outlier at N = 512, K = 256, and Ap = 1/4, which is

likely due to numerical instability in the computation of cond(V) when a gap between eigenvalues
of Lqct,r s sufficiently small.

where the condition number of V is defined as usual by cond(V) = ||V [|[V~L].
Hence, we see that, subject to the validity of Conjecture 2, the dynamical system
(4.3) is indeed stable for Ap > 0.

Remark. We present numerical experiments in Figure 4.2 showing that cond(V)
grows very slowly with increasing N. It appears that cond(V) grows like O(log N),
although the convergence of cond (V) - Ai/ % /log(N) for large N was violated for some
values of N, K, and Ar. The existence of these special values of N, K, and A can
possibly be explained by a numerical instability in the computation of cond(V') when
a gap between eigenvalues of L.t is sufficiently small.

Conclusion. We propose that a sharp stability analysis of atomistic-to-contin-
uum coupling methods is an essential ingredient for the evaluation of their predictive
capability, as important as a sharp consistency analysis. In the present paper, we have
established such a sharp stability analysis for the force-based QC method applied to
the problem of tensile loading. We have analyzed three notions of stability:

(i) Positivity (coercivity) is generically not satisfied.

(ii) Operator stability, uniformly in the size of the atomistic system, holds only
with an appropriate choice of function spaces. It does not hold for several natural
choices.

(iii) Dynamical stability is satisfied up to the critical load. This result is based on
the numerical observation that the spectra of the QCF and QNL operators coincide.

Positivity and dynamical stability are equivalent for energy-based methods, and
under suitable conditions and choices of function spaces they imply operator stability.
However, the fact that the QCF method is nonconservative and gives rise to nonnormal
operators leads to a much richer mathematical structure.

Appendix A. Proof of Theorem 4.4: Stability of Lqcr,r. Theorem 4.4
states that if ¢+ + 8@ > 0, then Ly r is stable as an operator from UM to
U1 uniformly in N.

The proof of this statement uses a variational representation for the QCF opera-
tor, which we derived in [10], and which is also valid for periodic boundary conditions:
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Lact, = ¢pLly + dp(Ly® + L3™®),
where the three operators Ly, Ly ®, L5 : U — U* are given by

(Liu,v) = {(u',0"),

K K N
(Ly®u,v) = € E dupvy + € E (up_y +2up +up q)vp+ € E dujvy,
=—N+1 =—K+1 =K +1

(L3%u,v) = (ul gy —2u g +ul e v — (U o — 2ufy + U )UK

We omit the proof of this representation, which is a straightforward summation by
parts argument and carries over verbatim from [10]. Upon defining

ooy = { PEvet dap(up g+ 2up tupyy), (=K 41K,
R /ARt otherwise,
as well as
(A.1) ag(u') = ¢yp(uy y — 2uG g +uk) and
ag (W) = dyp(ul gy —2ul g +ul g y),

we can rewrite this representation as
(Lget, pu,v) = (o(u'),v") + a_ g (u)v_g — ax(u')vk.
Using the periodic Heaviside function h € U, given by

{ f1-et)—5, (>0,
hz_ 1 £
) 1

(A.2) B (14el)—=, £<0,

and setting he = hy_1, the point evaluation functional v — vg, v € U, can be repre-
sented by

vo = (W, v) = —(h,v')  Ywvel.

Combining these observations, we obtain the following result.
LEMMA A.1. The operator Ly r can be written as

(A.3) (Lget,pu, v) = (Eqer,pu’, V") Yu,v €U,
where
(A.4) (Bget,rt)e = o0(u) — a_ g (W' hoy k-1 + ax (W) he— k1,

for o, h, and aLk as defined above.

Even though the variational representations of the Dirichlet case and the periodic
case are the same, we cannot translate the proof for inf-sup stability that we used
in [10], as it required a matrix representation that is unavailable for periodic boundary
conditions. Instead, we will compute a fairly explicit characterization of Lgclf’ r to
estimate its norm directly. It is most convenient to do so if we define an equivalent
norm on Y~ 1. Note that L, : U — U* is bijective, and hence we can define

lgllgz-1.00 = 1 LT gllire  for g € U™
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LEMMA A.2. For all g € U*, it holds that

1
S M9llz-1.00 < Mlgller—10e < [1gllgz-1.-
Proof. Let z = Lflg7 that is,
(' W) = (g,v) Vv eU.

Taking the supremum over v with [v'[[s = 1 and applying Holder’s inequality, we
obtain the upper bound

9l < N12"[leze = ll9llgz-1.00-
The lower bound follows from the fact, which is proved below, that

(A.5) I ee < sup  (2',0") Vzel.
© veU
o/l =1

Namely, this implies that

3l9llg-1.00 = 512" lee < sup (',0") = sup (g,v) = ||glly-1.o0-
veld veld
o'l 1 =1 o' ll,1 =1

To prove (A.5), we fix z € U and let £1, £ be such that zj = [|2'[s= and z;, <O0.
(A similar argument can be used if 2, = —||2[|s.) We obtain (A.5) from the fact
that 3[|2/|lee < (2/,0), where v € U is defined by

1 ey
, %5 . lf é = él,
vp=4q —o5z if L=l
0 otherwise. a

COROLLARY A.3. Suppose that F is such that Lgct r : U — U™ is invertible; then
(LT Laet, ) " Hln@nes, ureey < Iges plln@-—1o, uroe)
< 20(Ly ' Lger,p) Ml e, ures)-

Proof. Using Lemma A.2, we can prove the following bound:

1 . _
= inf ||L1 1chf)Fu||u1,ao

= 1 - s U
L N T T

1
-1

||chf7F||L(Z/{71’°°, Z/{l,oo) ’

> inf | Loerrulyre =
ueU
llelly1,00 =1
which gives the first stated inequality. The second inequality follows from a similar

argument. O
Corollary A.3 shows that we can bound the operator norm ||Lgclf7 L1, ute)

in terms of ||(L] * Ler, 7)™ | L@, yr.y. The latter operator norm can be computed
using the formula

-1

(A6) Ly Laerp) Moo, wrmy = 4 inf[[(LY Laerpu) |

oo =1
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In the next lemma, we establish an explicit representation of LfquCf, F which will
subsequently allow us to construct upper and lower bounds for (A.6).
LEMMA A.4. Let z = LT ' Lyet, pu; then

£
zp= ou(u’) — §¢/2/F{ULK —u gy — U Uy}
—a_g(u)her -1+ ax (U )hi—Kk-1,

where o, h, and a+i are as defined above.

Remark. We note that the term fe{u’ , —u’ j , — U + 1} is the average
of o, and the function h is a periodic Heaviside function defined in (A.2).

Proof of Lemma A.4. The function z is the solution of the variational principle

<Z/a U/> = <chf, FU, U> = <chf,Fu/; U/>a
where Eqct,r is defined in (A.4), and is given by
(Bget,pu')e = o0(v') — a— g (0 Yhor k-1 + ax (W )he— k1.

We note that a function w € R?V is a gradient, that is, w = v’ for some v € U, if and
only if ZévszH we = 0. Hence, we obtain 2’ = Eqef, ptt’ — Eger, pt/, where Eqer pu/ :=

N . _
%8 Ze:—NH(chﬁFU/)é- Since h has zero mean, we need only to compute 7:

N ” K
2N Z N up + 23{; Z (wp_y — 2up +up, ).
—N+1 —N+1 t=—K+1

Since u is periodic, u’ has zero mean, and hence the first sum on the right-hand side
vanishes. The second sum has telescope structure, and we obtain

- _ €
Eget,pu/ =0 = §¢/2/F(u/—K —ul gy — U+ Ug)
This concludes the proof of the lemma. a

We are now ready to conclude the proof of Theorem 4.4.
Proof of Theorem 4.4. We set z = Ly " Lqct, pu and use Lemma A.4 to deduce the
bound

12'lleze > llo(u)lleee — 2el¢pl [0 ]|z
— max(Ja— (u)], lox (u)) max([here—1| + [he-x-1]).

(A7)
To bound the first term on the right-hand side, we note that
loe(u)| = dplup| + 4d5pl[u ] ez
which immediately implies that
(A.8) lo(u)lleze > Apllu/lleze-
To bound the third term on the right-hand side of (A.7), we crudely estimate

<11
gzdlgflffm)]vﬂhukfﬂ +lhe-x-1]) <1 3¢,
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which is true whenever K > 1, and deduce from (A.1) that
max (o g (u)|, lax (u)]) < 4|¢5p|-

The additional term —%E cancels the second term on the right-hand side of (A.7), so
that we obtain

[12'leze = (&5 + 85 p) U/l
Employing Corollary A.3 and formula (A.6), we obtain Theorem 4.4. O

Appendix B. Proof of Theorem 4.3: Instability of Lyce, 7. We now prove
Theorem 4.3 on the instability of Lyc¢, r as an operator acting between U/ Lp and U~ 1P,
1 < p < oco. The bound ||L(;le7p|\L(z,{—1,p,u1,p) > ONY? follows from the following
lemma.

LEMMA B.1. Suppose that ¢y > 0, ¢4 € R\{0}, and p, ¢ € R satisfy 1 < p < oo,
1<qg< o0, and % + % = 1. Then there exists a constant C' > 0 such that

. -1
inf sup (Lger,pv, w) < CN /v,
veU weU
vl =1 ||| ,p=1
=

Proof. We recall from Lemma A.4 that we can represent Lqc, v in the form
(B.1) (Lyet, Fv, w) = (Eqer, 70", w') Yw e U,
where
(Eget,mv")e = 00(v) — a_ g (V) her k-1 + ax (v ) he—k—1,
and where

—_ :{ Phvy + Sy (vp_ + 205 +vp,,), =-K+1,... K,

(¢ + 405 vy otherwise,
arx (V') = dop(Viyo — 20k 11 +VK),
a g (V) = @hp( gy — 20" g+ 0" g ),

1l—el)—5, £>0,
| —i+en -5, e<o.

We choose v € U with the derivative given by

0, (=K -1,

—(;;—FF (=K,
vy = ﬁ, (=K +1,

—%, (=K +2,

he_K_1 otherwise.
Such a representation is possible if and only if the vector (vj)i_ 5, defined above
has zero mean. To see that this holds, we use the symmetry of hy to calculate

N

Z Ué = Z hg,K,1 =0.

{=—N+1 (£K—1, K, K+1, K+2
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If we insert v into the equations above, we find that

a_ () =0, ag()=-Ap,
and
(¢ +205p)h—s + dopha, (=K -2,
heh_s — tAp, (=K -1,
_422'*?:’ (=K,
7e(v) = e (=K+1,
—ak, (=K+2,
Aphp_g_1 otherwise,
which implies that
=204 ph_3+ ¢Yph_4, (=K -2,
Pyph_g— tAp — Aph_y, (=K —1,
—SE0E — Aph (=K,
(Baet.rv')e = oab= — Apho, (=K +1,
i
_%_Aphl, (=K +2,
0 otherwise.

Note that all the terms above are bounded in absolute value, independently of N
and K.

Inserting these formulas into (B.1), applying Holder’s inequality, and using the
fact that (Eqgcr,7v)} is nonzero for only five indices, we obtain

<chf,FU7w> = <chf,FU/7w/>
< Bt/ 0
1/p
< 7[5 Bt |7 0l
€
< CeYP||w | ga.

It remains to show that [|v’[|,» is bounded below as N — co. As a matter of fact,
it can be seen from the definition of v, that

N
lug| > 1 for€:K+1—E,...,K—2,

which gives
K—2 1/p N 1/p
e 5 ] 139"
(=K+1-N/2

Thus, replacing v by v/||v'||,» gives the desired result. O
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