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Abstract. The goal of image registration is to determine a transformation of an image so that
the resulting image is close to another image. We use an optimal control approach to determining the
transformation. We precisely define the optimal control problem that solves the image registration
problem, and state the optimality system corresponding to that control problem. We then define
finite element discretizations of the optimality system and derive error estimates for the approximate
solutions. We also define and prove the convergence of a gradient iterative method for the solution
of the discrete optimality system.
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1. Introduction. Image registration is one of the fundamental tasks in image
processing [15] and is widely used in various applications [1, 8, 11, 14]. Given two
images R(x) and T(x), referred to as the reference and template images, respectively,
the goal of image registration is to find a reasonable geometric transformation which
minimizes the dissimilarity between the reference image and the transformed template
image. This paper continues the work in paper [12] in which the grid deformation
method is used to define an optimal control formulation for the image registration
problem. Then, the Lagrange multiplier rule is used to derive an optimality sys-
tem, i.e., a system of partial differential equations, whose solution yields the desired
transformation.

The grid deformation method constructs a vector field u that satisfies a div-curl
system of the form

∇ · u = f − 1 in the image domain
∇× u = g in the image domain
n · u = 0 on the boundary of the image domain.

(1.1)

The vector field u is used to generate a transformation φ to move the grid in a desired
way by solving the nonlinear ordinary differential equation

∂

∂t
φ(t,x) = u(t,φ(t,x)) 0 < t ≤ 1

φ(0,x) = x
(1.2)

at every point in the image domain.
Once the transformation φ(t,x) is obtained, one use it to evaluate some measure

of the difference between the transformed template image T(φ(1,x)) and the reference
image R(x). Our goal is to determine right-hand side “controls” f and g so that the
dissimilarity measure between the reference and transformed template images is made
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as small as possible. To this end, in [12], an optimal control problem is formulated in
which a dissimilarity measure is defined and then minimized with respect to f and g
in appropriate function spaces, with the differential equations (1.1) and (1.2) acting
as constraints. The existence of optimal solutions is proven, as is the existence of
suitable Lagrange multipliers that are used to convert the constrained optimization
problem into an unconstrained one. In addition, and optimality system consisting of
(1.1) and (1.2), adjoint equations for the Lagrange multiplier variables, and optimality
conditions for the controls f and g are rigorously derived.

In Section 2, we precisely define the optimal control problem that solves the
image registration problem and state the optimality system corresponding to that
control problem. For details, see [12]. Then, in Section 3, we define finite element
discretizations of the optimality system and derive error estimates for the approximate
solutions; first, in Section 3.1, we separately consider the components of the optimality
system and then, in Section 3.2, we put it all together to derive error estimates for the
fully-coupled discretized optimality system. Solving the coupled discretized optimality
system is a formidable task so that, in Section 4, we also define a gradient iterative
method for its solution in which the different components of the optimality system, i.e.,
the state and adjoint equations and the optimality conditions, are solved sequentially
at each iteration. We also prove, under suitable hypotheses, that the gradient method
converges. In this paper, we do not provide computational examples because several
such examples are already provided in [12].

2. Optimal control problem. In [12], an optimal control problem for image
registration was introduced and analyzed; the approach is based on the grid deforma-
tion method [3, 13, 16] and seeks to minimize an objective functional that measures
the difference between the transformed image and the reference image. The existence
of an optimal transformation is proved as is the applicability of the Lagrange multi-
plier method. Then, an optimality system from which optimal transformations can
be obtained is derived. In this section, we recall the results derived in [12].

Let Ω ⊂ R2 denote a bounded domain that is a convex polygon or that has a
C1,1 boundary Γ; usually, Ω is a rectangle. Let ‖ · ‖ denote the L2(Ω)-norm, ‖ · ‖∞
the L∞(Ω)-norm, and ‖ · ‖m the standard norm in the Sobolev space Hm(Ω). For
domains other than Ω, we explicitly indicate the domain in the norm notation; for
example, ‖ · ‖L2(τ) denotes the L2(τ)-norm. Let ‖ · ‖m,∞ denote the standard norm
for the Sobolev space Wm

∞(Ω) = {u : Dαu ∈ L∞(Ω), 0 ≤ |α| ≤ m}. Let 〈·, ·〉 denote
the L2(Ω) inner product or the duality pairing based with L2(Ω) acting as the pivot
space. We use the same norm and inner product notations for spaces of vector-valued
functions. Also, we have the scalar curl operator ∇×u = ∂xu2−∂yu1 and the vector-
curl operator ∇⊥u = (∂yu,−∂xu)t. Assume that the reference image R(x) and the
template image T(x) belong to at least [H2+δ(Ω)]2 with δ > 0.

We define the subspaces and product Hilbert spaces

H1
N (Ω) = {u ∈ [H1(Ω)]2 : n · u = 0 on Γ}

H1
D(Ω = {u ∈ [H1(Ω)]2 : n× u = 0 on Γ}

Λ =
(
[H2(Ω)]2 ∩H1

N (Ω)
)
× [H1((0, 1);L2(Ω))]2 ×H1(Ω)×H1(Ω)

Θ = H1(Ω)×H1(Ω)× [L2((0, 1)× Ω)]2 × R×H 3
2 (Γ)× L2(Ω)

and then define the operator M : Λ 7→ Θ as follows:

M(u,φ, f, g) = 0 (2.1)
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if and only if

〈∇ · u− f + 1, ξ〉 = 0 ∀ ξ ∈ H−1(Ω)

〈∇ × u− g, η〉 = 0 ∀ η ∈ H−1(Ω)〈
∂φ

∂t
− u(φ),ψ

〉
= 0 ∀ψ ∈ [L2((0, 1)× (Ω))]2

σ

∫
Ω

(f − 1) dx = 0 ∀σ ∈ R

〈n · u, ν〉 = 0 ∀ ν ∈ L2((0, 1);H−
3
2 (Γ))

〈φ(0,x)− x,µ〉 = 0 ∀µ ∈ [L2(Ω)]2.

Now, we define the objective functional

J(φ|t=1, f, g) =
1
2
‖T(φ(1,x))−R‖2 (2.2)

+
αf0

2
‖f‖2 +

αf1

2
‖∇f‖2 +

αg0

2
‖g‖2 +

αg1

2
‖∇g‖2 − β

∫
Ω

log f dx,

where αf0 , αf1 , αg0 , and αg1 are penalty parameters and β is a barrier parameter.
The first term is the object of optimization, i.e., finding a transformation φ(1,x) such
that the transformed template image T(φ) is a “close” as possible to the reference
image R. The penalty terms are used to implicitly limit the size of the “controls”
f and g whereas the barrier term ensures that the additional constraing f > 0 is
satisfied. See [12] for details about the problem formulation.

The set of all admissible solutions is defined by

Aad = {(u,φ, f, g) ∈ V | J(φ|t=1, f, g) is bounded and (2.1) is satisfied}.

Then, the optimal control problem for image registration is given by:

find (u,φ, f, g) ∈ Aad that minimizes the functional (2.2). (2.3)

In [12], it is proved that an optimal solution exists as does a suitable Lagrange
multiplier that turns the constrained optimization problem (2.3) into an unconstrained
problem. In addition, a corresponding optimality system is rigorously derived. We
have that the optimal state (u,φ) ∈ H2(Ω) × L2(H1(I); Ω), the optimal control
(f, g) ∈ H1(Ω)×H1(Ω), and the corresponding Lagrange multiplier (ξ, η,ψ, σ, ν,µ) ∈
H−1(Ω)×H−1(Ω)×L2(I; Ω)×R×L2(I;H−

3
2 (Γ))×L2(Ω). The Lagrangian functional

is defined as

L(u,φ, f, g; ξ, η,ψ, σ, ν,µ)

= J(φ|t=1, f, g)−
∫

Ω

(∇ · u− f + 1)ξdx−
∫

Ω

(∇× u− g)ηdx

−
∫

Ω

∫
I

(
∂φ

∂t
− u(t,φ)

)
·ψ dtdx− σ

∫
Ω

f − 1 dx

−
∫

Γ

∫
I

(n · u)νdtdx−
∫

Ω

(φ(0,x)− x) · µ dx.

The optimality system consists of the state system
∇ · u = f − 1 in Ω
∇× u = g in Ω
n · u = 0 on ∂Ω

(2.4)
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and 
∂φ

∂t
= u(φ) in I × Ω

φ(0,x) = x in Ω,
(2.5)

the adjoint system
∂ψ

∂t
+∇φu(φ)ψ = 0 in I × Ω

ψ(1,x) = (T (φ(1,x))−R(x)) · ∇φT (φ(1,x)) in Ω
(2.6)

and ∇
⊥η −∇ξ =

∫
I

|∇φ−1(t,x)|ψ(t,φ−1(t,x))dt in Ω

η = 0 on Γ,
(2.7)

and the optimality conditions
−αf1∆f + αf0f = σ − ξ in Ω
−αg1∆g + αg0g = −η in Ω

n · ∇f = 0 on Γ
g = 0 on Γ,

(2.8)

where σ is defined by integrating both sides of the first equation in (2.8):

σ = αf0 +
1
|Ω|

∫
Ω

ξdx.

Here, the Lagrange multiplier pair (ν,µ) is omitted since it does not play any role in
determining the optimal state, control, and other Lagrange multipliers.

In Section 3, we derive error estimates for finite element approximations of the
solution of the optimality system (2.4)–(2.8) and then, in Section 4, we discuss how
to solve the discretized equations.

3. Finite element discretizations of the optimality system. Let Th be a
partition of the domain Ω = ∪τ∈Thτ into finite elements τ ∈ Th. Let h := max{hτ :=
diam(τ) : τ ∈ Th}. Assume that the partition Th is regular so that we can construct a
conforming finite element space that satisfies standard approximation properties; see
[7]. We also assume that there exists a constant ρ such that h ≤ ρhτ for all τ ∈ Th.
Let Pk denote the space of all polynomials of degree ≤ k with respect to each variable.

The next result is useful in several subsequent proofs.
Lemma 3.1. Let (u,φ, f, g) denote a solution of the optimality system (2.4)–(2.8)

belonging to the admissibility set Aad so that ‖f‖1, ‖g‖1, and ‖u‖2 are bounded. Then,
u ∈W 2

∞(Ω), i.e., there exists a constant Mu such that

|Dαu(x)| ≤ Mu for 0 ≤ |α| ≤ 2 a.e. in Ω. (3.1)

Proof. Suppose u 6∈W 2
∞(Ω). Then, there exists a set U ⊂ Ω such that m(U), the

measure of U , is not 0 and |Dαu(x)| ≥ n for some 0 ≤ |α| ≤ 2 and for all x ∈ U .
Then, ∫

Ω

∑
0≤|α|≤2

|Dαu(x)|2dx ≥
∫
U

∑
0≤|α|≤2

|Dαu(x)|2dx ≥ n2 ·m(U) −→∞
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as n→∞, which contradicts the fact ‖u‖2 is bounded.
This section is composed of two parts. In Section 3.1, we present several er-

ror estimates for the solutions of discretizations of the individual components of the
optimality system (2.4)–(2.8). Then, in Section 3.2, we define a fully discretized op-
timality system and show the convergence of approximate solutions of that system,
using the results obtained in Section 3.1.

3.1. Optimal error estimates for the components of the optimality sys-
tem. We denote by (u,φ, f, g,ψ, ξ, η) a solution of the optimality system (2.4)–(2.8).

3.1.1. Error estimates for (2.4). We first use a least-squares finite element
method to solve the system (2.4) in the case where the exact controls f and g are
assumed known. To this end, we minimize the least-squares residual functional

F(v; f, g) = ‖∇ · v − f + 1‖2 + ‖∇ × v − g‖2 (3.2)

by solving the corresponding first-order necessary conditions: for given f, g ∈ H1(Ω),
determine u ∈ H1

N (Ω) such that

〈∇ · u,∇ · v〉+ 〈∇ × u,∇× v〉 = 〈f − 1,∇ · v〉+ 〈g,∇× v〉 (3.3)

for all v ∈ H1
N (Ω). Note that it is known that the solution of this problem is actually

more regular, i.e., we have u ∈ [H2(Ω)]2 ∩H1
N (Ω).

Next, define the finite-dimensional subspace

Uh = {u ∈ C0(Ω) : u|τ ∈ Pk(τ), k = 1, 2} ∩H1
N (Ω) ⊂ H1

N (Ω)

and then pose the discrete least-squares problem

ûh = arg min
vh∈Uh

F(vh; f, g)

whose solution can be obtained by determining ûh ∈ Uh satisfying

〈∇ · ûh,∇ · vh〉+ 〈∇ × ûh,∇× vh〉 = 〈f − 1,∇ · vh〉+ 〈g,∇× vh〉 (3.4)

for all vh ∈ Uh.
Proposition 3.2. Let u ∈ H2(Ω)∩H1

N (Ω) and ûh ∈ Uh satisfy (3.3) and (3.4),
respectively. Then,

‖u− ûh‖r ≤ c h2−r‖u‖2 for r = 0, 1. (3.5)

Proof. This a standard result for least-squares finite element methods [2].

3.1.2. Error estimates for (2.5). Let {tn}Nn=0 be a partition of [0, 1] into equal
intervals ∆t = 1/N with t0 = 0 and tN = 1. Supposing the exact solution u of (2.4)
is known, to determine an approximation φN (tn, ·) ≈ φ(tn, ·) of (2.5), we apply the
forward Euler method, i.e., at time t = tn+1,

φN (tn+1,x) = φN (tn,x) + ∆tu(φN (tn,x)) with φN (0,x) = x (3.6)

so that

|φ(tn+1,x)− φN (tn+1,x)| ∼ O(∆t). (3.7)
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We also define an approximation φ̂hN of the problem (2.5) in which, instead of
the exact solution u, we use the approximate solution ûh from Section 3.1.1. That
approximation is determined from

φ̂hN (tn+1,x) = φ̂hN (tn,x) + ∆tûh(φ̂hN (tn,x)) with φ̂hN (0,x) = x. (3.8)

Then, φ̂hN (tn+1, ·) belongs to the finite-dimensional space

Φh = {φ : φ|τ ∈ Pbn(τ) for some n̂ ≥ 0 ,∀ τ ∈ Th} ⊂ L2(Ω).

Our goal is to estimate the error ‖φ− φ̂hN‖. By the triangle inequality,

‖φ− φ̂hN‖ ≤ ‖φ− φN‖+ ‖φN − φ̂hN‖.

Because of (3.7), we focus on the term ‖φN − φ̂hN‖. For notational simplification, we
abbreviate φN (tn,x) to φn(x) and φ̂hN (tn,x) to φ̂hn(x).

We introduce an interpolation error estimate. Let the interpolation operator
Ih ∈ L(W 2

∞(Ω) ∩ H2(Ω) : Uh), with Ihv|τ ∈ Pk(τ) on each element τ , satisfy the
following error estimates for all integers r and s with 0 ≤ r ≤ 2 and 0 ≤ s ≤ 1,
respectively (see [4, Theorem 4.4.20] for details): for all v ∈W 2

∞(Ω) ∩H2(Ω),( ∑
τ∈Th

‖v − Ihv‖2Hr(τ)

) 1
2 ≤ c h2−r‖v‖2, (3.9)

max
τ∈Th

‖v − Ihv‖W s
∞(τ) ≤ c h1−s‖v‖2. (3.10)

The following lemma is a well-known inverse estimate [4].
Lemma 3.3. Let P be a finite-dimensional subspace of W l

p(K) ∩Wm
q (K), where

1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 0 ≤ m ≤ l. Then, there exists a constant c such that,
for all v ∈ P

‖v‖W l
p(K) ≤ c hm−l+

d
p−

d
q ‖v‖Wm

q (K), (3.11)

where d is the dimension of K.
In the next theorem, we derive the L2-error bound for φN − φ̂hN at a fixed time

t = tn.
Proposition 3.4. Let ∆t be sufficiently small. Then, at each fixed time t = tn,

n = 0, . . . , N , we have

‖φn − φ̂hn‖ ≤ c h2 ‖u‖2,∞. (3.12)

Proof. From (3.6) and (3.8), at time t = tn+1 we have

φn+1(x)− φ̂hn+1(x) = φn(x)− φ̂hn(x) + ∆t(u(φn(x))− ûh(φ̂hn(x))).

First, at time t = 0, we have φ0(x)− φ̂h0 (x) = x− x = 0. Then, at time t1, we have

φ1(x)− φ̂h1 (x) = ∆t(u(φ0(x))− ûh(φ̂h0 (x))).

At time t = t2, we have

φ2(x)− φ̂h2 (x) = φ1(x)− φ̂h1 (x) + ∆t(u(φ1(x))− ûh(φ̂h1 (x)))

= ∆t
1∑
i=0

(u(φi(x))− ûh(φ̂hi (x))).
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If we repeat the above process inductively, we have

φn+1(x)− φ̂hn+1(x) = ∆t
n∑
i=0

(u(φi(x))− ûh(φ̂hi (x))).

By the triangle inequality, we have

‖φn+1 − φ̂hn+1‖2 ≤ c∆t2
n∑
i=0

(
‖u(φi)− ûh(φi)‖2 + ‖ûh(φi)− ûh(φ̂hi )‖2

)
. (3.13)

Consider ûh(φi)− ûh(φ̂hi ) elementwise from

‖ûh(φi)− ûh(φ̂hi )‖2 =
∑
τ∈Th

‖ûh(φi)− ûh(φ̂hi )‖2L2(τ).

If ûh is piecewise linear, then

‖ûh(φi)− ûh(φ̂hi )‖2L2(τ) ≤ c ‖û
h‖2∞‖φi − φ̂hi ‖2L2(τ). (3.14)

If ûh is piecewise quadratic, instead of (3.14), some calculations yield

‖ûh(φi)− ûh(φ̂hi )‖2L2(τ) ≤ c ‖∇ûh‖2∞‖φi − φ̂hi ‖2L2(τ). (3.15)

Recall the interpolation operator Ih satisfying (3.9) and (3.10). Then, the triangle
inequality, the inverse inequality (3.11) (with l = m = 0, p =∞, q = 2), the regularity
result (3.5), (3.9), (3.10), and the Sobolev imbedding theorem yield

‖ûh‖2∞ ≤ c(‖ûh − Ihu‖2∞ + ‖Ihu‖2∞) ≤ c(h−2‖ûh − Ihu‖2 + ‖Ihu‖2∞)

≤ ch−2(‖ûh − u‖2 + ‖u− Ihu‖2) + c‖u− Ihu‖2∞ + ‖u‖2∞ ≤ c‖u‖22. (3.16)

Also, we use the triangle inequality, (3.11), (3.10), (3.5), and (3.9) to obtain

‖∇ûh‖∞ ≤ ‖∇ûh −∇Ihu‖∞ + ‖∇Ihu−∇u‖∞ + ‖∇u‖∞
≤ ch−1(‖∇ûh −∇u‖+ ‖∇u−∇Ihu‖) + c‖u‖2 + ‖∇u‖∞
≤ c‖u‖2 + ‖∇u‖∞. (3.17)

Therefore, we have

‖ûh(φi)− ûh(φ̂hi )‖2 ≤ c (‖u‖22 + ‖∇u‖2∞)‖φi − φ̂hi ‖2. (3.18)

By combining (3.13) with (3.18), we obtain

‖φn+1 − φ̂hn+1‖2 ≤ c20 ∆t2
n∑
i=0

(
‖u(φi)− ûh(φi)‖2 + ‖φi − φ̂hi ‖2

)
, (3.19)

where c0 depends on ‖u‖2 and ‖∇u‖∞. When n = 0, (3.19) provides

‖φ1 − φ̂h1‖2 ≤ c20 ∆t2‖u(φ0)− ûh(φ0)‖2.

For n = 1, (3.19) yields

‖φ2 − φ̂h2‖2 ≤ c20 ∆t2
( 1∑
i=0

‖u(φi)− ûh(φi)‖2 + c20 ∆t2‖u(φ0)− ûh(φ0)‖2
)
.
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By induction, we obtain

‖φn+1 − φ̂hn+1‖2 ≤ c20 ∆t2
n∑
i=0

(1 + c20 ∆t2)n−i‖u(φi)− ûh(φi)‖2. (3.20)

Now, we use a change of variables to calculate ‖u(φi)− ûh(φi)‖. Let φi(x) = y, then
|det(∇φi(x))|dx = dy which implies dx = |det∇φi(x)|−1dy. Recall (3.6) and take
gradients of both sides. Then, we have

|det∇φi| =
∣∣∣tr (I + ∆t (∇φu(φi−1))t

)∣∣∣ · | det∇φi−1|

≥ |2−∆t‖∇ · u‖∞| · | det∇φi−1|
· · · ≥ |2−∆t‖∇ · u‖∞|i · | det∇φ0| = |2−∆t‖∇ · u‖∞|i.

Suppose ∆t ≤ 1/‖∇·u‖∞ so that |2−∆t‖∇·u‖∞|−i ≤ 1. Then, the regularity result
in Section 3.1.1 implies∫

Ω

|u(φi(x))− ûh(φi(x))|2dx ≤ c
∫

Ω(y)

|u(y)− ûh(y)|2dy ≤ ch4‖u‖22. (3.21)

Now, assume that

∆t ≤ min
{ 1
‖∇ · u‖∞

,
1
c0

}
,

where c0 = c(‖u‖2 + ‖∇u‖∞). We apply (3.21) to (3.20) and use ∆t = 1/N to obtain

‖φn+1 − φ̂hn+1‖2 ≤ c c20∆t2h4‖u‖22
n∑
i=0

(1 + c20∆t2)n−i

≤ c c20∆t2h4‖u‖22
(1 + c20∆t2)N − 1

1 + c20∆t2 − 1
= c h4‖u‖22

{(
1 +

c20
N2

)N
− 1
}
.

Because limN→∞
(
1 + z

N

)N = ez,(
1 +

c20
N2

)N
=
(

1 +
ic0
N

)N(
1− ic0

N

)N
from below

// eic0 · e−ic0 = 1,

as N →∞. Hence,
(
1 + c20

N2

)N − 1 < 2 and therefore we have

‖φn+1 − φ̂hn+1‖ ≤ ch2‖u‖2.

3.1.3. Error estimates for (2.6). Let the partition {tn}Nn=0 of [0, 1] be defined
as in Section 3.1.2. In this subsection, we consider the approximate solution of (2.6) by
employing an explicit backwards-in-time finite difference scheme, i.e., at time t = tn−1,

ψN (tn−1,x) = ψN (tn,x) + ∆t∇φu(φn−1(x))ψN (tn,x) (3.22)
ψN (1,x) = (T(φ(1,x))−R(x))∇φT(φ(1,x)).

Again, we have

|ψ(tn−1,x)−ψN (tn−1,x)| ∼ O(∆t). (3.23)
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We abbreviate ψN (tn,x) to ψn(x) and ψ̂hN (tn,x) to ψ̂hn(x).
Apply the approximations ûh and φ̂h from Sections 3.1.1 and 3.1.2 to define the

approximation of ψ at time t = tn−1:

ψ̂hn−1(x) = ψ̂hn(x) + ∆t ∇hφûh(φ̂hn−1(x))ψ̂hn(x), (3.24)

ψ̂h(1,x) = (IhT(φ̂h(1,x))− IhR(x))∇φIhT(φ̂h(1,x)),

where ∇h is the discrete gradient since ûh is only continuous and a piecewise poly-
nomial on each finite element. Because of (3.23), we need pay attention only to
ψn−1 − ψ̂hn−1. Because ‖ψn−1 − ψ̂hn−1‖2 =

∑
τ∈Th ‖ψn−1 − ψ̂hn−1‖2L2(τ), we replace

the discrete gradient ∇h with the exact gradient ∇ on each element.
Now we prove the L2-error bound for ψn−1 − ψ̂hn−1.
Proposition 3.5. Suppose that ∆t is sufficiently small. Then, for each fixed

time t = tn, n = 0, . . . , N , we have

‖ψn − ψ̂hn‖ ≤ ch,

where c depends of ‖T‖1,∞, h‖T‖2, ‖R‖∞, h‖R‖2, ‖u‖2, and ‖∇u‖∞.
Proof. By (3.22), (3.24), and the Hölder inequality, at time t = tn−1 we have

‖ψn−1 − ψ̂hn−1‖ (3.25)

≤ ‖ψn − ψ̂hn‖+ ∆t
( ∑
τ∈Th

‖∇φu(φn−1)ψn −∇φûh(φ̂hn−1)ψ̂hn‖2L2(τ)

) 1
2
.

First, we consider

∇φu(φn−1)ψn−∇φûh(φ̂hn−1)ψ̂hn = ∇φu(φn−1)ψn−∇φûh(φn−1)ψn︸ ︷︷ ︸
(i)

(3.26)

+∇φûh(φn−1)ψn −∇φûh(φ̂hn−1)ψn︸ ︷︷ ︸
(ii)

+∇φûh(φ̂hn−1)ψn −∇φûh(φ̂hn−1)ψ̂hn︸ ︷︷ ︸
(iii)

term by term:
(i) Since T(φ(1,x))−R(x) and ∇φT(φ(1,x)) are bounded, ψN (x) = ψ(1,x) is

bounded. Then, (3.22) and induction imply

‖ψn‖∞ ≤ (1 + 2∆t‖∇u‖∞)N−n ‖ψN‖∞.

Thus, we have

‖∇φu(φn−1)ψn−∇φûh(φn−1)ψn‖2L2(τ) ≤ c‖∇φu(φn−1)−∇φûh(φn−1)‖2L2(τ),

where c is composed of ‖ψN‖∞eMu with Mu the constant from (3.1), under
the assumption ∆t ≤ 1/(2‖∇u‖∞).

(ii) Because ûh is piecewise linear (quadratic) on each element,

‖∇φûh(φn−1)−∇φûh(φ̂hn−1)‖ ≤ c‖∇ûh‖∞‖φn−1 − φ̂hn−1‖.

Then, the boundednesses of ψn from (i) and (3.17) lead us to∫
τ

|∇φûh(φn−1)ψn −∇φûh(φ̂hn−1)ψn|2dx ≤ c20‖φn−1 − φ̂hn−1‖2L2(τ),

where c0 = c(‖u‖2 + ‖∇u‖∞).
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(iii) By the bound on |∇φûh(φ)| showed in (ii), we have∫
τ

|∇φûh(φ̂hn−1)ψn −∇φûh(φ̂hn−1)ψ̂hn|2dx ≤ c20‖ψn − ψ̂hn‖2L2(τ),

where c0 = c(‖u‖2 + ‖∇u‖∞).
Gathering the results from (i), (ii), and (iii) yields

‖∇φu(φn−1)ψn−∇φûh(φ̂hn−1)ψ̂hn‖2L2(τ) ≤ c‖∇φu(φn−1)−∇φûh(φn−1)‖2L2(τ)

+ c20‖φn−1 − φ̂hn−1‖2L2(τ) + c20‖ψn − ψ̂hn‖2L2(τ). (3.27)

We apply the same change of variables used in the proof of Proposition 3.4 to obtain∑
τ∈Th

‖∇φu(φn−1)−∇φûh(φn−1)‖2L2(τ) (3.28)

≤ c
∑
τ∈Th

∫
τ(y)

|∇u(y)−∇ûh(y)|2dy ≤ c‖∇u−∇ûh‖2 ≤ c h2‖u‖22

and apply (3.12) to obtain∑
τ∈Th

‖φn−1 − φ̂hn−1‖2L2(τ) = ‖φn−1 − φ̂hn−1‖2L2(Ω) ≤ c h
4‖u‖22. (3.29)

Thus, by (3.27)–(3.29), the inequality in (3.25) becomes

‖ψn−1 − ψ̂hn−1‖ ≤ (1 + c0∆t)‖ψn − ψ̂hn‖+ c1 h∆t‖u‖2. (3.30)

In order to determine the bound for ‖ψn − ψ̂hn‖, the bound for ‖ψ(1,x)− ψ̂h(1,x)‖
needs to be considered first. From the definition of ψ̂h(1,x), we have

ψ(1,x)−ψ̂h(1,x) = (T(φN )−R) · ∇φT(φN )−(IhT(φ̂hN )−IhR) · ∇φIhT(φ̂hN ).

Then, on each element τ ,∫
τ

|ψ(1,x)− ψ̂h(1,x)|2dx

≤ c
∫
τ

(
|T(φ(1,x))−R−(IhT(φ(1,x))−IhR)|2

)
|∇φT(φ(1,x))|2dx (3.31)

+ c

∫
τ

|IhT(φ(1,x))− IhR−(IhT(φ̂h(1,x))−IhR)|2|∇φT(φ(1,x))|2dx (3.32)

+ c

∫
τ

|IhT(φ̂h(1,x))− IhR|2|∇φT(φ(1,x))−∇φIhT(φ(1,x))|2dx (3.33)

+ c

∫
τ

|IhT(φ̂h(1,x))−IhR|2|∇φIhT(φ(1,x))−∇φIhT(φ̂h(1,x))|2dx. (3.34)

We consider (3.31)–(3.34) term by term.
(3.31): Because ∇T ∈ C0, ∇φT(φ(1,x)) is bounded and then the triangle inequality

implies, with c = 2‖∇T‖2∞,

(3.31) ≤ c
(
‖T(φ(1,x))−IhT(φ(1,x))‖2L2(τ) + ‖R− IhR‖2L2(τ)

)
. (3.35)
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(3.32): By the boundedness of ∇T, the property IhT ∈ Pk(τ) with (3.14) and (3.15),
and (3.10), we have, with c2 depending on h‖T‖2 and ‖T‖1,∞,

(3.32) ≤ ‖∇T‖2∞
∫
τ

|IhT(φ(1,x))− IhT(φ̂h(1,x))|2dx

≤ ‖∇T‖2∞ ‖I
hT‖21,∞

∫
τ

|φ(1,x)− φ̂h(1,x)|2dx

≤ c2
∫
τ

|φ(1,x)− φ̂h(1,x)|2dx. (3.36)

(3.33): Similarly to the above, the property of IhT being a piecewise polynomial on
each τ , the definition of φ̂h(tk,x), and (3.10) result in∫

τ

|IhT(φ̂h(1,x))− IhR|2dx ≤ 2|Ω|( ‖IhT‖2∞ + ‖IhR‖2∞ )

≤ c ( ‖T‖2∞ + h2‖T‖22 + ‖R‖2∞ + h2‖R‖22 ). (3.37)

(3.34): By the inverse inequality (3.11) and (3.10), the following holds:

‖∇IhT‖∞ ≤ c h−1‖IhT‖∞ ≤ c h−1(‖T‖∞ + h‖T‖2). (3.38)

Because IhT is piecewise linear or piecewise quadratic on each τ , (3.37) and
(3.38) result in

(3.34) ≤ c h−2(‖T‖2∞ + h2‖T‖22)
∫
τ

|φ(1,x)− φ̂h(1,x)|2dx. (3.39)

From (3.35)–(3.37) and (3.39), we conclude that

‖ψ(1,x)− ψ̂h(1,x)‖2 ≤ c
(
‖T(φ(1,x))− IhT(φ(1,x))‖21

+‖R− IhR‖2 + h−2‖φ(1,x)− φ̂h(1,x)‖2
)
.

Recall the change of variables so that (3.9) and Proposition 3.4 yield

‖ψ(1,x)− ψ̂h(1,x)‖2 ≤ c h2(‖T‖22 + ‖R‖22 + ‖u‖22). (3.40)

Let CTRu ≡ ‖T‖2 + ‖R‖2 + ‖u‖2 and assume

∆t ≤ min
{ 1

2‖∇u‖∞
,

1
c0

}
,

where c0 = c(‖u‖2 + ‖∇u‖∞). Now, we apply the result in (3.40) to (3.30): by
induction, we obtain

‖ψn−1 − ψ̂hn−1‖

≤ c h(1 + c0∆t)N−n+1CTRu + c1h∆t‖u‖2
N−n∑
j=0

(1 + c0∆t)j

≤ c h(1 + c0∆t)N−n+1CTRu + c1h∆t‖u‖2
(1 + c0∆t)N−n+1 − 1

1 + c0∆t− 1
≤ h(c+ c1/c0)ec0∆t(N−n+1)CTRu ≤ hec0(c+ c1/c0)CTRu.
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Remark 1. The assumptions on the time step ∆t given in Propositions 3.4 and
3.5 are consistent. We can summarize both assumptions into

∆t ≤ min
{ 1

2‖∇u‖∞
,

1
c(‖u‖2 + ‖∇u‖∞)

}
,

where c does not depend on u nor any other optimal solution variables or Lagrange
multipliers.

3.1.4. Error estimates for (2.7). First, we take a closer look at (2.7) which
we express as {

∇⊥η −∇ξ = F, in Ω
η = 0, on Γ,

(3.41)

where F =
∫
I
|∇φ−1(t,x)|ψ(t,φ−1(t,x))dt. In [12], we showed that F ∈ L2(Ω). For

given F ∈ L2(Ω), it is easy to see that there exists a unique (η, ξ) ∈ H1
0 (Ω)×H1(Ω)/R

satisfying (3.41). We apply the FOSLL* method introduced in [5]. The basic idea
of FOSLL* can be explained by considering the dual of a linear system of equations
Ax = b. Least-squares methods minimize ‖Ax − b‖2 and the dual of this method
involves the system AAty = b with x = Aty and the minimization of the functional
〈Aty, Aty〉 − 2 〈b,y〉 which is equivalent to minimizing ‖Aty − x‖2.

For a given first-order system Lu = f , the least-squares method requires H1-norm
equivalence of ‖Lu‖2. In (3.41), we can easily see that ‖∇⊥η−∇ξ‖2 ∼ ‖η‖21+‖ξ‖21. So
the least-squares approximation exists. However, we do not obtain any convergence
of the approximate solution in finite-dimensional subspaces by minimizing ‖Lu −
f‖. Therefore, we use FOSLL* for (3.41) because the FOSLL* approach minimizes
‖L∗w − u‖2 which provides an L2-approximation of u and an L2-error estimate for
the approximation.

We write (3.41) as

L(η, ξ)t =
[
∇⊥ −∇

] [ η
ξ

]
= F (3.42)

and define the domain of L as D(L) = H1
0 (Ω) × H1(Ω)/R. Now, we consideer the

corresponding dual problem

L∗w =
[
∇×
∇·

]
w =

[
η
ξ

]
(3.43)

with the domain of L∗, D(L∗) = {w ∈ H(∇×) ∩H(∇·) : n ·w = 0 on Γ}. Lemma
2.1 in [5] yields that there is a unique w ∈ D(L∗) satisfying (3.43).

By [9, Proposition 3.1 ], we have ‖L∗w‖ ∼ ‖w‖1 which guarantees the existence
of a least-squares approximation. The FOSLL* method minimizes the least-squares
functional ‖L∗w− (η, ξ)t‖2 in the weak sense, that is, we look for the solution of the
corresponding variational formulation as follows: find w ∈ D(L∗) such that

〈L∗w,L∗v〉 =
〈
(η, ξ)t,L∗v

〉
=
〈
L(η, ξ)t,v

〉
= 〈F,v〉 ∀v ∈ D(L∗). (3.44)

This equation shows that we only need the original right-hand side F to solve the
variational formulation of the least-squares problem.
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Now, we substitute (3.43) into (3.42) to obtain

L
[
η
ξ

]
= LL∗w =

[
∇⊥ −∇

] [ ∇×
∇·

]
w = −∆w = F. (3.45)

For a given F ∈ L2(Ω), w in fact belongs to [H2(Ω)]2.
Define Vh = {w ∈ C0(Ω) : w|τ ∈ Pk(τ), k ≥ 1} ⊂ H1

N (Ω) and let

ŵh = arg minewh∈Vh
‖L∗w̃h − (η, ξ)t‖. (3.46)

Then, we have an L2-error estimate for (η, ξ) in the next theorem.
Proposition 3.6. Let w and ŵh satisfy (3.45) and (3.46), respectively. Let

(η̂h, ξ̂h)t = L∗ŵh. Then, we have

‖(η, ξ)− (η̂h, ξ̂h)‖ ≤ c h‖w‖2.

Proof. Using the H1-norm equivalence of the L∗-operator and standard regularity
properties, we have

‖(η, ξ)− (η̂h, ξ̂h)‖ = ‖L∗w − L∗ŵh‖ ≤ c h‖w‖2.

3.1.5. Error estimates for (2.8). The system (2.8) can be rewritten as the
equivalent first-order systems

p−∇f = 0 in Ω
− 1
βf
∇ · p + βff = 1

αf1βf
(σ − ξ) in Ω

1
βf
∇× p = 0 in Ω
n · p = 0 on Γ

(3.47)

and 
q−∇g = 0 in Ω

− 1
βg
∇ · q + βgg = − 1

αg1βg
η in Ω

1
βg
∇× q = 0 in Ω

n× q = 0, g = 0, on Γ

(3.48)

by introducing flux variables, p, q, and scalings βf =
√
αf0/αf1 and βg =

√
αg0/αg1 .

The third equations in (3.47) and (3.48), i.e., ∇×p = 0 and ∇×q = 0, respectively,
are auxiliary equations introduced to improve the regularity of p and q, respectively.
The least-squares method minimizes the residual functionals

P(f,p;σ, ξ) = ‖p−∇f‖2 + ‖ − 1
βf
∇ · p + βff − 1

αf1βf
(σ − ξ)‖2 + 1

β2
f
‖∇ × p‖2

and

Q(g,q; η) = ‖q−∇g‖2 + ‖ − 1
βg
∇ · q + βgg + 1

αg1βg
η‖2 + 1

β2
g
‖∇ × q‖2,

respectively. The corresponding weak formulations are given by: find (f,p) ∈
H1(Ω)/R×H1

N (Ω) satisfying

〈p−∇f, r−∇r〉+
〈
− 1
βf
∇ · p + βff,− 1

βf
∇ · r + βfr

〉
+ 1
β2
f
〈∇ × p,∇× r〉 =

〈
− 1
αf1βf

(σ − ξ),− 1
βf
∇ · r + βfr

〉 (3.49)
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for all (r, r) ∈ H1(Ω)/R×H1
N (Ω), and find (g,q) ∈ H1

0 (Ω)×H1
D(Ω) satisfying

〈q−∇g, s−∇s〉+
〈
− 1
βg
∇ · q + βgg,− 1

βg
∇ · s + βgs

〉
+ 1
β2
g
〈∇ × q,∇× s〉 =

〈
− 1
αg1βg

η,− 1
βg
∇ · s + βgs

〉 (3.50)

for all (s, s) ∈ H1
0 (Ω)×H1

D(Ω), respectively.
Define finite-dimensional subspaces X h×Xh ⊂ H1(Ω)/R×H1

N (Ω) and Yh×Y h ⊂
H1

0 (Ω) × H1
D(Ω). Then, we consider the finite-dimensional approximate solutions

(f̂h, p̂h) ∈ X h ×Xh such that〈
p̂h −∇f̂h, rh −∇rh

〉
+
〈
− 1
βf
∇ · p̂h + βf f̂

h,− 1
βf
∇ · rh + βfr

h
〉

+ 1
β2
f

〈
∇× p̂h,∇× rh

〉
=
〈
− 1
αf1βf

(σ − ξ),− 1
βf
∇ · rh + βfr

h
〉 (3.51)

for all (rh, rh) ∈ X h ×Xh, and (ĝh, q̂h) ∈ Yh × Y h such that〈
q̂−∇ĝh, sh −∇sh

〉
+
〈
− 1
βg
∇ · q̂h + βg ĝ

h,− 1
βg
∇ · sh + βgs

h
〉

+ 1
β2
g

〈
∇× q̂h,∇× sh

〉
=
〈
− 1
αg1βg

η,− 1
βg
∇ · sh + βgs

h
〉 (3.52)

for all (sh, sh) ∈ Yh × Y h. The next result is well known.
Proposition 3.7. Let (f,p), (g,q), (f̂h, p̂h), and (ĝh,qh) satisfy (3.49), (3.50),

(3.51), and (3.52), respectively. Then, we have

‖f − f̂h‖1 + ‖p− p̂h‖1 ≤ c h‖σ − ξ‖ and ‖g − ĝh‖1 + ‖q− q̂h‖1 ≤ c h‖η‖.

3.2. Error estimates for the fully-coupled discrete optimal solution. In
this section, we use the results of Section 3.1 to treat a fully discretized optimality
system. The goal is to study the convergence of the approximate solution.

Let (uh,φhN ,ψ
h
N , ξ

h, ηh, fh, gh) ∈ Uh × (Φh)2 × Vh ×X h × Yh satisfy〈
∇ · uh,∇ · vh

〉
+
〈
∇× uh,∇× vh

〉
=
〈
fh − 1,∇ · vh

〉
+
〈
gh,∇× vh

〉
(3.53)

for all vh ∈ Uh, {
φhN (tn+1,x) = φhN (tn,x) + ∆tuh(φhN (tn,x))
φhN (t0,x) = x,

(3.54)

for n = 0, · · · , N − 1,{
ψhN (tn−1,x) = ψhN (tn,x) + ∆t ∇φuh(φhN (tn−1,x))ψhN (tn,x),
ψhN (tN ,x) = (IhT(φhN (tN ,x))− IhR(x))∇φIhT(φhN (tN ,x)),

(3.55)

for n = 1, · · · , N , (ηh, ξh)t = L∗wh such that wh satisfies〈
L∗wh,L∗vh

〉
=
〈
(η, ξ)t,L∗vh

〉
=
〈
FhN ,v

h
〉

∀vh ∈ Vh, (3.56)

where FhN = ∆t
∑N
n=0 |det∇φ−1

N (tk,x)|ψhN (t,φ−1
N (tn,x)) with φN from (3.6) and

(η, ξ)t ∈ D(L) satisfying the L2-decomposition (see [9] for details)

∇⊥η −∇ξ = FhN ,
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ph −∇fh, rh −∇rh

〉
+
〈
− 1
βf
∇ · ph + βff

h,− 1
βf
∇ · rh + βfr

h
〉

+ 1
β2
f

〈
∇× ph,∇× rh

〉
=
〈
− 1
αf1βf

(σh − ξh),− 1
βf
∇ · rh + βfr

h
〉 (3.57)

for all (rh, rh) ∈ X h ×Xh, and〈
q−∇gh, sh −∇sh

〉
+
〈
− 1
βg
∇ · qh + βgg

h,− 1
βg
∇ · sh + βgs

h
〉

+ 1
β2
g

〈
∇× qh,∇× sh

〉
=
〈
− 1
αg1βg

ηh,− 1
βg
∇ · sh + βgs

h
〉
,

(3.58)

for all (sh, sh) ∈ Yh × Y h, where

σh = αf0 +
1
|Ω|

∫
Ω

ξhdx .

Now, we present several results in order to show the convergence of the above
discrete approximation (uh,φhN ,ψ

h
N , ξ

h, ηh, fh, gh) to the optimal solution (u,φ,ψ, ξ,
η, f, g) of the optimality system (2.4)–(2.8).

Proposition 3.8. Let u and uh satisfy (3.3) and (3.53), respectively. Then, we
have

‖u− uh‖1 ≤ c h‖u‖2 + c (‖f − fh‖+ ‖g − gh‖).

Proof. By the triangle inequality and Proposition 3.2, we have

‖u− uh‖1 ≤ ‖u− ûh‖1 + ‖ûh − uh‖1 ≤ c h‖u‖2 + ‖ûh − uh‖1.

We subtract (3.53) from (3.4) to obtain〈
∇ · ûh −∇ · uh,∇ · vh

〉
+
〈
∇× ûh −∇× uh,∇× vh

〉
=
〈
f − fh,∇ · vh

〉
+
〈
g − gh,∇× vh

〉
.

Setting vh = ûh − uh yields

c|ûh − uh|1 ≤ ‖∇ · (ûh − uh)‖+ ‖∇ × (ûh − uh)‖ ≤ ‖f − fh‖+ ‖g − gh‖,

where the first inequality holds because n · (ûh − uh) = 0 on the boundary.
In the next result, we consider φ and φhN .
Proposition 3.9. Let φ and φhN satisfy (2.5) and (3.54), respectively. If ∆t is

sufficiently small, then

‖φ− φhN‖ ≤ c (∆t+ h2) + c1
√

∆t‖ûh − uh‖,

where c1 only depends on ‖u‖2 and ‖∇u‖∞.
Proof. The triangle inequality, elementary properties of the finite difference

scheme, and Proposition 3.4 imply

‖φ− φhN‖ ≤ ‖φ− φN‖+ ‖φN − φ̂hN‖+ ‖φ̂hN − φhN‖
≤ c (∆t+ h2) + ‖φ̂hN − φhN‖, (3.59)

where φN and φ̂hN are defined as in (3.6) and (3.8), respectively. For simplicity of
notation, from now on we abbreviate φ̂hN (tn,x) and φhN (tn,x) to φ̂hn(x) and φhn(x),
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respectively. The overall process of this proof is similar to the proof of Proposition
3.4. By definition, we have

‖φ̂hn+1 − φhn+1‖2 ≤ 2∆t2
n∑
i=0

‖ûh(φ̂hi )− uh(φhi )‖2.

The triangle inequality and (3.14)–(3.17) yield

‖ûh(φ̂hi )− uh(φhi )‖2 ≤ 2‖ûh(φ̂hi )− ûh(φhi )‖2 + 2‖ûh(φhi )− uh(φhi )‖2

≤ 2c20 ‖φ̂hi − φhi ‖2 + 2‖ûh(φhi )− uh(φhi )‖2,

where c0 = c‖u‖2 + ‖∇u‖∞. We use the similar change of variables used in (3.21)
and the inverse inequality

|det∇φhi | =
∣∣∣tr (I + ∆t

(
∇φuh(φhi−1)

)t)∣∣∣ · | det∇φhi−1|

≥ |2−∆t‖∇ · uh‖∞| · | det∇φhi−1|
· · · ≥ |2−∆t‖∇ · uh‖∞|i · | det∇φh0 | = |2−∆t‖∇ · uh‖∞|i (3.60)

to obtain

‖ûh(φ̂hi )− uh(φhi )‖2 ≤ 2c20‖φ̂hi − φhi ‖2 + 2γi‖ûh − uh‖2,

where γ = 1/|2−∆t‖∇ · uh‖∞|. Therefore

‖φ̂hk+1 − φhk+1‖2 ≤ 4∆t2
k∑
i=0

(c20‖φ̂hi − φhi ‖2 + γi‖ûh − uh‖2).

Assume ∆t ≤ min
{

1
2c0
, 1
‖∇·uh‖∞ ,

h
cI‖∇·uh‖

}
, where the constant cI is from the inverse

inequality ‖ · ‖∞ ≤ cIh−1‖ · ‖. Then,

|2−∆t‖∇ · u‖∞| ≥ |2− cI∆t h−1‖∇ · u‖ |.

Then γ < 1, induction, and 2c0∆t ≤ 1 yield

‖φ̂hn+1 − φhn+1‖2 ≤ 4∆t2
n∑
i=0

(1 + 4c20∆t2)i‖ûh − uh‖2 (3.61)

≤ 4∆t2‖ûh − uh‖2
n∑
i=0

(1 + 2c0∆t)i = 2∆t‖ûh − uh‖2 (1 + 2c0∆t)n+1 − 1
c0

.

The above results in

‖φ̂hN − φhN‖2 = ∆t
N∑
n=0

‖φ̂hN (tn,x)− φhN (tn,x)‖2

≤ 2c−1
0 ∆t2‖ûh − uh‖2

N∑
n=0

((1 + 2c0∆t)n − 1) ≤ ∆tc−2
0 e2c0‖ûh − uh‖2.

Thus, by applying the above to (3.59), the proof is complete.
Now, we focus on the Lagrange multipliers.
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Proposition 3.10. Let ψ and ψhN satisfy (2.6) and (3.55), respectively. Assume
that ∆t is sufficiently small. Then, we have

‖ψ −ψhN‖ ≤ c (∆t+ h) + c0∆t‖ûh − uh‖1,

where c0 depends only on ‖u‖2, ‖∇T‖∞, ‖T‖∞, and ‖R‖∞.
Proof. By the triangle inequality, elementary properties of the finite difference

scheme, and Proposition 3.5, we have

‖ψ −ψhN‖ ≤ ‖ψ −ψN‖+ ‖ψN − ψ̂hN‖+ ‖ψ̂hN −ψhN‖
≤ c (∆t+ h) + ‖ψ̂hN −ψhN‖, (3.62)

where ψN and ψ̂hN are defined as in (3.22) and (3.24), respectively. For simplicity
of the notation, we abbreviate ψ̂hN (tn,x) and ψhN (tn,x) to ψ̂hn(x) and ψhn(x), respec-
tively. The definitions of ψ̂hn and ψhn and the triangle inequality imply

‖ψ̂hn−1 −ψhn−1‖ ≤ ‖ψ̂hn −ψhn‖+ ∆t‖∇φûh(φ̂hn−1)ψ̂hn −∇φuh(φhn−1)ψhn‖.

By the triangle inequality and the change of variables (3.60), we have

‖∇φûh(φ̂hn−1)ψ̂hn −∇φuh(φhn−1)ψhn‖

≤ ‖∇φûh(φ̂hn−1)ψ̂hn −∇φûh(φhn−1)ψ̂hn‖+

‖∇φûh(φhn−1)ψ̂hn −∇φûh(φhn−1)ψhn‖+ ‖∇φûh(φhn−1)ψhn −∇φuh(φhn−1)ψhn‖

≤ c‖∇ûh‖∞‖ψ̂hn‖∞‖φ̂hn−1 − φhn−1‖

+ ‖∇ûh‖∞‖ψ̂hn −ψhn‖+ ‖ψhn‖∞γ
n−1

2 ‖∇ûh −∇uh‖, (3.63)

where γ = 1/|2−∆t‖∇ · uh‖∞|. Again, we use the inequality (3.17) to obtain

‖ψ̂hn‖∞ ≤ ‖ψ̂hn+1‖∞ + 2∆t‖∇ûh‖∞‖ψ̂hn+1‖∞ = (1 + 2∆t‖∇ûh‖∞)‖ψ̂hn+1‖∞
· · · ≤ (1 + 2∆t‖∇ûh‖∞)N−n‖ψ̂hN‖∞ ≤ (1 + 2c0∆t)N−nCtr ≤ e2c0Ctr, (3.64)

where c0 = c‖u‖2 + ‖∇u‖∞ and Ctr ≡ ‖ψ̂hN‖∞ ≤ c(‖T‖22 + ‖T‖21,∞+ ‖R‖22 + ‖R‖2∞),
under the assumption ∆t ≤ 1/(2c0). The inverse inequality, ‖ · ‖∞ ≤ cIh

−1‖ · ‖, and
the change of variables (3.60) yield

‖ψhn‖∞ ≤ ‖ψhn+1‖∞ + 2∆t‖∇φuh(φhn)‖∞‖ψhn+1‖∞
≤ (1 + 2cI∆t h−1‖∇φuh(φhn)‖)‖ψhn+1‖∞
≤ (1 + 2cI∆t h−1‖∇uh‖γ k2 )‖ψhn+1‖∞

≤
N−1∏
m=n

(
1 + 2cI∆t h−1‖∇uh‖γm2

)
Ctr. (3.65)

Suppose that we choose ∆t such that

∆t ≤ ε2 + 2ε− 1
(1 + ε)2

min
{ 1
‖∇ · uh‖∞

,
h

2cI‖∇uh‖
,

1
2c0

}
for all constant ε in (

√
2− 1,

√
5−1
2 ] ∼ (0.4142, 0.6810]. Then,

γ ≤
(1 + ε

2

)2

< 1 and 2cI∆th−1‖∇uh‖ ≤ ε2 + 2ε− 1
(1 + ε)2

≤ 1− ε
1 + ε

. (3.66)
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If 0 < j < 1, then 1 + j < ej and this yields

N−1∏
m=n

(
1 + 2cI∆t h−1‖∇uh‖γm2

)
≤

N∏
m=1

(
1 +

1− ε
1 + ε

·
(1 + ε

2

)m)
≤

N∏
m=1

e
1−ε
1+ε ·( 1+ε

2 )m = e
1−ε
1+ε ·

“
( 1+ε

2 )+( 1+ε
2 )2

+···+( 1+ε
2 )N

”
≤ e. (3.67)

Now, gather (3.63)–(3.65) and (3.67) and then apply (3.17) to obtain

‖∇φûh(φ̂hn−1)ψ̂hn −∇φuh(φhn−1)ψhn‖

≤ c0(ce2c0Ctr‖φ̂hn−1 − φhn−1‖+ ‖ψ̂hn −ψhn‖) + eCtrγ
n−1

2 ‖∇ûh −∇uh‖

≤ c‖φ̂hn−1 − φhn−1‖+ c‖ψ̂hn −ψhn‖+ cγ
n−1

2 ‖∇ûh −∇uh‖.

Hence, we have

‖ψ̂hn−1 −ψhn−1‖

≤ (1 + c∆t)‖ψ̂hn −ψhn‖+ c∆t‖φ̂hn−1 − φhn−1‖+ c∆tγ
n−1

2 ‖∇ûh −∇uh‖

· · · ≤ (1 + c∆t)N−n+1‖ψ̂hN −ψhN‖+ c∆t
N∑
i=n

(1 + c∆t)i−n‖φ̂hi−1 − φhi−1‖

+ c∆t‖∇ûh −∇uh‖
N∑
j=n

(1 + c∆t)j−nγ
j−1

2

≤ c ec∆t
N∑
i=n

‖φ̂hi−1 − φhi−1‖+ c ec∆t‖∇ûh −∇uh‖
N∑
j=n

γ
j−1

2 , (3.68)

where ψ̂hN − ψhN = 0 and (1 + c∆t)n ≤ ec n∆t = ec
n
N with n ≤ N . From (3.61), we

can calculate
N∑
i=n

‖φ̂hi−1 − φhi−1‖2 ≤ c∆t‖ûh − uh‖2
N∑
i=n

(1 + 2c0∆t)i−1

≤ c‖ûh − uh‖2(1 + 2c0∆t)n−1. (3.69)

Because
∑N
j=n γ

j−1
2 ≤ γ n−1

2
∑N
j=n

(
1+ε

2

)j−n ≤ γ n−1
2 2

1−ε ≤ γ
n−1

2 (2+
√

2), the inequal-
ities (3.68), (3.69) and Proposition 3.9 imply

‖ψ̂hN −ψhN‖2 = ∆t
N∑
n=0

‖ψ̂hN (tn,x)−ψhN (tn,x)‖2 = ∆t
N∑
n=0

‖ψ̂hn −ψhn‖2

≤ c∆t3‖ûh − uh‖2
N∑
n=0

(1 + 2c0∆t)n + c∆t2‖∇ûh −∇uh‖2

≤ c∆t2‖ûh − uh‖21.

Proposition 3.11. Let F and FhN be defined as in (3.41) and (3.56), respectively.
If (η, ξ)t and (ηh, ξh)t satisfy (3.41) and (3.56), respectively, then we have

‖η − ηh‖+ ‖ξ − ξh‖ ≤ c (h+ ∆t) + c
√

∆t‖ψN −ψhN‖.
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Proof. For a given F =
∫
I
|det∇φ−1(t,x)|ψ(t,φ−1(t,x))dt, (η, ξ)t satisfies∇⊥η−

∇ξ = F. As shown in Section 3.1.4, we define (η̂h, ξ̂h)t = L∗ŵh, where ŵh is a solution
of (3.46), i.e.,〈

L∗ŵh,L∗vh
〉

=
〈
(η, ξ)t,L∗vh

〉
=
〈
L(η, ξ)t,vh

〉
=
〈
F,vh

〉
(3.70)

for all vh ∈ Vh.
Also, for a given FhN = ∆t

∑N
n=0 |det∇φ−1

N (tn,x)|ψhN (tn,φ−1
N (tn,x)) with φN

from (3.6), there exists a (η, ξ)t satisfying ∇⊥η − ∇ξ = FhN . From (3.56), we let
(ηh, ξh)t be defined as L∗wh which is a solution of the weak problem〈

L∗wh,L∗vh
〉

=
〈
(η, ξ)t,L∗vh

〉
=
〈
FhN ,v

h
〉

(3.71)

for all vh ∈ Vh. Now, subtracting (3.71) from (3.70) yields〈
L∗(ŵh −wh),L∗vh

〉
=
〈
F− FhN ,v

h
〉
, for ∀vh ∈ Vh.

Let vh = ŵh −wh. Because ŵh −wh ∈ HN (∇·) ∩H(∇×) (see [9]),

‖ŵh −wh‖2 ≤ c(‖∇ · (ŵh −wh)‖2 + ‖∇ × (ŵh −wh)‖2)

which implies

‖(η̂h, ξ̂h)− (ηh, ξh)‖ = ‖L∗ŵh − L∗wh‖ ≤ c‖F− FhN‖.

By the triangle inequality and Proposition 3.6, we have

‖(η, ξ)− (ηh, ξh)‖ ≤ ‖(η, ξ)− (η̂h, ξ̂h)‖+ ‖(η̂h, ξ̂h)− (ηh, ξh)‖ ≤ c h+ c‖F− FhN‖.

Now, define FN = ∆t
∑N
n=0 |det∇φ−1

N (tn,x)|ψN (tn,φ−1
N (tn,x)). By the triangle

inequality,

‖F− FhN‖ ≤ ‖F− FN‖+ ‖FN − FhN‖ ≤ c∆t+ ‖FN − FhN‖.

Therefore, the change of variables (3.21) yields

‖FN − FhN‖2

≤ 2∆t2
N∑
n=0

∫
Ω

|det∇φ−1
N (tn,x)|2|ψN (tn,φ−1

N (tn,x))−ψhN (tn,φ−1
N (tn,x))|2dx

≤ c∆t2
N∑
n=0

∫
Ω

|ψN (tn,y)−ψhN (tn,y)|2dy = c∆t‖ψN −ψhN‖2

under the assumption ∆t ≤ 1/‖∇ · u‖∞.
Proposition 3.12. Let (p, f), (q, g), (ph, fh), and (qh, gh) be the solutions of

(3.49), (3.50), (3.57), and (3.58), respectively. Then, we have

‖f − fh‖1 + ‖g − gh‖1 ≤ c (‖ξ − ξh‖+ ‖η − ηh‖).
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Proof. First, we focus on f . Let (p̂h, f̂h) satisfy (3.51), Then, we have

‖f − fh‖1 ≤ ‖f − f̂h‖1 + ‖f̂h − fh‖1.

Subtracting (3.57) from (3.51) implies〈
p̂h − ph −∇(f̂h − fh), rh −∇rh

〉
+ 1

β2
f

〈
∇× (p̂h − ph),∇× rh

〉
+
〈
− 1
βf
∇ · (p̂h − ph) + βf (f̂h − fh),− 1

βf
∇ · rh + βfr

h
〉

=
〈
− 1
αf1βf

(σ − σh − ξ + ξh),− 1
βf
∇ · rh + βfr

h
〉

for all (rh, rh) ∈ X h ×Xh. We let rh = f̂h − fh and rh = p̂h − ph in the above and
use the Hölder inequality, the ε-inequality, and Green’s formula to obtain

‖p̂h − ph‖21 + ‖f̂h − fh‖21 ≤ c(‖σ − σh‖2 + ‖ξ − ξh‖2) ≤ c‖ξ − ξh‖2.

The last inequality results from

‖σ − σh‖2 =
1
|Ω|2

∫
Ω

(∫
I

ξdt−
∫
I

ξhdt

)2

dx ≤ c‖ξ − ξh‖2.

Analogously, we have

‖q̂h − qh‖21 + ‖ĝh − gh‖21 ≤ c‖η − ηh‖2.

Finally, we gather Propositions 3.8–3.12 to obtain the following result.
Theorem 3.13. Let (u,φ,ψ, ξ, η, f, g) denote the solution of the optimality sys-

tem (2.4)–(2.8) and (uh,φhN ,ψ
h
N , ξ

h, ηh, fh, gh) ∈ Uh × (Φh)2 × Vh × X h × Yh the
solution of the fully discretized optimality system (3.53)–(3.58). Suppose that ∆t is
sufficiently small. Then,

‖u− uh‖21 + ‖φ− φh‖2 + ‖ψ −ψh‖2 + ‖ξ − ξh‖+ ‖η − ηh‖2

+ ‖f − fh‖21 + ‖g − gh‖21 ≤ c (∆t2 + h2).

Proof. Theorems 3.8–3.12 yield

‖u− uh‖21 + ‖φ− φh‖2 + ‖ψ −ψh‖2 + ‖ξ − ξh‖+ ‖η − ηh‖2

+ ‖f − fh‖21 + ‖g − gh‖21 ≤ c (∆t2 + h2) + c∆t‖u− uh‖21,

where c does not depend on ∆t and h. Hence, for sufficiently small ∆t, the result
holds.

4. Gradient algorithm. In Section 3, we proved that the solution of the dis-
crete optimality system (3.53)–(3.57) converges to the solution of the optimality sys-
tem (2.4)–(2.8). Due to the forward-in-time nature of the state equations and the
backward-in-time nature of the adjoint equations, solving the fully-coupled discrete
optimality system is a formidable task. In most cases, it is more efficient to solve the
optimality system using an optimization iteration for which, at each iteration, the
different components of the discrete optimality system are solved sequentially. Here,
we consider a gradient method for this purpose.
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The discrete functional used in the optimal control problem is defined as

Jh(φh|t=1, f
h, gh) =

1
2
‖Th(φh(1,x))−Rh‖2

+
αf0

2
‖fh‖2 +

αf1

2
‖∇fh‖2 +

αg0

2
‖gh‖2 +

αg1

2
‖∇gh‖2 − β

∫
Ω

log fh dx, (4.1)

where Th ≡ IhT and Rh ≡ IhR. Here, for notational simplicity, we omit the subscript
N that represents the number of time steps used in the integrations of φh and ψh.
However, throughout this section, we still have {tn}Nn=0 as a partition of [0, 1] into
equal intervals ∆t = 1/N with t0 = 0 and tN = 1.

Let Jh(m) = Jh(φh(m), fh(m), gh(m)), where m is the iteration counter of the
gradient algorithm and φh(m) presents φh(1,x) at the m-th iterative step. In the
algorithm, τ denotes a prescribed tolerance used to test for the convergence of the
functional, s denotes a step-size parameter that is automatically selected by the al-
gorithm, and (fh(0), gh(0)) denotes an initial guess for the controls.

The gradient algorithm proceeds as follows [10].
(a) initialization :

(i) choose τ and (fh(0), gh(0)); set m = 0 and s = 1;
(ii) solve for uh(0) and then φh(0) from (3.53) and (3.54), respectively with

(fh, gh) = (fh(0), gh(0));
(iii) evaluate Jh(0);

(b) main loop;
(iv) set m = m+ 1;
(v) solve for ψh(m) from (3.55), (ηh(m), ξh(m)) from (3.56), (fh(m), gh(m))

from (3.57) and (3.58), respectively, with uh = uh(m − 1) and φh =
φh(m− 1);

(vi) set

fh(m) = fh(m− 1)
−s
(
−αf1∆(fh(m− 1)− fh(m)) + αf0(fh(m− 1)− fh(m))

)
gh(m) = gh(m− 1)

−s
(
−αg1∆(gh(m− 1)− gh(m)) + αg0(gh(m− 1)− gh(m))

)
(vii) solve for uh(m) and then φh(m) from (3.53) and (3.54), respectively

with (fh, gh) = (fh(m), gh(m));
(viii) evaluate Jh(m) = Jh(φh(m), fh(m), gh(m));
(ix) if Jh(m) ≥ Jh(m − 1), set s = 0.5s and go to step (vi); otherwise,

continue;
(x) if |Jh(m) − Jh(m − 1)|/|Jh(m)| > τ , set s = 1.5s and go to step (iv);

otherwise, stop;
The convergence of gradient algorithm is shown in the following theorem.
Theorem 4.1. Let (uh(m),φh(m),ψh(m), ηh(m), ξh(m), fh(m), gh(m)) denote

the m-th iterate of the gradient algorithm. Let (uh,φh,ψh, ηh, ξh, fh, gh) denote the
solution of the discrete optimality system (3.53)–(3.57). Then, for ∆t sufficiently
small, there exists a ball B in [Xh]2 whose radius depends on the penalty parameters,
αf0 , αf1 , αg0 , αg1 , such that, if (fh(0), gh(0)) ∈ B, then

(uh(m),φh(m),ψh(m), ηh(m), ξh(m), fh(m), gh(k))
→ (uh,φh,ψh, ηh, ξh, fh, gh) as m→∞.
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Proof. Recall the classical result in [6]: Let V be a Hilbert space and let J : V → R
be a functional of class C2 which has a local minimum at a point q ∈ V . Suppose that
there are two constants c1 and c2 and a ball B ⊂ V centered at g satisfying, for all
δg1, δg2 ∈ V and any g̃ ∈ B,

D2J(g̃)(δg1, δg2) ≤ c1‖δg1‖‖δg2‖ and D2J(g̃)(δg1, δg1) ≥ c2‖δg1‖2, (4.2)

where D2J is the second Frechét derivative of J . Then, for all g0 ∈ B, the iterates of
the gradient algorithm converge to g.

For each (fh, gh) ∈ (Xh)2, the second Frechét derivative of Jh is given by

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (˜̃fh, ˜̃gh)]

=
∫

Ω

φ̂hN (x) · ∇φTh
(
Th(φhN (x))−Rh

)
dx

+
∫

Ω

φ̃hN (x) ·
(˜̃
φ
h

N (x) · ∇φ∇φTh(φhN (x))
)(

Th(φhN (x))−Rh
)
dx

+
∫

Ω

(
φ̃hN (x) · ∇φTh(φhN (x))

)(˜̃
φ
h

N (x) · ∇φTh(φhN (x))
)
dx

+
∫

Ω

αf0 f̃
h˜̃fh + αf1∇f̃h · ∇

˜̃
f
h

+ αg0 g̃
h˜̃gh + αg1∇g̃h · ∇˜̃gh + β

f̃h
˜̃
f
h

fh
2 dx,

where uh ∈ Uh is the solution of〈
∇ · uh,∇ · vh

〉
+
〈
∇× uh,∇× vh

〉
=
〈
fh − 1,∇ · vh

〉
+
〈
gh,∇× vh

〉
, (4.3)

for all vh ∈ Uh, φh satisfies (3.8), the first variations ũh, ˜̃uh ∈ Uh and φ̃hn,
˜̃
φ
h

n ∈ Φh

are solutions of〈
∇ · ũh,∇ · ṽh

〉
+
〈
∇× ũh,∇× ṽh

〉
=
〈
f̃h,∇ · ṽh

〉
+
〈
g̃h,∇× ṽh

〉
, (4.4)

〈
∇ · ˜̃uh,∇ · ˜̃vh〉+

〈
∇× ˜̃uh,∇× ˜̃vh〉 =

〈˜̃
f
h

,∇ · ˜̃vh〉+
〈˜̃gh,∇× ˜̃vh〉 , (4.5)

for all ṽh, ˜̃vh ∈ Uh,
〈
φ̃hn+1 − φ̃hn

∆t
− φ̃hn · ∇φuh(φhn)− ũh(φhn) , ρ̃h

〉
= 0, ∀ ρ̃h ∈ Φh

φ̃h0 (x) = 0, in Ω,

(4.6)

and 
〈 ˜̃
φ
h

n+1 −
˜̃
φ
h

n

∆t
− ˜̃φhn · ∇φuh(φhn)− ˜̃uh(φhn) , ˜̃ρh〉 = 0, ∀ ˜̃ρh ∈ Φh

˜̃
φ
h

0 (x) = 0, in Ω,

(4.7)
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respectively, and the second variations ûh ∈ Uh and φ̂h ∈ Φ are solutions of〈
∇ · ûh,∇ · v̂h

〉
+
〈
∇× ûh,∇× v̂h

〉
= 0, ∀ v̂h ∈ Uh (4.8)

and 

〈
φ̂hn+1 − φ̂hn

∆t
− φ̂hn · ∇φuh(φhn)− φ̃hn · (

˜̃
φ
h

n · ∇φ∇φuh(φhn))

−φ̃hn · ∇φ
˜̃uh(φhn)− ˜̃φhn · ∇φũh(φhn)− ûh(φhn) , ρ̂h

〉
= 0, ∀ ρ̂h ∈ Φh

φ̂h0 (x) = 0, in Ω,

(4.9)

respectively. The equation (4.8) yields ûh = 0 so that we can omit the last term
ûh(φhn) in (4.9).

First we show

c (‖f̃h‖2 + ‖g̃h‖2) ≤ D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (f̃h, g̃h)].

By using the final condition of ψhN at t = 1 in (3.55) and the Hölder inequality, the
second Frechét derivative of Jh becomes

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (f̃h, g̃h)] =
∫

Ω

φ̂hN (x) ·ψhN (x)

+
∫

Ω

φ̃hN (x) ·
(
φ̃hN (x) · ∇φ∇φTh(φhN (x))

) (
Th(φhN (x))−Rh

)
dx

+
∫

Ω

(
φ̃hN (x) · ∇φTh(φhN (x))

)2

(4.10)

+
∫

Ω

αf0 |f̃h|2 + αf1 |∇f̃h|2 + αg0 |g̃h|2 + αg1 |∇g̃h|2 + β
|f̃h|2

fh
2 dx.

We first choose ρ̂h = ψhn+1 in (4.9). Then equation (3.55) at tn multiplied by φ̂hn:

φ̂hn ·ψhn = φ̂hn · (ψhn+1 + ∆t∇φuh(φhn)ψhn+1)

and
(
φ̂hn · ∇φuh(φhn)

)
·ψhn+1 = φ̂hn ·

(
∇φuh(φhn)ψhn+1

)
change the equation (4.9) to∫

Ω

φ̂hn+1 ·ψhn+1dx =
∫

Ω

φ̂hn ·ψhndx

+∆t
∫

Ω

(
φ̃hn · (φ̃hn∇φ∇φuh(φhn)) + 2φ̃hn · ∇φũh(φhn)

)
·ψhn+1dx.

Induction, the initial condition φ̂h0 = 0, and the Hölder inequality yield∫
Ω

φ̂hN ·ψhNdx (4.11)

= ∆t
N∑
k=0

∫
Ω

(
φ̃hk · (φ̃hk∇φ∇φuh(φhk)) + 2φ̃hk · ∇φũh(φhk)

)
·ψhk+1dx.

≥ −∆t
N∑
k=0

{(∫
Ω

|∇2
φuh(φhk)|2dx

) 1
2
(∫

Ω

|φ̃hk |8dx
) 1

4
(∫

Ω

|ψhk+1|4dx
) 1

4

+
(∫

Ω

|∇φũh(φhk)|2dx
) 1

2
(∫

Ω

|φ̃hk |4dx
) 1

4
(∫

Ω

|ψhk+1|4dx
) 1

4
}
.
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We recall the change of variables (3.60):

|det∇φhk | ≥ |2−∆t‖∇ · uh‖∞|k (4.12)

that implies∫
Ω

|∇2
φuh(φhk)|2dx ≤ γk‖∇2uh‖2 and

∫
Ω

|∇φũh(φhk)|2dx ≤ γk‖∇ũh‖2, (4.13)

where γ = 1/|2−∆t‖∇ · uh‖∞|.
Now, we consider the term ‖ψhk+1‖L4(Ω). In (3.55) at t = tk, we multiply by

(ψhk )3 to the equation and integrate it over Ω. Applying the Hölder inequality, the
change of variables (4.12), and the inverse inequality (3.11) results in

‖ψhk‖4L4(Ω)

≤ ‖ψhk+1‖L4(Ω)‖ψhk‖3L4(Ω) + ∆t‖∇φuh(φhk)‖L2(Ω)‖ψhk+1‖L4(Ω)‖ψhk‖3L12(Ω)

≤ ‖ψhk+1‖L4(Ω)‖ψhk‖3L4(Ω) + ∆tγ
k
2 ‖∇uh‖ ‖ψhk+1‖L4(Ω)c1h

−1‖ψhk‖3L4(Ω).

The above inequality, induction, and the final condition in (3.55) with the change of
variables used in (4.13) provide

‖ψhk‖L4(Ω) ≤ (1 + c1∆th−1‖∇uh‖γ k2 )‖ψhk+1‖L4(Ω)

· · · ≤
N−1∏
m=k

(
1 + c1∆th−1‖∇uh‖γm2

)
‖ψhN‖L4(Ω)

≤
N−1∏
m=k

(
1 + c1∆th−1‖∇uh‖γm2

)
CTRγ

N
4 ‖∇Th‖L4(Ω), (4.14)

where CTR ≡ ‖Th‖∞ + ‖Rh‖∞.
Analogously, for ‖φhk‖L8(Ω), we set ρ̃h = (φhk+1)7 in (4.6) to obtain

‖φ̃hk+1‖8L8(Ω) ≤ ‖φ̃
h
k‖L8(Ω)‖φ̃hk+1‖7L8(Ω) (4.15)

+ ∆t
(
‖∇φuh(φhk)‖ ‖φ̃hk‖L8(Ω)‖φ̃hk+1‖7

L
56
3 (Ω)

+ ‖ũh(φhk)‖L8(Ω)‖φ̃hk+1‖7L8(Ω)

)
.

Applying the inverse inequality ‖ ·‖
L

56
3 (Ω)

≤ c2h−
1
7 ‖ ·‖L8(Ω), dividing by ‖φ̃hk+1‖7L8(Ω)

on both sides of the inequality (4.15), the change of variables (4.12), the Sobolev
imbedding theorem ‖ · ‖L8(Ω) ≤ c3‖ · ‖H1(Ω), induction, and the initial condition
φ̃h0 = 0 result in

‖φ̃hk+1‖L8(Ω) ≤
(
1 + c2∆th−1‖∇φuh(φhk)‖

)
‖φ̃hk‖L8(Ω) + ∆t‖ũh(φhk)‖L8(Ω)

≤
(

1 + c2∆th−1‖∇uh‖γ k2
)
‖φ̃hk‖L8(Ω) + γ

k
8 ∆t c3‖ũh‖1 (4.16)

· · · ≤
k∏

m=0

am‖φ̃h0‖L8(Ω) +

(
bk +

k−1∑
m=0

bm

(
k∏

l=m+1

al

))
‖ũh‖1

=

(
bk +

k−1∑
m=0

bm

(
k∏

l=m+1

al

))
‖ũh‖1 ≤

(
k∏
l=1

al

)(
k∑

m=0

bm

)
‖ũh‖1,
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where al = 1 + c2∆th−1‖∇uh‖γ l2 and bm = c3γ
m
8 ∆t.

We use a similar process as that in (4.16) to obtain the L4-norm bound:

‖φ̃hN‖L4(Ω) ≤

(
N∏
l=1

pl

)(
N∑
m=0

qm

)
‖ũh‖1, (4.17)

where pk = 1 + c4∆th−1‖∇uh‖γ k2 and qk = c5γ
k
4 ∆t with constants c4 and c5 from

‖ · ‖3L12(Ω) ≤ c4h
−1‖ · ‖3L4(Ω) and ‖ · ‖L4(Ω) ≤ c5‖ · ‖1, respectively.

Let ĉ = max{c1, c2, c4}. Then, gathering (4.13), (4.14), (4.16), (4.17) and apply-
ing them to (4.11) yields

∫
Ω

φ̂hN ·ψhNdx ≥ −∆t
N∑
k=0

{
γ
k
2 ‖∇2uh‖ ·A2

kB
2
k‖ũh‖21 ·Akγ

N
4 CTRc5‖∇Th‖1

+ 2γ
k
2 ‖∇ũh‖ ·AkBk‖ũh‖1 ·Akγ

N
4 CTRc5‖∇Th‖1

}
≥ −∆t

N∑
k=0

{
γ
k
2 γ

N
4 ‖ũh‖21 C0 A

2
k

(
‖∇2uh‖AkB2

k + 2Bk
)}
,

where Ak =
∏k
l=1

(
1 + ĉ∆th−1‖∇uh‖γ l2

)
, Bk = c3∆t

∑k
m=0 γ

m
8 ,

Bk = c5∆t
∑k
m=0 γ

m
4 , and C0 = CTRc5‖∇Th‖1.

Suppose we choose ∆t satisfying

∆t ≤ ε2 + 2ε− 1
(1 + ε)2

min
{ 1
‖∇ · uh‖∞

,
h

ĉ ‖∇uh‖

}
(4.18)

for ε ∈ (
√

2− 1,
√

5−1
2 ] ∼ (0.4142, 0.6810]. Then,

γ ≤
(1 + ε

2

)2

< 1 and ĉ∆th−1‖∇uh‖ ≤ ε2 + 2ε− 1
(1 + ε)2

≤ 1− ε
1 + ε

. (4.19)

Similarly to (3.67), we have Ak ≤
∏k
m=1

(
1 + 1−ε

1+ε ·
(

1+ε
2

)m) ≤ e. Thus, we have

A2
K ≤ e2 and

‖∇2uh‖AkB2
k + 2Bk ≤ ‖∇2uh‖ e 2 c23∆t2

1− γ 1
4

+
2c5∆t
1− γ 1

4

≤ 2∆t
1− γ 1

4

(
c23c6 e (1− ε)
ĉ (1 + ε)

+ c5

)
≤ ∆t

4 + 2
√

2 + 2ε
1− ε

(
c23c6 e (1− ε)
ĉ (1 + ε)

+ c5

)
,

where the constant c6 stems from an inverse inequality ‖∇2uh‖ ≤ c6h−1‖∇uh‖.
Hence, we have

∫
Ω

φ̂hN ·ψhNdx ≥ −∆t2K1‖ũh‖21
N∑
k=0

γ
k
2 ≥ −∆t2K1

2
1− ε

‖ũh‖21, (4.20)
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where K1 = e2 · c5CTR‖∇Th‖1
(

1+ε
2

) 1
2∆t · 4+2

√
2+2ε

1−ε

(
c23c6 e (1−ε)bc (1+ε) + c5

)
and therefore

∫
Ω

φ̂hN (x) ·ψhN (x) + φ̃hN (x)·
(
φ̃hN (x) ·∇2

φTh(φhN (x))
)(

Th(φhN (x))−Rh
)
dx

≥
∫

Ω

φ̂hN (x) ·ψhN (x)dx− CTR‖φ̃hN‖2L4(Ω)‖∇
2
φTh(φhN (x))‖

≥ −∆t2 K ‖ũh‖21, (4.21)

where K = K1 +K2 with K1 = 2K1/(1− ε) and K2 = CTR · e2 · 4
1−ε · c

2
5 ·
(

1+ε
2

) 1
∆t ·

‖∇2Th‖.
Now, we use the following regularity result for (4.4) to complete the proof of the

coercivity of D2Jh: there exists a constant C̃ such that

‖ũh‖21 ≤ C̃(‖f̃h‖2 + ‖g̃h‖2). (4.22)

Therefore, (4.22) with (4.21) yields

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (f̃h, g̃h)]

≥
∫

Ω

φ̂hN (x) ·ψhN (x)dx− CTR2‖φ̃hN‖2 +
∫

Ω

(
φ̃hN (x) · ∇φTh(φhN (x))

)2

dx

+ αf0‖f̃h‖2 + αf1‖∇f̃h‖2 + αg0‖g̃h‖2 + αg1‖∇g̃h‖2 + β
‖f̃h‖2

‖fh‖2∞

≥

(
αf0 + β

‖f̃h‖2

‖fh‖2∞
−∆t2KC̃

)
‖f̃h‖2 + αf1‖∇f̃h‖2

+ (αg0 −∆t2KC̃)‖g̃h‖2 + αg1‖∇g̃h‖2, (4.23)

where CTR2 = CTR‖∇2
φT(φhN )‖ ≤ CTRγ

N
2 ‖∇2T‖ ≤ CTR

(
1+ε

2

) 1
∆t ‖∇2T‖

≤ 2(‖T‖22 + ‖R‖22)
(

1+ε
2

) 1
∆t , if ∆t is sufficiently small so that it satisfies

∆t ≤ min

 $

‖∇ · uh‖∞
,

$ h

ĉ‖∇uh‖
,

√√√√αf0 + β‖ efh‖2
‖fh‖2∞

K C̃
,

√
αg0

K C̃

 , (4.24)

where $ = (ε2 + 2ε− 1)/(1 + ε)2. Of course, the constraint on the time step in (4.24)
is a sufficient condition, not a necessary condition. Here, (ε2 + 2ε − 1)/(1 + ε)2 and
K = K1 +K2 are monotonely increasing with respect to ε when ε is in (

√
2−1,

√
5−1
2 ].

However, for fixed ε, the value of K decreases as ∆t→ 0 because of the term
(

1+ε
2

) 1
∆t

in K.
Now, we show

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (˜̃fh, ˜̃gh)] ≤ c (‖f̃h‖+ ‖g̃h‖)(‖˜̃fh‖+ ‖˜̃gh‖).
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By the Hölder inequality,

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (˜̃fh, ˜̃gh)]

≤
∫

Ω

φ̂hN ·ψhNdx + CTR‖∇2
φTh(φhN )‖ ‖φ̃hN‖L4(Ω)‖

˜̃
φ
h

N‖L4(Ω)

+ ‖∇φTh(φhN )‖2L4(Ω)‖φ̃
h
N‖L4(Ω)‖

˜̃
φ
h

N‖L4(Ω)

+

(
αf0 +

β‖f̃h‖2

‖fh‖2∞
+ αf1 + αg0 + αg1

)
(‖f̃h‖1 + ‖g̃h‖1)(‖˜̃fh‖1 + ‖˜̃gh‖1).

The following holds by (4.13)–(4.14), (4.16), and (4.17):∫
Ω

φ̂hN ·ψhNdx

= ∆t
N∑
k=0

(
φ̃hk·
(˜̃
φ
h

k · ∇φ∇φuh(φhk)
)

+φ̃hk·∇φ
˜̃uh(φhk)+˜̃φhk·∇φũh(φhk)

)
·ψhk+1

≤ ∆t2K1‖ũh‖1‖˜̃uh‖1. (4.25)

Also, the inequality (4.17) and a change of variables yield(
CTR‖∇2

φTh(φhN )‖+ ‖∇φTh(φhN )‖2L4(Ω)

)
‖φ̃hN‖L4(Ω)‖

˜̃
φ
h

N‖L4(Ω)

≤ ∆t2K3‖ũh‖1‖˜̃uh‖1, (4.26)

where K3 =
(

1+ε
2

) 1
∆t
(
CTR‖∇2Th‖+ c25‖∇Th‖21

) 4c25e
2

1−ε . Again, the regularity results

(4.22) and ‖˜̃uh‖21 ≤ c(‖˜̃fh‖2 + ‖˜̃gh‖2) with (4.25) and (4.26) imply

D2Jh(φhN ; fh, gh)[(f̃h, g̃h), (˜̃fh, ˜̃gh)] ≤ K4 (‖f̃h‖+ ‖g̃h‖)(‖˜̃fh‖+ ‖˜̃gh‖), (4.27)

where K4 = cC̃∆t2(K1 +K3) + αf0 + ‖β efh‖2
‖fh‖2∞

+ αf1 + αg0 + αg1 .
Hence (4.23) and (4.27) imply (4.2) and thus the gradient algorithm converges if

(fh(0), gh(0)) ∈ B.
In Section 3, we showed the convergence of the solution of the discrete optimality

system (3.53)–(3.57) to the solution of the optimality system (2.4)–(2.8), i.e.,

(uh,φhN ,ψ
h
N , ξ

h, ηh, fh, gh)→ (u,φ,ψ, ξ, η, f, g)

as h,∆t = 1/N → 0. Theorem 4.1 shows that the iterates of the gradient algorithm
coverage to the discrete solution, i.e.,

(uh(m),φhN (m),ψhN (m), ξh(m), ηh(m), fh(m), gh(m))→ (uh,φhN ,ψ
h
N , ξ

h, ηh, fh, gh),

as m → ∞. Therefore, the approximations from discrete gradient method converges
to the solution of the optimal system, i.e.,

(uh(m),φhN (m),ψhN (m), ξh(m), ηh(m), fh(m), gh(m))→ (u,φ,ψ, ξ, η, f, g),

as h,∆t→ 0 and m→∞.
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5. Conclusions. In previous work [12], we apply the grid deformation method
and the Lagrange multiplier rule to derive an optimality system that can be used to
solve the image registration problem, i.e., to find an optimal transformation that min-
imizes a dissimilarity measure between the mapping of one given image and another
given image. As far as we know, this is the first time this approach is used for the im-
age registration problem. In [12], we also provide the results of several computational
experiments that illustrate the effectiveness of our approach.

This paper defines finite element discretizations of the optimality system and
analyzes the convergence of the approximate solutions. As a bonus, our work provides
the first thorough analysis of the grid deformation method introduced in [3, 13, 16].
For practical reasons, we define a gradient method to uncouple the components of the
discretized optimality system and prove the convergence of that iterative method.

In future work, we will explore more sophisticated uncoupling strategies for solv-
ing the discretized optimality system that should improve on the efficiency of the
gradient method. We will also explore the use of multigrid methods to improve the
efficiency of the solution of the individual components of the discretized optimality
system.
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