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Abstract
The cryo-electron microscopy reconstruction problem is to find the three-dimensional (3D)
structure of a macromolecule given noisy samples of its two-dimensional projection images at
unknown random directions. Present algorithms for finding an initial 3D structure model are based
on the “angular reconstitution” method in which a coordinate system is established from three
projections, and the orientation of the particle giving rise to each image is deduced from common
lines among the images. However, a reliable detection of common lines is difficult due to the low
signal-to-noise ratio of the images. In this paper we describe two algorithms for finding the
unknown imaging directions of all projections by minimizing global self-consistency errors. In the
first algorithm, the minimizer is obtained by computing the three largest eigenvectors of a
specially designed symmetric matrix derived from the common lines, while the second algorithm
is based on semidefinite programming (SDP). Compared with existing algorithms, the advantages
of our algorithms are five-fold: first, they accurately estimate all orientations at very low common-
line detection rates; second, they are extremely fast, as they involve only the computation of a few
top eigenvectors or a sparse SDP; third, they are nonsequential and use the information in all
common lines at once; fourth, they are amenable to a rigorous mathematical analysis using
spectral analysis and random matrix theory; and finally, the algorithms are optimal in the sense
that they reach the information theoretic Shannon bound up to a constant for an idealized
probabilistic model.
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1. Introduction
Cryo-electron microscopy (cryo-EM) is a technique by which biological macromolecules
are imaged in an electron microscope. The molecules are rapidly frozen in a thin (~ 100nm)
layer of vitreous ice, trapping them in a nearly physiological state [1, 2]. Cryo-EM images,
however, have very low contrast due to the absence of heavy-metal stains or other contrast
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enhancements, and have very high noise due to the small electron doses that can be applied
to the specimen. Thus, to obtain a reliable three-dimensional (3D) density map of a
macromolecule, the information from thousands of images of identical molecules must be
combined. When the molecules are arrayed in a crystal, the necessary signal-averaging of
noisy images is straightforwardly performed. More challenging is the problem of single-
particle reconstruction (SPR), where a 3D density map is to be obtained from images of
individual molecules present in random positions and orientations in the ice layer [1].

Because it does not require the formation of crystalline arrays of macromolecules, SPR is a
very powerful and general technique, which has been successfully used for 3D structure
determination of many protein molecules and complexes roughly 500 kDa or larger in size.
In some cases, sufficient resolution (~ 0.4nm) has been obtained from SPR to allow tracing
of the polypeptide chain and identification of residues in proteins [3, 4, 5]; however, even
with lower resolutions many important features can be identified [6].

Much progress has been made in algorithms that, given a starting 3D structure, are able to
refine that structure on the basis of a set of negative-stain or cryo-EM images, which are
taken to be projections of the 3D object. Datasets typically range from 104 to 105 particle
images, and refinements require tens to thousands of CPU-hours. As the starting point for
the refinement process, however, some sort of ab initio estimate of the 3D structure must be
made. If the molecule is known to have some preferred orientation, then it is possible to find
an ab initio 3D structure using the random conical tilt method [7, 8]. There are two known
solutions to the ab initio estimation problem of the 3D structure that do not involve tilting.
The first solution is based on the method of moments [9, 10] that exploits the known
analytical relation between the second order moments of the 2D projection images and the
second order moments of the (unknown) 3D volume in order to reveal the unknown
orientations of the particles. However, the method of moments is very sensitive to errors in
the data and is of rather academic interest [11, section 2.1, p. 251]. The second solution, on
which present algorithms are based, is the “angular reconstitution” method of Van Heel [12]
in which a coordinate system is established from three projections, and the orientation of the
particle giving rise to each image is deduced from common lines among the images. This
method fails, however, when the particles are too small or the signal-to-noise ratio is too
low, as in such cases it is difficult to correctly identify the common lines (see section 2 and
Figure 2 for a more detailed explanation about common lines).

Ideally one would want to do the 3D reconstruction directly from projections in the form of
raw images. However, the determination of common lines from the very noisy raw images is
typically too error-prone. Instead, the determination of common lines is performed on pairs
of class averages, namely, averages of particle images that correspond to the same viewing
direction. To reduce variability, class averages are typically computed from particle images
that have already been rotationally and translationally aligned [1, 13]. The choice of
reference images for the alignment is, however, arbitrary and can represent a source of bias
in the classification process. This therefore sets the goal for an ab initio reconstruction
algorithm that requires as little averaging as possible.

By now there is a long history of common-line–based algorithms. As mentioned earlier, the
common lines between three projections uniquely determine their relative orientations up to
handedness (chirality). This observation is the basis of the angular reconstitution method of
Van Heel [12], which was also developed independently by Vainshtein and Goncharov [14].
Other historical aspects of the method can be found in [15]. Farrow and Ottensmeyer [16]
used quaternions to obtain the relative orientation of a new projection in a least squares
sense. The main problem with such sequential approaches is that they are sensitive to false
detection of common lines, which leads to the accumulation of errors (see also [13, p. 336]).
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Penczek, Zhu, and Frank [17] tried to obtain the rotations corresponding to all projections
simultaneously by minimizing a global energy functional. Unfortunately, minimization of
the energy functional requires a brute force search in a huge parametric space of all possible
orientations for all projections. Mallick et al. [18] suggested an alternative Bayesian
approach, in which the common line between a pair of projections can be inferred from their
common lines with different projection triplets. The problem with this particular approach is
that it requires too many (at least seven) common lines to be correctly identified
simultaneously. Therefore, it is not suitable in cases where the detection rate of correct
common lines is low. In [19] we introduced an improved Bayesian approach based on voting
that requires only two common lines to be correctly identified simultaneously and can
therefore distinguish the correctly identified common lines from the incorrect ones at much
lower detection rates. The common lines that passed the voting procedure are then used by
our graph-based approach [20] to assign Euler angles to all projection images. As shown in
[19], the combination of the voting method with the graph-based method resulted in a 3D ab
initio reconstruction of the E. coli 50S ribosomal subunit from real microscope images that
had undergone only rudimentary averaging.

The two-dimensional (2D) variant of the ab initio reconstruction problem in cryo-EM,
namely, the reconstruction of 2D objects from their one-dimensional (1D) projections taken
at random and unknown directions, has a somewhat shorter history, starting with the work of
Basu and Bresler [21, 22], who considered the mathematical uniqueness of the problem as
well as the statistical and algorithmic aspects of reconstruction from noisy projections. In
[23] we detailed a graph-Laplacian based approach for the solution of this problem.
Although the two problems are related, there is a striking difference between the ab initio
reconstruction problems in 2D and 3D. In the 3D problem, the Fourier transforms of any
pair of 2D projection images share a common line, which provides some non-trivial
information about their relative orientations. In the 2D problem, however, the intersection of
the Fourier transforms of any 1D projection sinograms is the origin, and this trivial
intersection point provides no information about the angle between the projection directions.
This is a significant difference, and, as a result, the solution methods to the two problems are
also quite different. Hereafter we solely consider the 3D ab initio reconstruction problem as
it arises in cryo-EM.

In this paper we introduce two common-line–based algorithms for finding the unknown
orientations of all projections in a globally consistent way. Both algorithms are motivated by
relaxations of a global minimization problem of a particular self-consistency error (SCE)
that takes into account the matching of common lines between all pairs of images. A similar
SCE was used in [16] to assess the quality of their angular reconstitution techniques. Our
approach is different in the sense that we actually minimize the SCE in order to find the
imaging directions. The precise definition of our global SCE is given in section 2.

In section 3, we present our first recovery algorithm, in which the global minimizer is
approximated by the top three eigenvectors of a specially designed symmetric matrix
derived from the common-line data. We describe how the unknown rotations are recovered
from these eigenvectors. The underlying assumption for the eigenvector method to succeed
is that the unknown rotations are sampled from the uniform distribution over the rotation
group SO(3), namely, that the molecule has no preferred orientation. Although it is
motivated by a certain global optimization problem, the exact mathematical justification for
the eigenvector method is provided later in section 6, where we show that the computed
eigenvectors are discrete approximations of the eigenfunctions of a certain integral operator.

In section 4, we use a different relaxation of the global optimization problem, which leads to
our second recovery method based on semidefinite programming (SDP) [24]. Our SDP

Singer and Shkolnisky Page 3

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithm has similarities to the Goemans–Williamson max-cut algorithm [25]. The SDP
approach does not require the previous assumption that the rotations are sampled from the
uniform distribution over SO(3).

Compared with existing algorithms, the main advantage of our methods is that they correctly
find the orientations of all projections at amazingly low common line detection rates as they
take into account all the geometric information in all common lines at once. In fact, the
estimation of the orientations improves as the number of images increases. In section 5 we
describe the results of several numerical experiments using the two algorithms, showing
successful recoveries at very low common-line detection rates. For example, both algorithms
successfully recover a meaningful ab initio coordinate system from 500 projection images
when only 20% of the common lines are correctly identified. The eigenvector method is
extremely efficient, and the estimated 500 rotations were obtained in a matter of seconds on
a standard laptop machine.

In section 6, we show that in the limit of an infinite number of projection images, the
symmetric matrix that we design converges to a convolution integral operator on the rotation
group SO(3). This observation explains many of the spectral properties that the matrix
exhibits. In particular, this allows us to demonstrate that the top three eigenvectors provide
the recovery of all rotations. Moreover, in section 7 we analyze a probabilistic model which
is introduced in section 5 and show that the effect of the misidentified common lines is
equivalent to a random matrix perturbation. Thus, using classical results in random matrix
theory, we demonstrate that the top three eigenvalues and eigenvectors are stable as long as

the detection rate of common lines exceeds , where N is the number of images. From the
practical point of view, this result implies that 3D reconstruction is possible even at extreme
levels of noise, provided that enough projections are taken. From the theoretical point of
view, we show that this detection rate achieves the information theoretic Shannon bound up
to a constant, rendering the optimality of our method for ab initio 3D structure determination
from common lines under this idealized probabilistic model.

2. The global self-consistency error
Suppose we collect N 2D digitized projection images P1, …, PN of a 3D object taken at
unknown random orientations. To each projection image Pi (i = 1, …, N) there corresponds
a 3 × 3 unknown rotation matrix Ri describing its orientation (see Figure 1). Excluding the
contribution of noise, the pixel intensities correspond to line integrals of the electric
potential induced by the molecule along the path of the imaging electrons, that is,

(2.1)

where φ(x, y, z) is the electric potential of the molecule in some fixed “laboratory”

coordinate system and  with r = (x, y, z). The projection operator (2.1) is also
known as the X-ray transform [26]. Our goal is to find all rotation matrices R1, …, RN given
the dataset of noisy images.

The Fourier projection-slice theorem (see, e.g., [26, p. 11]) says that the 2D Fourier
transform of a projection image, denoted P̂, is the restriction of the 3D Fourier transform of
the projected object φ̂ to the central plane (i.e., going through the origin) θ⊥ perpendicular to
the imaging direction, that is,
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(2.2)

As every two nonparallel planes intersect at a line, it follows from the Fourier projection-
slice theorem that any two projection images have a common line of intersection in the
Fourier domain. Therefore, if P̂i and P̂j are the 2D Fourier transforms of projections Pi and
Pj, then there must be a central line in P̂i and a central line in P̂j on which the two transforms
agree (see Figure 2). This pair of lines is known as the common line. We parameterize the
common line by (ωxij, ωyij) in P̂i and by (ωxji, ωyji) in P̂j, where ω ∈ ℝ is the radial
frequency and (xij, yij) and (xji, yji) are two unit vectors for which

(2.3)

It is instructive to consider the unit vectors (xij, yij) and (xji, yji) as 3D vectors by zero-
padding. Specifically, we define cij and cji as

(2.4)

(2.5)

Being the common line of intersection, the mapping of cij by Ri must coincide with the
mapping of cji by Rj:

(2.6)

These can be viewed as  linear equations for the 6N variables corresponding to the first
two columns of the rotation matrices (as cij and cji have a zero third entry, the third column
of each rotation matrix does not contribute in (2.6)). Such overdetermined systems of linear
equations are usually solved by the least squares method [17]. Unfortunately, the least
squares approach is inadequate in our case due to the typically large proportion of falsely
detected common lines that will dominate the sum of squares error in

(2.7)

Moreover, the global least squares problem (2.7) is nonconvex and therefore extremely
difficult to solve if one requires the matrices Ri to be rotations, that is, when adding the
constraints

(2.8)

where I is the 3 × 3 identity matrix. A relaxation method that neglects the constraints (2.8)
will simply collapse to the trivial solution R1 = · · · = RN = 0 which obviously does not
satisfy the constraint (2.8). Such a collapse is easily prevented by fixing one of the rotations,
for example, by setting R1 = I, but this would not make the robustness problem of the least
squares method go away. We therefore take a different approach for solving the global
optimization problem.
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Since ||cij|| = ||cji|| = 1 are 3D unit vectors, their rotations are also unit vectors; that is, ||Ricij||
= ||Rjcji|| = 1. It follows that the minimization problem (2.7) is equivalent to the
maximization problem of the sum of dot products

(2.9)

subject to the constraints (2.8). For the true assignment of rotations, the dot product Ricij ·
Rjcji equals 1 whenever the common line between images i and j is correctly detected. Dot
products corresponding to misidentified common lines can take any value between −1 to 1,
and if we assume that such misidentified lines have random directions, then such dot
products can be considered as identically independently distributed (i.i.d.) zero-mean
random variables taking values in the interval [−1, 1]. The objective function in (2.9) is the
summation over all possible dot products. Summing up dot products that correspond to
misidentified common lines results in many cancelations, whereas summing up dot products
of correctly identified common lines is simply a sum of ones. We may consider the
contribution of the falsely detected common lines as a random walk on the real line, where
steps to the left and to the right are equally probable. From this interpretation it follows that
the total contribution of the misidentified common lines to the objective function (2.9) is
proportional to the square root of the number of misidentifications, whereas the contribution
of the correctly identified common lines is linear. This square-root diminishing effect of the
misidentifications makes the global optimization (2.9) extremely robust compared with the
least squares approach, which is much more sensitive because its objective function is
dominated by the misidentifications.

These intuitive arguments regarding the statistical attractiveness of the optimization problem
(2.9) will later be put on firm mathematical ground using random matrix theory as
elaborated in section 7. Still, in order for the optimization problem (2.9) to be of any
practical use, we must show that its solution can be efficiently computed. We note that our
objective function is closely related to the SCE of Farrow and Ottensmeyer [16, eq. (6), p.
1754] given by

(2.10)

This SCE was introduced and used in [16] to measure the success of their quaternion-based
sequential iterative angular reconstitution methods. At the small price of deleting the well-
behaved monotonic nonlinear arccos function in (2.10), we arrive at (2.9), which, as we will
soon show, has the great advantage of being amenable to efficient global nonsequential
optimization by either spectral or semidefinite programming relaxations.

3. Eigenvector relaxation
The objective function in (2.9) is quadratic in the unknown rotations R1, …, RN, which
means that if the constraints (2.8) are properly relaxed, then the solution to the maximization
problem (2.9) would be related to the top eigenvectors of the matrix defining the quadratic
form. In this section we give a precise definition of that matrix and show how the unknown
rotations can be recovered from its top three eigenvectors.

We first define the four N × N matrices S11, S12, S21, and S22 using all available common-
line data (2.4)–(2.5) as
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(3.1)

for 1 ≤ i ≠ j ≤ N, while their diagonals are set to zero:

Clearly, S11 and S22 are symmetric matrices (S11 = S11T and S22 = S22T), while S12 = S21T.
It follows that the 2N × 2N matrix S given by

(3.2)

is symmetric (S = ST) and stores all available common line information. More importantly,
the top eigenvectors of S will reveal all rotations in a manner we describe below.

We denote the columns of the rotation matrix Ri by , and , and write the rotation
matrices as

(3.3)

Only the first two columns of the Ri’s need to be recovered, because the third column is

given by the cross product: . We therefore need to recover the six N-dimensional
coordinate vectors x1, y1, z1, x2, y2, z2 that are defined by

(3.4)

(3.5)

Alternatively, we need to find the following three 2N-dimensional vectors x, y, and z:

(3.6)

Using this notation we rewrite the objective function (2.9) as

(3.7)

which is a result of the following index manipulation:
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(3.8)

(3.9)

The equality (3.7) shows that the maximization problem (2.9) is equivalent to the
maximization problem

(3.10)

subject to the constraints (2.8). In order to make this optimization problem tractable, we
relax the constraints and look for the solution of the proxy maximization problem

(3.11)

The connection between the solution to (3.11) and that of (3.10) will be made shortly. Since
S is a symmetric matrix, it has a complete set of orthonormal eigenvectors {v1, …, v2N}
satisfying

with real eigenvalues

The solution to the maximization problem (3.11) is therefore given by the top eigenvector v1

with largest eigenvalue λ1:

(3.12)

If the unknown rotations are sampled from the uniform distribution (Haar measure) over
SO(3), that is, when the molecule has no preferred orientation, then the largest eigenvalue
should have multiplicity three, corresponding to the vectors x, y, and z, as the symmetry of
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the problem in this case suggests that there is no reason to prefer x over y and z that appear
in (3.10). At this point, the reader may still wonder what is the mathematical justification
that fills in the gap between (3.10) and (3.11). The required formal justification is provided
in section 6, where we prove that in the limit of infinitely many images (N → ∞) the matrix
S converges to an integral operator over SO(3) for which x, y, and z in (3.6) are
eigenfunctions sharing the same eigenvalue. The computed eigenvectors of the matrix S are
therefore discrete approximations of the eigenfunctions of the limiting integral operator. In
particular, the linear subspace spanned by the top three eigenvectors of S is a discrete
approximation of the subspace spanned by x, y, and z.

We therefore expect to be able to recover the first two columns of the rotation matrices R1,
…, RN from the top three computed eigenvectors v1, v2, v3 of S. Since the eigenspace of x,
y, and z is of dimension three, the vectors x, y, and z should be approximately obtained by a
3×3 orthogonal transformation applied to the computed eigenvectors v1, v2, v3. This global
orthogonal transformation is an inherent degree of freedom in the estimation of rotations
from common lines. That is, it is possible to recover the molecule only up to a global
orthogonal transformation, that is, up to rotation and possibly reflection. This recovery is
performed by constructing for every i = 1, …, N a 3 × 3 matrix

whose columns are given by

(3.13)

In practice, due to erroneous common lines and deviations from the uniformity assumption,
the matrix Ai is approximately a rotation, so we estimate Ri as the closest rotation matrix to

Ai in the Frobenius matrix norm. This is done via the well-known procedure [27] ,

where  is the singular value decomposition of Ai. A second set of valid
rotations R̃i is obtained from the matrices Ãi whose columns are given by

(3.14)

via their singular value decomposition, that is, , where . The second
set of rotations R̃i amounts to a global reflection of the molecule; it is a well-known fact that
the chirality of the molecule cannot be determined from common-line data. Thus, in the
absence of any other information, it is impossible to prefer one set of rotations over the
other.

From the computational point of view, we note that a simple way of computing the top three
eigenvectors is using the iterative power method, where three initial randomly chosen
vectors are repeatedly multiplied by the matrix S and then orthonormalized by the Gram–
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Schmidt (QR) procedure until convergence. The number of iterations required by such a
procedure is determined by the spectral gap between the third and forth eigenvalues. The
spectral gap is further discussed in sections 5–7. In practice, for large values of N we use the
MATLAB function eigs to compute the few top eigenvectors, while for small N we compute
all eigenvectors using the MATLAB function eig. We remark that the computational
bottleneck for large N is often the storage of the 2N × 2N matrix S rather than the time
complexity of computing the top eigenvectors.

4. Relaxation by a semidefinite program
In this section we present an alternative relaxation of (2.9) using semidefinite programming
(SDP) [24], which draws similarities with the Goemans–Williamson SDP for finding the
maximum cut in a weighted graph [25]. The relaxation of the SDP is tighter than the
eigenvector relaxation and does not require the assumption that the rotations are uniformly
sampled over SO(3).

The SDP formulation begins with the introduction of two 3 × N matrices R1 and R2 defined
by concatenating the first columns and second columns of the N rotation matrices,
respectively,

(4.1)

We also concatenate R1 and R2 to define a 3 × 2N matrix R given by

(4.2)

The Gram matrix G for the matrix R is a 2N × 2N matrix of inner products between the 3D
column vectors of R, that is,

(4.3)

Clearly, G is a rank-3 semidefinite positive matrix (G ≽ 0), which can be conveniently
written as a block matrix

(4.4)

The orthogonality of the rotation matrices ( ) implies that

(4.5)

and

(4.6)
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From (3.8) it follows that the objective function (2.9) is the trace of the matrix product SG:

(4.7)

A natural relaxation of the optimization problem (2.9) is thus given by the SDP

(4.8)

(4.9)

(4.10)

The only constraint missing in this SDP formulation is the nonconvex rank-3 constraint on
the Gram matrix G. The matrix R is recovered from the Cholesky decomposition of the
solution G of the SDP (4.8)–(4.10). If the rank of G is greater than 3, then we project the
rows of R onto the subspace spanned by the top three eigenvectors of G and recover the
rotations using the procedure that was detailed in the previous section in (3.13). We note that
except for the orthogonality constraint (4.6), the semidefinite program (4.8)–(4.10) is
identical to the Goemans–Williamson SDP for finding the maximum cut in a weighted graph
[25].

From the complexity point of view, SDP can be solved in polynomial time to any given
precision, but even the most sophisticated SDP solvers that exploit the sparsity structure of
the max cut problem are not competitive with the much faster eigenvector method. At first
glance it may seem that the SDP (4.8)–(4.10) should outperform the eigenvector method in
terms of producing more accurate rotation matrices. However, our simulations show that the
accuracy of both methods is almost identical when the rotations are sampled from the
uniform distribution over SO(3). As the eigenvector method is much faster, it should also be
the method of choice whenever the rotations are a priori known to be uniformly sampled.

5. Numerical simulations
We performed several numerical experiments that illustrate the robustness of the eigenvector
and the SDP methods to false identifications of common lines. All simulations were
performed in MATLAB on a Lenovo Thinkpad X300 laptop with Intel Core 2 CPU L7100
1.2GHz with 4GB RAM running Windows Vista.

5.1. Experiments with simulated rotations
In the first series of simulations we tried to imitate the experimental setup by using the
following procedure. In each simulation, we randomly sampled N rotations from the
uniform distribution over SO(3). This was done by randomly sampling N vectors in ℝ4

whose coordinates are i.i.d. Gaussians, followed by normalizing these vectors to the unit 3D
sphere S3 ⊂ ℝ4. The normalized vectors are viewed as unit quaternions which we converted
into 3 × 3 rotation matrices R1, …, RN. We then computed all pairwise common-line vectors

 and  (see also the discussion following (6.2)). For each pair of
rotations, with probability p we kept the values of cij and cji unchanged, while with
probability 1 − p we replaced cij and cji by two random vectors that were sampled from the
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uniform distribution over the unit circle in the plane. The parameter p ranges from 0 to 1 and
indicates the proportion of the correctly detected common lines. For example, p = 0.1 means
that only 10% of the common lines are identified correctly, and the other 90% of the entries
of the matrix S are filled in with random entries corresponding to some randomly chosen
unit vectors.

Figure 3 shows the distribution of the eigenvalues of the matrix S for two different values of
N and four different values of the probability p. It took a matter of seconds to compute each
of the eigenvalue histograms shown in Figure 3. Evident from the eigenvalue histograms is
the spectral gap between the three largest eigenvalues and the remaining eigenvalues, as
long as p is not too small. As p decreases, the spectral gap narrows down, until it completely
disappears at some critical value pc, which we call the threshold probability. Figure 3
indicates that the value of the critical probability for N = 100 is somewhere between 0.1 and
0.25, whereas for N = 500 it is bounded between 0.05 and 0.1. The algorithm is therefore
more likely to cope with a higher percentage of misidentifications by using more images
(larger N).

When p decreases, not only does the gap narrow, but also the histogram of the eigenvalues
becomes smoother. The smooth part of the histogram seems to follow the semicircle law of
Wigner [28, 29], as illustrated in Figure 3. The support of the semicircle gets slightly larger
as p decreases, while the top three eigenvalues shrink significantly. In the next sections we
will provide a mathematical explanation for the numerically observed eigenvalue histograms
and for the emergence of Wigner’s semicircle.

A further investigation into the results of the numerical simulations also reveals that the
rotations that were recovered by the top three eigenvectors successfully approximated the
sampled rotations, as long as p was above the threshold probability pc. The accuracy of our
methods is measured by the following procedure. Denote by R̂1, …, R̂N the rotations as
estimated by either the eigenvector or SDP methods, and by R1, …, RN the true sampled
rotations. First, note that (2.6) implies that the true rotations can be recovered only up to a
fixed 3 × 3 orthogonal transformation O, since if Ricij = Rjcji, then also ORicij = ORjcji. In

other words, a completely successful recovery satisfies  for all i = 1, …, N for some
fixed orthogonal matrix O. In practice, however, due to erroneous common lines and
deviation from uniformity (for the eigenvector method), there does not exist an orthogonal
transformation O that perfectly aligns all the estimated rotations with the true ones. But we
may still look for the optimal rotation Ô that minimizes the sum of squared distances
between the estimated rotations and the true ones:

(5.1)

where ||·||F denotes the Frobenius matrix norm. That is, Ô is the optimal solution to the
registration problem between the two sets of rotations in the sense of minimizing the mean
squared error (MSE). Using properties of the trace, in particular tr(AB) = tr(BA) and tr(A) =
tr(AT), we notice that

(5.2)

Let Q be the 3 × 3 matrix
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(5.3)

then from (5.2) it follows that the MSE is given by

(5.4)

Arun, Huang, and Bolstein [27] proved that tr(OQ) ≤ tr(VUTQ) for all O ∈ SO(3), where Q
= UΣVT is the singular value decomposition of Q. It follows that the MSE is minimized by
the orthogonal matrix Ô = VUT, and the MSE in such a case is given by

(5.5)

where σ1, σ2, σ3 are the singular values of Q. In particular, the MSE vanishes whenever Q is
an orthogonal matrix, because in such a case σ1 = σ2 = σ3 = 1.

In our simulations we compute the MSE (5.5) for each of the two valid sets of rotations (due
to the handedness ambiguity, see (3.13)–(3.14)) and always present the smallest of the two.
Table 1 compares the MSEs that were obtained by the eigenvector method with the ones
obtained by the SDP method for N = 100 and N = 500 with the same common-line input
data. The SDP was solved using SDPLR, a package for solving large-scale SDP problems
[30] in MATLAB.

5.2. Experiments with simulated noisy projections
In the second series of experiments, we tested the eigenvector and SDP methods on
simulated noisy projection images of a ribosomal subunit for different numbers of
projections (N = 100, 500, 1000) and different levels of noise. For each N, we generated N
noise-free centered projections of the ribosomal subunit, whose corresponding rotations
were uniformly distributed on SO(3). Each projection was of size 129 × 129 pixels. Next,
we fixed a signal-to-noise ratio (SNR), and added to each clean projection additive Gaussian
white noise1 of the prescribed SNR. The SNR in all our experiments is defined by

(5.6)

where Var is the variance (energy), Signal is the clean projection image, and Noise is the
noise realization of that image. Figure 4 shows one of the projections at different SNR
levels. The SNR values used throughout this experiment were 2−k with k = 0, …, 9. Clean
projections were generated by setting SNR = 220.

We computed the 2D Fourier transform of all projections on a polar grid discretized into L =
72 central lines, corresponding to an angular resolution of 360°/72 = 5°. We constructed the

1Perhaps a more realistic model for the noise is that of a correlated Poissonian noise rather than the Gaussian white noise model that is
used in our simulations. Correlations are expected due to the varying width of the ice layer and the point-spread-function of the
camera [1]. A different noise model would most certainly have an effect on the detection rate of correct common lines, but this issue is
shared by all common-line–based algorithms and is not specific to our presented algorithms.

Singer and Shkolnisky Page 13

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



matrix S according to (3.1)–(3.2) by comparing all  pairs of projection images; for
each pair we detected the common line by computing all L2/2 possible different normalized
correlations between their Fourier central lines, of which the pair of central lines having the
maximum normalized correlation was declared as the common line. Table 2 shows the
proportion p of the correctly detected common lines as a function of the SNR (we consider a
common line as correctly identified if each of the estimated direction vectors (xij, yij) and
(xji, yji) is within 10° of its true direction). As expected, the proportion p is a decreasing
function of the SNR.

We used the MATLAB function eig to compute the eigenvalue histograms of all S matrices
as shown in Figures 5–7. There is a clear resemblance between the eigenvalue histograms of
the noisy S matrices shown in Figure 3 and those shown in Figures 5–7. One noticeable
difference is that the top three eigenvalues in Figures 5–7 tend to spread (note, for example,
the spectral gap between the top three eigenvalues in Figure 5(e)), whereas in Figure 3 they
tend to stick together. We attribute this spreading effect to the fact that the model used in
section 5.1 is too simplified; in particular, it ignores the dependencies among the
misidentified common lines. Moreover, falsely detected common lines are far from being
uniformly distributed. The correct common line is often confused with a Fourier central line
that is similar to it; it is not just confused with any other Fourier central line with equal
probability. Also, the detection of common lines tends to be more successful when
computed between projections that have more pronounced signal features. This means that
the assumption that each common line is detected correctly with a fixed probability p is too
restrictive. Still, despite the simplified assumptions that were made in section 5.1 to model
the matrix S, the resulting eigenvalue histograms are very similar.

From our numerical simulations it seems that increasing the number of projections N
separates the top three eigenvalues from the bulk of the spectrum (the semicircle). For
example, for N = 100 the top eigenvalues are clearly distinguished from the bulk for SNR =
1/32, while for N = 500 they can be distinguished for SNR = 1/128 (maybe even at SNR =
1/256), and for N = 1000 they are distinguished even at the most extreme noise level of SNR
= 1/512. The existence of a spectral gap is a necessary but not sufficient condition for a
successful 3D reconstruction, as demonstrated below. We therefore must check the resulting
MSEs in order to assess the quality of our estimates. Table 3 details the MSE of the
eigenvector and SDP methods for N = 100, N = 500, and N = 1000. Examining Table 3
reveals that the MSE is sufficiently small for SNR ≥ 1/32, but is relatively large for SNR ≤
1/64 for all N. Despite the visible spectral gap that was observed for SNR = 1/64 with N =
500 and N = 1000, the corresponding MSE is not small. We attribute the large MSE to the
shortcomings of our simplified probabilistic Wigner model that assumes independence
among the errors.

To demonstrate the effectiveness of our methods for ab initio reconstruction, we present in
Figure 8 the volumes estimated from N = 1000 projections at various levels of SNR. For
each level of SNR, we present in Figure 8 four volumes. The left volume in each row was
reconstructed from the noisy projections at the given SNR and the orientations estimated
using the eigenvector method. The middle-left volume was reconstructed from the noisy
projections and the orientations estimated using the SDP method. The middle-right volume
is a reference volume reconstructed from the noisy projections and the true (simulated)
orientations. This enables us to gauge the effect of the noise in the projections on the
reconstruction. Finally, the right column shows the reconstruction from clean projections
and orientations estimated using the eigenvector method. It is clear from Figure 8 that errors
in estimating the orientations have far more effect on the reconstruction than high levels of
noise in the projections. All reconstructions in Figure 8 were obtained using a simple
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interpolation of Fourier space into the 3D pseudopolar grid, followed by an inverse 3D
pseudopolar Fourier transform, implemented along the lines of [31, 32].

As mentioned earlier, the usual method for detecting the common-line pair between two
images is by comparing all pairs of radial Fourier lines and declaring the common line as the
pair whose normalized cross-correlation is maximal. This procedure for detecting the
common lines may not be optimal. Indeed, we have observed empirically that the
application of principal component analysis (PCA) improves the fraction of correctly
identified common lines. More specifically, we applied PCA to the radial lines extracted
from all N images, and linearly projected all radial lines into the subspace spanned by the
top k principal components (k ≈ 10). As a result, the radial lines are compressed (i.e.,
represented by only k feature coefficients) and filtered. Table 4 shows the fraction of
correctly identified common lines using the PCA method for different numbers of images.
By comparing Table 4 with Table 2 we conclude that PCA improves the detection of
common lines. The MSEs shown in Table 3 correspond to common lines that were detected
using the PCA method.

In summary, even if ab initio reconstruction is not possible from the raw noisy images
whose SNR is too low, the eigenvector and SDP methods should allow us to obtain an initial
model from class averages consisting of only a small number of images.

6. The matrix S as a convolution operator on SO(3)
Taking an even closer look into the numerical distribution of the eigenvalues of the “clean”
2N × 2N matrix Sclean corresponding to p = 1 (all common lines detected correctly) reveals
that its eigenvalues have the exact same multiplicities as the spherical harmonics, which are
the eigenfunctions of the Laplacian on the unit sphere S2 ⊂ ℝ3. In particular, Figure 9(a) is a
bar plot of the 50 largest eigenvalues of Sclean with N = 1000 and clearly shows numerical
multiplicities of 3, 7, 11, … corresponding to the multiplicity 2l + 1 (l = 1, 3, 5, …) of the
odd spherical harmonics. Moreover, Figure 9(b) is a bar plot of the magnitude of the most
negative eigenvalues of S. The multiplicities 5, 9, 13, … corresponding to the multiplicity 2
l + 1 (l = 2, 4, 6, …) of the even spherical harmonics are evident (the first even eigenvalue
corresponding to l = 0 is missing).

The numerically observed multiplicities motivate us to examine S clean in more detail. To
that end, it is more convenient to reshuffle the 2N × 2N matrix S defined in (3.1)–(3.2) into
an N × N matrix K whose entries are 2 × 2 rank-1 matrices given by

(6.1)

with cij and cji given in (2.4)–(2.5). From (2.6) it follows that the common line is given by

the normalized cross product of  and , that is,

(6.2)

because Ricij is a linear combination of  and  (perpendicular to ), while Rjcji is a

linear combination of  and  (perpendicular to ); a unit vector perpendicular to  and
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 must be given by either  or . Equations (6.1)–(6.2) imply that Kij is a
function of Ri and Rj given by

(6.3)

for i ≠ j regardless of the choice of the sign in (6.2), and .

The eigenvalues of K and S are the same, with the eigenvectors of K being vectors of length
2N obtained from the eigenvectors of S by reshuffling their entries. We therefore try to
understand the operation of matrix-vector multiplication of K with some arbitrary vector f of
length 2N. It is convenient to view the vector f as N vectors in ℝ2 obtained by sampling the
function f: SO(3) → ℝ2 at R1, …, RN, that is,

(6.4)

The matrix-vector multiplication is thus given by

(6.5)

If the rotations R1, …, RN are i.i.d. random variables uniformly distributed over SO(3), then
the expected value of (Kf)i conditioned on Ri is

(6.6)

where dR is the Haar measure (recall that by being a zero matrix, K(Ri, Ri) does not
contribute to the sum in (6.5)). The eigenvectors of K are therefore discrete approximations
to the eigenfunctions of the integral operator  given by

(6.7)

due to the law of large numbers, with the kernel K: SO(3) × SO(3) → ℝ2×2 given by (6.3).
We are thus interested in the eigenfunctions of the integral operator  given by (6.7).

The integral operator  is a convolution operator over SO(3). Indeed, note that K given in
(6.3) satisfies

(6.8)

because  (and gg−1 = g−1g = I. It follows that the kernel K depends

only upon the “ratio” , because we can choose  so that

Singer and Shkolnisky Page 16

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the integral operator  of (6.7) becomes

(6.9)

We will therefore define the convolution kernel K̃: SO(3) → ℝ2×2 as

(6.10)

where I3 = (0 0 1)T is the third column of the identity matrix I. We rewrite the integral
operator  from (6.7) in terms of K̃ as

(6.11)

where we used the change of variables . Equation (6.11) implies that  is a
convolution operator over SO(3) given by [33, p. 158]

(6.12)

Similar to the convolution theorem for functions over the real line, the Fourier transform of
a convolution over SO(3) is the product of their Fourier transforms, where the Fourier
transform is defined by a complete system of irreducible matrix-valued representations of
SO(3) (see, e.g., [33, Theorem (4.14), p. 159]).

Let ρθ ∈ SO(3) be a rotation by the angle θ around the z-axis, and let ρ̃θ ∈ SO(2) be a planar
rotation by the same angle:

The kernel K̃ satisfies the invariance property

(6.13)

To that end, we first observe that ρθI3 = I3 and (Uρα)3 = U3, so

(6.14)

from which it follows that
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(6.15)

because ρθ preserves length, and it also follows that

(6.16)

Combining (6.15) and (6.16) yields

(6.17)

which together with the definition of K̃ in (6.10) demonstrates the invariance property
(6.13).

The fact that  is a convolution satisfying the invariance property (6.13) implies that the
eigenfunctions of  are related to the spherical harmonics. This relation, as well as the exact
computation of the eigenvalues, will be established in a separate publication [34]. We note
that the spectrum of  would have been much easier to compute if the normalization factor ||
I3 × U3||2 did not appear in the kernel function K̃ of (6.10). Indeed, in such a case, K̃ would
have been a third order polynomial, and all eigenvalues corresponding to higher order
representations would have vanished.

We note that (6.6) implies that the top eigenvalue of Sclean, denoted λ1(Sclean), scales
linearly with N; that is, with high probability,

(6.18)

where the  term is the standard deviation of the sum in (6.5). Moreover, from the top
eigenvalues observed in Figures 3(a), 3(e), 5(a), 6(a), and 7(a) corresponding to p = 1 and p
values close to 1, it is safe to speculate that

(6.19)

as the top eigenvalues are approximately 50, 250, and 500 for N = 100, 500, and 1000,
respectively.

We calculate λ1( ) analytically by showing that the three columns of

(6.20)

are eigenfunctions of . Notice that since U− = UT, f(U) is equal to the first two columns of
the rotation matrix U. This means, in particular, that U can be recovered from f(U). Since
the eigenvectors of S, as computed by our algorithm (3.6), are discrete approximations of the
eigenfunctions of , it is possible to use the three eigenvectors of S that correspond to the
three eigenfunctions of  given by f(U) to recover the unknown rotation matrices.
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We now verify that the columns f(U) are eigenfunctions of . Plugging (6.20) into (6.11)
and employing (6.10) give

(6.21)

From UU−1 = I it follows that

(6.22)

Combining (6.22) with the fact that (I3 × U3)T U3 = 0, we obtain

(6.23)

Letting U3= (x y z)T, the cross product I3× U3 is given by

(6.24)

whose squared norm is

(6.25)

and

(6.26)

It follows from (6.21) and identities (6.23)–(6.26) that

(6.27)

The integrand in (6.27) is only a function of the axis of rotation U3. The integral over SO(3)
therefore collapses to an integral over the unit sphere S2 with the uniform measure dμ
(satisfying ∫S2dμ = 1) given by

(6.28)

Singer and Shkolnisky Page 19

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



From symmetry it follows that  and that . As  on

the sphere, we conclude that  and

(6.29)

This shows that the three functions defined by (6.20), which are the same as those defined in
(3.6), are the three eigenfunctions of  with the corresponding eigenvalue , as was
speculated before in (6.19) based on the numerical evidence.

The remaining spectrum is analyzed in [34], where it is shown that the eigenvalues of  are

(6.30)

with multiplicities 2l + 1 for l = 1, 2, 3, …. An explicit expression for all eigenfunctions is
also given in [34]. In particular, the spectral gap between the top eigenvalue  and
the next largest eigenvalue  is

(6.31)

7. Wigner’s semicircle law and the threshold probability
As indicated by the numerical experiments of section 5, false detections of common lines
due to noise lead to the emergence of what seems to be Wigner’s semicircle for the
distribution of the eigenvalues of S. In this section we provide a simple mathematical
explanation for this phenomenon.

Consider the simplified probabilistic model of section 5.1 that assumes that every common
line is detected correctly with probability p, independently of all other common lines, and
that with probability 1 − p the common lines are falsely detected and are uniformly
distributed over the unit circle. The expected value of the noisy matrix S, whose entries are
correct with probability p, is given by

(7.1)

because the contribution of the falsely detected common lines to the expected value vanishes
by the assumption that their directions are distributed uniformly on the unit circle. From
(7.1) it follows that S can be decomposed as

(7.2)

where W is a 2N × 2N zero-mean random matrix whose entries are given by

Singer and Shkolnisky Page 20

SIAM J Imaging Sci. Author manuscript; available in PMC 2012 April 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7.3)

where Xij and Xji are two independent random variables obtained by projecting two
independent random vectors uniformly distributed on the unit circle onto the x-axis. For
small values of p, the variance of Wij is dominated by the variance of the term XijXji.

Symmetry implies that , from which we have that

(7.4)

Wigner [28, 29] showed that the limiting distribution of the eigenvalues of random n × n
symmetric matrices (scaled down by ), whose entries are i.i.d. symmetric random
variables with variance σ2 and bounded higher moments, is a semicircle whose support is
the symmetric interval [−2σ, 2σ]. This result applies to our matrix W with n = 2N and

, since the entries of W are bounded zero-mean i.i.d. random variables.

Reintroducing the scaling factor , the top eigenvalue of W, denoted λ1(W), is a

random variable fluctuating around . It is known that λ1(R) is
concentrated near that value [35]; that is, the fluctuations are small. Moreover, the
universality of the edge of the spectrum [36] implies that λ1(W) follows the Tracy–Widom
distribution [37]. For our purposes, the leading order approximation

(7.5)

suffices, with the probabilistic error bound given in [35].

The eigenvalues of W are therefore distributed according to Wigner’s semicircle law whose

support, up to small O(p) terms and finite sample fluctuations, is [ ]. This
prediction is in full agreement with the numerically observed supports in Figure 3 and in
Figures 5–7, noting that for N = 100 the right edge of the support is located near

, for N = 500 near , and for N = 1000 near . The
agreement is striking especially for Figures 5–7 that were obtained from simulated noisy
projections without imposing the artificial probabilistic model of section 5.1 that was used
here to actually derive (7.5).

The threshold probability pc depends on the spectral gap of Sclean, denoted Δ(Sclean), and on
the top eigenvalue λ1(W) of W. From (6.31) it follows that

(7.6)

In [38, 39, 40] it is proved that the top eigenvalue of the matrix A + W, composed of a
rank-1 matrix A and a random matrix W, will be pushed away from the semicircle with high
probability if the condition

(7.7)
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is satisfied. Clearly, for matrices A that are not necessarily of rank-1, the condition (7.7) can
be replaced by

(7.8)

where Δ(A) is the spectral gap. Therefore, the condition

(7.9)

guarantees that the top three eigenvalues of S will reside away from the semicircle.
Substituting (7.5) and (7.6) in (7.9) results in

(7.10)

from which it follows that the threshold probability pc is given by

(7.11)

For example, the threshold probabilities predicted for N = 100, N = 500, and N = 1000 are
pc ≈ 0.17, pc ≈ 0.076, and pc ≈ 0.054, respectively. These values match the numerical
results of section 5.1 and are also in good agreement with the numerical experiments for the
noisy projections presented in section 5.2.

From the perspective of information theory, the threshold probability (7.11) is nearly
optimal. To that end, notice that to estimate N rotations to a given finite precision requires
O(N) bits of information. For p ≪ 1, the common line between a pair of images provides
O(p2) bits of information (see [41, section 5, eq. (82)]). Since there are N(N − 1)/2 pairs of
common lines, the entropy of the rotations cannot decrease by more than O(p2N2).
Comparing p2N2 to N, we conclude that the threshold probability pc of any recovery method

cannot be lower than . The last statement can be made precise by Fano’s inequality
and Wolfowitz’s converse, also known as the weak and strong converse theorems to the
coding theorem that provide a lower bound for the probability of the error in terms of the
conditional entropy (see, e.g., [42, Chapter 8.9, pp. 204–207] and [43, Chapter 5.8, pp. 173–
176]). This demonstrates the near-optimality of our eigenvector method, and we refer the
reader to section 5 in [41] for a complete discussion about the information theory aspects of
this problem.

8. Summary and discussion
In this paper we presented efficient methods for computing the rotations of all cryo-EM
particles from common-line information in a globally consistent way. Our algorithms, one
based on a spectral method (computation of eigenvectors), and the other based on SDP (a
version of max-cut), are able to find the correct set of rotations even at very low common-
line detection rates. Using random matrix theory and spectral analysis on SO(3), we showed
that rotations obtained by the eigenvector method can lead to a meaningful ab initio model

as long as the proportion of correctly detected common lines exceeds  (assuming a
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simplified probabilistic model for the errors). It remains to be seen how these algorithms
will perform on real raw projection images or on their class averages, and to compare their
performance to the recently proposed voting recovery algorithm [19], whose usefulness has
already been demonstrated on real datasets. Although the voting algorithm and the methods
presented here try to solve the same problem, the methods and their underlying
mathematical theory are different. While the voting procedure is based on a Bayesian
approach and is probabilistic in its nature, the approach here is analytical and is based on
spectral analysis of convolution operators over SO(3) and random matrix theory.

The algorithms presented here can be regarded as a continuation of the general methodology
initiated in [41], where we showed how the problem of estimating a set of angles from their
noisy offset measurements can be solved using either eigenvectors or SDP. Notice, however,
that the problem considered here of recovering a set of rotations from common-line
measurements between their corresponding images is different and more involved
mathematically than the angular synchronization problem that is considered in [41].
Specifically, the common-line-measurement between two projection images Pi and Pj

provides only partial information about the ratio . Indeed, the common line between
two images determines only two out of the three Euler angles (the missing third degree of
freedom can be determined only by a third image). The success of the algorithms presented
here shows that it is also possible to integrate all the partial offset measurements between all
rotations in a globally consistent way that is robust to noise. Although the algorithms
presented in this paper and in [41] seem to be quite similar, the underlying mathematical
foundation of the eigenvector algorithm presented here is different, as it crucially relies on
the spectral properties of the convolution operator over SO(3).

We would like to point out two possible extensions of our algorithms. First, it is possible to
include confidence information about the common lines. Specifically, the normalized
correlation value of the common line is an indication for its likelihood of being correctly
identified. In other words, common lines with higher normalized correlations have a better
chance of being correct. We can therefore associate a weight wij with the common line
between Pi and Pj to indicate our confidence in it, and multiply the corresponding 2 × 2
rank-1 submatrix of S by this weight. This extension gives only a little improvement in
terms of the MSE as seen in our experiments, which will be reported elsewhere. Another
possible extension is to include multiple hypotheses about the common line between two
projections. This can be done by replacing the 2 × 2 rank-1 matrix associated with the top
common line between Pi and Pj by a weighted average of such 2 × 2 rank-1 matrices
corresponding to the different hypotheses. On the one hand, this extension should benefit
from the fact that the probability that one of the hypotheses is the correct one is larger than
that of just the common line with the top correlation. On the other hand, since at most one
hypothesis can be correct, all hypotheses except maybe one are incorrect, and this leads to
an increase in the variance of the random Wigner matrix. Therefore, we often find the single
hypothesis version favorable compared to the multiple hypotheses version. The
corresponding random matrix theory analysis and the supporting numerical experiments will
be reported in a separate publication.

Finally, we note that the techniques and analysis applied here to solve the cryo-EM problem
can be translated to the computer vision problem of structure from motion, where lines
perpendicular to the epipolar lines play the role of the common lines. This particular
application will be the subject of a separate publication.
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Figure 1.
Schematic drawing of the imaging process: every projection image corresponds to some
unknown 3D rotation of the unknown molecule.
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Figure 2.
Fourier projection-slice theorem and common lines.
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Figure 3.
Eigenvalue histograms for the matrix S for different values of N and p.
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Figure 4.
Simulated projection with various levels of additive Gaussian white noise.
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Figure 5.
Eigenvalue histograms of S for N = 100 and different levels of noise.
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Figure 6.
Eigenvalue histograms of S for N = 500 and different levels of noise.
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Figure 7.
Eigenvalue histograms of S for N = 1000 and different levels of noise.
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Figure 8.
Reconstruction from N = 1000 noisy projections at various SNR levels using the eigenvector
method. Left column: reconstructions generated from noisy projections and orientations
estimated using the eigenvector method. Middle-left column: reconstructions generated from
noisy projections and orientations estimated using the SDP method. Middle-right column:
reconstructions from noisy projections and the true orientations. Right column:
reconstructions from estimated orientations (using the eigenvector method) and clean
projections.
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Figure 9.
Bar plot of the positive (left) and the absolute values of the negative (right) eigenvalues of S
with N = 1000 and p = 1. The numerical multiplicities 2l + 1 (l = 1, 2, 3, …) of the spherical
harmonics are evident, with odd l values corresponding to positive eigenvalues, and even l
values (except l = 0) corresponding to negative eigenvalues.
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Table 1

The MSE of the eigenvector and SDP methods for N = 100 (left) and N = 500 (right) and different values of p.

(a) N = 100

p MSE(eig) MSE(sdp)

1 0.0055 4.8425e-05

0.5 0.0841 0.0676

0.25 0.7189 0.7140

0.15 2.8772 2.8305

0.1 4.5866 4.7814

0.05 4.8029 5.1809

(b) N = 500

p MSE(eig) MSE(sdp)

1 0.0019 1.0169e-05

0.5 0.0166 0.0143

0.25 0.0973 0.0911

0.15 0.3537 0.3298

0.1 1.2739 1.1185

0.05 5.4371 5.3568
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Table 2

The proportion p of correctly detected common lines as a function of the SNR. As expected, p is not a function
of the number of images N.

(a) N = 100

SNR p

clean 0.997

1 0.968

1/2 0.930

1/4 0.828

1/8 0.653

1/16 0.444

1/32 0.247

1/64 0.108

1/128 0.046

1/256 0.023

1/512 0.017

(b) N = 500

SNR p

clean 0.997

1 0.967

1/2 0.922

1/4 0.817

1/8 0.639

1/16 0.433

1/32 0.248

1/64 0.113

1/128 0.046

1/256 0.023

1/512 0.015

(c) N = 1000

SNR p

clean 0.997

1 0.966

1/2 0.919

1/4 0.813

1/8 0.638

1/16 0.437

1/32 0.252

1/64 0.115

1/128 0.047
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(c) N = 1000

SNR p

1/256 0.023

1/512 0.015
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Table 3

The MSE of the eigenvector and SDP methods for N = 100, N = 500, and N = 1000.

(a) N = 100

SNR MSE(eig) MSE(sdp)

1 0.0054 3.3227e-04

1/2 0.0068 0.0016

1/4 0.0129 0.0097

1/8 0.0276 0.0471

1/16 0.0733 0.1951

1/32 0.2401 0.6035

1/64 2.5761 1.9509

1/128 3.2014 3.1020

1/256 4.0974 4.1163

1/512 4.9664 4.9702

(b) N = 500

SNR MSE(eig) MSE(sdp)

1 0.0023 2.4543e-04

1/2 0.0030 0.0011

1/4 0.0069 0.0071

1/8 0.0203 0.0414

1/16 0.0563 0.1844

1/32 0.1859 0.6759

1/64 1.7549 1.3668

1/128 2.6214 2.4046

1/256 3.4789 3.3539

1/512 4.6027 4.5089

(c) N = 1000

SNR MSE(eig) MSE(sdp)

1 0.0018 2.3827e-04

1/2 0.0030 0.0011

1/4 0.0072 0.0067

1/8 0.0208 0.0406

1/16 0.0582 0.1899

1/32 0.1996 0.7077

1/64 1.7988 1.5370

1/128 2.5159 2.3243

1/256 3.5160 3.4365

1/512 4.6434 4.6013
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Table 4

The fraction of correctly identified common lines p using the PCA method for different numbers of images: N
= 100, N = 500, and N = 1000.

SNR p(N = 100) p(N = 500) p(N = 1000)

1 0.980 0.978 0.977

1/2 0.956 0.953 0.951

1/4 0.890 0.890 0.890

1/8 0.763 0.761 0.761

1/16 0.571 0.565 0.564

1/32 0.345 0.342 0.342

1/64 0.155 0.167 0.168

1/128 0.064 0.070 0.072

1/256 0.028 0.032 0.033
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