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Stability of error bounds for semi-infinite convex constraint systems1
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Dedicated to Professor Hedy Attouch on his 60th birthday3

Abstract4

In this paper, we are concerned with the stability of the error bounds for semi-infinite convex5

constraint systems. Roughly speaking, the error bound of a system of inequalities is said to be6

stable if all its “small” perturbations admit a (local or global) error bound. We first establish7

subdifferential characterizations of the stability of error bounds for semi-infinite systems of convex8

inequalities. By applying these characterizations, we extend some results established by Azé &9

Corvellec [3] on the sensitivity analysis of Hoffman constants to semi-infinite linear constraint10

systems.11
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1 Introduction14

Our aim in this paper is to study the behavior of the error bounds under data perturbations. Error15

bounds which are considered here are for a system of semi-infinite constraints in Rn, that is for the16

problem of finding x ∈ Rn satisfying:17

ft(x) ≤ 0 for all t ∈ T, (1)

where T is a compact, possibly infinite, Hausdorff space, ft : Rn → R, t ∈ T, are given convex functions18

such that t 7→ ft(x) is continuous on T for each x ∈ Rn. According to Rockafellar ( [23], Thm. 7.10),19

in this case, (t, x) 7→ F (t, x) := ft(x) is continuous on T × Rn, i.e., F ∈ C(T × Rn,R), the set of20

continuous functions on T × Rn.21

Set
f(x) := max{ft(x) : t ∈ T} and Tf (x) := {t ∈ T : ft(x) = f(x)}.

We use the symbol [f(x)]+ to denote max(f(x), 0). Let SF denote the set of solutions to (1) and recall22

that the distance of an element x to SF denoted by d(x, SF ) is defined by d(x, SF ) = infz∈SF
‖x− z‖23

with the convention d(x, SF ) = +∞ whenever SF is empty.24

We shall say that system (1) admits an error bound if there exists a real c(F ) > 0 such that25

d(x, SF ) ≤ c(F )[f(x)]+ for all x ∈ Rn. (2)
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For x̄ ∈ Bdry SF (the topological boundary of SF ), we shall say that system (1) admits an error26

bound at x̄, if there exist reals c(F, x̄), ε > 0 such that27

d(x, SF ) ≤ c(F, x̄)[f(x)]+ for all x ∈ B(x̄, ε), (3)

where B(x̄, ε) denotes an open ball with center x̄ and radius ε.28

Since the pioneering work ( [12]) by Hoffman on error bounds for systems of affine functions, error29

bounds have been intensively discussed and it is now well established that they have a large range30

of applications in different areas such as, for example, sensitivity analysis, convergence analysis of31

algorithms, and penalty functions methods in mathematical programming. For a detailed account the32

reader is referred to the works [3–6, 15, 16, 18–20, 24], and especially to the survey papers by Azé [2],33

Lewis & Pang [15], Pang [21], as well as the book by Auslender & Teboule [1] for the summary of the34

theory of error bounds and its various applications.35

When dealing with the behavior of the set SF when F is perturbed, a crucial key to this is the36

boundedness of the Hoffman constants c(F ) and c(F, x̄) in relations (2) and (3). For systems of linear37

inequalities, this question has been considered by Luo & Tseng [17], Azé & Corvellec [3] (see also38

Zheng & Ng [25] for systems of linear inequalities in Banach spaces and by Deng [7] for systems of a39

finite number of convex inequalities).40

In the present paper, we are concerned with the stability of error bounds for finite dimensional41

semi-infinite constraint systems with respect to perturbations of F. More precisely, we establish char-42

acterizations for the boundedness of Hoffman constants c(F ) under “small” perturbations of F. We43

use these characterizations to obtain new results on the sensitivity analysis of Hoffman constants for44

semi-infinite linear constraint systems. The infinite dimensional extensions will be considered in the45

forthcoming paper [14].46

The paper is organized as follows. The characterizations for the stability of the local error bounds47

are presented in Section 2. In Section 3, we then derive the characterizations for the stability of the48

global error bounds. In the final section, we establish necessary and sufficient conditions for the local49

Lipschitz property of Hoffman constants for semi-infinite systems of linear inequalities.50

2 Stability of local error bounds51

In what follows, we will use the notation Γ0(Rn) to denote the set of extended real-valued lower
semicontinuous convex functions f : Rn → R ∪ {+∞}, which are supposed to be proper, that is such
that Dom f := {x ∈ Rn : f(x) < +∞} is nonempty. Recall that the subdifferential of a convex
function f at a point x ∈ Dom f is defined by

∂f(x) = {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ f(y)− f(x), ∀ y ∈ Rn}.

For a given f ∈ Γ0(Rn), we consider first the set of solutions of a single convex inequality:52

Sf := {x ∈ Rn : f(x) ≤ 0}. (4)

We will use notations c(f) and c(f, x̄) for its respectively global and local error bound (Hoffman)
constants (see definitions (2) and (3)), while the best bounds (the exact lower bounds of all Hoffman
constants) will be denoted cmin(f) and cmin(f, x̄) respectively. The latter coincides with [Er f(x̄)]−1,
where

Er f(x̄) = lim inf
x→x̄

f(x)>0

f(x)
d(x, Sf )
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is the error bound modulus [9]) (also known as conditioning rate [22]) of f at x̄.53

The following characterizations of the global and local error bounds are well known (see, for54

instance, [3]). They are needed in the sequel.55

Theorem 1 Let f ∈ Γ0(Rn). Then one has56

(i). Sf admits a global error bound if and only if

τ(f) := inf{d(0, ∂f(x)) : x ∈ Rn, f(x) > 0} > 0.

Moreover, cmin(f) = [τ(f)]−1.57

(ii). Sf admits a local error bound at x̄ ∈ Bdry Sf ,58

if and only if
τ(f, x̄) := lim inf

x→x̄, f(x)>0
d(0, ∂f(x)) > 0.

Moreover cmin(f, x̄) = [τ(f, x̄)]−1.59

(iii). (Relation between the global error bound and the local error bound) The following equality holds

cmin(f) = sup
x∈Bdry Sf

cmin(f, x).

Constant τ(f, x̄) in part (ii) of the above theorem is also known as limiting outer subdifferential60

slope of f at x̄ [9].61

For a mapping ϕ : X → Y between two Banach spaces X, Y , denote by Lip(ϕ) its Lipschitz
constant:

Lip(ϕ) := sup
u,v∈X,u 6=v

‖ϕ(u)− ϕ(v)‖Y
‖u− v‖X

.

the Lipschitz constant of ϕ near x is defined by

Lip(ϕ, x) := lim sup
u,v→x, u 6=v

‖ϕ(u)− ϕ(v)‖Y
‖u− v‖X

.

First we obtain the following characterization of the stability of local error bounds for system (4).62

Theorem 2 Let f ∈ Γ0(Rn) and x̄ ∈ Rn such that f(x̄) = 0. Then the following two statements are63

equivalent:64

(i). 0 /∈ Bdry ∂f(x̄);65

(ii). There exist reals c := c(f, x̄) > 0 and ε > 0 such that for all g ∈ Γ0(Rn), satisfying x̄ ∈ S(g) and66

lim sup
x→x̄

|(f(x)− g(x))− (f(x̄)− g(x̄))|
‖x− x̄‖

≤ ε (5)

one has cmin(g, x̄) ≤ c.67
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Proof. For (i)⇒ (ii), suppose that 0 /∈ Bdry ∂f(x̄). Consider first the case 0 ∈ Int ∂f(x̄). Then there
exists r > 0 such that rB∗ ⊆ ∂f(x̄), and consequently

f(x)− f(x̄) ≥ r‖x− x̄‖ for all x ∈ Rn.

Take any ε ∈ (0, r). For any g ∈ Γ0(Rn) with x̄ ∈ S(g) and satisfying relation (5) one has

lim inf
x→x̄

g(x)− g(x̄)
‖x− x̄‖

≥ lim inf
x→x̄

f(x)− f(x̄)
‖x− x̄‖

− ε ≥ r − ε.

Since g is convex it follows that68

g(x)− g(x̄) ≥ (r − ε)‖x− x̄‖ for all x ∈ Rn. (6)

Let x ∈ Dom g \ S(g). Then the restriction of g to the segment [x̄, x] is continuous. Since g(x̄) ≤ 0,
there exists z := (1 − t)x̄ + tx ∈ [x̄, x] (t ∈ [0, 1]) such that g(z) = 0. Therefore, by (6) and the
convexity of g, one obtains

g(x) = g(x)− g(z) ≥ (1− t)(g(x)− g(x̄)) ≥ (r − ε)(1− t)‖x− x̄‖ = (r − ε)‖x− z‖,

and therefore, cmin(g, x̄) ≤ (r − ε)−1.69

Suppose now that 0 /∈ ∂f(x̄) and take any ε ∈ (0,m(f)), where m(f) = d(0, ∂f(x̄)). Then for any70

g ∈ Γ0(Rn) with x̄ ∈ S(g) and satisfying relation (5), one has m(g) > m(f) − ε. On the other hand,71

from Theorem 1, cmin(g, x̄) ≤ [m(g)]−1. Hence cmin(g, x̄) ≤ (m(f) − ε)−1, which completes the proof72

of (i)⇒ (ii).73

Let us prove (ii) ⇒ (i). Assume to the contrary that 0 ∈ Bdry ∂f(x̄). This means that, firstly,
0 ∈ ∂f(x̄) and, secondly, for any ε > 0 there exists u∗ε ∈ εB∗\∂f(x̄). The first condition implies that
f attains its minimum at x̄, while it follows from the second one that for any δ > 0, we can find
xδ ∈ B(x̄, δ) \ {x̄} such that

〈u∗ε, xδ − x̄〉 > f(xδ)− f(x̄).

Hence
f(xδ) < f(x̄) + ε‖xδ − x̄‖ ≤ inf

x∈Rn
f(x) + ε‖xδ − x̄‖.

By virtue of the Ekeland variational principle [8], we can select yδ ∈ Rn satisfying ‖yδ−xδ‖ ≤ ‖xδ−x̄‖/2
and f(yδ) ≤ f(xδ) such that the function

f(·) + 2ε‖ · −yδ‖

attains a minimum at yδ. Hence yδ 6= x̄ and 0 ∈ ∂(f(·) + 2ε‖ · −yδ‖)(yδ) = ∂f(yδ) + 2εB∗, that is,
there exists y∗δ ∈ ∂f(yδ) such that ‖y∗δ‖ ≤ 2ε. Let us take a sequence of reals (δk)k∈N converging to 0
with δk > 0. Without loss of generality, we can assume that the sequence {(yδk − x̄)/‖yδk − x̄‖}k∈N
converges to some z ∈ Rn with ‖z‖ = 1. Let z∗ ∈ Rn be such that ‖z∗‖ = 1 and 〈z∗, z〉 = 1. For each
ε > 0, let us consider a function gε ∈ Γ0(Rn) defined by

gε(x) := f(x)− f(x̄) + ε〈z∗, x− x̄〉, x ∈ Rn.

Then, obviously, gε(x̄) = 0, g satisfies (5), and gε(yδk) > 0 when k is sufficiently large. Since y∗δk ∈74

∂f(yδk) and ‖y∗δk‖ ≤ 2ε, then d(0, ∂gε(yδk)) ≤ 3ε. Thanks to Theorem 1 (note that (yδk) → x̄ as75

k →∞), we obtain cmin(gε, x̄) ≥ ε−1/3, and as ε > 0 is arbitrary, the proof is completed. �76
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Remark 3 Condition (5) in Theorem 2 means that g is an ε-perturbation [14] of f near x̄. Analyzing
the proof of Theorem 2 one can easily see that for characterizing the error bound property it is sufficient
to require a weaker one-sided estimate:

lim sup
x→x̄

(f(x)− g(x))− (f(x̄)− g(x̄))
‖x− x̄‖

≤ ε.

We consider now semi-infinite convex constraint systems of the form (1) with the solution set77

SF := {x ∈ Rn : ft(x) ≤ 0 for all t ∈ T}, (7)

where T is a compact, possibly infinite, Hausdorff space, ft : Rn → R, t ∈ T, are given convex78

functions such that t 7→ ft(x) is continuous on T for each x ∈ Rn and F ∈ C(T ×Rn,R) is defined by79

F (t, x) := ft(x), (t, x) ∈ T × Rn.80

As mentioned in the introduction, we set

f(x) := max{ft(x) : t ∈ T} and Tf (x) := {t ∈ T : ft(x) = f(x)}.

Note that under the above assumption, the subdifferential of the function f at a point x ∈ Rn is given81

by (see, for instance, Ioffe & Tikhomirov [13], also in Hantoute & López [10] and Hantoute-López82

-Zălinescu [11])83

∂f(x) = co

 ⋃
t∈Tf (x)

∂ft(x)

 , (8)

where “co” stands for the convex hull of a set.84

The following theorem gives a characterization of the stability of local error bounds for system (7).85

Theorem 4 Let x̄ ∈ Rn such that f(x̄) = 0. The following two statements are equivalent:86

(i). 0 /∈ Bdry ∂f(x̄);87

(ii). There exist reals c := c(F, x̄) > 0 and ε > 0 such that if

G ∈ C(T × Rn,R); gt(x) := G(t, x); gt are convex; (9)
x̄ ∈ SG; (10)

sup
t∈T
|ft(x̄)− gt(x̄)| < ε; (11)

sup
t∈T,x∈Rn

|(ft(x)− gt(x))− (ft(x̄)− gt(x̄))| ≤ ε‖x− x̄‖; (12)

g(x) := max{gt(x) : t ∈ T}; Tg(x) := {t ∈ T : gt(x) = g(x)}; (13)
Tf (x̄) ⊆ Tg(x̄) whenever 0 ∈ Int ∂f(x̄), (14)

then one has cmin(G, x̄) ≤ c.88

Proof. (i) ⇒ (ii). If g(x̄) < 0, then cmin(G, x̄) = 0 due to the continuity of G, and the conclusion
holds true trivially. Therefore it suffices to consider the case g(x̄) = 0. Suppose that 0 /∈ Bdry ∂f(x̄).
Consider first the case 0 ∈ Int ∂f(x̄). Then there exists r > 0 such that rB∗ ⊆ ∂f(x̄). Take any
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ε ∈ (0, r) and let G, gt, and g satisfy (9)–(14). By relation (8), for each u∗ ∈ rB∗(⊆ ∂f(x̄)), there
exist elements t1, . . . , tk of Tf (x̄); u∗i ∈ ∂fti(x̄), and reals λ1, . . . , λk such that

λi ≥ 0 (i = 1, · · · , k);
k∑
i=1

λi = 1; u∗ =
k∑
i=1

λiu
∗
i . (15)

Hence, for any x ∈ Rn,

〈u∗, x〉 =
k∑
i=1

λi〈u∗i , x〉 ≤
k∑
i=1

λif
′
ti(x̄, x) ≤

k∑
i=1

λig
′
ti(x̄, x) + ε ≤ g′(x̄, x) + ε.

Consequently, g(x) ≥ (r − ε)‖x− x̄‖, for all x ∈ Rn. This implies cmin(G, x̄) ≤ (r − ε)−1.89

Suppose now that 0 /∈ ∂f(x̄). Denote m = m(f) := d(0, ∂f(x̄)). Then, for any η ∈ (0,m/3), there
exists δ > 0 such that d(0, ∂f(x)) > m − η for all x ∈ B(x̄, δ). Take any ε ∈ (0,min{δ2, η, η2}) and
let G, gt, and g satisfy (9)–(14). For u∗ ∈ ∂g(x̄), by applying again relation (8) to the function g,
we can find elements t1, . . . , tk of Tg(x̄); u∗i ∈ ∂gti(x̄), and reals λ1, . . . , λk satisfying conditions (15).
Therefore, for all x ∈ Rn, one has

〈u∗, x− x̄〉 =
∑k

i=1 λi〈u∗i , x− x̄〉 ≤
∑k

i=1 λi(gti(x)− gti(x̄))
≤
∑k

i=1 λi(fti(x)− fti(x̄)) + ε‖x− x̄‖
≤ f(x)− f(x̄) + ε+ ε‖x− x̄‖.

Note that for the last inequality, we use the fact that for any t ∈ Tg(x̄), one has

ft(x̄) ≥ gt(x̄)− ε = g(x̄)− ε = f(x̄)− ε.

By considering the function

ϕ(x) := f(x)− 〈u∗, x− x̄〉+ ε‖x− x̄‖, x ∈ Rn,

we have
ϕ(x̄) ≤ inf

x∈Rn
ϕ(x) + ε.

By virtue of the Ekeland variational principle, we can select z ∈ Rn satisfying ‖z − x̄‖ ≤ ε1/2 and

0 ∈ ∂(ϕ(·) + ε1/2‖ · −z‖)(z) ⊆ ∂f(z)− u∗ + (ε1/2 + ε)B∗.

That is, u∗ ∈ ∂f(z) + (ε1/2 + ε)B∗. Moreover, z ∈ B(x̄, δ), and by the definition of ε, one obtains90

‖u∗‖ > m − 3η. Hence d(0, ∂g(x̄)) ≥ m − 3η, and by Theorem 1, we derive the desired conclusion91

cmin(G, x̄) < (m− 3η)−1.92

For (ii) ⇒ (i), assume to the contrary that 0 ∈ Bdry f(x̄). Observe from the proof of Theorem 2
that, for each ε > 0, one can find an element z∗ ∈ Rn with ‖z∗‖ = 1 and construct a function (note
that f(x̄) = 0)

gε(x) := f(x) + ε〈z∗, x− x̄〉, x ∈ Rn

satisfying gε(x̄) = 0 and cmin(gε, x̄) ≥ ε−1/3. For t ∈ T, we define the function gt : Rn → R by

gt(x) := ft(x) + ε〈z∗, x− x̄〉, x ∈ Rn.
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Then
gε(x) = max{gt(x) : t ∈ T}; Tg(x̄) = Tf (x̄); gt(x̄) = ft(x̄) for all t ∈ T ;

and
sup
x∈Rn

|ft(x)− gt(x)| = ε (hence relation (12) is verified).

Moreover, cmin(G, x̄) = cmin(gε, x̄) ≥ ε−1/3. The proof is completed. �93

Remark 5 In the proof of (ii) ⇒ (i), a stronger assertion has been established: If 0 ∈ Bdry f(x̄),
then for any ε > 0, there exists aε ∈ Rn with ‖aε‖ ≤ ε such that if

Gε(t, x) := F (t, x) + 〈aε, x− x̄〉, (t, x) ∈ T × Rn,

then cmin(Gε, x̄) ≥ ε−1.94

Remark 6 It is important to note that the condition Tf (x̄) ⊆ Tg(x̄) in the case 0 ∈ Int ∂f(x̄) is
crucial. To see this, let us consider the following example. Let R2 be endowed with any norm satisfying
‖(0, x)‖ = |x| and let fi : R2 → R be defined by fi(x1, x2) := |xi|, i = 1, 2; F := (f1, f2); f :=
max{f1, f2}. Then

SF = {x ∈ R2 : fi(x) ≤ 0, i = 1, 2} = {(0, 0)},

and ∂f((0, 0)) = B∗R2 . For each ε > 0, we define the functions gi,ε (i = 1, 2) by

g1,ε(x1, x2) := |x1|+ ε|x2|; g2,ε(x1, x2) := |x2| − ε;

Gε := (g1,ε, g2,ε); gε := max{g1,ε, g2,ε}. Obviously,

S(Gε) = {(0, 0)} and max{Lip(f1 − g1,ε),Lip(f2 − g2,ε)} ≤ ε.

For any positive δ < ε−1 set zδ = (0, δ) ∈ R2. Then d(zδ, S(Gε)) = δ; gε(zδ) = εδ. Hence,95

cmin(Gε, (0, 0)) ≥ ε−1.96

3 Stability of global error bounds97

In this section, we deal with the stability of Hoffman global error bounds for semi-infinite convex98

constraint systems. First, we establish a characterization for the global stability for the case of a99

single inequality (4):100

Sf := {x ∈ Rn : f(x) ≤ 0}. (4’)

Theorem 7 Let f ∈ Γ0(Rn), ∅ 6= Sf ⊆ Int(Dom f). Then the following two statements are equiva-101

lent:102

(i). There exists τ > 0 such that103

inf{d(0,Bdry (∂f(x))) : x ∈ Rn, f(x) = 0} > τ, (16)

and the following asymptotic qualification condition is satisfied:104
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(AQC) For any sequences (xk)k∈N ⊆ Sf , (x∗k)k∈N ⊆ Rn satisfying105

lim
k→∞

‖xk‖ =∞, lim
k→∞

f(xk)/‖xk‖ = 0, x∗k ∈ ∂f(xk) (17)

one has lim infk→∞ ‖x∗k‖ > τ ;106

(ii). For any x̄ ∈ Rn there exist reals c := c(f) > 0 and ε > 0 such that for all g ∈ Γ0(Rn) satisfying

S(g) 6= ∅ if 0 ∈ Int(∂f(z)) for some z ∈ Sf ;
|f(x̄)− g(x̄)| < ε; Lip(f − g) < ε

one has cmin(g) ≤ c.107

Proof. (i) ⇒ (ii). First, if 0 ∈ Int ∂f(z) for some z ∈ Sf then Sf = {z} and the conclusion follows108

as in the proof of Theorem 2. Let us consider now the case 0 /∈ ∂f(x) for all x ∈ Bdry Sf . Let the109

statement (i) be fulfilled. We first prove the following claim.110

Claim. For any x̄ ∈ Rn there exists ε > 0 such that111

inf{‖x∗‖ : x∗ ∈ ∂f(x), x ∈ Rn with f(x) ≥ −ε‖x− x̄‖ − ε} ≥ τ. (18)

112

Indeed, suppose by contradiction that for some x̄ ∈ Rn relation (18) does not hold. Then, there113

exist a sequence of reals (εk) ↓ 0+; sequences (xk)k∈N, (x∗k)k∈N of points in Rn such that (∀k) f(xk) ≥114

−εk‖xk − x̄‖ − εk; x∗k ∈ ∂f(xk); and ‖x∗k‖ < τ.115

For any x ∈ Rn with f(x) > 0, and any x∗ ∈ ∂f(x), we can select z ∈ Bdry Sf such that
‖x − z‖ = d(x, Sf ). Then by the convexity of f, f(z) = 0, and by (16), τ(f, z) ≥ d(0, ∂f(z)) > τ . In
virtue of Theorem 1 (ii), there exists 0 < δ < ‖x− z‖ such that

τd(y, Sf ) ≤ [f(y)]+ for all y ∈ B(z, δ).

By taking r = δ‖x − z‖−1/2 ∈ (0, 1); y := z + r(x − z) ∈ B(z, δ) ∩ [z, x], one obtains f(y) > 0,
‖y − z‖ = d(y, Sf ), and

τr‖x− z‖ = τd(y, Sf ) ≤ f(y) ≤ rf(x) + (1− r)f(z) = rf(x) ≤ r〈x∗, x− z〉.

Consequently, ‖x∗‖ ≥ τ.116

Hence, f(xk) ≤ 0 when k is sufficiently large. Without loss of generality, assume that f(xk) ≤ 0 for117

all indexes k. If (xk)k∈N is bounded, by relabeling if necessary, we can assume that (xk)k∈N, (x∗k)k∈N118

converge to some points x0, x
∗
0 ∈ Rn, respectively. Then, f(x0) ≤ 0; ‖x∗0‖∗ ≤ τ as well as x∗0 ∈ ∂f(x0).119

Moreover, since Sf ⊆ Int(Dom f), then f(x0) = limk→∞ f(xk) = 0. This contradicts condition (16). If120

(xk)k∈N is unbounded we have a contradiction with (AQC) since (after relabeling) limk→∞ ‖xk‖ = +∞121

and limk→∞ f(xk)/‖xk‖ = limk→∞ f(xk)/‖xk − x̄‖ = 0. The claim is proved.122

Let x̄ ∈ Rn and let ε ∈ (0, τ) be as in the claim. Suppose g ∈ Γ0(Rn) satisfies |f(x̄) − g(x̄)| < ε
and Lip(f − g) < ε. For any x ∈ Rn with g(x) > 0, one has ∂g(x) ⊆ ∂f(x) + εB∗. Hence,

d(0, ∂g(x)) ≥ d(0, ∂f(x))− ε.
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On the other hand, by

f(x) ≥ g(x) + (f(x̄)− g(x̄))− ε‖x− x̄‖ ≥ −ε‖x− x̄‖ − ε,

taking into account the claim one obtains d(0, ∂f(x)) ≥ τ , and consequently

d(0, ∂g(x)) ≥ τ − ε.

In virtue of Theorem 1 (ii), we derive the desired inequality cmin(g) ≤ (τ − ε)−1.123

(ii) ⇒ (i). Assume to the contrary that (i) does not hold. Then, one of the following two cases124

can occur:125

Case 1. There exist sequences (xk)k∈N, (x∗k)k∈N such that f(xk) = 0; x∗k ∈ Bdry (∂f(xk)) (∀k) and126

limk→∞ ‖x∗k‖ = 0.127

Let ε > 0 be given arbitrarily. Pick a sequence of reals (δk) ↓ 0. Since x∗k ∈ Bdry (∂f(xk)), we
have, firstly, x∗k ∈ ∂f(xk) and, secondly, there exists u∗k ∈ εB∗ such that x∗k + u∗k /∈ ∂f(xk). The first
condition implies that

f(x)− 〈x∗k, x− xk〉 ≥ 0 for all x ∈ Rn,

while it follows from the second one that we can find yk ∈ B(xk, δk) \ {xk} satisfying128

〈x∗k + u∗k, yk − xk〉 > f(yk)− f(xk) = f(yk).

Hence

f(yk)− 〈x∗k, yk − xk〉 < ε‖yk − xk‖.

By virtue of the Ekeland variational principle [8], we can select zk ∈ Rn satisfying ‖yk − zk‖ ≤
‖yk − xk‖/2 and f(zk) ≤ f(yk) + 〈x∗k, zk − yk〉 such that the function

x 7−→ f(x)− 〈x∗k, x− xk〉+ 2ε‖x− zk‖

attains its minimum at zk. Hence zk 6= xk and 0 ∈ ∂f(zk)−x∗k+2εB∗. That is, there exists z∗k ∈ ∂f(zk)129

such that ‖z∗k‖ ≤ ‖x∗k‖+ 2ε. We distinguish the following two subcases:130

Subcase 1.1. The sequence (xk)k∈N is bounded. Take any x̄ ∈ Rn and chose M > max{supk ‖xk −
x̄‖, 1}. Without loss of generality, we can assume that the sequence {(zk−xk)/‖zk−xk‖}k∈N converges
to some u ∈ Rn with ‖u‖ = 1. Let u∗ ∈ Rn be such that ‖u∗‖ = 1 and 〈u∗, u〉 = 1. Let us consider a
function gε ∈ Γ0(Rn) defined by

gε(x) := f(x) +
ε

M
〈u∗, x− xk〉, x ∈ Rn.

Then, obviously, Lip(f − gε) = ε/M < ε, |f(x̄) − gε(x̄)| < ε, and gε(zk) > 0 when k is sufficiently
large. Since z∗k ∈ ∂f(zk) and ‖z∗k‖ ≤ ‖x∗k‖+ 2ε, then

d(0, ∂gε(zk)) ≤ ‖x∗k‖+ 3ε ≤ 4ε

when k is sufficiently large, and consequently cmin(gε) ≥ (4ε)−1.131

9



Subcase 1.2. limk→∞ ‖xk‖ =∞. Pick x0 ∈ Sf . We can assume that the sequence {(xk−x0)/‖xk−
x0}}k∈N converges to some u ∈ Rn with ‖u‖ = 1. Let us pick u∗ ∈ Rn such that ‖u∗‖ = 1 and
〈u∗, u〉 = 1 and consider the function gε ∈ Γ0(Rn) defined by

gε(x) := f(x) + ε〈u∗, x− x0〉, x ∈ Rn.

One has x0 ∈ Sgε ; |f(x̄) − gε(x̄)| ≤ ε‖x̄ − x0‖; Lip(f − gε) = ε. Moreover, gε(xk) > 0 when k is132

sufficiently large; x∗k + εu∗ ∈ ∂gε(xk). Hence cmin(gε) ≥ ε−1.133

Case 2. There exist sequences (xk)k∈N ⊆ Sf , (x∗k)k∈N ⊆ Rn satisfying (17), and limk→∞ ‖x∗k‖ = 0.134

In this case, for each ε > 0, we consider the function gε defined as in Subcase 1.2. Then, g(xk) > 0135

when k is sufficiently large. Moreover, d(0, ∂gε(xk)) ≤ ‖x∗k‖+ ε, which completes the proof. �136

We turn our attention now to semi-infinite convex constraint systems of the form137

SF := {x ∈ Rn : ft(x) ≤ 0 for all t ∈ T}, (7’)

where T is a compact, possibly infinite, Hausdorff space, ft : Rn → R, t ∈ T, are given convex
functions such that t 7→ ft(x) is continuous on T for each x ∈ Rn, and F ∈ C(T × Rn,R) is defined
by F (t, x) := ft(x), (t, x) ∈ T × Rn. As in Section 2, we set

f(x) := max{ft(x) : t ∈ T} and Tf (x) := {t ∈ T : ft(x) = f(x)}.

A characterization of the stability of global error bounds for the semi-infinite constraint system (7) is138

given in the following theorem.139

Theorem 8 The following two statements are equivalent:140

(i). There exists τ > 0 such that141

inf{d(0,Bdry (∂f(x))) : x ∈ Rn, f(x) = 0} > τ, (16’)

and asymptotic qualification condition (AQC)is satisfied.142

(ii). For any x̄ ∈ Rn there exist reals c := c(F, x̄) > 0 and ε > 0 such that if

G ∈ C(T × Rn,R); gt(x) := G(t, x); gt are convex; (9’)
SG 6= ∅; (19)

sup
t∈T
|ft(x̄)− gt(x̄)| < ε; (20)

sup
t∈T

Lip(ft − gt) < ε; (21)

g(x) := max{gt(x) : t ∈ T}; Tg(x) := {t ∈ T : gt(x) = g(x)}; (13’)
Tf (x) ⊆ Tg(x) whenever 0 ∈ Int(∂f(x)) for some x ∈ SF , (22)

then one has cmin(G, x̄) ≤ c.143
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Proof. (i) ⇒ (ii). When x ∈ Int(∂f(x)) for some x ∈ SF , then obviously SF = {x} and the proof144

follows as in Theorem 4. Suppose now that 0 /∈ ∂f(x) for all x ∈ SF with f(x) = 0. Thanks to the145

claim in the proof of Theorem 7, for any x̄ ∈ Rn there exists η > 0 such that146

inf{‖x∗‖ : x∗ ∈ ∂f(x), x ∈ Rn with f(x) ≥ −η‖x− x̄‖ − η} ≥ τ. (23)

Let ε > 0 be given (it will be made precise later) and let G, gt, and g satisfy (9), (13), (19)–(22). Let
x ∈ Rn with g(x) > 0 and let x∗ ∈ ∂g(x). It follows from (20) and (21) that

|ft(x)− gt(x)| ≤ |ft(x̄)− gt(x̄)|+ ε‖x− x̄‖ < ε(‖x− x̄‖+ 1) (24)

for some x̄ ∈ Rn and all t ∈ T , and consequently

|f(x)− g(x)| ≤ ε(‖x− x̄‖+ 1). (25)

When t ∈ Tg(x) it also follows from (24) that

ft(x) > g(x)− ε(‖x− x̄‖+ 1). (26)

Combining (25) and (26) we obtain for t ∈ Tg(x):

ft(x) > f(x)− 2ε(‖x− x̄‖+ 1).

By relation (8), there exist elements t1, . . . , tk of Tg(x); x∗i ∈ ∂gti(x), and reals λ1, . . . , λk such that

λi ≥ 0 (i = 1, · · · , k);
k∑
i=1

λi = 1; x∗ =
k∑
i=1

λix
∗
i .

For all y ∈ Rn, one has147

〈x∗, y − x〉 =
∑k

i=1 λi〈x∗i , y − x〉 ≤
∑k

i=1 λi(gti(y)− gti(x))
≤
∑k

i=1 λi(fti(y)− fti(x)) + ε‖y − x‖
< f(y)− f(x) + 2ε(‖x− x̄‖+ 1) + ε‖y − x‖.

(27)

Let us consider the function ϕ : Rn → R defined by

ϕ(y) := f(y)− 〈x∗, y − x〉+ ε‖y − x‖, y ∈ Rn.

Then,
ϕ(x) ≤ inf

y∈Rn
ϕ(y) + 2ε(‖x− x̄‖+ 1).

Let us apply again the Ekeland variational principle to find z ∈ Rn such that ‖z−x‖ ≤ ε1/2(‖x−x̄‖+1)
and

0 ∈ ∂(ϕ(·) + 2ε1/2‖ · −z‖)(z) ⊆ ∂f(z)− x∗ + (2ε1/2 + ε)B∗.

That is,148

x∗ ∈ ∂f(z) + (2ε1/2 + ε)B∗. (28)

On the other hand, since ‖z − x‖ ≤ ε1/2(‖x− x̄‖+ 1), then

‖z − x̄‖ ≥ ‖x− x̄‖ − ‖z − x‖ ≥ (1− ε1/2)‖x− x̄‖ − ε1/2.
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Hence, when ‖x∗‖ < τ, from relations (25) and (27), one has

f(z) ≥ f(x)− 2ε(‖x− x̄‖+ 1)− (τ + ε)‖z − x‖
≥ g(x)− 3ε(‖x− x̄‖+ 1)− (τ + ε)‖z − x‖
≥ −

(
3ε+ (τ + ε)ε1/2

)
(‖x− x̄‖+ 1)

≥ −
(
3ε+ (τ + ε)ε1/2

)(
(1− ε1/2)−1(‖z − x̄‖+ ε1/2) + 1

)
= −

(
3ε+ (τ + ε)ε1/2

)
(1− ε1/2)−1(‖z − x̄‖+ 1).

Consequently, by taking ε > 0 sufficiently small such that149 (
3ε+ (τ + ε)ε1/2

)
(1− ε1/2)−1 < η, (29)

one can ensure f(z) ≥ −η‖z − x̄‖ − η, and therefore by relations (23) and (28), one derives ‖x∗‖ ≥
τ − (2ε1/2 + ε). Thus, when ε > 0 is sufficiently small such that, in addition to (29), 2ε1/2 + ε < τ ,
then

d(0, ∂g(x)) ≥ τ − 2ε1/2 − ε for all x ∈ Rn with g(x) > 0.

Thanks to Theorem 1, we derive the desired conclusion cmin(G) < (τ − 2ε1/2 − ε)−1.150

(ii)⇒ (i). Assume that (i) does not hold. Take any x̄ ∈ Rn. Observe from the proof of Theorem 7
that for each ε > 0, we can find aε ∈ Rn, bε ∈ R such that the function

gε(x) = f(x) + 〈aε, x〉+ bε, x ∈ Rn

verifies the following conditions

‖aε‖ < ε; Sgε 6= ∅; |〈aε, x̄〉+ bε| < ε; and cmin(gε) ≥ ε−1.

For t ∈ T, we define the function gt : Rn → R by

gt(x) := ft(x) + 〈aε, x〉+ bε, x ∈ Rn;

Then gε(x) = max{gt(x) : t ∈ T}, Tg(x) = Tf (x) for all x ∈ Rn; |gt(x̄)− ft(x̄)| < ε for all t ∈ T ; and151

supt∈T Lip(ft − gt) < ε as well as cmin(Gε) = cmin(gε) ≥ ε−1. The proof is completed. �152

From this proof of (ii) ⇒ (i), observe that if the condition (i) of the theorem is not satisfied, we
can find a sequence of affine perturbations (gkt )k∈N of (ft) such that

lim
k→∞

sup
t∈T
|gkt (x̄)− ft(x̄)| = 0; lim

k→∞
Lip(gkt − ft) = 0; and lim

k→∞
cmin(Gk) = 0.

4 Application to the sensitivity analysis of Hoffman constants for153

semi-infinite linear constraint systems154

In this section, by using the results established in the preceding section, we generalize the results155

on the sensitivity analysis of Hoffman constants established by Azé & Corvellec in [3] for systems of156

finitely many linear inequalities to semi-infinite linear systems.157

We consider now semi-infinite linear systems in Rn defined by158

〈a(t), x〉 ≤ b(t) for all t ∈ T, (30)
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where T is a compact, possibly infinite, metric space and the functions a : T → Rn and b : T → R are159

continuous on T.160

Consider spaces C(T,Rn) and C(T,R) of continuous functions a : T → Rn and b : T → R161

respectively, endowed with the norms162

‖a‖ := max
t∈T
‖a(t)‖ and ‖b‖ := max

t∈T
|b(t)|.

Denote by Sa,b the set of solutions to system (30). We will also use the following notations:

fa,b(x) := max
t∈T

(
〈a(t), x〉 − b(t)

)
; Ja,b(x) := {t ∈ T : 〈a(t), x〉 − b(t) = fa,b(x)} for each x ∈ Rn.

Obviously, Ja,b(x) is a compact subset of T for each x ∈ Rn and we have

∂fa,b(x) = co(aJa,b(x)),

where we use the notation aJ := {a(t) : t ∈ J}.163

According to Theorem 1, Sa,b admits a global error bound if and only if164

τ(a, b) := inf{d(0, ∂fa,b(x)) : x ∈ Rn, fa,b(x) > 0} = inf
x/∈Sa,b

d(0, co(aJa,b(x))) > 0. (31)

Moreover, the best bound is given by cmin(a, b) = [τ(a, b)]−1.165

Let us first consider the Hoffman constant c1(a) = [σ1(a)]−1, where166

σ1(a) := inf{d(0, co(aJ)) : J ⊆ T, J is compact, 0 /∈ co(aJ)}, (32)

which is an extension of the one in [3]. It is obvious that σ1(a) ≤ τ(a, b). That is,

d(x, Sa,b) ≤ c1(a)[fa,b(x)]+ for all x ∈ Rn.

Theorem 9 Suppose that a ∈ C(T,Rn) satisfies167

0 /∈ Bdry (co(aJ)) for all compact subsets J ⊆ T. (33)

Then function σ1 defined by (32) is positive and Lipschitz near a.168

Conversely, if 0 ∈ Bdry (co(aJ)) for some compact subset J ⊂ T, then for any x ∈ Rn and ε > 0169

there exist aε ∈ C(T,Rn); bε ∈ C(T,R) such that170

x ∈ Saε,bε , ‖aε − a‖ ≤ ε, ‖bε − b‖ ≤ ε, and τ(aε, bε) < ε,

where b(t) = 〈a(t), x〉 for all t ∈ T .171

Proof. We first prove that the infimum in the definition of σ1(a) is actually the minimum, that is,172

σ1(a) := min{d(0, co(aJ)) : J ⊆ T, J is compact, 0 /∈ co(aJ)}, (34)

which implies immediately σ1(a′) > 0 for all a′ near a.173
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Indeed, by the definition of σ1(a) and according to Carathéodory’s theorem, there exist sequences
(tki ) ⊆ T, and (λki ) ⊆ R+ (i = 1, . . . , n+ 1) such that

n+1∑
i=1

λki = 1; 0 /∈ co{a(tki ) : i = 1, . . . , n+ 1} and lim
k→∞

∥∥∥∥∥
n+1∑
i=1

λki a(tki )

∥∥∥∥∥ = σ1(a).

By the compactness of T, without loss of generality, we can assume that (tki ) → ti; (λki ) → λi
(i = 1, . . . , n+ 1). Therefore, by the continuity of a, one obtains∥∥∥∥∥

n+1∑
i=1

λia(ti)

∥∥∥∥∥ = σ1(a).

Moreover, since 0 /∈ co{a(tki ) : i = 1, . . . , n + 1}, then 0 /∈ Int(co{a(ti) : i = 1, . . . , n + 1}). This174

together with the assumption (33) yields 0 /∈ co{a(ti) : i = 1, . . . , n + 1}, and the relation (34) is175

shown.176

Let us now prove that σ1 is Lipschitz near a. For each a′ ∈ C(T,Rn), set

T (a′) = {J ⊆ T : J is compact, 0 /∈ co(a′J)}.

Then, by (34), we can find a neighborhood U of a such that

σ1(a′) > σ1(a)/2 for all a′ ∈ U ;

co(a1
J) ⊆ co(a2

J) + (σ1(a)/4)BRn for all compact J ⊆ T and all a1, a2 ∈ U ,

where BRn stands for the unit ball in Rn. These relations imply immediately that T (a1) = T (a2) =
T (a) for all a1, a2 ∈ U . Therefore, we have by a simple computation

d(0, co(a1
J)) ≤ d(0, co(a2

J)) + ‖a1 − a2‖ for all a1, a2 ∈ U ; all J ∈ T (a),

consequently, σ1(a1) ≤ σ1(a2) + ‖a1 − a2‖. Thus, σ1 is Lipschitz (of rank 1) near a.177

Conversely, assume now that 0 ∈ Bdry (co(aJ)) for some compact subset J ⊆ T. Let x ∈ Rn and
ε > 0. Define b′ε ∈ C(T,R) by b′ε(t) := 〈a(t), x〉+ εd(t, J)/(2 maxt′∈T d(t′, J)), where d(t, J) stands for
the distance from t to J with respect to the metric on T , and

fa,b′ε(z) := max
t∈T

(
〈a(t), z〉 − b′ε(t)

)
.

Then, we obviously have ‖b′ε − b‖ ≤ ε/2, fa,b′ε(x) = 0, and ∂fa,b′ε(x) = co(aJ). Thus, 0 ∈ Bdry ∂fε(x).
Thanks to Theorem 4 and by observing from its proof, there exist aε ∈ C(T,Rn); bε ∈ C(T,R) such
that

x ∈ Saε,bε , ‖aε − a‖ ≤ ε, ‖bε − b′ε‖ ≤ ε/2, and τ(aε, bε) < ε.

To complete the proof it is sufficient to notice that ‖bε − b‖ ≤ ε. �178

Let a ∈ C(T,Rn) and b ∈ C(T,R) be such that Sa,b 6= ∅. For J ⊆ T denote a−1
J (bJ) := {x ∈ Rn :179

〈a(t), x〉 = b(t) for all t ∈ J}. Set180

Ta,b := {J ⊆ T : J is compact, Sa,b ∩ a−1
J (bJ) 6= ∅ or Sa,0 ∩ a−1

J (0) 6= {0}}. (35)
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Fix a pair ā ∈ C(T,Rn) and b̄ ∈ C(T,R) such that Sā,b̄ 6= ∅. For (a, b) in a neighborhood U of181

(ā, b̄) define182

c2(a) = [σ2(a)]−1, σ2(a) := inf{d(0, co(aJ)) : J ∈ Tā,b̄, 0 /∈ co(aJ)}. (36)

The number σ2(a) is an extension of a constant denoted by τ(a) in [3]. The following lemma shows183

that c2(a) is also a Hoffman constant for Sa,b.184

Lemma 10 There exists a neighborhood U of (ā, b̄) such that σ2(a) ≤ τ(a, b), for all (a, b) ∈ U , where185

τ(a, b) is defined by (31), that is, c2(a) is a Hoffman constant for Sa,b.186

Proof. Ja,b(x) ∈ Tā,b̄ for all (a, b) ∈ U and all x ∈ Rn with |fā,b̄(x)| < δ(‖x‖+ 1). Indeed, if this does
not hold, we can find sequences (ak, bk) ⊆ C(T,Rn) × C(T,R); (xk) ⊆ Rn such that (ak, bk) → (ā, b̄)
and fā,b̄(xk)/(‖xk‖ + 1) → 0 and for all indexes k, Jak,bk(xk) /∈ Tā,b̄. If (xk) is bounded, then, by
relabeling if necessary, we can assume that (xk) converges to x0 ∈ Rn with fā,b̄(x0) = 0. We obtain
thus when k is sufficiently large:

Jak,bk(xk) ⊆ Jā,b̄(x0) ∈ {J ⊆ T : J is compact, Sā,b̄ ∩ a
−1
J (bJ) 6= ∅} ⊆ Tā,b̄.

Otherwise, we can assume that ‖xk‖ → ∞ and xk/‖xk‖ → u (‖u‖ = 1); then, when k is sufficiently
large,

Jak,bk(xk) ⊆ Jā,0(u) ∈ {J ⊆ T : J is compact, Sā,0 ∩ a−1
J (0) 6= {0}} ⊆ Tā,b̄,

a contradiction.187

Let V ⊆ U be a neighborhood of (ā, b̄) such that

|fa,b(x)− fā,b̄(x)| < δ(‖x‖+ 1) for all x ∈ Rn, (a, b) ∈ V.

Observe from Theorem 1 (ii) and (iii) that

τ(a, b) = inf
x∈Rn, fa,b(x)=0

sup
ε>0

inf{d(0, co(aJa,b(z))) : z ∈ B(x, ε) \ Sa,b}.

Let (a, b) ∈ V be given. Then, for any x ∈ Rn with fa,b(x) = 0, we have |fā,b̄(x)| < δ(‖x‖ + 1).
Therefore, there exists ε > 0 such that

|fā,b̄(z)| < δ(‖z‖+ 1) for all z ∈ B(x, ε).

Hence
Ja,b(z) ∈ Tā,b̄ for all z ∈ B(x, ε).

Obviously, 0 /∈ co(aJa,b(z)) for any z /∈ Sa,b. Thus

σ2(a) ≤ d(0, co(aJa,b(z))) for all z ∈ B(x, ε) \ Sa,b,

which implies clearly that σ2(a) ≤ τ(a, b). �188

The following theorem is an extension to semi-infinite linear constraint systems of Theorem 4.2 in189

Azé & Corvellec [3].190
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Theorem 11 Suppose that a ∈ C(T,Rn) and b ∈ C(T,R) are such that191

0 /∈ Bdry (co(aJ)) for all J ∈ Ta,b. (37)

Then function σ2 defined by (36) is positive and Lipschitz near a.192

Conversely, if 0 ∈ Bdry (co(aJ)) for some J ∈ Ta,b, then there exist sequences (ak) ⊆ C(T,Rn);
(bk) ⊆ C(T,R) such that for all k ∈ N,

Sak,bk 6= ∅, lim
k→∞

(ak, bk) = (a, b), and lim
k→∞

τ(ak, bk) = 0.

Proof. The proof of the first part is similar to that of Theorem 9. We prove the converse part. Assume193

that 0 ∈ Bdry (co(aJ)) for some J ∈ Ta,b. According to the definition of Ta,b, we consider the following194

two cases.195

Case 1. Sa,b ∩ a−1
J (bJ) 6= ∅. Let x̄ ∈ Sa,b ∩ a−1

J (bJ). For ε > 0, let b′ε ∈ C(T,R) be defined by
b′ε(t) := b(t) + εd(t, J)/(2 maxt′∈T d(t′, J)),

fa,b′ε(x) := max
t∈T

(
〈a(t), x〉 − b′ε(t)

)
.

Then, obviously ‖b′ε − b‖ ≤ ε/2, fa,b′ε(x̄) = 0, and ∂fa,b′ε(x̄) = co(aJ). Thus, 0 ∈ Bdry ∂fa,b′(x̄). By
observing from the proof of Theorem 4, there exist aε ∈ C(T,Rn); bε ∈ C(T,R) such that

x̄ ∈ Saε,bε , ‖aε − a‖ ≤ ε, ‖bε − b′ε‖ ≤ ε/2, and τ(aε, bε) < ε.

To complete the proof it is sufficient to notice that ‖bε − b‖ ≤ ε.196

Case 2. Sa,0 ∩ a−1
J (0) 6= {0}. Pick some x̄ ∈ Sa,b and z ∈ Sa,0 ∩ a−1

J (0) with ‖z‖2 := 〈z, z〉1/2 = 1.
For each k ∈ N∗ and each t ∈ J, set

rk(t) :=
b(t) + k−1 − 〈a(t), x̄〉

k
.

Then,197

〈a(t) + rk(t)z, x̄+ kz〉 = b(t) + k−1 + rk(t)〈z, x̄〉 for all t ∈ J. (38)

Since rk is a continuous function on the compact subset J ⊆ T, by the Tietze-Uryson theorem, there
exists a continuous function ϕk ∈ C(T,R) such that

ϕk(t) = rk(t) ∀ t ∈ J and sup
t∈T
|ϕk(t)| = sup

t∈J
|rk(t)|.

For every k ∈ N∗, let us define (ak, bk) ∈ C(T,Rn)× C(T,R) by

ak(t) := a+ ϕk(t)z; bk(t) := b(t) + ϕk(t)〈z, x̄〉, t ∈ T.

Then, limk→∞(ak, bk) = (a, b) and for all k ∈ N∗, x̄ ∈ Sak,bk . Moreover, by relation (38), when k is
sufficiently large, one has

x̄+ kz /∈ Sak,bk and co(akJ) ⊆ ∂fak,bk(x̄+ kz),

where
fak,bk(x) := max

t∈T
(〈ak(t), x〉 − bk(t)).

Since 0 ∈ co(aJ), then (when k is sufficiently large) thanks again to Theorem 1, one has

τ(ak, bk) ≤ d(0, co(akJ)) ≤ sup
t∈T
|ϕk(t)| · ‖z‖.

Consequently, limk→∞ τ(ak, bk) = 0, which completes the proof. �198
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[19] Ngai, H. V., and Théra, M. Error bounds for convex differentiable inequality systems in242

Banach spaces. Math. Program., Ser. B 104, 2-3 (2005), 465–482.243
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