arXiv:0906.5050v1 [cs.DS] 27 Jun 2009

AFPTAS results for common variants of bin packing:
A new method to handle the small items

Leah Epstein Asaf Levinf

Abstract

We consider two well-known natural variants of bin packiagg show that these packing problems
admit asymptotic fully polynomial time approximation sames (AFPTAS). In bin packing problems,
a set of one-dimensional items of size at most 1 is to be asdi¢packed) to subsets of sum at most
1 (bins). It has been known for a while that the most basic lpratadmits an AFPTAS. In this paper,
we develop methods that allow to extend this result to otlagiamts of bin packing. Specifically, the
problems which we study in this paper, for which we designgsptic fully polynomial time approxi-
mation schemes, are the following. The first problemiis packing with cardinality constraintsvhere
a parametek is given, such that a bin may contain upititems. The goal is to minimize the number of
bins used. The second problemBa packing with rejectionwhere every item has a rejection penalty
associated with it. Anitem needs to be either packed to atiejected, and the goal is to minimize the
number of used bins plus the total rejection penalty of ukeddtems. This resolves the complexity of
two important variants of the bin packing problem. Our appration schemes use a novel method for
packing the small items. Specifically, we introduce the netiom of windows A window is a space in
which small items can be packed, and is based on the spabg lafge items in each configuration. The
key point here is that the linear program does not assignl stewds into specific windows (located in
specific bins), but only to types of windows. This new mettthe core of the improved running times
of our schemes over the running times of the previous resutigch are only asymptotic polynomial
time approximation schemes (APTAS).

1 Introduction

Classic bin packind [27, 11] B} 7] is a natural and well stdgieoblem which has applications in problems
of computer storage, bandwidth allocation, stock cuttirapsportation and many other important fields. In
the basic variant of this problem, we are giveritems of size in(0, 1] which need to be assigned to unit
sized bins. Each bin may contain items of total size at maeshd the goal is to minimize the number of bins
used. Many variants of bin packing, coming from practicadse were studied [10] 9]. Below, we mention
several such variants that we address in this paper.

In various applications, such as storage of files on diskssmheduling of jobs on bounded capacity
processors, a bin can contain only a limited number of itefisis is the main motivation for the study
of the following variant of the bin packing problem. TB&N PACKING PROBLEM WITH CARDINALITY
CONSTRAINTS(BPCC) is defined as follows: The input consists of an intéger1 (called thecardinality
bound and a set of items! = {1,2,...,n}, of sizesl > s; > s, > --- > s, > 0. The goal is to partition
the items into the minimum number of bins such that the tata ef items in a bin is at most 1, and the

*Department of Mathematics, University of Haifa, 31905 ldalérael.lea@math.haifa.ac.il.
fChaya fellow. Faculty of Industrial Engineering and Mamagat, The Technion, 32000 Haifa, Israel.
levinas@ie.technion.ac.il.

http://arxiv.org/abs/0906.5050v1

number of items in a bin is at mokt The problem was introduced as early as in the 1970’s by Krebisen
and Schwetman [23, 24], and studied in a sequence of pan&2,[2, 15].

In other applications, such as bandwidth allocation, orapplication in storage that allows outsourcing,
it is sometimes possible to refuse to pack an item. Thistiefeclearly needs to be compensated, and costs
some given amount for each item. This amount is calleddfection penaltyof the item. This situation
can also occur in file servers where the items are files, thedmdisks and rejection penalty of afile is the
cost of transferring it to be saved on an alternative mediantther applications the rejection penalty refers
to the penalty caused by not serving a client. This motiviiiedollowing BIN PACKING PROBLEM WITH

REJECTION (BPR). The input to this problem consists wfitems/ = {1,2,...,n}, where itemi has a
sizes; € (0,1] and rejection penalty; > 0, and the goal is to select a subsebf I (the set of accepted
items, i.e., items to be packed) and a partitiondointo subsetsA, ..., A, for some integek, such that

> s <1forallj=1,2,...,2z,sothatz+ >_ r;is minimized. The bin packing problem with rejection
icA; iel\A

wa; introduced and studied by He and DOS;L [13]. Further warkhis problem can be found in 14, 3].
Note that in this problem we assume without loss of gengrtigat all sizes of items are strictly positive. If
zero sized items exist, they could be all packed into onedbianging the cost of the solution by 1 in the
case that all other items are rejected by this solution atldoart any change in the cost otherwise.

Note that both problems studied in the paper are generializabf classic bin packing. Classic bin packing
is the special case of BPCC whete= n, and the special case of BPR where all rejection penaltes ar
infinite.

For an algorithmA, we denote its cost byl as well. The cost of an optimal offline algorithm is denoted
by oPT. We define the asymptotic approximation ratio of an alganiti is the infimumR > 1 such that
for any input, A < R - OPT + ¢, wherec is independent of the input. If we enforee= 0, R is called
the absolute approximation ratio. An asymptotic polyndrtiiime approximation scheme is a family of
approximation algorithms, such that for every 0 the family contains a polynomial time algorithm with an
asymptotic approximation ratio af+ <. We abbreviatasymptotic polynomial time approximation scheme
by APTAS (also called an asymptotic PTAS). An asymptotityfplbolynomial time approximation scheme
(AFPTAS) is an APTAS whose time complexity is polynomial wotly in the input size but also ili—]. If
the scheme satisfies the definition above with 0, stronger results are obtained, namely, polynomial time
approximation schemes and a fully polynomial approximratichemes, which are abbreviated as PTAS and
FPTAS. Throughout the paper, we useT to denote the cost of an optimal solution for the originalutyp
which is denoted by, and we use\Px to denote the cost of the solution returned by our schemesar-o
input J we useoPT(.J) to denote the cost of an optimal solution for the ingufwhere J is typically an
adapted input). ThusPT = oPT(I).

Previous results. The classic bin packing problem is known to admit an APTAY |rd an AFPTAS
[21]. Moreover, BPCC and BPR are problems that are known toitagn APTAS [4,14]. Specifically,
the APTAS of Caprara, Kellerer and Pferschy [4] generaltbesmethods of Fernandez de la Vega and
Lueker [12] where items are rounded and grouped using ligeauping. The approach, that is used to
deal with items that are too small to be rounded in this wayoisa greedy approach as [n [12] (which
fails in this case, as is demonstrated[in [4]), but all pdesfiackings of large items are enumerated, and
for each such possibility, the small items are assigned daatteady existing bins and to new bins via a
linear program. This last approach, that is used also in jAlére it is combined with rounding of rejection
penalties, results in an APTAS for each one of the problem€8Rnd BPR. Clearly, these schemes have
large running times due to enumeration. A different APTAGB® R, with reduced running time, but that
still uses some enumeration steps, is given_ in [3]. Notedtzasic bin packing or any generalization of it

cannot be expected to admit an FPTAS or even a PTAS, sincexapyating it within an absolute factor
smaller than% is NP-hard (using a simple reduction from therR?1TION problem).

A problem which is dual to bin packing is tHgn coveringproblem. In this problem the goal is to
maximize the number of bins for which the total sizes of assibitems is at least 1. This problem is known
to admit an APTAS (by Csirik, Johnson and Kenybh [8]) and arPAKS (by Jansen and Solis-Obha|[19]).
The variant of this problem where a covered bin must in aoklito the constraint on the total size of items
assigned to it, must contain at leadsttems, for a parametet, we get the problem dbin covering with
cardinality constraints This last problem was considered in [16], and was shown toiteah AFPTAS as
well. We note that even though bin packing problems are tla phoblems of bin covering, the latter are
maximization problems while the former are minimizationlgems, and the nature of the problems is very
different. In particular, the methods of [16] as well as thetinods of [8/ 19] are not applicable for the
problems considered in this paper, and hence we neededeatoddirie new methods considered here.

We briefly survey the previous approaches used in the litexaior dealing with packing small items
fractionally using a linear program. One approach is to demall items as fluid, without distinguishing
between different items. In this case, the small items cetefyl lose their identities, and the conversion
process of the fluid into items is performed in a later stepallg greedily. The other approach which allows
to keep the identities of items simply allows to introducestoaints associated with each small item sepa-
rately, and the solution of the mathematical program asségich small item into a specific bin. The number
of constraints is linear in the number of items. It can be gbahin the first approach there is no control
whatsoever of the exact allocation of specific items to $jgebins, while the second approach is rigid in
the sense that all decisions must be made by the mathenyatoggbm. Examples for the first approach can
be found as early as in the seminal work of Hochbaum and Shifd8}on scheduling uniformly related
machines, in approximation schemes for other scheduliogl@ms (e.g.[[1]), and in previous work on bin
packing related problem§ _[19] 8]. Examples of the secondoagh appear in the previous work on the
problems studied hergl[4,114].

In this paper, we use a new and novel method of dealing witHl stems which is an intermediate way
between these two extreme (previous) approaches. Theseare packed using the (approximated) solution
of a linear program. To keep the running time polynomial (@thbthe size of the input ang), the linear
program does not decide on the exact packing of these itamhsnly on the type of a bin that they should
join, where a type of a bin is defined roughly according to thmaining size in it after the packing of
(rounded) large items, and in BPCC, on the cardinality caigtas well.

In this paper, we design an AFPTAS for each of the two probjd#CC and BPR. Studies of similar
flavor was widely conducted for other variants of bin packamgl it is an established direction of research,
see e.q.[[20, 25, 26]. The problems studied in this paper ay@ea in the sense that no AFPTAS is known
for them prior to this work.

We start the paper with Sectidh 2, where we elaborate on thiot® used in this paper. In Sectidds 3
andB we describe the asymptotic approximation schemesR@ ® and BPR, respectively, and prove their
correctness. The approximation scheme for BPCC acts in iffeyeht ways according to the value bf
The case of smalt is easier, since in this case every bin has a relatively smatlber of items. This simpler
scheme is presented first, and it allows the reader to getatqd with the basic methods (but not with our
new methods for dealing with small items). The other schegnesented in this paper, including the scheme
for BPCC with large values df, and the scheme for BPR, require much more advanced te@midune
methods that are employed, in order to obtain these two seheare related, but each scheme requires
different specific ingredients, developed in this work, ider to solve the problem it is meant for. Due to
space limitations, we present the easier case of Sddtiamd3ha AFPTAS for BPR in the Appendix.

Note that asymptotic fully polynomial approximation scremnunlike APTAS results, have practical run-
ning times especially if one uses a method of solving appneaiely the linear program which is faster than
the ellipsoid method. Such techniques are available fokipggroblems. Hence, AFPTAS can actually be
used to solve the problems they are developed for. Thus aurilsation, where we settle the complexity of
the problems studied here, is interesting not only from aritécal point of view, but also from the practical
viewpoint.

2 Methods

In this section we briefly describe the novel methods thatiseel in this paper, side by side with adaptations
of well known methods, that are employed in this paper as. well

Linear grouping is a standard rounding method for bin paghkitgorithms. It was first presented by
Fernandez de la Vega and LuekKerl[12]. The main idea of thifiodeis to round the sizes of items into a
small number of distinct sizes. Unlike rounding methodssfreduling([17], the output sizes resulting from
the rounding must be representative sizes of real item &izbe input. In fact, this last method of rounding,
which rounds values from a given range (in our case, rejegténalties) to a closest number among a fixed
sized set of values, such that no original value changesesu#t by more than a factor af+ ¢, is used in
the paper as well in Sectiod B. Both methods are typicallyldsesizes that are large enough, where small
sizes are treated separately. The resulting set of lamges ikes a small number of sizes (usually, a function
of €). On this set of sizes, valid assignment configurations afieed, and a solution to a packing problem
is described as a set of bins packed according to specifiogemafions.

In this paper, we introduce a new and novel method for treatimiesmall items. These are typically items
whose size is below some threshold. Moreover, in Se€fiones of small rejection penalty are seen as
small as well. For the classic bin packing problem, the tneait of such items is relatively easy. After
finding a solution, which is close enough to optimal solutionthe large items, small items can be added
greedily to the solution, using a simple packing heuristichsas Next Fit or First Fit. As demonstrated
by Caprara, Kellerer and Pferschy [4], using this approacxhBf CC leads to approximation algorithms
of high approximation ratio. That is, finding an optimal pickof just the large items immediately leads
to poor performance for the complete input, no matter howsthall items are combined into the solution.
In order to derive an APTAS, i.e., an algorithm whose appration ratio is within a factor of + ¢, but
its running time is not necessarily polynomial ém it is possible to enumerate a large enough number of
packings of the large items, and add the small items to eaglofothem in some way (possibly in an optimal
fractional way). This results in a large number of potertiatputs, the best of which is actually given as the
output. On the other hand, if the goal is to design an AFPTA®re the running time must be polynomial
in % this approach cannot be successful. First, the numberadings of large items is exponential gn
and second, if small items need to be added optimally and neetddy, it is unclear whether it is possible
to handle small items efficiently since in their case, rongddf sizes is harmful. In summary, in order to
obtain an AFPTAS, we need a method which allows to considesthall items in the linear program that
seeks a solution for the large items, but this linear progcammot search for a complete and final solution
for all items. We introduce the new notion windows A window is a space in which small items can be
packed, and is based on the space left by large items in eafiguation. The key point here is that the
linear program does not assign small items into specific @wrsd(located in specific bins), but to types of
windows. Using rounding, we limit ourselves to a polynomaimber of window types. After the linear
program has been solved, the small items are assigned tificpéndows based on the output. We show

that the items that cannot be assigned to windows (due thdret solutions, due to rounding, or due to the
fact that the windows reside in separate bins) can be paatately into new bins (or possibly rejected,
in BPR) with only a small increase in the cost. In order towalthe packing of almost all small items, in
most cases studied here, their packing cannot just be deedibr given the windows reserved for them. A
careful treatment that balances the load of small itemsmilaily packed bins, taking into account not only
the total size of small items, but also their number, is neggli

In order to find an AFPTAS and not an APTAS for each one of thdlpros, the linear program, that is
associated with the problem on an adapted input (after iagnd applied, and our methods for handling
small items are invoked), cannot be solved exactly in patyiabtime (inn and %). Therefore, we need
to solve it approximately. This is done via the column geti@natechniqgue of Karmarkar and Karp_|21].
The main idea is to find an approximate solution of the duadimprogram. For that, we need to find a
polynomial time separation oracle (possibly, an approxnume) for each one of the dual programs. This
typically involves finding an approximate solution to a keagk type problem. The exact problem results
from the exact characteristics of the bin packing problechtae details of the linear program used to solve
it. We develop the linear programs as well as the separatiacias for them in this paper. Clearly, each
problem results in a different linear program, a differeoaldlinear program, and a different separation
oracle. These separation oracles are based on applicdtioflyopolynomial approximation schemes to
variants of the knapsack problem.

3 An AFPTASfor BPCC

We fix a small value < % such that% is an integer. Our AFPTAS acts according to one of two options
each of which is suitable for one case. In the first dase ;15 and in the second cage> ;15 Recall that
the set of items is denoted lly We refer to an item by its index, do= {1,2,...,n}. The first case can be
found in the Appendix.

3.1 Second case: k > 52

We assume thdt < n, otherwise there is no effective cardinality constraing an AFPTAS for the problem
follows from the AFPTAS of Karmarkar and Karp [21]. In thisseawe partition the item set intarge items
that is, items with size at least andsmall itemgall the non-large items). We denote bythe set oflarge
items, and byS = I \ L the set of small items. We apply linear grouping to the latgms (only). That
is, we partition the large items int—é classesli, Ly, ..., Ly s such thatl|L|e®] = |Ly| > [Ly| > --- >
|Ly1)es| = ||L|®], and such that if there are two iterhg with sizess; > s; andi € L, andj € L, then

g < p. The two conditions uniguely define the allocation of largnis into classes up to the allocation of
equal-sized items. IfL| < 6%, then instead of the above partition, each large item hasnitssetZ; such
that L, is an empty set, and for a large itehwe Iets; = s; (i.e., we do not apply rounding in this case).
We note that in both cases (where we use the original partifahe items or whenlZ| < 6%,) we have
‘Lly < 263‘L’.

Then, we round up the sizes of the itemdin ..., L, s as follows: For all values of = 2,3, ..., 1/
and for each item € L,, we lets; = max;cr, s; to be therounded-up size of itefin For a small item € S
we lets;, = s;. The rounded-up instandé consists of the set of items\ L; where the size of itemis s
for all i (k remains unchanged). We also defitife= L \ L; to be the set of large items in the rounded-up
instance. We haverT(I’) < OPT.

Given the rounded-up instandg we define aconfiguration of large items of a bias a (possibly empty)
set of at mosk items of L’ whose total (rounded-up) size is at most 1. We denote the aitoonfigurations
of large items byC. We denote the set of item sizeslihby H. For eachwv € H we denote the number of
items with sizev in C by n(v, C'), and the number of items i with sizev by n(v) (wheren(v) = ||L|e3|
orn(v) = [|L|e*], unless several classes are rounded to the same size).

We denote the minimum non-zero size of an itensRy,, = miN;e .40 s;, and let

!/

Smin = max{

1 1
m‘t € Z, A+o) < Smin} -

We haves; .., < smin ands;,;,, > 3z and thus the valubg, . S, — is polynomial in the size of the input.
We define the following sety = {(1+a ,a)[0 <t <log,. s, - + L0<a<k} A WlndOWIS defined

as a member ofV. W is also called the set of all possible windows. Thietw| < n - (logy ;.. s, — 4 2),
since the number of possible values of the second compohanvimdow isk + 1 < n. For two windows,
w' andw? wherew’ = (wi,w?) fori = 1,2, we say that! < w? if w} < w? andw! < w?.

Note that a bin, which is packed with large items accordingdme configuratior(, typically leaves
space for small items. For a configuratiohwe denote thenain window ofC' by w(C) = (ws(C), w,(C))
(wherews(C) is interpreted as an approximated available size for srreafis in a bin with configuration
C, andw,(C) is interpreted as the number of small items that can be paickadin with configuration
C while still maintaining the cardinality constraint). Mopeecisely, a main window is defined as follows.
Assume that the total (rounded-up) size of the itemg’irs '(C). Letwy(C) = = Wheret is the

(1+a)
maximum integer such that < ¢ < log,,, s, —+ 1 and thats'(C) + (1423) > 1, andw,(C) is the
difference betweeh and the number of large |tems@‘|(|.e.,wn(0) =k— > n(v,C)). Note that in any
veH

case, for a non-trivial input,can take at least three values. The main window of a confiigaret a window
(i.e., belongs taV), but W may include windows that are not the main window of any comfiian. We
note that\W\ is polynomial in the input size and hb whereagC| may be exponential ||j (specifically,
IC] < (+ 1)/¢, since in configuration there are up%darge items ofl H| < 1 ; Sizes). We denote the
set of wmdows that are actual main windows of at least ondiguation byW’ We first define a linear
program that allows the usage of any windowh After we obtain a solution to this linear program, we
modify it so that it only uses windows .

We define ageneralized configuratiod’ as a paitC’ = (C,w = (ws,wy)), for some configuratiod’ and
somew € W. A generalized configuratio@' is avalid generalized configuratioif w < w(C'). The set of
all valid generalized configurations is denotedcy

For W € W denote byC(W) the set of generalized configuratiofs= (C,w = (ws,wy)), such that
w=W. Thatis,C(W) ={C = (C,w) € C: W = w}.

We next consider the following linear program. In this linggogram we have a variable; denoting
the number of bins with generalized configuratién and variables’; w indicating if the small item is
packed in a window of typ@ (the exact instance of this window is not specified in the tsmuof the
linear program).

min > Ta

cec
s.t. > nw,Crs>n(v) YweH (1)
C=(Cw)eC
> Yiw>1 Vie S)
wew
we- Y, wa> 8- Yiw YW = (ws,w,) €W (3)
CeCc(W) €S
W Y ze> Y Yiw YW = (wew,) €W (4)
Cec(w) i€S
T >0 Vé S C~,
Yiw >0 YW e W, Vi € S.

Constraints[{l1) and[{2) ensure that each item (large or yofall will be considered. The large items will be
packed by the solution, and the small items would be assigmedme type of window (but not to a specific
location). Constraints {3) ensure that the total size ofsthall items that we decide to pack in window of
type W is not larger than the total available size in all the bing #re packed according to a generalized
configuration, whose second component is a window of fjpe Similarly, the family of constraintg {4)
ensures that the total number of the small items that we daoigack in a window of typ&/ is not larger
than the total number of small items that can be packed (iardawsith the cardinality constraint) in all the
bins whose generalized configuration of large items indacesndow of typelW. The linear relaxation
assumes, in particular, that small items can be assignetdinally to windows, that is, the small items
leave no gaps. We later show how to construct a valid allooadif small items, leaving a small enough
number of small items, whose total size is small enough ak wmbacked. We further show how to deal
with these unpacked items. We note tbatr(I’) implies a feasible solution to the above linear program that
has the cosbPT(I’), since the packing of the small items clearly satisfies thestraints [(B) and {4), and
the packing of large items satisfies the constralnts (1).eldeer, it implies a solution to the linear program
in which all variablesr ~, that correspond to generalized configuratiGhs- (C,w) for whichw is not the
main window ofC, are equal to zero, and all variablEs,, wherew ¢ W' are equal to zero as well.

We invoke the column generation technique of Karmarkar aathK21] as follows. The above linear
program has an exponential number of variables and a polhamamber of constraints (neglecting the
non-negativity constraints). Instead of solving the Impeogram we solve its dual program (that has a
polynomial number of variables and an exponential numbepboétraints). The variables, correspond to
the item sizes if{. The variabless; correspond to the small items. The intuitive meaning of thgables
can be seen as weights assigned to these items. FoléaeV we have a pair of dual variableg; and
ow . Using these dual variables, the dual linear program is lasifs.

max Yoonw)ay + Y Bi

veH €S
st S n(w,0)ay + Wy + wpdy <1 VO = (Cyw = (ws, wy)) € C (5)
veH
Bi — styw — dw <0 Vie S, YW eWw (6)
a, >0 Yve H
Bi >0 VieS
Yw, 0w > 0 YW e W.

First note that there is a polynomial number of constrairits/pe (8), and therefore we clearly have a
polynomial time separation oracle for these constraintsvel would like to solve the above dual linear
program (exactly) then using the ellipsoid method we neesktablish the existence of a polynomial time
separation oracle for the constrairit$ (5). However, we altingvto settle on an approximated solution to
this dual program. To be able to apply the ellipsoid alganithin order to solve the above dual problem
within a factor ofl + ¢, it suffices to show that there exists a polynomial time atgor (polynomial inn,

% andlog —1—) such that for a given solution* = (a*, 3*,v*,6*) decides whethet* is a feasible dual

s .
man

solution (approximately). Thatis, it either provides agetized configuratiod’ = (Cow = (ws,wy)) € C
for which >~ n(v,C)aj + ws), + wydy, > 1, or outputs that an approximate infeasibility evidencesdoe
veEH
not exist, that is, for all generalized configuratiafis= (C,w = (ws,w,)) € C, 3 n(v, C)a* + wey’ +
veEH
wpdy, < 14¢ holds. Insuch a casq% is a feasible dual solution that can be used. Such a conﬁgurét
can be found by the following procedure: For edth= (ws,w,) € ¥V we look for a configuratior” € C

such that(C, W) is a valid generalized configuration, afd, n(v, C')«a} is maximized. If a configuration
veEH

C that is indeed found, the generalized configuration, whosstcaint is checked, i&”,). To find C,

we invoke an FPTAS for the KCC problem with the following inpirhe set of items igZ where for each

v € H there is avolumey; and a size, the goal is to pack a multiset of the items, so that the talinme is

maximized, under the following conditions. The multisedsld consist of at most — w,, items (taking the

multiplicity into account, but an item can appear at mosta&iginumber of times). The total (rounded-up)

size of the multiset should be smaller thian %=, unlessw; < s/, where the total size should be at most

1 (in this case, the window leaves space only for items ofztre). Since the number of applications of the

FPTAS for the KCC problem is polynomial (i.e%V|), this algorithm runs in polynomial time. If it finds a

solution, that is, a configuratiofi, with total volume greater thah— wy;;, — wy 6y, We argue thatC, W)

is indeed a valid generalized configuration, and this insptheat there exists a generalized configuration,

whose dual constrairtl(5) is violated. By the definition ohddws, the propertw, < s/ . is equivalent to

W = 31;12?’ which is the smallest size of window (and the smallest sizedlow forms a valid generalized

configuration with any configuration, provided that the eatif w,, is small enough). Sinc€' has at most

k — w, items, the main window of’ in this case is no smaller thaw;,, w,,) and therefore, the generalized

configuration(C, W) is valid. If ws > s/ ., recall that the main window af', (w,(C'), w,(C)) is chosen

= “min’

so thats'(C) + ws(C) > 1, and thatC'is chosen by the algorithm for KCC so thé{C') < 1 — 15=. We

getl —ws(C) < s'(C) < 1 — {4 and thereforev; < (1 + &)w;(C), i.e.,ws < w,(C) (since the sizes of

windows are integer powers of} ¢). SinceC contains at most — w,, items, we havev,,(C) > w, and so
we conclude thatV < (ws(C),w,(C)), and(C, W) is a valid generalized configuration. Thus in this case

8

we found that this solution is a configuration whose constriai the dual linear program is not satisfied,
and we can continue with the application of the ellipsoidbéthm.

Otherwise, for any windowl/" = (ws,w,) and any configuratio of total rounded-up size less than
1 — %= (orat most 1, ifws < s;,,,), with at mostk — w, items, the total volume is at mogt + ¢)(1 —
wS’yW wné*) < (1+4¢) —wsyqy — wndyy,. We prove that in this case, all the constraints of the doabi
program are satisfied by the solutiqqﬁg. Consider a valid generalized configuration= (C, (ws,wn)).
We have(ws, wy,) < (ws(C), wy,(C)), where(ws(C'), w,(C)) is the main window of”. If ws(C) < s .,
thenw, = w,(C). Sinces’(C') < 1 for any configuration, ant,, < w, (C), wherek—w,,(C) is the number
of items inC, C'is a possible configuration to be used with the windaw, w,,) in the application of the
FPTAS for KCC. Assume next thai; < 1, then when the FPTAS for KCC is applied i = (ws, wy,),
C'is a configuration that is taken into account ot sinces’(C) < 1 — 1J(r€) < 1 — #=, where the first
inequality holds by definition ofvs(C'), andC' has at most — w,,(C) < k — w, |tems Ifw, = 1 then
1> ws(C) > ws = 1, sows(C) = 1. A configurationC] that contains at least one large item satisfies
§'(C1) > e,s08'(Cy) + l—ie > 1+1§j:2 > 1. Therefore if the main window of a configuration is of size
1, this configuration is empty. We therefore have thais an empty configuration, thus(C') = 0 and
Wy, < w,(C) = k. This empty configuratiod' is considered with any possible window.

We denote byz*, Y*) the solution to the primal linear program that we obtainddc&its cost is &1 +¢)

approximation for the optimal solution to the linear pragrave conclude thad TE < (1+e)opT(I').

cec
We modify the solution to the primal linear program, into fiatient feasible solution of the linear program,

without increasing the objective function. We create adigfeneralized configurations whasecomponent
is positive. From this list of generalized configurationg fimd a list of windows that are the main window
of at least one configuration induced by a generalized coraigun in the list. This list of windows is a
subset ofV’ defined above. We would like the solution to use only windovws)V'.

The new solution will have the property that any non-zero gonents ofz*, .1'*0 corresponds to a gener-

alized configuratiorC' = (C,w), such thatw € W'. We still allow generalized configuratiors = (C, w)

wherew is not the main window of”, as long asv € W’. This is done in the following way. Given a

windoww’ ¢ W', we defineX,, = > T The following is done in parallel for every generalized
CreC(w')

configurationC’ = (C, w'), wherew’ ¢ W' and such that?;, > 0, where the main window af'isw > w’

(butw” # w). We letC = (C,w). The windows allocated for small items need to be modified, finsis

an amount of—YZ «w I8 transferred frony; ,» to Y; ,,. We modify the values andx as follows. We
increase the véﬁue cn"* by an additive factor o&*c and Iet:n*é =0.

To show that the new vectdr*, Y*) still gives a feasible solution of the same value of objectisnction,
we consider the madifications. The sum of components*aloes not change at all in the above process,
thus the value of the objective function is the same. Moreofge every configurationC, the sum of
componentg:*, that correspond to generalized configurations whose amafign of large items i€, does
not change. Thus the constrairlt$ (1) still hold. We next iciemghe constrain{{2) foi, for a given small
item: € S. Since the sum of variablds’,;, does not change, this constraint still holds.

As for constraints[(3) and{(4), for a window ¢ W', the right hand side of each such constraint became
zero. Onthe other hand, for windows)itt’, every increase in some variabig for C = (C,w = (ws,wy)),

that is originated in a decrease ©f, for C' = (C,w' = (wl,wl,) is accompanied with an increase of

xt

gt . x*
— 7Y = X5 Y, InY,, foreveryi € S, thatis, an increase g C’ s; - Y}, in the right
cn w ? ZES

cMec(w!)

hand size of the constrai(S) far, and an increase af; - xé in the left hand side. Since we have

/

ws - Xy > wh - Xy > Z st » before the modification occurs (since constrdint (3) fontiedow w’

holds for the solution before the modlflcatlon) we get thatmcrease of the left hand side is no smaller than

the increase in the right hand side. There is an increa3¢ ggc— Y; .« inthe right hand size of the constraint
ies v
() for w, and an increase af,, - ac -, in the left hand side. Since we havg - X,y > w], - X,y > > Y ,,
ieS
we get that the increase of the left hand side is no smallertti@increase in the right hand side.

Now, we can delete the constraints [of (3) add (4) that coarspo windows iV \ W'. In the resulting
linear program we consider a basic solution that is not wiitae the solution we obtained above. Such a
basic solution can be found in polynomial time. We denote Itfaisic solution byx*, Y*).

We apply several steps of rounding to obtain a feasible pgosf the items into bins. We first round up
x*. That is, denote by: the vector such that = [x%] for all C' € C. Moreover, each small iteme 5

such thatY} W)Wew is fractional, is packed using a dedicated bin. We modifyvhiee ofz - for C that
corresponds to an empty configuratiointogether with the windowl, k), to reflect the additional bins that
accommodate the small items that were previously packetidrally. We modify the valueeYZ w)Wew

so that every itemi which is packed into a new bin ha’ew = 0 for all W, except folV = (1, k) for which
YZ w = 1. For all other variable¥’ vy we defineY; W= Y . We next bound the increase in the cost due
to this rounding.

Lemmal }° &5 < 3 x5+ |[H|+2WV|.
cec cec

Proof. Consider now the primal linear program, where constraBitsuid [(4) exist only for windows in”,
the variablesr exist only for generalized configuratios = (C,w) wherew € W', and the variables
Y; w exists only forlV € W'. The basic solutiorix*, Y*) is a feasible solution for this linear program. In
the primal linear program there afH | + 2|)V'| 4 | S| inequality constraints, and hence in a basic solution
there are at mogtH| + 2|W'| + |S| basic variables. For everye S, there is at least on8”’ such that
Y; w is a basic variable, and therefore the number of basic Vasdbom thex components and additional
basic variables from th& components is at mo$§k | 4+ 2|WW'|. Hence the sum of the number of fractional
components among the variables, and the number of small items such that the védtpy;) contains
more than one non-zero component is at mégt+ 2)V’'|. This is an upper bound on the difference in the
objective values of the two solutions and the claim followss.

Our scheme returns a solution that pagisbins with configuratiorC'. Each large item of the rounded-up
instance is replaced by the corresponding itemh.ale clearly use at mos} . Z¢ bins in this way. We next

cec
pack each item of.; by its own bin (if L, is non-empty). We denote the resulting solutiond®y L; 4.

Lemma2 The cost 05O L4y is at most) | &5 + €OPT.
ceC

Proof. It suffices to show thaftZ,| < oPT. To see this last claim note thit;| < 2|L|e* and each item

£<1/2. m

Corollary 3 The number of bins used YO L;,, ¢ is at most(1 + 2)oPT+ |H| + 2|WV'|.

10

We next consider the packing of the small items that are sgipdo be packed (according 16) in
bins with a window of typelW = (ws,w,). Assume that there ar& (W) such bins (i.e., X(W) =
>, Zz). Denote byS(W) the set of small items that we decided to pack in bins with wndi”
C:C=(C,W)
(for some of these items we will change this decision in thgue§. Then, by the feasibility of the linear

program we conclude thas(W)| < w, X(W)and > s <w,X(W). We next show how to allocate
1eS(W)

almost all items of5 (W) to the X (1) bins with windowW such that each such bin will contain at mést

items (that is, at most,, small items) and the total size of items in each such bin veilbbmostl + <.

To do so, we sort the items i$i(1/) according to non-increasing size (assume the sorted listrafindices

iSby > by > ... > b|5(W)|). Then, allocate the items to the bins in a round-robin marswethat binj

receives items of indicels; . x (1w for all integersp > 0 such thatj + p - X (W) < |[S(W)]. We call the

S/

allocation of items for a given value pfaround of allocations|f w, = -z then all items assigned to this
type of window are of size 0, and the resulting allocationabdvin the sense that every bin contains items
of total size at most 1, and at mdsttems per bin, and there is no need to adapt the packing of gsrak.
We therefore assume, > s, ... We claim that the last bin of indeX (1) received at most ag((lv)
IS(W)I
fraction of the total size of the items, whose sum is equal ¥ b;. To prove this, we artificially add at
i=1
mostX (W) — 1 items of size zero to the end of the list (these items are ajdéébr the sake of the proof),

and allocate them to the bins that previously did not recaivéem in the last round of allocations, that is,
binsr,..., X(W) such that bin- — 1 < X (W) received the last item. If bitX (1) received the last item
then no items are added. Now the total size of small itemsiredahe same, but every bin got exactly one
item in each round. Since the last bin received the smalieist in each round, the claim follows. On the
other hand, we can apply the following process, at every fireX (W), remove the first (largest) small
item from bini. As a result, the round-robin assignment now starts from kin and bin; becomes the bin

that receives items last in every round, and thus by the usvproof, the total size of items assigned to it
IS
is at most Xz(lw) (since the total size of items does not increase in each. step)

We create an intermediate soluti®\® L;,.;.,- by removing the largest small item from every bin and pack-
ing these removed items in separate bins in groudesrefnoved items per bin (note that such bin is feasible
as the total size o§ small items is at most 1 anid > % and hence the cardinality constraint is satisfied as
well). The total cost of this intermediate solution is tHere at mos{1+¢)-((1 + 2e)oPT+ |H| + 2)W'|)+
1 (the last bin can contain less thérsuch removed items). We note that since we divide the iter§§ i)
equally (up to a difference of one item) to thg /) bins, we conclude that after the removal of one item
from each bin (or even before that), every such bin has at inibsins (both large and small), and therefore
all the bins satisfy the cardinality constraint. Moreowbe total size of small items assigned to such bin
(after the removal of one item per bin) is at mastby the above argument regarding the total size of small
items in a bin where the largest small item was removed.

The intermediate solution is infeasible because our defimitf w; is larger than the available space for
small items in such bin. We create the final solut®@L ;;,, as follows. Consider a bin such that the
intermediate solution packs to it large items accordingotafigurationC’, and small items with total size at
mostw;(C'). For every bin, we do not change the packing of large itemdoAthe small items, we remove
them from the bin and start packing the small items into thigbeedily in non-decreasing order of the item
sizes, as long as the total size of items packed to the binmlatesxceed 1. The first item that does not fit
into the bin we pack in separate bins (each such separateilbaontain % such first items for different bins

11

of SOL;nter). Similarly to the above argument these are feasible bidstlagy add an additive factor ef
times the cost 060 L;,.+., t0 the total cost of the packing (plus 1).

By the definition of windows, the actual space in a bin with @aw (ws, w,,), that is free for the use of
small items, is at least of sizg=. After the removal of the first item that does not fit into thexsp for
small items, the remaining small items allocated to thishzine a total size of at most, — 1= = e~
Since by definitiong7= < 1, the small items that were assigned to a bin but cannot beeggclot including
the first item that was packed in the previous step) are of sita at most. Similar considerations can
be applied to the cardinality of these items. Since the utgzhdtems are the largest ones, the remaining
unpacked items in a bin #OL;,:., have cardinality of at mostw,, < k. Therefore, we can pack the
unpacked items of ever& bins of SO L;,. using one additional bin. In this way we get our final solution
SOL finq- We note that the cost FOL ¢, is at most(1 + 2¢) times the cost oSO L;y. plus two.
Therefore the cost aFOL i, is at most(1 + 2¢) ((1+¢) - ((1 +2e)oPT+ [H| +2W/|)+1) +2 <
(1+10e)OPT+ 5(|H| + [W'| + 1) < (1 + 10e)oPT + 5(% + (& + 1)/%) + 2 where the last inequality
holds bys < %, |H| < % and|W'| < [C| < (4 + 1)Y/¢. Therefore, we have established the following
theorem.

Theorem 4 If k > 5% the above scheme is an AFPTASB#*CC

Since we covered both cases, we obtain the following.

Theorem 5 The above scheme is an AFPTASB&RCC

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approxititam schemes for scheduling on parallel machines.
Journal of Schedulindl(1):55-66, 1998.

[2] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithmerfon-line bin-packing problems with cardinality
constraintsDiscrete Applied Mathematic443(1-3):238-251, 2004.

[3] W. W. Bein, J. R. Correa, and X. Han. A fast asymptotic apmation scheme for bin packing with rejection.
Theoretical Computer Scienc&93(1-3):14-22, 2008.

[4] A. Caprara, H. Kellerer, and U. Pferschy. Approximatsmhemes for ordered vector packing probleidaval
Research Logistic92:58-69, 2003.

[5] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. pAgximation algorithms for knapsack problems with
cardinality constraintsEuropean Journal of Operational Researd23:333-345, 2000.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approxioratlgorithms for bin packing: A survey. In
D. Hochbaum, edito\pproximation algorithmsPWS Publishing Company, 1997.

[7] E. G. Coffman Jr. and J. Csirik. Performance guaranteestie-dimensional bin packing. In T. F. Gonzalez,
editor,Handbook of Approximation Algorithms and Metaheuristdsapter 32. Chapman & Hall/Crc, 2007. 18
pages.

[8] J. Csirik, D. S. Johnson, and C. Kenyon. Better approxiomealgorithms for bin covering. IRroc.of the 12th
Annual Symposium on Discrete Algorithms (SODA2084ges 557-566, 2001.

[9] J. Csirik and J. Y.-T. Leung. Variable-sized bin packamtd bin covering. In T. F. Gonzalez, editétandbook
of Approximation Algorithms and Metaheuristichapter 34. Chapman & Hall/Crc, 2007. 11 pages.

12

[10] J. Csirik and J. Y.-T. Leung. Variants of classical adigensional bin packing. In T. F. Gonzalez, editor,
Handbook of Approximation Algorithms and Metaheuristatgapter 33. Chapman & Hall/Crc, 2007. 13 pages.

[11] J. Csirik and G. J. Woeginger. On-line packing and cimgeproblems. In A. Fiat and G. J. Woeginger, editors,
Online Algorithms: The State of the Adhapter 7, pages 147-177. Springer, 1998.

[12] W. Fernandez de laVega and G. S. Lueker. Bin packing eaolved withinl +¢ in linear time.Combinatorica
1(4):349-355, 1981.

[13] G. Désa and Y. He. Bin packing problems with rejecti@nalties and their dual problemiformation and
Computation204(5):795-815, 2006.

[14] L. Epstein. Bin packing with rejection revisited. Rroc. of the 4th Workshop on Approximation and online
Algorithms (WAOA2006pages 146-159, 2006. Also in Algorithmica, to appear.

[15] L. Epstein. Online bin packing with cardinality corestrts.SIAM Journal on Discrete Mathematjc&0(4):1015—
1030, 2006.

[16] L. Epstein, Cs. Imreh, and A. Levin. Bin covering withrdanality constraints. Manuscript, 2007.

[17] D. S. Hochbaum and D. B. Shmoys. Using dual approxinmagigorithms for scheduling problems: theoretical
and practical resultslournal of the ACM34(1):144-162, 1987.

[18] D. S. Hochbaum and D. B. Shmoys. A polynomial approxiorascheme for scheduling on uniform processors:
Using the dual approximation approac&iAM Journal on Computind 7(3):539-551, 1988.

[19] K. Jansen and R. Solis-Oba. An asymptotic fully polyimainime approximation scheme for bin covering.
Theoretical Computer Sciencg06(1-3):543-551, 2003.

[20] K. Jansen and R. van Stee. On strip packing with rotatidn Proc. of the 37th Annual ACM Symposium on
Theory of Computing (STOC200%pges 755-761, 2005.

[21] N. Karmarkarand R. M. Karp. An efficient approximatiaihsme for the one-dimensional bin-packing problem.
In Proceedings of the 23rd Annual Symposium on Foundationswipter Science (FOCS'83ages 312-320,
1982.

[22] H. Kellerer and U. Pferschy. Cardinality constrained-packing problems.Annals of Operations Reseatch
92:335-348, 1999.

[23] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysiseferal task-scheduling algorithms for a model of
multiprogramming computer systemiournal of the ACM22(4):522-550, 1975.

[24] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Errata: &fysis of several task-scheduling algorithms for a
model of multiprogramming computer systemdturnal of the ACM24(3):527-527, 1977.

[25] F. D. Murgolo. An efficient approximation scheme for iedle-sized bin packingSIAM Journal on Computing
16(1):149-161, 1987.

[26] H. Shachnai and O. Yehezkely. Fast asymptotic FPTAS&wking fragmentable items with costs. Proc. of
the 16th International Symposium on Fundamentals of Coatiput Theory, (FCT2007pages 482-493, 2007.

[27] J. D. Uliman. The performance of a memory allocatioroaithm. Technical Report 100, Princeton University,
Princeton, NJ, 1971.

13

A First caseof Section[3: k < 4

In this case we apply linear grouping falt items, and do not classify items into types. That is, we partithe items
into % classesq, Ly, ..., Ly .2 such thatine®] = |L1| > |Lg| > -+ > |Ly 3| = [ne?] (note that this condition
uniquely identifies the cardinality of each class), and ghehif there are two itemg j with sizess; > s; andi € L,
andj € L, theng < p (so L, receives the subset of largest items, and2fot p < 8%, L, receives the largest
items fromI \ (L, U---U L,_1)). The two conditions uniquely define the allocation of iteimts classes up to the
allocation of equal sized items.

Then, we round up the sizes of the itemdlin . .., L, s as follows: For all values of, p = 2,3,.. ., 1/¢3, and
for each itemi € L, we defines; = maxjcy, s; to be therounded-up size of itemh The rounded-up instandé
consists of the set of itends\ L,, where for every, the size of itemi is s (the parametek remained unchanged). We
next argue thadpPT(I’) < oPT. Given an optimal solution td, OPT, we transform it into a solution t&'. We define
a bijection from/I’ to I, so that every item of’ is mapped to an item af that is no smaller, and can take its place
in the packing. Sincé’ does not contair.;, and sincd ;| < |L;_1| (in both I andI’, since the size of sets is not
influenced by the rounding), we map every itemigf(for all « > 2) in I’ to some item of_;_; in I. By our rounding,
every item ofL; in I’ is no larger than any item df;_; in I.

Given the rounded-up instandé we let a configuration of a bif' be a set of at most items of I’ whose total
(rounded-up) size is at most 1. We denote the set of all cordiguns byC (this set is not computed explicitly, and
typically has an exponential size). We denote the set of gzes inI’ by H. For eactv € H, we letn(v, C) be the
number of items with size in C, and we letn(v) be the number of items if, with sizev (wheren(v) = |ne?]
orn(v) = [ne*], unless several classes are rounded to the same sizeéFthus). We solve (approximately) the
following linear program, where for each configurati@nthere is a variable ¢ indicating the number of bins packed
using configuratiord'.

min 3 zo
cecC
st. > n(w,C)xc >nv) YweH
cecC
zc >0 vC e C.

We letz* be an approximate (within a factor df) solution to this linear program, and further defipe = [z7.],

for every configuratiorC' € C. It can be seen that the vectgiis a feasible solution to the linear program (since
yo > x¢ forall C, it satisfies all the constraints). Our scheme returns aisalthat packg ¢ bins with configuration

C, in this solution, there are at leastv) slots for everyv € H. Note that some of these slots may remain empty,
which happens in the case that the number of slots is sttatier tham(v). To get a solution fod \ L, each item

of the rounded-up instance is replaced by the corresporitéimgof I. We clearly use at mosp . y¢ bins in this way.
cec
To solve the above linear program approximately, we invtleedolumn generation technique of Karmarkar and

Karp [21]. We next elaborate on this technique. The abowaliprogram has an exponential number of variables and
a polynomial number of constraints (neglecting the nonatietly constraints). Instead of solving the linear pragra

we solve its dual program (that has a polynomial number dabies and an exponential number of constraints). The
variablesz, correspond to the item sizes M, their intuitive meaning can be seen as weights of thesesitem

max > n(v)zy
veEH
st. > nC)z <1 VCeC
veEH
Zy >0 Yv € H.

To be able to apply the ellipsoid algorithm, in order to sdhve above dual problem within a factor bf- ¢, it suffices
to show that there exists a polynomial time algorithm (polymal inn andé) such that for a given solutiogi* (which
is a vector of lengthH| < Eig), decides whethet* is a feasible dual solution (approximately). That is, iheit

14

provides a configuratiof’ € C such that}_ n(v,C)z! > 1, or outputs that an approximate infeasibility evidence
veH

does not exist, that is, for all configuratiofse C, > n(v,C)z* < 1+ ¢ holds. In such a casc-fu%6 is a feasible
veEH
dual solution that can be used. Such a configurafiaran be found using an FPTAS for the followiRgiAPSACK

PROBLEM WITH A MAXIMUM CARDINALITY CONSTRAINT (KCC): Given a set of item typeH, where each item
typev € H has a given multiplicity»(v), a volumez; and a sizey, the goal is to pack a multiset of at mdsttems
(taking the multiplicity, in which items are taken, into acmt, and letting the solution contain at mesgt) items of
typev) and a total size of at most 1, so that the total volume is meech If the FPTAS to KCC finds a solution
with a total volume greater than 1, then this solution is &figomation whose constraint in the dual linear program is
violated, and we can continue with the application of thgpsdid algorithm. Otherwise, the FPTAS to KCC finds a
solution with a total volume of at most 1, since the FPTAS i4 ane approximation, it means that no solution with a
total volume larger tham + ¢ exists, and therefore, all the constraints of the dual lipeagram are satisfied by the
solution 11*6. To provide an FPTAS for KCC, note that one can replace anwéhmsizev by n(v) copies of this item
and then one can apply the FPTAS of Caprara et al. [5] for tta&ack problem with cardinality constraints. The
FPTAS of [5] clearly has polynomial time in the size of its linpandg. Since the number of items that we give to this
algorithm as input is at most, we can use this FPTAS and still let our scheme have polyrdamiaing time.

Since the approximated separation oracle that we descaiy@ek runs in polynomial time (polynomial mandé)
we conclude that the approximated solution of the (priniaBdr program:* is obtained in polynomial time (again
polynomial inn and %). Sincex* is a solution of a linear program with an exponential numterasiables,z* is
given in a compact representation, which is a list of nore@mponents of the solution, together with their values.
The set of items i \ L, is packed according to the integral solutipas described above. It remains to pdgk To
do so, we pack each item @f; in a separate (dedicated) bin. Note that therg Ar¢ = [ne®] < ne® + 1 such bins,
and sinceoPT > 7 > ne? we conclude that the number of additional bins (used to @agks at mostoPT+ 1, so

APX < > yo + |L1] < 3 yo 4+ €oPT+ 1. Therefore, it suffices to bound the cost, impliedipyn terms ofopT.
cec cec
Instead of using an optimal solution to the linear programdsge value is a lower bound @pT(I’), sinceopT(I’)

is a valid solution to the linear program), we usé & e-approximated solution, and this degrades the value of the
returned solution within a factor df+¢ (i.e., > =g < (1 +¢) - oPT(I")).
cec

We next bound " (yc — z{,). Note that in the primal linear program there are at n;bstonstraints (notincluding
cec
non-negativity constraints), and hence in a basic soltigroperty that we can always assume tHasatisfies) there

are at most}3 positive components, and hence there are at @%dssactional components. Therefor®, (yo—xf) <
cec
1

e3
ThereforeaAPx < 3 yo+eoPT+1= Y 28+ Y (yo—a%)+e0PT+1 < (1+¢€)-0PT(I') + 5 +c0PT+1 <
cecC cec cecC
(14 2¢)oPT+ & + 1. Hence, we conclude the following theorem.

Theorem 6 If k < &, the above scheme is an AFPTASB&RCC

£2

B An AFPTASfor BPR

In this section we use the similarity between the APTAS of i@epet al. [[4] for BPCC and the APTAS of Epstein
[14] for BPR to develop our methods further. We obtain an AK8Tor BPR using adaptations to the methods of the
previous section.

Without loss of generality we assume that< 1 for all <. This is so as if there is an item with higher rejection
penalty, then it is better to pack this item in a separatetgahdil bin instead of rejecting it, and this situation iseru
for an item with a unit rejection penalty as well. Therefdrng changing the rejection penalty of such an item to 1, we
do not change the optimal solution or a (reasonable) apmate solution.

Let0 < e < % be such that is an integer. An itenj is largeif both s; > € andr; > . All other items aresmall
We denote byl the set of large items, and I#ythe set of small items.

15

We perform rounding of the rejection penalties and the sitéise large items (only). Far=0,1,..., A = Elz — %
and every large itemi € L, such that; € [+ie?, e + (i + 1)e?), we round down the rejection penaityto ¢ + ic.
For a large iteny, denote the rounded rejection penaltyjdfy , and for a small iteny let; = r;. Definel’ to be
the adapted inpuLG (I’) be the cost of an arbitrary algorlthth on the input/’, and IetALG (I') be the cost of
the same algorithm on the original items. Then, Epsieih $héjved the following:

Lemma7 (Lemmalin [14]) ALG'(I') < (1 +¢)ALG(I') andoPT(I’) < OPT(I).

Fori =0,1,...,A, let L' = {ji,...,7n, } be the set of large items with rounded rejection penaltyic2, such
thats;, > sj, > --- > s;, . Foreach sel? such thatL{| > Elg we perform linear grouping separately. That
is, for values ofi such that|Li| > L, we letm = % and we partitionZ’ into m classesLi, ..., L, such that
[nie3] = |Li| > |Ly| > --- > |Li,| = [n:e?], andL] receives the largest items frobi \ [L{ U---UL{_,]. For
everyi =0,1,...,Aandj = 2,3,...,n; we round up the size of the elementsgfto the Iargest size of any element
of L; For itemj of a setL; (» > 2), we denote by’ the rounded-up size of the item, which is defined to be equal
to the maximum size of any item ib;. For items inL} (for all i) we do not round the sizes, and we dendte= s;
forall j € Li. For values of such thafL’| < %, each large item of/ has its own seL’ such that; is an empty
set, and for a large iteme L we lets’ = s;. We note that in both cases (i.e., for Iarge and small calitdesof L)
we have|Lt| < 2¢2|LY|. Forj € S we also denots’; = s;. We denote by, = U2, Lt andL’ = L\ L,. By the
above, we havel;| < 2¢3|L|. We consider the mstandé/ consisting of the items if.” U .S with the (rounded-up)
sizes functiors’ and the rounded rejection penalty functiénThe items inL; are packed each in a separate bin. We
haveoprT(I”) < opT(I’), similarly to the previous sections. We next describe thekivgy of the items in/”.

Given the instancd”, we let a configuration of a bid' be a (possibly empty) set of items &f whose total
(rounded-up) size is at most 1. We denote the set of all corfigus byC. Let H = {(o1, 1), .. (01, p¢)} be the
set of different types of large items where denotes the (rounded up) size of an item with type p;), andp; is
its (rounded) rejection penalty. We ha\é| < % - A < &%. For eachv € H we denote by:(v, C) the number of
items with typev in C, and we denote by (v) the number of items id”" with typewv. For a large iteny, we denote
by type(j) the type ofj.

We denote the minimum size of an item by,;, = min,cg s, (recall that in BPR, it is assumed that sizes of
items are strictly Iarger than 0), and as in the previousaecive lets/, .. = max{(lj6 It € Z, (1+ls)t < Smin}-

The valuelog1+E S, — is polynomial in the size of the input. We define the followisgt)V = { 1+E)t 0 <t <
logy, . S, — + 1} A windowis defined as a member &Y. W is also called the set of all possible windows. Then,

IW| < (log1+E —— + 2). Since windows are scalars, they can be compared with respteir size.

Note that eachbin packed with large items according to agordtionC typically leaves space for small items. For
a configuratiorC' we denote thenain window of” to bew(C), which can be seen as an approximation of the available
size for small items in a bin with configuratim We define it as follows. Assume that the total (rounded ine) of
the itemsinC is s'(C). Then,w(C) = (1+E)t wheret is the maximum integer such that< ¢ < log; , . -~— —+ land

thats’(C) + (H%)t > 1. The main window of a configuration is a window (i.e., belotmg¥V), but}V may include
Windows that are not the main window of any conﬁguration Weerthat|W)| is polynomial in the input size and in

wherea$C| may be exponential né\ specifically,|C| < (+ 1)%/¢, since in configuration there are uthdarge
|tems of|H| < 1 = types. We denote the set of windows that are actual main winad at least one conflguratlon by
W', Similarly to the previous section, we define a linear pragthat allows the usage of any windowli#i and later
modify the linear program and the solution to this lineargsean (that we obtain) to use only windows)of'.

We define a generalized configurati6has a pairC = (Cow = ﬁ), for some configuratior, and some
w € W. The generalized configuratiafi is valid if w < w(C). The set of all valid generalized configurations is
denoted by’. For everyiV € W denote byC' (W) the set of generalized configurations such fiiais their window,
e, C(W)={C=(Ciw)eC:w=W}

We next consider the following linear program. In this linpaogram we have a variables, denoting the number
of bins with the generalized configuratidh variablesY; v indicating if the small itemi is packed in a window of
type W, and variables; indicating that itemi is rejected (for both small and large items).

16

min Yoxat+ Y Tz

éee ieL’Us
s.t. > n@,Cxs+ >, zj=>nv) YWweH (7)
C=(C,w)eC Jitype(j)=v
> Yiw+z>1 Vie s (8)
wew
W- > x> s -Yiw YW e W (9)
CeCc(w) €S
TEH > 0 vC el
Yiw >0 YW e wW,VieI”
z; >0 viel”.

Constraints[{[7) and18) ensure that each item (large or ywfail’ is packed or rejected by the solution. Constraints
(9 ensure that the total size of the small items that we @ettichack in a window of typ&V is not larger than the
total available space allocated to the windows of small #ettmat is, the number of bins that are packed according to a
generalized configuration that has this window is large ghoW/e note thabPT(I”) implies a feasible solution to the
above linear program that has the costr(1”), since the packing of the small items (including the spestiiin of the
subset of rejected items) clearly satisfies the constr@taind the packing of large items (including the speciiicat

of the subset of rejected items) satisfies the constrditsM@reover, it implies a solution to the linear program in
which all variables: ~, that correspond to generalized configuratiéns (C,w), for whichw is not the main window

of C, are equal to zero, and all variablEs,, wherew ¢)V’ are equal to zero as well.

Once again (similarly to the AFPTAS for BPCC) we invoke thluoon generation technique of Karmarkar and Karp
[21] as follows. The above linear program has exponentialler of variables and polynomial number of constraints
(neglecting the non-negativity constraints). Insteadabfiag the linear program we solve its dual program (that has
a polynomial number of variables and an exponential numbeomstraints). The variables, correspond to the item
types inH, their intuitive meaning can be seen as weights of thesesitéfhe variableg; correspond to the small
items, and their intuitive meaning can be seen as weightsesfetitems. For eadly € W we have a dual variable
~w . Using these dual variables, the dual linear program is l&sifs.

max S nay + > B

veH i€S
st. > n(v,Clay +w-yy <1 Ve = (Cyw) € 14 (20)
veH
Bi — siyw <0 VieS, VW eWw (11)
Bi < Vie S (12)
a, <7l Vv e H,Vie L :type(i) =v (13)
a, >0 Yve H
Bi >0 VielsS
w >0 VIV € W.

First note that there is a polynomial number of constraiftyee (11), [(I2) and (13), and therefore we clearly have
a polynomial time separation oracle for these constrailitaze would like to solve the above dual linear program
(exactly) then using the ellipsoid method we need to esthtilie existence of a polynomial time separation oracle
for the constraintd (10). However, we are willing to settfeam approximated solution to this dual program. To be
able to apply the ellipsoid algorithm, in order to solve tihewee dual problem within a factor df+ ¢, it suffices to
show that there exists a polynomial time algorithm (polyiedrim n, % andlog S%) such that for a given solution

a* = (a*, 8*,~*) decides whethet* is a feasible dual solution (approximatel);rsl.n

17

That is, it either provides a generalized configuraiion= (C,w) € C for which 3 n(v,C)a + wvy: > 1,
veH

or outputs that an approximate infeasibility evidence duasexist, that is, for all generalized configuratiafis=

(C,w) € C, 3 n(v,C)a* +wyk, <1+ ¢ holds. Insuch a casqi% is a feasible dual solution that can be used.
veEH

Such a configuratiod' can be found by the following procedure: For ed&he W we look for a configuration

C € C such thatC, W) is a valid generalized configuration, and, n(v, C')a is maximized. If a configuratiot”
veEH
that is indeed found, the generalized configuration, whosstcaint is checked, i&”,).

To find C, we invoke an FPTAS for the standard knapsack problem wéHdHowing input: The set of items i&
where for eacly € H there is a volume; and a size, the goal is to pack a multiset of the items (an item can appear
at most a given number of times), so that the total volume imized, under the condition that the total (rounded-up)
size of the multiset should be smaller thar- 1+E, unlessW < s .., where the total size should be at most 1 (in
this case, the window leaves space only for items of size)z8ince the number of applications of the FPTAS for the
knapsack problem is polynomial (i.€\V|), this algorithm runs in polynomial time.

If it finds a solution, that is, a configuratiafi, with total volume greater thah — Wy;;,, we argue thatC, W)
is indeed a valid generalized configuration, and this ingaii@t there exists a generalized configuration, whose dual
constraint[(ID) is violated.

By the definition of windows, the property’ < s/, is equivalent tolV = 1"; which is the smallest size of
window (which forms a valid generalized configuration withyaonfiguration). Ifit > s/ ., recall that the main
window of C, w(C) is chosen so that' (C) + w(C) > 1, and thatC' is chosen by the algorithm for the knapsack
problem, so that'(C) < 1 — % We getl — w(C) < s'(C) < 1 — = and thereford?V < (1 + ¢)w(C),
i.e., W < w(C) (since the sizes of windows are integer powerd ef 5) so we conclude thatC, W) is a valid
generalized configuration. Thus in this case we found thasthiution is a configuration whose constraint in the dual
linear program is not satisfied, and we can continue with iptieation of the ellipsoid algorithm

Otherwise, for any windowV, any configuratiorC' of total rounded-up size less than— 1+ (or at most 1, if
W < s)...), has a volume of at mogtl + ¢)(1 — Wry;,) < (1 + 5) W, We prove that in this case, all the
constraints of the dual linear program are satisfied by thetiea ;*—. Consider a valid generalized configuration

C = (C,w). We havew < w(C), wherew(C) is the main wmdow oC. If w(C) < s, thenw = w(C). Since
s'(C) < 1 for any configuration(' is a possible configuration to be used with the winddin the application of
the FPTAS for knapsack. Assume next thiat< 1, then when the FPTAS for knapsack is appliedidn C is a
configuration that is taken into account féf sinces’(C) < 1 — (f) <1- T where the first inequality holds by
definition ofw(C). If w = 1thenl > w(C) > w =1, SOw(C’) = 1. A configurationC; that contains at least one
large item satisfies’(Cy) > ¢, s0s'(C}) + — > 1+5++5 > 1. Therefore if the main window of a configuration is

T+e =
of size 1, this configuration is empty. We theerefore have that an empty configuration, thu$(C') = 0. This empty
configuration is considered with any window.

We denote by X*, Y*, Z*) the solution to the primal linear program that we obtaineidc&its cost is 1 + ¢)

approximation for the optimal solution to the linear pragrawve conclude thaty_ Xz + oz < (1+
Gec ieL’US

g)oPT(I").

We modify the solution to the primal linear program, into Heatient feasible solution of the linear program, without
increasing the objective function. We create a list of galieed configurations whosg* componentis positive. From
this list of generalized configurations, we find a list of wamgs that are the main window of at least one configuration
induced by a generalized configuration in the list. Thisdstindows is a subset ofV’ defined above. We would
like the solution to use only windows froi’.

We modify theX* andY™* components, while th&* components are not modified. The new solution will have
the property that any non-zero componentXdf, Xz corresponds to a generalized configurative= (C, w), such

thatw € W'. We still allow generalized configuratiod$ = (C,w) wherew is not the main window of?, as long

asw € W'. This is done in the following way. Given a window/ ¢ W', we defineB,, = Y. X*,. The
CreC(w’)

following is done in parallel for every generalized configtionC’ = (C,w"), wherew’ ¢ W and such tha;Kg, >0

18

where the main window of’ is w > w’ (butw £ w). We letC = (C,w). The windows allocated for small items

need to be modified first, thus an amountﬁﬁYZ w IS transferred frony; ,,» to'Y; ,,. We modify the valuex(’”, and
Xz as follows. We increase the valuekif* by an additive factor oﬁ(g and Ieth =0.

To show that the new vect¢X *, Y*, Z) still gives a feasible solution of the same value of objexfiinction, we
consider the modifications. The sum of component¥ dbfioes not change at all in the above process, thus the value of
the objective function is the same. Moreover, for every gamfitionC, the sum of components *, that correspond
to generalized configurations whose configuration of largms isC, does not change. Thus the constraihts (7) still
hold. We next consider the constrainl (8) fofor a given small itemi € S. Since the sum of variablé§®,, does not
change, this constraint still holds.

As for constraintd[(9), for a window ¢ 1’, the right hand side of each such constraint became zerch&uther
hand, for windows ilV’, every increase in some vari<';1b‘l’ek for C' = (C, w) that is originated in a decrease,ﬁg/

for ¢’ = (C,w’) is accompanied with an mcreaseefiYw, = C: Y, in Y
c’’

7,w?

for everyi € S, thus

clec(w’)
is, an increase OE B i - Y, in the right hand size of the constraiht (9) for and an increase af - T, in the
€S
left hand side. Since we have- B, > w' - By > Y s} - Y before the modification occurs (since constraint
i€S

(9) holds for the solution before modification for the winda), we get that the increase of the left hand side is no
smaller than the increase in the right hand side.

Now, we can delete the constraints[df (9) that correspondridaws in)V \ W'. In the resulting linear program we
consider a basic solution that is not worse than the solut@obtained above. Such a basic solution can be found in
polynomial time. We denote this basic solution(®*, Y*, Z*).

We apply several steps of rounding to obtain a feasible pgosf the items into bins. We first round 0g*. That

is, denote byX the vector such thak, = [X%] for all C € C. Moreover, each small iterh € S such that

(Y w)wew is fractional, is packed using a dedicated bin. We modifywhiee ofz for C that corresponds to an
empty configuratior, together with the windowt, to reflect the additional bins that accommodate the srreathst
that were previously packed fractionally. We modify theues(Y; ;-)wew s that every itena which is packed into

a new bin ha¥; w = 0forall W except forlw = 1, for which Y; w = 1. For all other variable¥; v we define

YlW Y; - Foreveryi € I'weletZ; = VA
We next bound the increase in the cost due to this rounding.

Lemma8 Y X¢ < Z Xo+ [H|+ W
cec

Proof. Consider now the primal linear program, where constraBitexist only for windows inV”, the variables: ~
exist only for generalized configuratiofs= (C,w) wherew € W', and the variable¥; y, exists only forl € W'.
The basic solutioriX*,Y*, Z*) is a feasible solution for this linear program. In the prifiaar program there are
|H|+|W'|+|S|inequality constraints, and hence in a basic solution taer@t mostH |+ |[W'| +|S| basic variables.
For everyi € S, there is at least one variable associated withat is a basic variable. This variable is eittigror
Y; w- for somelV’, and therefore the number of basic variables fromitisemponents and additional basic variables
from theY andZ componentsis at mogk | + [W’|. Hence the sum of the number of fractional components among
thez s variables, and the number of small items such that the ve¥ipy;,)w is non-integral is at mostZ| + [W'|.
This is an upper bound on the difference in the objectiveesbf the two solutions and the claim followa.

Our scheme returns a solution that paé[@ bins with configuratiorC'. Each large item of the rounded-up instance
is replaced by the corresponding itemlofWe clearly use at mosp Xé bins in this way. We next pack each item

cecC
of L; by its own bin (if L, is non-empty). We denote the resulting solutiontyL;4ge-

Lemma9 The cost o50L;, g is at mostz Xc + > 'Z; + €OPT.
ceé el

Proof. It suffices to show thdtL; | < eOPT. To see this last claim note thdt; | < 2|L|e and each item i has both

19

a size of at least and a rejection cost of at leastand therefor®PT > |L|e, and thereforéL;| < 2e20PTand the
claim follows sinces < 1/2. m

Corollary 10 The cost 05OL;,4e is at most(1 + 2e)oPT+ |H| + [W/|.

We next consider the packing of the small items that are ssgxpto be packed (accordingid in bins with window
W. Assume that there at® (W) such bins (i.e. X (W) = S Xgz). Denote byS(W) the set of small items
¢:C=(c,w
that we decided to pack in bins with winddw (for some of the(se i'zems we will change this decision in titpie8.
Then, by the feasibility of the linear program we concludgthd” s, <W - X (W). We allocate almost af (V)
ieS(W)
to the X (W) bins with windowl?” such that the total size of the items in each such bin is at imeﬂla exactly as in
the previous section. As in the previous section, we craatetarmediate solutio§O L;,¢.,- by removing the largest
small item from each such bin. Each removed item is small heckfore either its rejection penalty is at mostr its
size is at most. We pack the removed small items with size at nsaetnew bins, packiné such items in a bin, except
perhaps the last such bin, and the other removed items aaeadj(incurring a rejection penalty of at megbr each
such item). The total cost of this intermediate solutioeréfore at mostl + <) - ((1 + 2¢)oPT+ |H| + [W/|) + 1
(the last bin can contain less thénsuch removed items). As in the previous section, after ttgel small items is
removed from each bin, the total size of small items assigmsdch bin is at most/.

The intermediate solution is infeasible because our difimdf 1V is larger than the available space for small items
in such bin. We create the final solutiéi®) L f;,.; using the same process as in the previous section. Thaves) gi
bin such that the intermediate solution packs to it larga#t@ccording to configuratiafi, and small items with total
size at mostv(C), we remove the small items and pack them back until the fegst that causes an excess. The first
items whose rejection penalties are smaller thane rejected. The other ones are packed in separate birtsdectt
separate bin will contairi such first items for different bins O L;,,..,). Similarly to the above argument these
are feasible bins and they add an additive factar tifnes the cost o6 OL;,,;..- to the total cost of the packing (plus
1). The remaining unpacked items in a bin®® L;,,;.,- have total size of at moﬁ% < e. Therefore, we can pack
the unpacked items ofj bins of SO L;nser Using one additional bin. In this way we get our final SOlUtS®@L 74y,
We note that the cost FOL ¢, is at most(1 + 2¢) times the cost 0650 L;,+. plus one. Therefore the cost of
SOLfinqisatmost(1+2e) (1 +¢)- ((1+2e)oPT+ |H|+ W) +1)+1 < (1+10e)oPT+4(|H|+ |[W|+1) <
(1+10e)oPT+4% +4(% +1)'/2+1 where the last inequality holds by< %, |H| < & and|W| < [C| < (& +1)/¢
Therefore, we have established the following theorem.

Theorem 11 The above scheme is an AFPTASB&®R

20

	Introduction
	Methods
	An AFPTAS for BPCC
	Second case: k>12

	First case of Section ??: k12
	An AFPTAS for BPR

