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Abstract
Time series associated with single-molecule experiments and/or simulations contain a wealth of
multiscale information about complex biomolecular systems. We demonstrate how a collection of
Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work,
functions estimated using P-splines are associated with stochastic differential equations (SDEs). It
is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas
variation between curves associated with different SDEs partially reflects noise induced by motion
evolving on a slower time scale. P-splines assist in “semiparametrically” estimating nonlinear
SDEs in situations where a time-dependent external force is applied to a single-molecule system.
The P-splines introduced simultaneously use function and derivative scatterplot information to
refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative
Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI
method. Applications demonstrating how utilizing uncertainty information/approximations along
with generalized least squares techniques improve PuDI fits are presented. Although the primary
application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations
where both unbiased function and derivative estimates are available.
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1. Introduction
Our primary interest is modeling time series associated with single-molecule simulations/
experiments [1,2,3,4,5,6,7,8,9]. We demonstrate how information in such time series can be
summarized into scatterplot data [8,10] and how a new method introduced here, the P-
splines using Derivative Information (PuDI) method, can be used to gain better quantitative
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understanding of these time series containing information about multiple time scales in
situations where the dynamics are homogeneous or an external force causes the stochastic
evolution rules to be time inhomogeneous. The latter case is demonstrated in this article.

However, the PuDI method is a general “semiparametric” method that utilizes regression
splines referred to as Penalized-splines (P-splines) [11,12]. We use a simple design matrix
that simultaneously uses noisy function and derivative scatterplot information to
approximate nonlinear curves. The use of both the function and its derivative as “response”
data in a P-spline is a unique part of our approach. The method is applicable to situations
where noisy function and derivative estimates are available at design points. If uncertainty
information about the (possibly correlated) estimates is available, the PuDI method can
readily handle this situation. Applications where such data are available include economics
[13], geosciences [14], and single-molecule dynamics [1,2,3,4,6,7,8,9].

We focus on showing how the PuDI method can be used to better understand noisy time
series coming from single-molecule applications. One utility of the approach is that the
contributions from the local drift and diffusion can be more accurately estimated from noisy
position versus time data. The function and derivative information mentioned in the previous
paragraph are inferred from observed time series data in the single-molecule applications
studied. The approach reported can also be modified to explicitly estimate/model
“measurement noise” in cases where this noise can be modeled as a Gaussian. How to
separate “thermal noise” from measurement noise in experimental single-molecule time
series data is shown elsewhere [6,8,15]. In this article, the focus is on a benchmark all-atom
molecular dynamics simulation of the gramicidin A ion channel [7].

The local parametric models used have a loose physical interpretation in terms of local
effective force and friction. This feature allows one a better physical understanding of the
effective evolution rules in single-molecule and atomistic modeling applications. The PuDI
method provides one a means to patch together local parametric models to form global
nonlinear models in cases where a global parametric nonlinear model is unknown. For
example in “simple” proteins studied at fine scales, it is known that classic nonlinear
polymer physics models, such as the worm-like chain [16], can provide only rough
approximations of the dynamics. At smaller length and time scales, these polymer models
become more inaccurate, and in more complex biomolecules the dynamics are poorly
quantitatively understood from a priori considerations. A semiparametric approach where
the estimated local parameters have a physical interpretation shows promise in learning from
time ordered single-molecule data in such situations [6,7,8,10,15]. It should be noted that
purely nonparametric models [17,18] can be difficult to reliably estimate (and check the
statistical validity of) when a time-inhomogeneous driving term is present, as in the cases we
report.

The following notation will be used: xi denotes a design point, f (xi) represents the function
of interest evaluated at xi, ∂ f (xi) represents the corresponding derivative (df(x)/dx|x=xi), and
ε1, ε2 represent mean zero noise processes, discussed in more detail later, associated with the
noisy estimates of f(xi), ∂ f (xi), respectively. The design matrix constructed for the PuDI
method exploits some of the advantageous properties associated with the truncated power
function (TPF) basis set [12,19] and overcomes the well-known ill-conditioning issue
associated with this basis by using a recently developed stable and efficient algorithm for
computing the penalized least squares solutions associated with the P-spline problem [20].
However, other spline bases can be entertained, such as the B-spline basis as advocated
when P-splines were introduced [11]. Smoothing splines can also be considered [21], but the
ability of P-splines to parsimoniously represent complex nonlinear functions has appeal in
longitudinal data [12] and functional data analysis [22] applications; these techniques show
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promise in providing a better quantitative understanding of batches of complex single-
molecule time series [6,15,23]. We demonstrate how information about the (possibly
correlated) noise processes can be utilized to improve function estimates using established
generalized least squares (GLS) techniques [24] to modify the PuDI design matrix.
Illustrative examples demonstrating how undesirable results can be obtained when
differences in the noise processes (ε1, ε2) are ignored are presented.

This article is organized as follows. Section 2 quickly reviews established P-spline results
[12]. Section 3 presents the basic ideas behind the PuDI method. The background and
challenges associated with modeling single-molecule dynamics are presented in section 4,
although we remind the reader that the PuDI method is motivated by single-molecule data
sets, and it is applicable to other scatterplot situations where derivative information is
available (see, e.g., [13,14]). Section 5 presents results from both controlled and single-
molecule data situations. Section 6 presents the conclusions and outlook. MATLAB scripts
for fitting general P-splines with our method are provided in the Supporting Material which
is available online from
http://www.caam.rice.edu/tech_reports/2009/PuDI_demo_mfiles.zip.

2. Review of P-spline notation
The basic regression problem considered here is to approximate a continuous nonlinear
function, f(·), evaluated at fixed points, xi, using discrete noisy measurements, yi, where i =
1, …, m and m represents the number of individual samples collected. The model is written
as

(2.1)

where it is assumed that the error vector, ε = (ε1, …, εm), has a mean zero distribution with
general, square, covariance matrix R of dimensions m × m. For practical reasons, we assume
that the vector of residuals ε possesses a multivariate normal distribution. We allow for the
possibility of nonzero covariance between arbitrary εl and εq, where l ≠ q, i.e., Rlq = cov(εl,
εq) ≠ 0. Most P-spline approximations take the form

(2.2)

where the Bj(·) represent the selected spline basis used. We introduce the following notation:
Bj ≡ [Bj(x1), …, Bj(xm)]⊤, Z ≡ [B1, …, BK], u ≡ [ζ1, …, ζK]⊤, β ≡ [η0, η1, …, ηp]⊤,

, and y ≡ [y1, …, ym]⊤. With this notation we can write
the model specified by (2.1) and (2.2) as

(2.3)

P-splines offer the flexibility of different types of penalties, but we will focus on penalized

least squares problems that minimize , where C = (X, Z) is the design
matrix of size m × {(p + 1) + K} and β′ = (β⊤, u⊤)⊤ is the matrix of coefficients of size {(p
+ 1) + K} × 1. To fit this model we can pick a relatively large number of knots, K, and let
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the penalized minimization select which knots are most relevant [12]. In this article we use
generalized cross validation (GCV) to pick the “optimal” smoothing parameter α̂ ≡ argminα
GCV(y, α;; C).

3. The PuDI method
The PuDI method assumes a noisy unbiased sample of the underlying function, and the
corresponding derivatives are available. In this situation we write the observed data as

(3.1)

where  is assumed normally distributed with mean zero and
covariance matrix R = W W⊤, where W denotes the Cholesky factor of the symmetric matrix
R. Throughout we assume that R is invertible and not poorly conditioned.

The design matrix we propose makes use of the TPF basis; e.g., in (2.2) one sets
, where (·)+ is a function that takes real arguments and is the identity for

arguments ≥ zero and is zero otherwise. We construct the various design matrices using
minor transformation of

(3.2)

In terms of the model presented in (2.3), the first p + 1 columns correspond to X, and the last
K columns correspond to Z. With the TPF basis, including derivative information in the P-
spline is straightforward.

We do not claim that the TPF basis is optimal in any sense. However, it can readily handle
derivative information estimation in situations where the knot spacing is not uniform, a
feature not shared by other popular spline bases, such as B-splines [11,19].

3.1. The importance of weighting derivatives
We next provide a simple illustration demonstrating the importance of weighting
measurements of different qualities. After we apply simple GLS techniques to CPuDI defined
in (3.2), the resulting structure is similar to a system of uncorrelated linear regression
equations. Because the penalized regression spline problem requires the estimation of a
regularization smoothing parameter, α, and the selection of the number of splines used, K, it
is more involved than standard multivariate regression. However, it is established that by
selecting K to be large enough and letting the smoothing parameter emphasize the
importance of certain splines, the problem is simplified greatly [12].

At each design point xi with i = 1, …, m, we observe a nearly unbiased estimate z = {y(f) (xi),
y(∂f) (xi)}, where y(f)(xi) is an estimate of the function and y(∂f) (xi) is an estimate of the
derivative. The PuDI method can be viewed as using two different design matrices to
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estimate one regression coefficient β′. These design matrices are associated with different
conditional expectations, i.e., {y(f)(x)} = C(f)(x)β′ and {y(∂f)(x)} = C(∂f)(x)β′, where C(f)(x)
and C(∂f) (x) represent the two distinct design matrices depending on the vector of design
points x. Note that the design matrix shown in (3.2) consists of two matrix blocks; i.e., the
block C(f)(x) is stacked on top of C(∂f)(x). The importance of using GLS can be readily seen
with the following simplified multivariate example.

Suppose we are given two sets of independent observations: ( ) possessing mean

μ and variance σ2 for all xi and ( ) having mean μ and variance cσ2 for all xi,
where c > 1 (c serves as an amplification factor and a common population mean μ is used to
simplify the exposition). A possible naive estimate would use only the y(f) data:

. If the unequal variances are ignored, one might take

. The weighted GLS estimate would read

. All three estimates have mean μ, and the variances
in this example are easy to compute explicitly:

The variance of the GLS estimate is less than that of the other two for all c considered (i.e., c
> 1). If c > 3, the unweighted estimate has larger variance than the naive estimator.

For cases where GLS is applied, the results associated with Figure 5.1 provide a
demonstration of the improvement obtainable for different c values in a PuDI application;
these results show that the simple example above carries through to a more involved
penalized regression spline setting. The main point of this example was to demonstrate how
using an unweighted estimate can do worse than the naive approach. Note also that as c →
∞ the GLS case tends to the naive case, so if one estimator is very noisy relative to the
other, then the improvement gained by simultaneously using the function and derivative
estimations in the P-spline fit diminishes. However, we show that even for fairly disparate
noise magnitudes a substantial gain can be achieved in various situations.

4. Single-molecule dynamics
The purpose of this section is to briefly describe single-molecule dynamic experiments/
simulations and the data that often arise from them. Recent technological advances in single-
molecule physics have made it possible to manipulate individual macromolecules and
measure various kinetic and thermodynamic properties associated with complex molecules,
such as proteins and nucleic acids, at nanoscale resolution without artifacts associated with
bulk measurements obscuring results. For example, a high resolution atomic force
microscope (AFM) was recently used to measure the force time series associated with
repeatedly unfolding and refolding a single protein. The study demonstrated that modifying
the chemical environment via ligand concentration alters the protein folding kinetics [9].
Information of this sort can provide researchers with a new level of fundamental
understanding and can also be exploited in novel nanotechnology/molecular medicine
applications. However, the complexity of the underlying system and the stochastic dynamics
inherent at small scales rarely permit a single simple parametric model to accurately
approximate the global stochastic dynamics. Another complication stems from the fact that
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the external forces introduced into the system typically result in nonstationary time series.
Furthermore, there are often unresolved degrees of freedom making important contributions
to the dynamics. We demonstrate how the PuDI method can help in addressing some of
these complications.

Our approach uses a time series, , as input and then applies local maximum likelihood
methods (in state space) to transform the time sequence into a scatterplot sequence of the
form , where m is substantially less than the number of temporal
observations N. The “ψj” can be thought of as local average x value, explained further
below. We then apply the PuDI method to this sequence. We demonstrate that incorporating
the derivative information substantially improves the model calibrated from observed time
series. We stress that this procedure is repeated for different time series realizations, and
substantial variation can be measured between the curves estimated by P-splines. This
variation is due both to the standard uncertainty associated with a finite number of
scatterplot observations and to a latent process, unique to each time series realization,
modulating the dynamical response. The variability observed in the curves estimated from
different time series is of physical interest and suggests more sophisticated statistical
analysis as future work, e.g., functional data analysis, which considers functions as the
individual observations, and/or a longitudinal analysis, which involves the study of
measurements made on the same individuals over time. This type of “functional” variability
has proved to be important to thermodynamic and kinetic computations associated with
some single-molecule systems [6,7,23].

4.1. Modeling single-molecule dynamics
At time scales currently accessible to many single-molecule experiments, classical statistical
mechanics is often assumed to be a highly accurate model of the system dynamics. These
models often involve many degrees of freedom because each atom possesses a position and
momentum vector. Let NDOF denote the number of degrees of freedom. Fairly sophisticated
computer simulation algorithms have been developed to include this high level of detail
[25]. Let the vector Γ, the “phase space vector,” represent all the degrees of freedom of the
system. There is interest in determining simplified dynamical summaries, e.g., in using x ∈
ℝr to construct a reduced order model of Γ ∈ ℝNDOF with r ≪ NDOF. Various motivations
exist for appealing to model reduction. The high dimensionality of Γ complicates computer
simulations due to the small time step sizes that must be used to ensure numerical stability in
numerical integration; a reduced order model can often be simulated for longer length and
time scales [26]. In experiments, one can usually dynamically track only a small number of
degrees of freedom accurately but can explore longer length and time scales where various
events of scientific interest typically occur [8]. Constructing accurate reduced stochastic
dynamical models from time series coming either from single-molecule experiments or
computer simulations is one way of comparing these two information sources [8]. Rapid
technological advances are closing the time scale gaps in data that can be obtained from
experiments and simulations. The smaller time scale gap will facilitate the comparison of
models calibrated from experimental and simulation data [25], so new tools quantitatively
comparing output from these two information sources are desirable.

Denote the degrees of freedom directly observable, or measured from the simulation, by the
vector x. The term “reaction coordinate” is sometimes applied to x-type variables. Some
researchers in chemical physics believe that an ideal, or “good,” reaction coordinate should
be associated with the slowest relevant mode(s) of molecular motion. When this is the case,
there is hope for using an effective potential, or potential of mean force denoted here by 
(x), to approximate the dynamics of the high-dimensional system at longer time scales [27].
The approximate force acting on this coordinate is obtained by taking the gradient, ∇  (x).
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In practice, it is rarely true that an ideal reaction coordinate is known or measurable from
experiments; in these situations, one should think of the potential as  (x; Γ) [8]. The
unobserved degrees of freedom serve as a latent process and modulate the dynamical
response. For simplicity assume the variable χ is a scalar variable that evolves on a time
scale much longer than that associated with x and that this variable (along with x) adequately
summarizes the effective dynamical information contained in Γ. In this situation, one should
really think of the effective forces as being governed by ∇  (x; χ), and this type of situation
is illustrated in Figure 4.1. In molecular modeling, a -type variable can be one characterizing
large-scale conformational fluctuations [26]; in a protein, this might be a certain dihedral
angle. The presence of the slowly evolving latent χ causes physically relevant variability in
the P-spline curves we estimate from time series data. The next section outlines more
specifically how we transform time series coming from single-molecule experiments or
simulations into scatterplot data.

4.2. Modeling observable quantities

Assume batches of time series  are collected from the system, where the superscript
is used to index the trajectory number and the subscript to index a time ordering of a scalar
observable. In the molecular dynamics community, time series are often referred to as
“trajectories.” For a given trajectory we attempt to fit a stochastic differential equation
(SDE) having the form

(4.1)

where Γ represents the degrees of freedom introduced in the previous section, μ(·, ·) and
σ2(·) are the nonlinear deterministic drift and diffusion functions (respectively), and Bt
represents the standard Brownian motion [17]. We introduce the terminology “local
diffusion coefficient” ≡ D ̃ (x; Γ):= σ2 (x; Γ) in order to distinguish the coefficient in the SDE
above from the diffusion coefficient usually implied in the physical sciences: we estimate
the former using P-splines. The term “diffusion coefficient” used in statistical physics [29] is
not necessarily the same as D ̃ (x; Γ). If unresolved coordinates in Γ do not substantially
modulate the dynamics, the two definitions are effectively identical.

Diffusion models of the reaction coordinates can be used to approximate a wide range of
molecular dynamics simulations [7,23,26]. Unfortunately a parametric model is usually not
known a priori for the drift and diffusion functions. Other SDE estimation approaches can be
entertained [17,18], but, for reasons described more fully in the next section and elsewhere
[6,8,10,23], we appeal to local maximum likelihood estimation (MLE) methods. Briefly, the
nonstationary nature of the single-molecule data considered here complicates one’s ability to
use purely nonparametric methods. The full degrees of freedom vector, Γ, is retained in the
drift and diffusion functions to remind us that a latent process is modulating the dynamics.
We stress that, for each observed time series, we estimate a new SDE model.

4.3. From local MLEs to global SDEs via P-splines
The so-called over-damped Langevin equation is a useful approximation in statistical
physics [27]. In externally driven systems, the approximation assumes μ (x, t):= (kBT)−1D ̃ (x;
Γ){F (x; Γ) + FExt(x, t)}, where kBT represents the product of Boltzmann’s constant and the
system temperature, FExt (x, t) denotes the time-dependent force added to the system, and F
(x; Γ) denotes the effective internal force due to intermolecular interactions. One appeal of
overdamped Langevin approximations is that drift and diffusion functions can be physically
interpreted, although other SDEs can be entertained. The use of this structure is not
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necessary, but it does illustrate how our approach is not a traditional nonparametric
approach (i.e., it is locally parametric). The goodness-of-fit of the models calibrated from
nonstationary data can be checked using the omnibus tests of Hong and Li [30]. These tests
have been shown to have adequate power for identifying some interesting physical features
in molecular dynamics time series [8,26,31].

In single-molecule experiments/simulations, we often have detailed knowledge of the time-
dependent external force added. The use of a local parametric model facilitates incorporating
the known time-dependent force added to the single-molecule system in the SDE model.
However, we do not know the global functional form of the local force F (x; Γ) or local
diffusion coefficient D ̃ (x; Γ). We use polynomials to model these quantities locally, namely

in each neighborhood centered around . The constant  denotes a specified point where
we wish to evaluate the Taylor-type expansion of the expression in (4.2). In this article, it
corresponds to the temporal average of window ℓ1 The following local approximation is
used:

(4.2)

where the local parameter vector, , is estimated using .
The subscript ℓ is an index of a partition, 1:= T0 < · · ·<Tℓ · · · < Tm:= N, used to divide the
total time series into m disjoint local windows. The results reported were constructed to have
≈ 250 observations2 fall within a given local window, but “optimal” bandwidth rules in this
type of application would be of interest. Note that suitably normalized MLEs of parametric
models are asymptotically mean zero normal random vectors when the assumed parametric
model generates the data and mild technical assumptions are satisfied [17]. Said differently
(for a correctly specified model), MLE often provides asymptotically unbiased point
estimates of functions and derivatives. Recall that goodness-of-fit tests [30] are used to test
the statistical validity of our local parameter estimates.

The global nonlinear force is constructed by applying the PuDI method to the points

. The σ (x; Γ) function is obtained in a similar fashion. The scatterplot

data is obtained by finding the  maximizing a likelihood approximation [32] of a local
parametric SDE possessing the drift and diffusion given by (4.2) and the external force we
add to the system. This is done for m windows. The two functions of interest, F (·; Γ) and
σ(x; Γ), have different degrees of smoothness and were estimated independently of one

another. We have changed from the generic notation of  used in
the introduction to emphasize that the scatterplot information is not directly measured. We
have suppressed the superscript indexing the time series number, (j), because each estimated
P-spline function constructed in this article uses information from only one time series. The

vector  is modelled as a normally distributed noise with mean zero
and a covariance matrix R. This covariance is meant to reflect parameter uncertainty due to

1In the “constant velocity” molecular dynamics experiments studied, the nature of the external forcing makes using the average in the
local window a natural candidate because the data is centered roughly around this point. However, other selection criteria, such as

quantiles or user selected points, can be used to specify .
2Cases using m = 25 corresponding to ≈ 400 observations were studied (not reported) and demonstrated features similar to the ones
reported here.
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finite length of the discrete time series and can be estimated using Monte Carlo simulation
of a genuine SDE. More specifically, the P-spline curves, i.e., the drift and diffusion
functions, estimated from trajectory j scatterplot data, were used to construct a nonlinear
SDE. This SDE was used to simulate multiple new sample paths (here we used 1,000),
corresponding to trajectory j. We then obtained m sets of local MLE parameters on each

simulated path and used this information to approximate the uncertainty in the ’s; the
empirical covariance between the m vectors was then computed to approximate the
parameter uncertainty. This procedure was repeated for each trajectory.

5. Applications
Three sets of applications are studied. The first set of results present Monte Carlo simulation
data obtained using discrete samples of known highly oscillatory nonlinear functions
contaminated with a noise of known distribution. A relatively small number of scatterplot
samples are used to estimate each curve. The intention is to quantitatively study how using
derivative information, along with uncertainty estimates, influences the P-spline estimates in
a situation where the parameter distribution is known precisely. The function constructed
was meant to mimic the function measured in the ion-channel system of interest, which is
what we turn to after results on the first controlled example are discussed. We then discuss
some basic features of the molecular dynamics simulation and present results and discussion
associated with this second application. Finally we present a situation where the SDEs
generating the data are known precisely but the finite parameter distribution is unknown
(and is not necessarily Gaussian). The intent is to illustrate some points introduced in the
ion-channel example and to show how the PuDI method can help in estimating a nonlinear
drift (containing a time-inhomogeneous term) in situations where the scatterplot data are
estimated from a finite set of data.

The discussion that follows is relevant to all three applications. If the original problem is to
find the least squares solution to Cβ′ = y, then, for a given weight matrix , the GLS
analogue of this problem would be to find the solution to Cβ′ = y. Under the assumption
that  is invertible and not ill-conditioned, which is the situation in the cases studied here,
the GLS problem can then be viewed as an ordinary least squares problem in a new
coordinate system;3 i.e., find the least squares solution to C̃β′ = ỹ. The penalized least
squares problem associated with the P-spline problem requires finding the β′ = (β⊤, u⊤) ⊤

vector that minimizes  We use several different weight matrices to
construct standard least squares problems, and these matrices require us to define some
parameters: nMC is a parameter determining the number of vectors drawn from a mean zero
normal distribution possessing the covariance R. These vectors are used to form a simple
empirical estimate of R. Note that in the first application the R associated with the
scatterplot data is known and used to generate the Monte Carlo samples; in the second
application we assume that the parameter distribution of the local MLE procedure can be
adequately approximated by a normal distribution, although the associated covariance is not
known to us in closed form; the procedure we use in this application was described earlier.
The various weight and design matrices considered are listed below.

Case 1. , and W1 is the Cholesky factor of the measurement noise covariance:
recall that this is known exactly in the first benchmark application.

3If R happens to be ill-conditioned, numerical methods exist for treating this situation [24].
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Case 2. , and W2 is the Cholesky factor of the estimated measurement noise
covariance using nMC = 5 × 104.

Case 3. , and W3 is the Cholesky factor of the estimated measurement noise
covariance using nMC = 1 × 103

Case 4. C4 = CPuDI.

Case 5. C5 = P1CPuDI, where P1 = (Im×m, 0 m×m); i.e., use only function information.

Case 6. C6 = P2CPuDI, where P2 = (0m×m, Im×m); i.e., use only derivative information.

The CPuDI design matrix was formed using the TPF basis parameters K = 20 and p = 2. The
quantiles were used to select the knot locations [33,34]. The regularization/smoothing
parameter was selected using GCV in all cases. The results did not change appreciably if we
used other criteria, e.g., AIC, if we used p = 3, or if we increased K [12].

5.1. Benchmarking PuDI on a smooth nonlinear function
Here we quantitatively study how a PuDI-type design matrix can assist in the estimation of a
known function:

(5.1)

Samples contaminated with noise (of known noise distributions) are taken from this
function. For each known noise distribution studied we generate scatterplot data and fit P-
splines using the design matrices presented in the previous section. Recall that this function
was constructed to mimic the salient features of curves coming from single-molecule data
studied later.

5.1.1. Data generation—Each grid point xi was associated with the noisy measurements
 and . Throughout we set the number of scatterplot points m to take a value

m = 40. An independent and identically distributed (i.i.d.) two-dimensional Gaussian noise
with mean zero and covariance matrix

was used to generate the noise for each grid point xi. The diagonal of this 2 × 2 matrix was
varied, one diagonal component was always set to be unity, and the correlation coefficient,
ρ, between each  and  was set to zero in the plot shown in this subsection. The net
covariance matrix, R, associated with the P-spline scatterplot data was sparse due to the i.i.d.
noise structure used. In the ρ = 0 case, R is a diagonal matrix defined by the vector

. The ρ > 0 case covariance had the same structure plus
two off-diagonal bands, each consisting of m repeated entries of the product ρσf σ∂f. Tables
reporting results with ρ = 0.5 and ρ = 0 can be found in the Supplementary Material which is
available online from http://www.caam.rice.edu/tech_reports/2009/PuDI_demo_mfiles.zip;
the same qualitative trends are observed in each case.
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5.1.2. Results and discussion—Figure 5.1 plots the logarithm of the average mean
square error (AMSE) associated with predicted f and ∂f for various R’s. The PuDI estimates
using the weights, design matrices C1– C3, outperform all other methods. In both f and ∂f, as
the ratio of the diagonal terms of R tends to 0 or ∞, the PuDI estimate approaches that of
the “naive estimator.” The naive estimator uses design matrix C5 or C6, with the selection
depending on σf/σ∂f, as shown in Figure 5.1. The limits of 0 or ∞ mentioned above indicate
that the extra information provided by using both f and ∂f is negligible in relation to the
information accessible to the naive estimator. However, there is significant gain for a large
range of σf/σ∂f values. Also note that using an empirical covariance approximation was
nearly identical to the case where the exact covariance R was used. Note also that the
estimate of the Cholesky factor, obtained using nMC sample vectors of the R matrix, was
dense, whereas the known underlying Cholesky factor, W, was highly sparse. The sampling
noise caused the estimated Cholesky factor to appear dense, but this artifact did not hurt the
PuDI estimate utilizing W2 or W3.

The vertical lines denote the point where the average AMSE estimator using both f and ∂f
but ignoring the different noise variances, i.e., using design matrix C4, is greater than that of
applying the naive estimator to the less noisy random vector. The intuition gained from the
two-dimensional normal variable result dictates that this crossover should occur when the
noisier estimate is a factor of three greater than the other estimate. Recall that our situation is
more involved due to the smoothing parameter selection and other tunable parameters, but
nonetheless the crossover occurs close to three. The exact crossover point depended on
whether f was noisier than ∂f or vice versa. Note that, in the PuDI design matrix cases, we
utilized estimates of f(xi) and ∂f (xi) and selected α̂, which minimized the GCV consistent
with both measurements. Since the smoothness is different in each function, the resulting α̂
represents a type of weighted average between the α̂ that would have been selected had only
f(xi) or ∂f (xi) been used individually.

5.2. Applying PuDI to estimate SDEs characterizing ion-channel dynamics
For those not interested in the fine details, one can think of this application as a type of study
in longitudinal data analysis [12]. There are several subject specific responses, and the
deviations from the mean population function provide useful information about the
individual curves, which here correspond to unobserved, but physically important, phase
space variables. The interest is in the different types of effective forces experienced by a
potassium ion as it travels across a pore formed by a single protein lodged in a lipid bilayer.
This lipid bilayer serves as a boundary between the interior and exterior of a cell and does
not permit water or ions to easily pass in the absence of an open ion channel. A schematic of
the gramicidin A ion channel studied is provided in Figure 4.1. This particular system was
selected because it has been extensively studied both experimentally and theoretically. This
ion channel is commonly used as a benchmark in molecular dynamics simulations [35]. The
results we study introduce an external force into the system to “steer” an ion across the
channel in a prescribed time. Measurements from these simulations can be used to back out
a potential of mean force and diffusion coefficient using recently developed nonequilibrium
statistical mechanics methods. These quantities are often of interest in a variety of single-
molecule simulations. We demonstrate how capturing the variation induced by χ-type
variables is important for making predictions. The physical relevance of this type of
variability is described in detail elsewhere [7].

5.2.1. Data generation—The NAMD program [36] was used to generate steered
molecular dynamics simulations [27] consisting of 36,727 atoms. Constant particle number,
pressure, and temperature (NpT) simulations were used. The x coordinate corresponds to the
distance between the center of mass of the channel and the ion’s axial location within the
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channel; this position was recorded every 0.1 ps for 1 ns. The resulting time series were then
divided into m = 40 disjoint windows, and the P-spline data was obtained from the sequence
of local MLEs taken along this partition. In all cases, the estimated local MLE parameters
along with the in sample time series passed goodness-of-fit tests appropriate for the
nonstationary data [30]. A more detailed account of the simulation methodology is reported
in [7].

5.2.2. Results and discussion—Figure 5.2 displays the global nonlinear effective force
obtained using 10 separate steered molecular dynamics realizations. Only results obtained
using design matrices C2, C4, and C5 were considered because the true R is unknown and
the interest is in the function itself (not the derivative). We observe that results obtained
using C2, C4 appear roughly similar, but C5 appears to be oversmoothing due to the lack of
derivative information. The rightmost panel focuses on a major binding pocket of the
channel, between 10.5 to 12.5Å. This binding pocket is a local minimum on the free energy
landscape; here we see that the differences between the C2 and C4 curves are more
pronounced.

Once the P-spline is estimated, we can construct a global nonlinear SDE (see section 4.3)
and then simulate multiple realizations of the process using a large number of Brownian
paths. The multiple Brownian paths are supposed to quantify the inherent variability caused
by neglecting unresolved fast-scale motion in the detailed dynamics. This type of variability,
associated with one steered molecular dynamics path, can be important in several contexts
[8,10]. In our final controlled multiscale example, we elaborate on this point.

The nonequilibrium work associated with steered molecular dynamics simulations is one
example illustrating the item above. The work tubes associated with a single steered
molecular dynamics realization can be computed using the estimated SDEs. We can use the
SDEs to simulate the nonequilibrium work and compare the variability between these work
tubes. Each tube is computed from information contained in one SDE corresponding to one
molecular dynamics trajectory. The variability between tubes provides information about the
fluctuations induced by a latent χ-type process, whereas the width of each single tube can be
attributed to fast-scale noise experienced by the steered molecular dynamics path. Figure 5.3
demonstrates that the different level of smoothing associated with C2 and C4 substantially
affects the predictive ability of the corresponding global SDE model. Note that the
underlying scatterplot points are the same in all cases; only the P-spline design matrix
changes. The different predictions have consequences in physical quantities computed from
these simulated work paths. For example, using C2 gives improved potential of mean force
and diffusion coefficient estimates compared to other methods [7]. Note also that the work
was not used as a fitting criterion, and this demonstrates that the estimated nonlinear models
have predictive power.

5.3. PuDI applied to a controlled multiscale example
In order to illustrate some of the aforementioned points on a toy model, take the following
example:

(5.2)
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(5.3)

(5.4)

(5.5)

where x represents the coordinate we can measure or resolve and τ ≡ ετk; ετ is set to a value
of 1×10−3 to make the “unresolved” variables χ and  slow relative to x, and k represents a
harmonic spring constant whose value is set to 20. The variables χ and S represent
dynamically evolving “location” and “scale” parameters, respectively, which are assumed to
influence the dynamics but whose value as a function of time is assumed unavailable to the
researcher; the constants χo and  represent the mean of these variables (values reported
later). We set kB T = 0.6 in reduced units (corresponding to T = 300K) and specify

.

A random number generator can be used to generate a batch of Brownian paths to simulate
the SDE system above. For a fixed set of evolution rules, the variation induced by different
W1 path draws is supposed to mimic unresolved fast-scale motion. If the evolution rules are
describing atomistic motion, such fast-scale motion could correspond to dynamical
contributions coming from bond vibration and/or solvent bombardment. This type of motion
is assumed to occur on time scales that cannot be accurately resolved at the temporal
frequency at which measurements are made over. The inability to resolve all degrees of
freedom motivates the use of inherently stochastic evolution rules. Note that “unresolved” ≠
“uninteresting”; the magnitude of the effective noise coefficients needs to be estimated and
can relate to important molecular level events and can also change as a function of the
resolved coordinate x [6,8,15,23,37]. However, the focus of this example is on the effective
force (the local diffusion functions are constants whose value is fixed to the value of  for
all components throughout).

The coordinates χ and S are constructed to evolve stochastically but exhibit small
fluctuations centered around the constants χo and  over the time scale observations are
made over. The values χo and  take should be thought of as random variables which arise
from a discrete or continuous distribution (the latter is relevant to situations where a portion
of phase space does not have a well-defined “state” [31]). Each time series is associated with
a different set of (χo, ), and in this controlled example the different (χo, ) values result in
a different effective force for each observed time series. The values of (χo, ) are assumed
unobserved. The variability between the “subject specific curves” indexed by different latent
(χo, ) values is another source of variability important to both equilibrium [26] and
nonequilibrium [7,10,23,31] settings. Here these variables are supposed to represent
physically important, but experimentally unresolved, degrees of freedom. In the ion channel,
they could correspond to coordinates needed to describe the orientation of the channel in the
lipid bilayer [7].
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5.3.1. Data generation—To make the above discussion more transparent, we will
consider only two cases, (χo, ) = (0, 1) and (χo, ) = (2, 2). For each of these two cases,

100 Brownian paths  will be simulated and used to approximate sample
paths associated with (5.5) for a given fixed (χo, ). The initial condition used was (15, χo,

) for all simulations. 10,000 uniformly spaced discrete observations were recorded for
each path simulation (the simulation step size was 0.01, but observations were recorded
every 0.1 time units), and each time series was divided into m = 40 local windows.
Parameter estimates in the local windows are obtained from these local windows, and the
covariance is estimated by the Monte Carlo procedure discussed previously.4 In this
example, it should be noted that the parameter distribution covariance is unknown in closed
form (in contrast to the first control case studied) due to the fact that the parameters are
estimated from a finite set of discrete observations.

5.3.2. Results and discussion—The results are reported in Figure 5.4. The thin lines
denote the PuDI spline estimate calibrated using design matrix C3. The thick lines denote the
reference function of interest evaluated at (χo, ). The shaded region denotes the rough 95%
pointwise confidence band obtained from evaluating the spline over a fine uniform grid for
each of the estimated spline coefficients and then computing the average and standard
deviation at this point. The fact that the function of interest falls within these simple
confidence bands demonstrates that the basic features of a nonlinear function can be
estimated using scatterplot data inferred from observed (noisy) position versus time data,
even when slow latent processes are modulating the dynamics (see the discussion in the next
paragraph). Other methods can be used to construct confidence bands [12], and such
methods can be helpful in better understanding complex multiscale signals. Furthermore, we
would like to note that our formulation of the P-spline problem (namely the structure given
in (2.3)) allows one to plug into the machinery of mixed models [12]. Mixed models and
functional data analysis [22] show great promise as tools for attempting to quantify the
variability induced by slow latent (χo, )-type coordinates in single-molecule modeling
applications [6, 7, 23]. This is especially important when ergodic sampling does not occur in
a single time series [26] and the system exhibits substantial hysteresis [6]. The PuDI method
demonstrated here can help in providing a more accurate estimate of smooth curves
calibrated from noisy observations in such situations, but methods exploring more
systematic techniques for understanding variability induced by latent processes is left to
future work.

The stochastic dynamics of the unresolved coordinates coupled to x in this example
introduce a (slow) non-Markovian noise source. This noise source increased the width of the
approximate 95% pointwise confidence band. Goodness-of-fit tests can be used to
statistically assess if unresolved noise sources are “fast” enough or “slow” enough to justify
the use of low-dimensional diffusive SDEs to approximate the dynamics of data generated
from a more complex system. This is discussed extensively in [26,31]; we just note that all
of the data presented here passed the goodness-of-fit test (appropriate for nonstationary
signals) proposed by Hong and Li [30], which means that, for the amount of data we have,
deviations from an effective diffusive (Markovian) SDE cannot be detected in the data.
Knowledge of having “statistically acceptable” scatterplot points inferred from observed
position versus time data is important if one wants to use the PuDI method to construct
models used for predictive purposes [7,26,31].

4A more “optimal” approach to estimating this covariance would be interesting future work.
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6. Conclusions and outlook
We demonstrated how a single-molecule time series can be transformed, via local maximum
likelihood-type methods, into scatterplot data approximating pointwise function and
derivative information associated with an SDE. The functions needed by an SDE
approximating the global dynamics of the time series were obtained using P-spline
techniques. The PuDI design matrix was shown to be useful in this context. The PuDI design
matrix exploited some of the advantageous properties of the TPF basis; numerical
difficulties were overcome with a recent algorithm [20]. The use of GLS along with P-
splines was shown to influence the estimated curves, and the difference was shown to be
relevant in regards to predicting/simulating physical quantities of interest. For example, the
work computation associated with the ion-channel system studied benefited substantially
from the GLS implementation. When this procedure was repeated for different time series, it
was shown that the global SDE functions estimated from different time series exhibited
variation in part due to a latent process; i.e., our data consisted of “subject specific curves.”
We briefly discussed why this is relevant information to modern biophysics applications
[4,26].

Although we focused on simulation data, the methodology is also applicable to experimental
data [6,8,15]. Applications making fuller use of pointwise function estimates and derivative
proxies calibrated from time series, as the PuDI method was demonstrated to do, show
promise as tools that can be used for understanding the rich amount of information
contained in recent single-molecule experiments and computer simulations. Other areas
where function and derivative scatterplot information is available and a PuDI might be
helpful include geosciences [14] and finance [13]. MATLAB scripts illustrating the PuDI
method can be found in the Supporting Material which is available online from
http://www.caam.rice.edu/tech_reports/2009/PuDI_demo_mfiles.zip.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 4.1.
Contour plot of a fictitious free energy landscape and some sample trajectories (left panel). x
represents the observable process, and the variable χ characterizes the latent process. Three
sample trajectories are depicted using two distinct initial values. Two distinct initial
conditions are used to stress that randomness is inherent to the reduced dynamics, and the
initial condition modulates the dynamics (even if the same x value is present at time zero).
Since we assume ignorance of the underlying value of χ, we would estimate slightly
different effective forces (and local diffusion coefficients). Snapshot of the gramicidin A
channel (right panel). The helical structure represents a protein complex consisting of two
gramicidin A monomers. The large spheres denote potassium ions; the multiple colored
spheres denote water molecules, and the lightly colored portion represents the lipid bilayer
molecules. x corresponds to the ion’s distance from the channels’ plane of symmetry, and χ
corresponds to a dihedral angle characterizing the complex. Each atom was modeled
explicitly (plot generated using the VMD program [28]).
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Fig. 5.1.
AMSE of f(x) (left panel) and ∂f(x) (right panel) using various semiparametric estimators.
The x-axis plots the ratio of the variance of the f noise to that of the ∂f noise, and the y-axis
contains the AMSE measured over 1 × 104 Monte Carlo simulations. In each case the
weighted PuDI methods (Cases 1–3) outperform the other estimators. These plots also
demonstrate how findings from simple multivariate arguments carry through to these
nonlinear semiparametric regression spline fits. The vertical (red) lines indicate the point at
which the naive estimator (using only f or ∂f information) outperforms the PuDI estimator
using f and ∂f but weights all the observations equally (i.e., Case 4). See the text for
additional details.
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Fig. 5.2.
The different curves correspond to the effective force estimated from 10 realizations of time
series data. After processing these time series, we obtained sets of 10 scatterplot data. These
data sets were then processed with design matrices C2 (dark solid), C4 (dashed), and C5
(light grey). The underlying scatterplot data is the same regardless of the design matrix used;
differences in curves are due only to the P-spline design matrix. The left panel shows the
entire realizations, while the right panel zooms into a major binding pocket of the channel.
Note that in this plot the variable z corresponds to the state of the resolved coordinate
denoted by x in the text. z is often used to denote axial position in this system; in this figure,
z does not have the meaning used in section 3.
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Fig. 5.3.
The work tubes simulated using the 10 SDEs constructed from stitching together local SDE
models by P-spline design matrices C2 (left panel) and C4 (right panel). Each work tube is
made of 1,000 work trajectory simulations using the 10 global SDEs previously mentioned.
The thick lighter color curves correspond to the work trajectories measured directly from the
10 steered molecular dynamics simulation (one work trajectory per steered molecular
dynamics trajectory). The P-splines used the same scatterplot data in the left and right
panels; only the design matrix changes, and this alone explains the difference in the
estimated curves.
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Fig. 5.4.
Simulation results from the three-dimensional multiscale example. The thick lines denote
the reference function of interest evaluated at (χo, o), and the thin lines represent PuDI
estimates coming from a single sample path calibrated using the symbols as input (as well as
the corresponding derivative estimate at this point). The shaded regions denote the pointwise
95% confidence bands estimated from 100 SDE realizations. The same Brownian paths were
used for two different values of (χo, o), where the solid lines represent (χo, o) = (0, 1)
results and the dashed lines represent (χo, o) = (2, 2) results.

CALDERON et al. Page 22

Multiscale Model Simul. Author manuscript; available in PMC 2011 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


