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Abstract. We bound the difference between the solution to the continuous Rudin–Osher–Fatemi
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1. Introduction. Image noise removal based on total variation smoothing was
introduced by Rudin, Osher, and Fatemi in [13]. Under this ROF model, one supposes
a “true” image f defined on Ω = [0, 1]2 and a “corrupted” image g derived from f
(by adding noise, etc.) with ‖f − g‖2

L2(Ω) = σ2. In an attempt to reconstruct f from
g, one calculates a “smoothed” image u that minimizes

|v|BV(Ω) =

∫

Ω

|Dv| subject to the constraint ‖v − g‖2
L2(Ω) ≤ σ2. (1.1)

(Precise definitions are given later.) We deal with the equivalent problem: If we
calculate ḡ, the average of g on Ω, then for any σ with

σ2 < ‖g − ḡ‖2
L2(Ω)

there exists a unique λ > 0 such that the minimizer of (1.1) is the minimizer u of the
functional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω). (1.2)

Here λ is a positive parameter that balances the relative importance of the smooth-
ness of the minimizer (important when λ is large) and the L2(Ω) distance between
the minimizer and the initial data (important when λ is small). About the same
time, Bouman and Sauer [1] proposed a discrete version of (1.2) in the context of
tomography.

Practically one discretizes E(·) to compute the minimizer of the discrete functional
Eh(·). We assume the discrete corrupted image gh of resolution N × N (N = 1/h)
is simply the piecewise constant projection of the continuous corrupted image g, and
define the discrete functional

Eh(vh) =
1

2λ

∑

i

|vh
i − gh

i |
2 h2 + Jh(vh), (1.3)
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where Jh is a discretized total variation. The most–commonly used Jh is the discrete
variation J++ used in [13]

J++(vh) =
∑

i

√

√

√

√

(

(vh
i+(1,0) − vh

i )

h

)2

+

(

vh
i+(0,1) − vh

i

h

)2

h2.

Efficient algorithms have been developed to compute the discrete minimizer([2], [6],
[3], [5]).

In this paper, we study the relationship between the minimizer u of E(·) and
the discrete minimizer uh of Eh(·). It is well known that Eh Γ-converges to E in
L1. As a direct deduction uh tends to u in L1. Assuming the discrete variation Jh

satisfies certain conditions that we explain later, we give a bound of the L2 norm of
the difference between u and uh in Theorem 4.2 in Section 4.

Because the ROF model is often applied to images, an analysis of the error be-
tween solutions of discrete approximations and the solution of the continuous model
itself should apply to functions modelling images. “Typical” natural images have lit-
tle smoothness, because of intensity discontinuities at the edges of objects and the
fractal structure of many objects themselves (the leaves in a tree, hair, etc.). Our
results apply to functions in the Lipschitz spaces Lip(α, L2(Ω)), which contain func-
tions with, roughly speaking, α “derivatives” in L2(Ω). Here 0 < α ≤ 1/2 for “images
with edges”: f ∈ BV(Ω) ∩ L∞(Ω) implies f ∈ Lip(1/2, L2(Ω)), while functions with
fractal structure usually have α < 1/2, see [7].

Our convergence results in Section 4 are proved for (1.3) with Jh = J∗, a discrete
variation obtained by symmetrizing J++. Nonetheless, our approach is quite general,
and in Section 5 we obtain the same results for JU , an “upwind” discrete variation
formulated in [12]. We remark that an iterative method for minimizing (1.3) with
Jh = JU was given in [5].

While the ROF model has proved to be tremendously influential, and has been
the base of further algorithms in image processing, we know of no other results that
bound the difference between the solutions of the continuous problems and its finite-
difference approximations. A finite element method applied to the time-dependent
gradient descent problem associated with (1.2) was studied in [10]; we note that their
Theorem 4 requires the initial data u0 to have two continuous derivatives on Ω so it
does not apply to “typical” natural images with edges.

The rest of this section introduces the notation for, and basic properties of, oper-
ators and functionals on continuous and discrete functions. In Section 2 we compare
discrete and continuous variational functionals. In Section 3 we note some properties
of the minimizers of E(·) and Eh(·) that we use in Section 4 to first bound the discrete
and continuous functionals at their respective minimizers and then to bound the L2

difference between the discrete and continuous minimizers themselves. In Section 5,
we prove a number of lemmas for the “upwind” discretization of the BV semi-norm
that allows us to prove similar error bounds for the discrete minimizer of the “up-
wind” scheme. Finally, Section 6 summarizes our results and points to variations that
appear elsewhere.

1.1. Basic notations. We consider the usual Lp(Ω) spaces on Ω := [0, 1]2 ⊂ R
2,

with

‖v‖Lp(Ω) :=

(∫

Ω

|v|p
)

1

p

2



for 1 ≤ p < ∞ and

‖v‖L∞(Ω) = ess sup
x∈Ω

|v(x)|.

We consider the discrete set Ωh to be the set of all pairs i = (i1, i2) ∈ Z
2, Z the

integers, with 0 ≤ i1, i2 < N , h = 1/N , and we refer to functions defined on Ωh as
discrete functions. So for discrete functions vh = vh

i , we define the discrete Lp(Ωh)
norms

‖vh‖Lp(Ωh) :=

(

∑

i∈Ωh

|vh
i |

p h2

)
1

p

for 1 ≤ p < ∞

and

‖vh‖L∞(Ωh) = max
i∈Ωh

|vh
i |.

In later definitions, we assume the reader will apply the usual modifications when
p = ∞.

We define the translation operator for discrete functions by

(Tℓ(v
h))i := vh

i+ℓ for any ℓ = (ℓ1, ℓ2) ∈ Z
2.

To measure the size of a translation, we introduce

|ℓ| = max(|ℓ1|, |ℓ2|).

Similarly,

(Tτv)(x) = v(x + τ ) for any τ = (τ1, τ2) ∈ R
2

and, for translations, we set

|τ | = max(|τ1|, |τ2|).

We often need to extend v ∈ Lp(Ω) and vh ∈ Lp(Ωh) to all of R
2 and Z

2,
respectively; we denote the extensions by Ext v and Exth vh. For v ∈ Lp(Ω), we use
the following procedure. First,

Ext v(x) = v(x), x ∈ Ω.

We then reflect horizontally across the line x1 = 1,

Ext v(x1, x2) = Ext v(2 − x1, x2), 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1,

and reflect again vertically across the line x2 = 1,

Ext v(x1, x2) = Ext v(x1, 2 − x2), 0 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2.

Having defined Ext v on 2Ω, we then extend Ext v periodically on all of R
2.

We use a similar constructions for discrete functions vh. First we extend vh to

2Ωh := {i = (i1, i2) ∈ Z
2 | 0 ≤ i1, i2 < 2N}
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as follows:

Exth vh
i = vh

i , i ∈ Ωh;

then we reflect horizontally

Exth vh
(i1,i2)

= Exth vh
(2N−i1−1,i2), N ≤ i1 < 2N, 0 ≤ i2 < N,

and then vertically

Exth vh
(i1,i2)

= Exth vh
(i1,2N−i1−1), 0 ≤ i1 < 2N, N ≤ i2 < 2N.

Now that Exth vh is defined on 2Ωh, we extend it periodically to all of Z
2. Note that

with this definition, the value of Exth vh at any point immediately “outside” Ωh is
the same as the value of vh at the closest point “inside” Ωh.

For v ∈ Lp(Ω) we define the (first-order) Lp(Ω) modulus of smoothness by

ω(v, t)Lp(Ω) = sup
τ∈R2, |τ |<t

(

∫

x,x+τ∈Ω

|v(x + τ ) − v(x)|p dx

)
1

p

.

We also define

ω(Ext v, t)Lp(2Ω) := sup
τ∈R2, |τ |<t

‖Tτ Ext v − Ext v‖Lp(2Ω).

The Lipschitz spaces Lip(α, Lp(Ω)) consist of all functions v for which

|v|Lip(α,Lp(Ω)) := sup
t>0

t−αω(v, t)Lp(Ω) < ∞;

we set

‖v‖Lip(α,Lp(Ω)) := ‖v‖Lp(Ω) + |v|Lip(α,Lp(Ω)).

We also need a discrete modulus of smoothness. The discrete Lp(Ωh) modulus of
smoothness is

ω(vh, m)Lp(Ωh) := sup
ℓ∈Z2, |ℓ|≤m

(

∑

i,i+ℓ∈Ωh

|vh
i+ℓ − vh

i |
p h2

)
1

p

.

For Exth vh we define similarly

ω(Exth vh, m)Lp(2Ωh) = sup
ℓ∈Z2, |ℓ|≤m

‖Tℓ Exth vh − Exth vh‖Lp(2Ωh).

We have the following relationship between moduli of smoothness and our exten-
sion operators.

Lemma 1.1 (Whitney extension). For all 1 ≤ p ≤ ∞ there exists a constant C
such that for all v ∈ Lp(Ω) and vh ∈ Lp(Ωh)

‖Tτ Ext v − Ext v‖Lp(2Ω) ≤ Cω(v, |τ |)Lp(Ω) τ ∈ R
2 (1.4)

and

‖Tℓ Exth vh − Exth vh‖Lp(2Ωh) ≤ Cω(vh, |ℓ|)Lp(Ωh) ℓ ∈ Z
2 (1.5)
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Moreover, for all positive t ∈ R, m ∈ Z we have

ω(Ext v, t)Lp(2Ω) ≤ Cω(v, t)Lp(Ω) (1.6)

and

ω(Exth vh, m)Lp(2Ωh) ≤ Cω(vh, m)Lp(Ωh). (1.7)

Proof. Inequalities (1.4) and (1.6) follow because our extension satisfies the Whit-
ney extension theorem [8], page 182. Inequalities (1.5) and (1.7) are a form of a dis-
crete Whitney extension theorem that can be proved along the lines of the proof of
the Whitney extension theorem given in [8].

1.2. Variation functionals. The variation of a function v ∈ L1(Ω) is defined
as follows. We consider functions φ in the space of C1 functions from Ω to R

2 with
compact support, i.e., [C1

0 (Ω)]2. The variation of a function v ∈ L1(Ω) is then defined
to be

|v|BV(Ω) :=

∫

Ω

|Dv| := sup
φ∈[C1

0
(Ω)]2, |φ|≤1 pointwise

∫

Ω

v∇ · φ.

We note that if v is in the Sobolev space W 1,1(Ω), so that its first distributional
derivatives are in L1(Ω), then

|v|BV(Ω) =

∫

Ω

|∇v|.

We need discrete analogues of the variation of a function. For ⊕ and ⊖ indepen-
dently taking values in the set {+,−} and any discrete function vh we define

J⊕⊖(vh) :=
∑

i∈Ωh

√

(

Exth vh
i⊕(1,0) − Exth vh

i

h

)2

+

(

Exth vh
i⊖(0,1) − Exth vh

i

h

)2

h2.

(1.8)

We note that the sum is over i ∈ Ωh, and Exth vh
i = vh

i for all i ∈ Ωh.
Having defined J++(vh), J+−(vh), J−+(vh), and J−−(vh), we define for any non-

negative a, b, c, and d with a + b + c + d = 1

Jh(vh) = a J++(vh) + b J+−(vh) + c J−+(vh) + d J−−(vh) (1.9)

and define the special “isotropic” discrete variation

J∗(v
h) :=

1

4

(

J++(vh) + J+−(vh) + J−+(vh) + J−−(vh)
)

;

J∗ is invariant under rotations of Ωh by 90 degrees, or under horizontal or vertical
reflections.

At times we consider discrete variational functionals for discrete functions defined
on 2Ωh; for these purposes we denote by JΩh

⊕⊖(vh) the discrete variation defined in

(1.8) and J2Ωh

⊕⊖ (Exth vh) the corresponding sum over 2Ωh; similarly we write

JΩh

h (vh) = Jh(vh) and JΩh

∗ (vh) = J∗(v
h)
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and we use the notation J2Ωh

h (Exth vh) for

a J2Ωh

++ (Exth vh) + b J2Ωh

+− (Exth vh) + c J2Ωh

−+ (Exth vh) + d J2Ωh

−− (Exth vh)

and J2Ωh

∗ (Exth vh) for the corresponding sum with a = b = c = d = 1/4.
We have the following relationships between continuous and discrete variations of

functions and the continuous and discrete extension operators.
Lemma 1.2 (TV symmetry). For any discrete function vh,

J2Ωh

⊕⊖ (Exth vh) = 4JΩh

∗ (vh). (1.10)

Thus, we have

J2Ωh

∗ (Exth vh) = 4JΩh

∗ (vh) (1.11)

and for any ℓ ∈ Z
2

J2Ωh

∗ (Tℓ Exth vh) = 4JΩh

∗ (vh). (1.12)

Similarly, for any v ∈ BV(Ω), we have

|Ext v|BV(2Ω) = 4|v|BV(Ω). (1.13)

Proof. Relation (1.10) follows because we construct Exth vh by reflection across
the boundaries of Ωh, and, for example, J++(Ext vh) on the lower-left quadrant of
2Ωh is equal to J−−(Ext vh) on the upper right quadrant of 2Ωh.

The next two relations follow immediately from (1.10).
Relation (1.13) is a consequence of the fact that we introduce no variation in

Ext v along the original boundary of Ω by reflecting v across that boundary.
We also define a discrete “anisotropic” variation that is analogous to the W 1,1(Ω)

Sobolev seminorm:

|vh|W 1,1(Ωh) =
∑

i∈Ωh

{∣

∣

∣

∣

Exth vh
i+(1,0) − Exth vh

i

h

∣

∣

∣

∣

+

∣

∣

∣

∣

Exth vh
i+(0,1) − Exth vh

i

h

∣

∣

∣

∣

}

h2.

(1.14)

Because, for nonnegative xi,

n
∑

i=1

x2
i ≤

( n
∑

i=1

xi

)2

≤ n
n
∑

i=1

x2
i , (1.15)

|vh|W 1,1(Ωh) is equivalent to any Jh(vh) (take n = 2) and, a fortiori , to any particular

J⊕⊖(vh). Thus we have the following lemma.
Lemma 1.3 (Discrete TV equivalence). Jh is equivalent to | · |W 1,1(Ωh). To be

precise, there exist positive constants C1 and C2, such that for any discrete function

vh

C1|v
h|W 1,1(Ωh) ≤ Jh(vh) ≤ C2|v

h|W 1,1(Ωh). (1.16)

6



For some intermediate estimates we need second-order continuous and discrete
seminorms, so we define for v in the Sobolev space W 2,1(2Ω) with periodic boundary
conditions (i.e., treating 2Ω as a torus)

|v|W 2,1(2Ω) =

∫

2Ω

|D2
1v| + |D2

2v|,

and for periodic discrete functions vh on 2Ωh

|vh|W 2,1

h
(2Ωh) =

∑

i∈2Ωh

{∣

∣

∣

∣

vh
i+(1,0) − 2vh

i + vh
i−(1,0)

h2

∣

∣

∣

∣

+

∣

∣

∣

∣

vh
i+(0,1) − 2vh

i + vh
i−(0,1)

h2

∣

∣

∣

∣

}

h2.

(1.17)

Note that these seminorms do not include “cross” derivatives or differences, but we
do not need these in our estimates.

Lemma 1.4 (TV difference). For any two discrete functionals J⊕⊖ and J⊕′⊖′ ,

and any discrete function vh we have

|J⊕⊖(vh) − J⊕′⊖′(vh)| ≤ h|Exth vh|W 2,1

h
(2Ωh). (1.18)

Proof. First we consider |J++(vh) − J+−(vh)|. The quantities summed in (1.8)
are the norms of two-vectors of divided differences, which we choose to write in the
following way.

|J++(vh) − J+−(vh)|

=

∣

∣

∣

∣

∣

∣

∑

i∈Ωh

∣

∣

∣

∣

∣

1

h

(

Exth vh
i+(1,0) − Exth vh

i

Exth vh
i+(0,1) − Exth vh

i

)∣

∣

∣

∣

∣

h2

−
∑

i∈Ωh

∣

∣

∣

∣

∣

1

h

(

Exth vh
i+(1,0) − Exth vh

i

(−1)(Exth vh
i−(0,1) − Exth vh

i )

)∣

∣

∣

∣

∣

h2

∣

∣

∣

∣

∣

∣

≤
1

h

∑

i∈Ωh

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

Exth vh
i+(1,0) − Exth vh

i

Exth vh
i+(0,1) − Exth vh

i

)∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

(

Exth vh
i+(1,0) − Exth vh

i

(−1)(Exth vh
i−(0,1) − Exth vh

i )

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h2

≤
1

h

∑

i∈Ωh

∣

∣

∣

∣

∣

(

Exth vh
i+(1,0) − Exth vh

i

Exth vh
i+(0,1) − Exth vh

i

)

−

(

Exth vh
i+(1,0) − Exth vh

i

(−1)(Exth vh
i−(0,1) − Exth vh

i )

)∣

∣

∣

∣

∣

h2

=
1

h

∑

i∈Ωh

∣

∣

∣

∣

(

0
Exth vh

i+(0,1) − 2 Exth vh
i + Exth vh

i−(0,1)

)∣

∣

∣

∣

h2

≤ h|Exth vh|W 2,1

h
(2Ωh).

Identical arguments work to bound |J++(vh) − J−+(vh)|, |J−−(vh) − J+−(vh)|, and
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|J−−(vh) − J−+(vh)|. Finally we have

|J++(vh) − J−−(vh)| ≤
1

h

∑

i∈Ωh

∣

∣

∣

∣

∣

(

Exth vh
i+(1,0) − 2 Exth vh

i + Exth vh
i−(1,0)

Exth vh
i+(0,1) − 2 Exth vh

i + Exth vh
i−(0,1)

)∣

∣

∣

∣

∣

h2

≤
1

h

∑

i∈Ωh

{∣

∣

∣

∣

(

0
Exth vh

i+(0,1) − 2 Exth vh
i + Exth vh

i−(0,1)

)∣

∣

∣

∣

+

∣

∣

∣

∣

(

Exth vh
i+(1,0) − 2 Exth vh

i + Exth vh
i−(1,0)

0

)∣

∣

∣

∣

}

h2

= h|Exth vh|W 2,1

h
(2Ωh).

1.3. Projectors, injectors, and smoothing operators. We define the piece-
wise constant injector of discrete functions vh into Lp(Ω):

(Ihvh)(x) = vh
i for x ∈ Ωi,

where

Ωi := h
(

Ω + i
)

(1.19)

Later we define an injector into a space of continuous, piecewise linear functions.
We also consider the piecewise constant projector of v ∈ L1(Ω) onto the space of

discrete functions, defined by

(Phv)i =
1

|Ωi|

∫

Ωi

v, i ∈ Ωh,

where |Ωi| is the measure of Ωi.
With these definitions, we collect some well-known results into the following

lemma.
Lemma 1.5 (Injector and projector). There exists a constant C such that for all

v ∈ Lp(Ω) and vh ∈ Lp(Ωh), 1 ≤ p ≤ ∞, the following properties hold.

For the projector Ph

‖Phv‖Lp(Ωh) ≤ ‖v‖Lp(Ω); (1.20)

and

ω(Phv, m)Lp(Ωh) ≤ Cω(v, mh)Lp(Ω). (1.21)

For the injector Ih

‖vh‖Lp(Ωh) = ‖Ihvh‖Lp(Ω); (1.22)

and

ω(Ihvh, mh)Lp(Ω) ≤ Cω(vh, m)Lp(Ωh). (1.23)

We also have

‖v − IhPhv‖Lp(Ω) ≤ Cω(v, h)Lp(Ω). (1.24)
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Finally, we have for any periodic v ∈ W 2,1(2Ω)

|Phv|W 2,1

h
(2Ωh) ≤ |v|W 2,1(2Ω) . (1.25)

Proof. The relation (1.22) follows from definitions. Jensen’s inequality implies
(1.20) and (1.21). Property (1.23) follows from the definitions of discrete and contin-
uous modulus of continuity and the fact that for any 1 ≤ p ≤ ∞ and τ > 1 there
exists a C such that for all t > 0

ω(f, τ t)Lp(Ω) ≤ Cω(f, t)Lp(Ω).

We note (1.24) is a special case of a general bound for the error in spline approxima-
tion; see [8], Theorem 7.3, page 225.

To prove (1.25), we deal with the differences in the horizontal direction.

∑

i∈2Ωh

∣

∣

∣

∣

(Phv)i+(1,0) − 2(Phv)i + (Ph)vi−(1,0)

h2

∣

∣

∣

∣

h2

=
∑

i∈2Ωh

1

h

∣

∣

∣

∣

(Phv)i+(1,0) − (Phv)i

h
−

(Phv)i − (Phv)i−(1,0)

h

∣

∣

∣

∣

h2

=
∑

i∈2Ωh

1

h2

∣

∣

∣

∣

∫

Ωi

[(v(x + h, y) − v(x, y)) − (v(x, y) − v(x − h, y))] dx dy

∣

∣

∣

∣

=
∑

i∈2Ωh

1

h2

∣

∣

∣

∣

∫

Ωi

∫ h

0

[D1v(x + t, y) − D1v(x + t − h, y)] dt dx dy

∣

∣

∣

∣

=
∑

i∈2Ω

1

h2

∣

∣

∣

∣

∫

Ωi

∫ h

0

∫ 0

−h

D11v(x + t + s, y) ds dt dx dy

∣

∣

∣

∣

≤

∫

2Ω

|D11v| dx dy (exchange the order of integration and sum over i)

Arguing similarly in the vertical direction, we see that (1.25) holds.
We have need of another map taking vh ∈ L2(Ωh) to L2(Ω), in the form of a

piecewise linear interpolant of the discrete values of vh
i . To this end, let φ be the box

spline function whose support is the hexagon D in Figure 1.1 with φ being linear on
each triangle in Figure 1.1 and

φ(i) =

{

1, i = (0, 0),

0, i 6= (0, 0), i ∈ Z
2.

We dilate and translate φ to obtain the function

φh
i (x) := φ

(x

h
−
(

i +
(1

2
,
1

2

)))

. (1.26)

We see that supp φh
i is D dilated by h and translated by

(

i +
(

1
2 , 1

2

))

h.
We define the interpolant Int vh by

Int vh =
∑

i∈Z2

Exth vh
i φi.
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x1

x2x3

x4

x5 x6

1

1

Fig. 1.1. D, the support of φ

We then have the following lemma.
Lemma 1.6 (Piecewise linear injector). For any vh be in L2(Ωh) we have

| Int vh|BV(Ω) =
1

2
(J++(vh) + J−−(vh)). (1.27)

Additionally, there exists a constant C such that for all discrete functions vh

‖Ihvh − Int vh‖L2(Ω) ≤ Cω(vh, 1)L2(Ωh). (1.28)

Proof. The proof of (1.27) is just a calculation, which we leave to the reader. (The
J++ terms come from triangles with the orientation of the triangle in the upper-right
quadrant of Figure 1.1, and the J−− terms come from triangles with the orientation
of the triangle in the lower-left quadrant of Figure 1.1.)

To prove (1.28), we consider each subsquare Ωi, where Ihvh takes the value vh
i .

The definition of Ωi is in (1.19). We construct the constant function

wh =
∑

j′∈Ωh

vh
i φh

j′ ,

which equals Ihvh on Ωi, and we set

I ′ = {i′ | supp φh
i′ intersects Ωi nontrivially}.

There are precisely seven elements in I ′. Then

∫

Ωi

| Int vh − Ihvh|2 =

∫

Ωi

∣

∣

∣

∣

∑

i′∈I′

(vh
i − vh

i′)φi′

∣

∣

∣

∣

2

≤

∫

Ωi

∣

∣

∣

∣

∑

i′∈I′

|vh
i − vh

i′ |

∣

∣

∣

∣

2

since |φh
i′(x)| ≤ 1

≤ C
∑

i′∈I′

|vh
i − vh

i′ |
2 h2

For one of the “diagonal” terms we have

|vh
i+(−1,1) − vh

i |
2 ≤ 2(|vh

i+(−1,1) − vh
i+(−1,0)|

2 + |vh
i+(−1,0) − vh

i |
2);
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a similar bound exists for |vh
i+(1,−1) − vh

i |
2.

Thus, there exists a C such that

∫

Ω

| Int vh − Ihvh|2 =
∑

i∈Ωh

∫

Ωi

| Int vh − Ihvh|2

≤ C
∑

i∈Ωh

{|vh
i+(1,0) − vh

i |
2 + |vh

i+(0,1) − vh
i |

2}h2

so there exists another constant C such that

‖ Int vh − Ihvh‖L2(Ω) ≤ C(‖T(0,1)v
h − vh‖L2(Ωh) + ‖T(1,0)v

h − vh‖L2(Ωh))

≤ Cω(vh, 1)L2(Ωh)

We need both continuous and discrete smoothing operators, which we define as
follows. Assume that η(x) is a a fixed nonnegative, rotationally symmetric, function
with support in the unit disk; further, suppose that η is C∞ and has integral 1. For
ǫ > 0 we define the scaled function

ηǫ(x) :=
1

ǫ2
η
(x

ǫ

)

, x ∈ R
2;

we smooth a function v ∈ Lp(Ω), 1 ≤ p ≤ ∞, by computing

(Sǫv)(x) := (ηǫ ∗ Ext v)(x) =

∫

R2

ηǫ(x − y) Ext v(y) dy, x ∈ R
2.

Our discrete smoothing operator is defined simply as

SLvh :=
1

(2L + 1)2

∑

|ℓ|≤L

Tℓ Exth vh.

It’s clear from these definitions that

TℓSL Exth vh = SLTℓ Exth vh and TτSǫ Ext v = SǫTτ Ext v (1.29)

and that for any 1 ≤ p ≤ ∞

‖SLvh‖Lp(Ωh) ≤ ‖SLvh‖Lp(2Ωh) ≤ ‖Exth vh‖Lp(2Ωh) = 4‖vh‖Lp(Ωh) (1.30)

and

‖Sǫv‖Lp(Ω) ≤ ‖Sǫv‖Lp(2Ω) ≤ ‖Ext v‖Lp(2Ω) = 4‖v‖Lp(Ω). (1.31)

For these continuous and discrete smoothing operators we have the following
results.

Lemma 1.7 (Smoothing operators). There exists a constant C > 0 such that the

following inequalities hold.

For all v ∈ Lp(Ω), p ≥ 1, and all discrete functions vh, we have

J∗(SLvh) ≤ J∗(v
h) (1.32)
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and

|Sǫv|BV(Ω) ≤ |v|BV(Ω). (1.33)

Similarly, for all M, t > 0,

ω(SLvh, M)L2(Ωh) ≤ Cω(vh, M)L2(Ωh) (1.34)

and

ω(Sǫv, t)L2(Ω) ≤ Cω(v, t)L2(Ω). (1.35)

Furthermore,

‖SLvh − vh‖L2(Ωh) ≤ Cω(vh, L)L2(Ωh), (1.36)

and

‖Sǫv − v‖L2(Ω) ≤ Cω(v, ǫ)L2(Ω). (1.37)

We also have

|Sǫv|W 2,1(2Ω) ≤
C

ǫ
|v|BV(Ω) (1.38)

and

|SLvh|W 2,1

h
(2Ωh) ≤

C

Lh
|vh|W 1,1(Ωh). (1.39)

Proof. Using the notation and results of Lemma 1.2, because J∗ is convex, we
have

J∗(SLvh) = JΩh

∗ (SLvh) =
1

4
J2Ωh

∗ (SLvh)

=
1

4
J2Ωh

∗

(

1

(2L + 1)2

∑

|ℓ|≤L

Tℓ Exth vh

)

≤
1

4

1

(2L + 1)2

∑

|ℓ|≤L

J2Ωh

∗ (Tℓ Exth vh)

=
1

4
J2Ωh

∗ (Exth vh)

= JΩh

∗ (vh).

For the next inequality, we have

|Sǫv|BV(Ω) =
1

4
|Sǫv|BV(2Ω) ≤

1

4
|v|BV(2Ω) = |v|BV(Ω),

since it is clear from the definition of |v|BV(2Ω) with periodic boundary conditions
that |Sǫv|BV(2Ω) ≤ |v|BV(2Ω) (throw the mollifier on φ).

The two inequalities (1.34) and (1.35) follow from the definitions of SL and Sǫ

and Lemma 1.1.
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We have

‖SLvh − vh‖L2(Ωh) ≤ ‖SLvh − Exth vh‖L2(2Ωh)

=
1

(2L + 1)2

∥

∥

∥

∥

∑

|ℓ|≤L

(Tℓ Exth vh − Exth vh)

∥

∥

∥

∥

L2(2Ωh)

≤
1

(2L + 1)2

∑

|ℓ|≤L

‖Tℓ Exth vh − Exth vh‖L2(2Ωh)

≤ ω(Exth vh, L)L2(2Ωh)

≤ Cω(vh, L)L2(Ωh).

Similarly, since the support of ηǫ(x) is contained in the ball |x| ≤ ǫ,

‖Sǫv − v‖L2(Ω) ≤ ‖Sǫv − Ext v‖L2(2Ω)

= ‖ηǫ ∗ Ext v − Ext v‖L2(2Ω)

≤

∫

2Ω

ηǫ(y)‖Ext v(· − y) − Ext v‖L2(2Ω) dy

≤ Cω(v, ǫ)L2(Ω).

The last line follows from (1.4) of Lemma 1.1.
The bound on the discrete W 2,1

h (2Ωh) semi-norm is a typical inverse inequality;
to deal with the differences in the horizontal direction,

∑

i∈2Ωh

∣

∣

∣

SLvh
i+(1,0) − 2SLvh

i + SLvh
i−(1,0)

h2

∣

∣

∣h2

=
∑

i∈2Ωh

∣

∣

∣

∣

∣

1

(2L + 1)2

∑

|ℓ|≤L

Exth vh
i+(1,0)+ℓ − 2 Exth vh

i+ℓ + Exth vh
i+ℓ−(1,0)

h2

∣

∣

∣

∣

∣

h2

=
∑

i∈2Ωh

1

(2L + 1)2

∣

∣

∣

∣

∣

∑

|ℓ2|≤L

Exth vh
i+(L+1,ℓ2)

− Exth vh
i+(L,ℓ2)

h2

−
Exth vh

i−(L,ℓ2)
− Exth vh

i−(L+1,ℓ2)

h2

∣

∣

∣

∣

∣

h2 (sum over ℓ1)

≤
∑

i∈2Ωh

1

(2L + 1)2

∑

|ℓ2|≤L

{

∣

∣

∣

∣

Exth vh
i+(L+1,ℓ2)

− Exth vh
i+(L,ℓ2)

h2

∣

∣

∣

∣

+

∣

∣

∣

∣

Exth vh
i−(L,ℓ2)

− Exth vh
i−(L+1,ℓ2)

h2

∣

∣

∣

∣

}

h2

≤
C

(2L + 1)h

∑

i∈2Ωh

∣

∣

∣

∣

Exth vh
i+(1,0) − Exth vh

i

h

∣

∣

∣

∣

h2

≤
C

Lh
|vh|W 1,1(Ωh)

For the bound on the W 2,1(2Ω) semi-norm, again we deal with derivatives in only
one direction. We prove
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∫

2Ω

|D2
1Sǫv| ≤

C

ǫ

∫

Ω

|Dv| .

In fact
∫

2Ω

|D2
1Sǫv| = sup

φ∈C1

0
(2Ω), |φ|≤1

∫

R2

(D2
1Sǫv) φ

= sup
φ∈C1

0
(2Ω), |φ|≤1

∫

R2

(D1Sǫv) D1(−φ)

= sup
φ∈C1

0
(2Ω), |φ|≤1

∫

R2

D1(ηǫ ∗ Ext v) D1(−φ)

= sup
φ∈C1

0
(2Ω), |φ|≤1

∫

R2

(Ext v) D1(D1ηǫ ∗ φ);

note that all but the first of these integrals are over R
2. Notice

|D1ηǫ ∗ φ| ≤ ‖D1ηǫ‖L1‖φ‖∞ ≤
C

ǫ
,

and D1ηǫ ∗ φ ∈ C∞
0 (2Ωǫ), where

Ωǫ := {x | dist(x, 2̄Ω) ≤ ǫ},

therefore
∫

2Ω

|D2
1Sǫv| ≤

C

ǫ

∫

2Ωǫ

|D Ext v|

≤
C

ǫ

∫

Ω′

|D Ext v| ≤
C

ǫ

∫

Ω

|Dv| .

where Ω′ = {(x, y) | |x|, |y| ≤ 3}.
The same result holds for

∫

Ω
|D2

2Sǫv|.

2. Relationships between discrete and continuous variation and func-

tionals. We need to compare continuous and discrete variation functionals, so we
have the following lemma.

Lemma 2.1 (TV bound). There exists a C > 0 such for any Jh and any v ∈
L1(Ω)

Jh(Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) (2.1)

and for any vh defined on Ωh

| Int vh|BV(Ω) ≤ Jh(vh) + Ch|Exth vh|W 2,1

h
(2Ωh). (2.2)

Proof. One proves the second inequality simply by combining (1.27) and (1.18).
As for the first inequality, the left hand side is finite for v ∈ L1(Ω), so if Ext v /∈

W 2,1(2Ω), we’re done. So we assume that Ext v ∈ W 2,1(2Ω) and we prove (2.1) for
Jh = J++, the other cases being the same.
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We denote Phv by vh and write

∇+
x vh

i =
Exth vh

i+(1,0) − Exth vh
i

h
, ∇+

y vh
i =

Exth vh
i+(0,1) − Exth vh

i

h
. (2.3)

We briefly note that when i ∈ Ωh then Exth vh
i = vh

i and these differences are zero
if i + (0, 1) or i + (1, 0) are outside Ωh. In the argument that follows, we write v for
Ext v.

Then

∇+
x vh

i −
1

h2

∫

Ωi

D1v =
vh

i+(1,0) − vh
i

h
−

1

h2

∫

Ωi

D1v

=
1

h

1

|Ωi|

∫

Ωi

[v(x + h, y) − v(x, y)] dx dy −
1

h2

∫

Ωi

D1v .

The integrand of the first integral can be rewritten as an integral of D1v, then com-
bining these two integrals and once again rewriting the integrand as an integral of the
second derivative of v, we have

∇+
x vh

i −
1

h2

∫

Ωi

D1v =
1

h3

∫

Ωi

(

∫ h

0

D1v(x + t, y) dt − hD1v(x, y)
)

dx dy

=
1

h3

∫

Ωi

∫ h

0

(D1v(x + t, y) − D1v(x, y)) dt dx dy

=
1

h3

∫

Ωi

∫ h

0

∫ t

0

D2
1v(x + s, y) ds dt dx dy .

Therefore

∇+
x vh

i =
1

h2

∫

Ωi

D1v +
1

h3

∫

Ωi

∫ h

0

∫ t

0

D2
1v(x + s, y) ds dt dx dy .

Similarly,

∇+
y vh

i =
1

h2

∫

Ωi

D2v +
1

h3

∫

Ωi

∫ h

0

∫ t

0

D2
2v(x, y + s) ds dt dx dy .

So we can bound the norm of ∇+vh
i by

|∇+vh
i | ≤

1

h2

∣

∣

∣

∣

(
∫

Ωi
D1v

∫

Ωi
D2v

)∣

∣

∣

∣

(2.4)

+
1

h3

∣

∣

∣

∣

∣

(

∫

Ωi

∫ h

0

∫ t

0
D2

1v(x + s, y) ds dt dx dy
∫

Ωi

∫ h

0

∫ t

0
D2

2v(x, y + s) ds dt dx dy

)∣

∣

∣

∣

∣

≤
1

h2

∫

Ωi

|Dv|

+
1

h3

∫

Ωi

∫ h

0

∫ t

0

|D2
1v(x + s, y)| ds dt dx dy

+
1

h3

∫

Ωi

∫ h

0

∫ t

0

|D2
2v(x, y + s)| ds dt dx dy . (2.5)
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The last line follows from the fact that
∣

∣

∣

∣

( ∫

f
∫

g

)∣

∣

∣

∣

≤

∫

√

f2 + g2

by Jensen’s inequality, and

∣

∣

∣

∣

(

a
b

)∣

∣

∣

∣

≤ |a| + |b| .

To bound the discrete total variation J++(vh), we sum (2.4) over all indices i ∈ Ωh

with weight h2 at each index. We obtain

J++(vh) ≤

∫

Ω

|Dv| + e1 + e2,

where

e1 =
∑

i

h2 1

h3

∫

Ωi

∫ h

0

∫ t

0

|D2
1v(x + s, y)| ds dt dx dy

≤
1

h

∫ h

0

∫ t

0

{∫

Ω

|D2
1v(x + s, y)| dx dy

}

ds dt

≤
C

h

∫ h

0

∫ t

0

{∫

Ω

|D2
1v| dx dy

}

ds dt

≤ Ch

∫

Ω

|D2
1v| .

We also have

e2 =
∑

i

h2 1

h3

∫

Ωi

∫ h

0

∫ t

0

|D2
2v(x, y + s)| ds dt dx dy

≤ Ch

∫

Ω

|D2
2v| .

Therefore

J++(vh) ≤

∫

Ω

|Dv| + Ch

∫

Ω

(|D2
1v| + |D2

2v|) .

By the same argument, we have the same bound for J+−, J−+, and J−−,

J(vh) ≤

∫

Ω

|Dv| + Ch

∫

Ω

(|D2
1v| + |D2

2v|),

where J ∈ {J+−, J−+, J−−}. Thus, we complete the proof.
Our goal is to bound the difference between various continuous and discrete convex

functionals defined on L2(Ω) and L2(Ωh). We fix λ > 0. Given g ∈ L2(Ω), we consider
the (unique) minimizer u of the functional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω)
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and the (unique) minimizer uh of the functional

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + Jh(vh),

where Jh is any of the discrete variational functionals defined above. Most of our
analysis concerns itself with the special case

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + J∗(v
h).

It is difficult to compare u and uh directly, because J∗(u
h) and |u|BV(Ω) could be

far apart, in general, even if uh → u as h → 0. However, there are smoothed versions
of u and uh, close to u and uh, whose continuous and discrete variations are close, as
the following Lemma shows.

Lemma 2.2 (TV consistency). There exists a constant C such that for any

discrete function vh ∈ L2(Ωh) and any positive integer L we have

| Int SLvh|BV(Ω) ≤ J∗(v
h) +

C

L
J∗(v

h). (2.6)

Furthermore, there is a constant C such that for any v ∈ BV(Ω) and any positive ǫ
and any discrete functional Jh, we have

Jh(PhSǫv) ≤ |v|BV(Ω) +
Ch

ǫ
|v|BV(Ω). (2.7)

Proof. For the first inequality, we have from (2.2) in Lemma 2.1 (with Jh = J∗)

| IntSLvh|BV(Ω) ≤ J∗(SLvh) + Ch|SLvh|W 2,1

h
(2Ωh),

while from (1.32) in Lemma 1.7 J∗(SLvh) ≤ J∗(v
h) and (1.39) in the same lemma

|SLvh|W 2,1

h
(2Ωh) ≤

C

Lh
|vh|W 1,1(Ωh) ≤

C

Lh
J∗(v

h).

The second inequality follows from (1.16). Combining the previous inequalities gives
(2.6).

For (2.7), we have from (2.1) in Lemma 2.1

Jh(PhSǫv) ≤ |Sǫv|BV(Ω) + Ch|Sǫv|W 2,1(2Ω),

while (1.33) yields

|Sǫv|BV(Ω) ≤ |v|BV(Ω)

and (1.38) gives

|Sǫv|W 2,1(2Ω) ≤
C

ǫ
|v|BV(Ω).

Combining these three inequalities yields (2.7).
Now we compare discrete and continuous energy functionals.
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Lemma 2.3 (Comparing discrete and continuous energies). There exists a con-

stant C > 0 such that for all Jh and for all v ∈ BV(Ω)

Eh(PhSǫv) ≤ E(v) +
Ch

ǫ
|v|BV(Ω)

+
C

λ
‖v − g‖L2(Ω)

(

ω(v, h)L2(Ω) + ω(v, ǫ)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(

ω(v, h)2L2(Ω) + ω(v, ǫ)2L2(Ω) + ω(g, h)2L2(Ω)

)

.

(2.8)

Furthermore, if Jh = J∗, then for all discrete functions vh

E(IntSLvh) ≤ Eh(vh) +
C

L
J∗(v

h)

+
C

λ
‖vh − Phg‖L2(Ωh)

(

ω(vh, L)L2(Ωh) + ω(g, h)L2(Ω)

)

+
C

λ

(

ω(vh, L)2L2(Ω) + ω(g, h)2L2(Ω)

)

.

(2.9)

Proof. We have

Eh(PhSǫv) = Jh(PhSǫv) +
1

2λ
‖PhSǫv − Phg‖2

L2(Ωh). (2.10)

From (2.7), we see that the first term on the right is bounded by

|v|BV(Ω) +
Ch

ǫ
|v|BV(Ω). (2.11)

Now

‖PhSǫv − Phg‖2
L2(Ωh) = ‖IhPhSǫv − IhPhg‖2

L2(Ω),

and the quantity on the right can be written as

‖(IhPhSǫv − Sǫv) + (Sǫv − v) + (v − g) + (g − IhPhg)‖2
L2(Ω)

≤ ‖v − g‖2
L2(Ω) + 2‖v − g‖L2(Ω)

× ‖(IhPhSǫv − Sǫv) + (Sǫv − v) + (g − IhPhg)‖L2(Ω)

+ ‖(IhPhSǫv − Sǫv) + (Sǫv − v) + (g − IhPhg)‖2
L2(Ω).

≤ ‖v − g‖2
L2(Ω) + 2‖v − g‖L2(Ω)

×
(

‖IhPhSǫv − Sǫv‖L2(Ω) + ‖Sǫv − v‖L2(Ω) + ‖g − IhPhg‖L2(Ω)

)

+ C
(

‖IhPhSǫv − Sǫv‖
2
L2(Ω) + ‖Sǫv − v‖2

L2(Ω) + ‖g − IhPhg‖2
L2(Ω)

)

.

From (1.37) we can bound

‖Sǫv − v‖L2(Ω) ≤ Cω(v, ǫ)L2(Ω)

and from (1.24) we know that

‖IhPhg − g‖L2(Ω) ≤ Cω(g, h)L2(Ω).
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We also have from (1.24) and (1.35)

‖IhPhSǫv − Sǫv‖L2(Ω) ≤ Cω(Sǫv, h)L2(Ω) ≤ Cω(v, h)L2(Ω).

Thus,

‖PhSǫv − Phg‖2
L2(Ωh) ≤ ‖v − g‖2

L2(Ω) + C‖v − g‖L2(Ω)

×
(

ω(v, h)L2(Ω) + ω(v, ǫ)L2(Ω) + ω(g, h)L2(Ω)

)

+ C
(

ω(v, h)2L2(Ω) + ω(v, ǫ)2L2(Ω) + ω(g, h)2L2(Ω)

)

.

Using this inequality as well as (2.11) in (2.10) yields (2.8).
Now let vh be any discrete function. Then

E(IntSLvh) = | Int SLvh|BV(Ω) +
1

2λ
‖ IntSLvh − g‖2

L2(Ω). (2.12)

By (2.6), the first term on the right is bounded by

J∗(v
h) +

C

L
J∗(v

h). (2.13)

Now

‖ IntSLvh − g‖2
L2(Ω)

= ‖(Int SLvh − IhSLvh) + (IhSLvh − Ihvh)

+ (Ihvh − IhPhg) + (IhPhg − g)‖2
L2(Ω).

≤ ‖Ihvh − IhPhg‖2
L2(Ω) + 2‖Ihvh − IhPhg‖L2(Ω)

× ‖(IntSLvh − IhSLvh) + (IhSLvh − Ihvh) + (IhPhg − g)‖L2(Ω)

+ ‖(IntSLvh − IhSLvh) + (IhSLvh − Ihvh) + (IhPhg − g)‖2
L2(Ω)

≤ ‖Ihvh − IhPhg‖2
L2(Ω) + 2‖Ihvh − IhPhg‖L2(Ω)

×
(

‖ IntSLvh − IhSLvh‖L2(Ω) + ‖IhSLvh − Ihvh‖L2(Ω) + ‖IhPhg − g‖L2(Ω)

)

+ C(‖ IntSLvh − IhSLvh‖2
L2(Ω) + ‖IhSLvh − Ihvh‖2

L2(Ω) + ‖IhPhg − g‖2
L2(Ω))

Since, for all discrete vh, ‖Ihvh‖L2(Ω) = ‖vh‖L2(Ωh), the quantity above is bounded
by

‖vh − Phg‖2
L2(Ωh) + 2‖vh − Phg‖L2(Ωh)

×
(

‖ Int SLvh − IhSLvh‖L2(Ω) + ‖SLvh − vh‖L2(Ωh) + ‖IhPhg − g‖L2(Ω)

)

+ C(‖ IntSLvh − IhSLvh‖2
L2(Ω) + ‖SLvh − vh‖2

L2(Ωh) + ‖IhPhg − g‖2
L2(Ω))

From (1.36) we have

‖SLvh − vh‖L2(Ωh) ≤ Cω(vh, L)L2(Ωh).

By (1.28) and (1.34) we have

‖ Int SLvh − IhSLvh‖L2(Ω) ≤ Cω(SLvh, 1)L2(Ωh)

≤ Cω(vh, 1)L2(Ωh) ≤ Cω(vh, L)L2(Ωh).
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Combining these inequalities, we have

‖ Int SLvh − g‖2
L2(Ω) ≤ ‖vh − Phg‖2

L2(Ωh)

+ C‖vh − Phg‖L2(Ωh)

(

ω(vh, L)L2(Ωh) + ω(g, h)L2(Ω)

)

+ C
(

ω(vh, L)2L2(Ω) + ω(g, h)2L2(Ω)

)

.

Combining this inequality with (2.12) and (2.13) yields (2.9).

3. Properties of the continuous and discrete minimizers. We need to
discuss some properties of minimizers of the discrete and continuous functionals. We
begin by comparing functionals on Ω and Ωh and the corresponding functionals on
2Ω and 2Ωh. We remind the reader of the notations used in Lemma 1.2.

Lemma 3.1 (Extending minimizers). If uh is the minimizer of the functional

EΩh

h (vh) = Eh(vh) =
1

2λ
‖vh − gh‖2

L2(Ωh) + JΩh

∗ (vh), (3.1)

then Exth uh is the minimizer over all discrete functions vh defined on 2Ωh of the

functional

E2Ωh

h (vh) =
1

2λ
‖vh − Exth gh‖2

L2(2Ωh) + J2Ωh

∗ (vh) (3.2)

with periodic boundary conditions.

Similarly, if u is the minimizer of

EΩ(v) = E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω) (3.3)

then Extu is the minimizer of

E2Ω(v) =
1

2λ
‖v − Ext g‖2

L2(2Ω) + |v|BV(2Ω), (3.4)

again with periodic boundary conditions.

Furthermore, if u and w are minimizers of (3.3) with data g and h, respectively,

then

‖u − w‖L2(Ω) ≤ ‖g − h‖L2(Ω);

similarly for the discrete and continuous minimizers of (3.1)–(3.4). Thus, for the two

periodic problems (3.2) and (3.4) we have

‖Exth uh − Tℓ Exth uh‖L2(2Ωh) ≤ ‖Exth gh − Tℓ Exth gh‖L2(2Ωh) (3.5)

and

‖Extu − Tτ Extu‖L2(2Ω) ≤ ‖Ext g − Tτ Ext g‖L2(2Ω). (3.6)

Proof. To avoid confusion, we use letters with bars to indicate functions defined
on 2Ωh, for example v̄h, in the proof. Moreover we remind the reader for any discrete
function fh defined on Ωh, the extended function Exth fh is also defined on 2Ωh.

20



Note that the discrete set 2Ωh is the union of four quadrants,

2Ωh =

4
⋃

i=1

Ωh
i .

where Ωh
1 = Ωh, Ωh

2 = Ωh + (N, 0), Ωh
3 = Ωh + (0, N), Ωh

4 = Ωh + (N, N).
For discrete functions fh defined on a quadrant A ∈ {Ωh

1 , Ωh
2 , Ωh

3 , Ωh
4}, we define

JA
∗ in the same way as defining JΩh

∗ with Neumann boundary condition imposed. We
also define Exth fh the same way as extending functions defined on Ωh to Z

2.
For discrete functions v̄h defined on 2Ωh and any quadrant A, we define the

discrete variation restricted on A of v̄h by

J2Ωh

⊕⊖ (v̄h)|A =
∑

i∈A

√

(

v̄h
i⊕(1,0) − v̄h

i

h

)2

+

(

v̄h
i⊖(0,1) − v̄h

i

h

)2

h2

with ⊕,⊖ ∈ {+,−}, and the symmetric discrete variation restricted on A by

J2Ωh

∗ (v̄h)|A =
1

4
(J2Ωh

++ (v̄h)|A + J2Ωh

+− (v̄h)|A + J2Ωh

−+ (v̄h)|A + J2Ωh

−− (v̄h)|A).

For variations restricted on a quadrant, we use periodic boundary condition if the

values of v̄h
i with i outside 2Ωh are needed. In fact, J2Ωh

∗ |A is only a fraction of J2Ωh

∗

where the sum is taken over the subset A of 2Ωh.
We point out that we have introduced two kinds of variations defined either on

a quadrant A or on 2Ωh. They use two different boundary conditions. JA
∗ uses

Neumann boundary condition that sets variation terms “across” the boundary zero;

J2Ωh

∗ (or the restricted J2Ωh

∗ |A) uses periodic boundary conditions that assumes the
values of v̄h are periodically extended to Z

2 with period (2N, 2N).
Moreover, we define the corresponding functional restricted on A by

E2Ωh

h (v̄h)|A = J2Ωh

∗ (v̄h)|A +
1

2λ
‖v̄h − Exth gh‖2

L2(A).

Similarly E2Ωh

h |A is a fraction of E2Ωh

h where the sum is taken over A. Thus it is
trivial

4
∑

i=1

E2Ωh

h (v̄h)|Ωh
i

= E2Ωh

h (v̄h), (3.7)

At last for any v̄h defined on 2Ωh, we use v̄|A to indicate a discrete function
defined on A that equals v̄h restricted on A.

We show that

JA
∗ (v̄h|A) ≤ J2Ωh

∗ (v̄h)|A, (3.8)

and

EA
h (v̄h|A) ≤ E2Ωh

h (v̄h)|A, (3.9)

This is because, letting the boundary of A to be the set

∂A := {(i1, i2) | i1 or i2 ∈ {0, N − 1, N, 2N − 1}},
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J2Ωh

∗ (v̄h)|A and JA
∗ (v̄h|A) both include the sum of variation terms at inner points

of A, i.e., A \ ∂A; for the sum taken over ∂A where variations include differences of

v̄h at points both inside and outside A, J2Ωh

∗ (v̄h)|A assumes v̄h outside A satisfies
periodic boundary condition, while JA

∗ (v̄h|A) simply assumes such differences equal
zero. Hence we get (3.8). (3.9) is a straightforward deduction of (3.8).

Note that for the extended function Exth fh of fh that is defined on a quadrant,
these equations hold due to the reflection in extending.

J
Ωh

i
∗ (Exth fh|Ωh

i
) = J2Ωh

∗ (Exth fh)|Ωh
i
, 1 ≤ i ≤ 4 (3.10)

E
Ωh

i

h (Exth fh|Ωh
i
) = E2Ωh

h (Exth fh)|Ωh
i
. 1 ≤ i ≤ 4 (3.11)

Also by the symmetric nature of JA
∗ and the definition of Exth, it is trivial

J
Ωh

j

∗ (Exth fh|Ωh
j
) = J

Ωh
i

∗ (fh) 1 ≤ j ≤ 4, j 6= i (3.12)

and

‖Exth fh − Exth gh‖L2(Ωh
j
) = ‖Exth fh − Exth gh‖L2(Ωh

i
). 1 ≤ j ≤ 4, j 6= i (3.13)

Therefore, on any quadrant Ωh
i , 1 ≤ i ≤ 4, the minimization problem

arg min
wh∈L2(Ωh)

E
Ωh

i

h (wh) = arg min
wh∈L2(Ωh)

J
Ωh

i
∗ (wh) +

1

2λ
‖wh − Exth gh‖2

L2(Ωh
i
)

has a unique solution Exth uh|Ωh
i
, because for any discrete function wh defined on Ωh

i

J
Ωh

i
∗ (wh) +

1

2λ
‖wh − Exth gh‖2

L2(Ωh
i
)

= JΩh

∗ ((Exth wh)|Ωh) +
1

2λ
‖Exth wh − gh‖2

L2(Ωh) by (3.12) and (3.13)

≥ JΩh

∗ (uh) +
1

2λ
‖uh − gh‖2

L2(Ωh)

= J
Ωh

i
∗ ((Exth uh)|Ωh

i
) +

1

2λ
‖Exth uh − Exth gh‖2

L2(Ωh
i
). by (3.12) and (3.13)

Thus for any discrete function v̄h defined on 2Ωh,

E
Ωh

i

h (Exth uh|Ωh
i
) ≤ E

Ωh
i

h (v̄h|Ωh
i
). 1 ≤ i ≤ 4

Adding this inequality for i = 1, 2, 3, 4 and noting by (3.11)

4
∑

i=1

E
Ωh

i

h (Exth uh|Ωh
i
) = E2Ωh

h (Exth uh),

we have

E2Ωh

h (Exth uh) ≤

4
∑

i=1

E
Ωh

i

h (v̄h|Ωh
i
).
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For each term on the right hand, by (3.9)

E
Ωh

i

h (v̄h|Ωh
i
) ≤ E2Ωh

h (v̄h)|Ωh
i
.

Then adding them all, we have for any discrete function v̄h defined on 2Ωh,

E2Ωh

h (Exth uh) ≤

4
∑

i=1

E2Ωh

h (v̄h)|Ωh
i

= E2Ωh

h (v̄h) by (3.7)

i.e., Exth uh is the minimizer of the functional (3.2).
The second part is the continuous analogue of the discrete case. And the last two

inequalities are standard.
The next lemma is classical.
Lemma 3.2 (Smoothness bounds). Assume u is the minimizer of the functional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω)

and uh is the minimizer of the discrete functional

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + Jh(vh).

Then

‖u − g‖L2(Ω) ≤ ‖g‖L2(Ω) (3.14)

and

‖uh − Phg‖L2(Ωh) ≤ ‖Phg‖L2(Ωh) ≤ ‖g‖L2(Ω). (3.15)

Additionally, we have

|u|BV(Ω) ≤
1

2λ
‖g‖2

L2(Ω) (3.16)

and

Jh(uh) ≤
1

2λ
‖Phg‖2

L2(Ωh) ≤
1

2λ
‖g‖2

L2(Ω). (3.17)

We also have

ω(u, ǫ)L2(Ω) ≤ Cω(g, ǫ)L2(Ω) (3.18)

and if Jh = J∗ then

ω(uh, L)L2(Ωh) ≤ Cω(Phg, L)L2(Ωh) ≤ Cω(g, Lh)L2(Ω). (3.19)

Proof. The results are classical, but some of the proofs are short, so we give them
here.

We know that E(u) ≤ E(0), so

1

2λ
‖u − g‖2

L2(Ω) ≤
1

2λ
‖u − g‖2

L2(Ω) + |u|BV(Ω) ≤
1

2λ
‖g‖2

L2(Ω).
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One proves (3.15) in the same way.
Inequalities (3.16) and (3.17) follow from E(u) ≤ E(0) and Eh(uh) ≤ Eh(0),

respectively.
For inequality (3.18), by definition

ω(u, ǫ)L2(Ω) ≤ sup
τ∈R2, |τ |<ǫ

(

∫

x,x+τ∈Ω

|u(x + τ ) − u(x)|2 dx

)
1

2

≤ sup
τ∈R2, |τ |<ǫ

(

∫

x∈2Ω

|Extu(x + τ ) − Extu(x)|2 dx

)
1

2

By (3.6)

ω(u, ǫ)L2(Ω) ≤ sup
τ∈R2, |τ |<ǫ

(

∫

x∈2Ω

|Ext g(x + τ ) − Ext g(x)|2 dx

)
1

2

≤ Cω(g, ǫ)L2(2Ω).

The last line follows from (1.4) of Lemma 1.1.
It is similar to prove the left part of (3.19) by using the definition of ω(uh, L)L2(Ωh)

and applying (3.5) and (1.5). The right part of (3.19) is just (1.21).

4. Proof of the main theorems. We now bound the difference between dis-
crete and continuous functionals at their respective minimizers.

Theorem 4.1 (Functional difference). Assume u is the minimizer of the func-

tional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω)

for g ∈ Lip(α, L2(Ω)) and uh is the minimizer of the discrete functional

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + J∗(v
h).

Then if ǫ = h1/(α+1) we have

Eh(PhSǫu) ≤ E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1). (4.1)

and if L is set to the integer part of h−α/(α+1) then

E(IntSLuh) ≤ Eh(uh) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1). (4.2)

Finally,

|E(u) − Eh(uh)| ≤
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1). (4.3)

Proof. We mainly use Lemma 2.3 and Lemma 3.2. By (2.8) of Lemma 2.3

Eh(PhSǫu) ≤ E(u) +
Ch

ǫ
|u|BV(Ω)

+
C

λ
‖u − g‖L2(Ω)

(

ω(u, h)L2(Ω) + ω(u, ǫ)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(

ω(u, h)2L2(Ω) + ω(u, ǫ)2L2(Ω) + ω(g, h)2L2(Ω)

)

.
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We then apply (3.14), (3.16), and (3.18) to obtain

Eh(PhSǫu) ≤ E(u) +
Ch

ǫλ
‖g‖2

L2(Ω)

+
C

λ
‖g‖L2(Ω)

(

ω(g, ǫ)L2(Ω) + ω(g, h)L2(Ω)

)

+
C

λ

(

ω(g, h)2L2(Ω) + ω(g, ǫ)2L2(Ω)

)

.

Since g ∈ Lip(α, L2(Ω)),

ω(g, t)L2(Ω) ≤ |g|Lip(α,L2(Ω))t
α, t > 0.

Thus

Eh(PhSǫu) ≤ E(u) +
Ch

ǫλ
‖g‖2

L2(Ω)

+
C

λ
‖g‖L2(Ω)|g|Lip(α,L2(Ω))(ǫ

α + hα)

+
C

λ
|g|2Lip(α,L2(Ω))(ǫ

2α + h2α)

≤ E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))(
h

ǫ
+ ǫα + hα + ǫ2α + h2α)

We know at a minimum 1 > ǫ > h, so setting the largest error terms h/ǫ and ǫα equal,
i.e., setting ǫ = h1/(α+1), we have

Eh(PhSǫu) ≤ E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))(h
α/(α+1) + hα + h2α + h2α/(α+1)).

Thus we obtain (4.1).
We point out that (4.1) holds for any discrete variation Jh defined in (1.9). More

generally it holds for any discrete variation satisfying Lemma 2.2.
Similarly, if one begins with (2.9) and applies (3.15), (3.17), and (3.19), one finds

on setting L to the integer part of h−α/(α+1) that

E(IntSLuh) ≤ Eh(uh) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1),

which is (4.2).
Because u and uh are minimizers of their respective functionals, we have

Eh(uh) ≤ Eh(PhSǫu) ≤ E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1) (4.4)

and

E(u) ≤ E(IntSLuh) ≤ Eh(uh) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1). (4.5)

Then (4.3) is proved.
To show the error bound for minimizers, we need the following result, which can

be proved easily using classical arguments.
Lemma 4.1. If u is the minimizer of the functional E(v) defined in Theorem 4.1,

then for any v ∈ BV(Ω)

‖v − u‖2
L2(Ω) ≤ 2λ(E(v) − E(u)). (4.6)
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Moreover, if uh is the minimizer of Eh(vh), then for any vh defined on Ωh

‖vh − uh‖2
L2(Ωh) ≤ 2λ(Eh(vh) − Eh(uh)). (4.7)

Theorem 4.2 (Minimizer difference). Assume u is the minimizer of the func-

tional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω)

for g ∈ Lip(α, L2(Ω)) and uh is the minimizer of the discrete functional

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + J∗(v
h).

Then

‖Ihuh − u‖2
L2(Ω) ≤ C‖g‖2

Lip(α,L2(Ω))h
α/(α+1).

Proof. We apply (4.7) with vh = PhSǫu and ǫ = h1/(α+1):

‖PhSǫu − uh‖2
L2(Ωh) ≤ 2λ(Eh(PhSǫu

h) − Eh(uh))

≤ 2λ
[

(E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1))

+ (−E(u) +
C

λ
‖g‖2

Lip(α,L2(Ω))h
α/(α+1))

]

.

The first substitution is by (4.1); the second is by (4.5). Thus we have

‖PhSǫu − uh‖2
L2(Ωh) ≤ C‖g‖2

Lip(α,L2(Ω))h
α/(α+1). (4.8)

Then

‖Ihuh − u‖2
L2(Ω) = ‖Ihuh − IhPhSǫu + IhPhSǫu − Sǫu + Sǫu − u‖2

L2(Ω)

≤ 3
(

‖Ihuh − IhPhSǫu‖
2
L2(Ω) + ‖IhPhSǫu − Sǫu‖

2
L2(Ω)

+ ‖Sǫu − u‖2
L2(Ω)

)

We note by (1.22) and (4.8)

‖Ihuh − IhPhSǫu‖
2
L2(Ω) = ‖PhSǫu − uh‖2

L2(Ωh) ≤ C‖g‖2
Lip(α,L2(Ω))h

α/(α+1).

To bound ‖IhPhSǫu − Sǫu‖L2(Ω), by (1.24), (1.35), and (3.18), we have

‖IhPhSǫu − Sǫu‖L2(Ω) ≤ Cω(Sǫu, h)L2(Ω) (4.9)

≤ Cω(u, h)L2(Ω) ≤ Cω(g, h)L2(Ω).

Finally by (1.37) and (3.18)

‖Sǫu − u‖L2(Ω) ≤ Cω(u, ǫ) ≤ Cω(g, ǫ). (4.10)
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Thus combining (4.8), (4.9) and (4.10), we have

‖Ihuh − u‖2
L2(Ω) ≤ C

(

‖g‖2
Lip(α,L2(Ω))h

α/(α+1) + ω(g, h)2L2(Ω) + ω(g, ǫ)2L2(Ω)

)

≤ C
(

‖g‖2
Lip(α,L2(Ω))h

α/(α+1) + ‖g‖2
L2(Ω)h

2α + ‖g‖2
L2(Ω)h

2α/(α+1)
)

Because the first term dominates the others, we have

‖Ihuh − u‖2
L2(Ω) ≤ C‖g‖2

Lip(α,L2(Ω))h
α/(α+1).

5. Error bound for the upwind scheme. In this section, we prove the error
bound for the “upwind” scheme. The “upwind” discrete gradient operator −∇h is
defined by

(−∇h)vh
i =

1

h











Exth vh
i − Exth vh

i+(1,0)

Exth vh
i − Exth vh

i−(1,0)

Exth vh
i − Exth vh

i+(0,1)

Exth vh
i − Exth vh

i−(0,1)











. (5.1)

The “upwind” discrete variation is then defined by

JU (vh) =
∑

i∈Ωh

∣

∣(−∇h)vh
i ∨ 0

∣

∣h2 (5.2)

where 0 is the vector (0, 0, 0, 0), and p∨ q and p∧ q are componentwise maximum and
minimum, respectively, of the vectors p, q ∈ R

4.
In other words, we include a difference in the vector norm of the ith term in (5.2)

only if vh is increasing into vh
i . Nothing changes in the following proofs (and one sees

little change in the images themselves) if we change componentwise maximum (∨) to
componentwise minimum (∧) in (5.2). In their paper, Osher and Sethian [12] were
solving Hamilton-Jacobi equations where this substitution could not be made: their
problem, unlike ours, has a true notion of “wind”.

To prove the result for the “upwind” scheme, we need to adapt to JU the previous
lemmas involving J∗.

First we shall prove the convexity of JU .
Lemma 5.1. JU is convex

Proof. First note that for two vectors p, q ∈ R
n, it is easy to verify

0 ≤ (p + q) ∨ 0 ≤ p ∨ 0 + q ∨ 0,

where inequality p ≤ q means pi ≤ qi for each index i. Thus,

|(p + q) ∨ 0| ≤ |p ∨ 0| + |q ∨ 0|. (5.3)

We apply (5.3) to each term in (5.2) of JU

(

λfh + (1 − λ)gh
)

, where 1 > λ > 0
and fh and gh are discrete functions, to find that

JU

(

λfh + (1 − λ)gh
)

=
∑

i

∣

∣(−∇h)(λfh + (1 − λ)gh)i ∨ 0
∣

∣ h2

≤
∑

i

{∣

∣λ(−∇h)fh
i ∨ 0

∣

∣+
∣

∣(1 − λ)(−∇h)gh
i ∨ 0

∣

∣

}

h2

= λJU (fh) + (1 − λ)JU (gh).
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In the following we use the notation ∇+
x and ∇+

y defined in (2.3). We define
similarly

∇−
x vh

i =
Exth vh

i − Exth vh
i−(1,0)

h
, ∇−

y vh
i =

Exth vh
i − Exth vh

i−(0,1)

h
. (5.4)

Note that the divided differences are applied to the extended discrete function and
that the difference is zero if i ∈ Ωh and the other index is outside Ωh.

Using these operators, we can write

JU (vh) =
∑

i∈Ωh

∣

∣

∣

∣

∣

∣

∣

∣









−∇+
x vh

i ∨ 0
∇−

x vh
i ∨ 0

−∇+
y vh

i ∨ 0
∇−

y vh
i ∨ 0









∣

∣

∣

∣

∣

∣

∣

∣

h2. (5.5)

The following lemma corresponds to Lemma 1.3.
Lemma 5.2. JU is equivalent to | · |W 1,1(Ωh), where | · |W 1,1(Ωh) is the discrete

seminorm defined in (1.14). More precisely,

1

2

∣

∣vh
∣

∣

W 1,1(Ωh)
≤ JU (vh) ≤

∣

∣vh
∣

∣

W 1,1(Ωh)
(5.6)

Proof. By (1.15)

1

2

∑

i

{

∣

∣−∇+
x vh

i ∨ 0
∣

∣+
∣

∣∇−
x vh

i ∨ 0
∣

∣+
∣

∣−∇+
y vh

i ∨ 0
∣

∣+
∣

∣∇−
y vh

i ∨ 0
∣

∣

}

h2

≤
∑

i

√

{

∣

∣−∇+
x vh

i ∨ 0
∣

∣

2
+
∣

∣∇−
x vh

i ∨ 0
∣

∣

2
+
∣

∣−∇+
y vh

i ∨ 0
∣

∣

2
+
∣

∣∇−
y vh

i ∨ 0
∣

∣

2
}

h2

≤
∑

i

{

∣

∣−∇+
x vh

i ∨ 0
∣

∣+
∣

∣∇−
x vh

i ∨ 0
∣

∣+
∣

∣−∇+
y vh

i ∨ 0
∣

∣+
∣

∣∇−
y vh

i ∨ 0
∣

∣

}

h2

The middle sum is JU (vh), so we need to prove that the last sum equals |vh|W 1,1(Ωh).
Note that

∣

∣−∇+
x vh

i ∨ 0
∣

∣+
∣

∣

∣∇−
x vh

i+(1,0) ∨ 0
∣

∣

∣ =
∣

∣−∇+
x vh

i ∨ 0
∣

∣+
∣

∣∇+
x vh

i ∨ 0
∣

∣ =
∣

∣∇+
x vh

i

∣

∣ ,

so the absolute value of each horizontal and vertical difference in vh is included pre-
cisely once in the last sum, so it equals

∑

i

{

∣

∣∇+
x vh

i

∣

∣+
∣

∣∇+
y vh

i

∣

∣

}

h2 = |vh|W 1,1(Ωh).

The following lemma corresponds to Lemma 1.4.
Lemma 5.3.

∣

∣JU (vh) − J⊕⊖(vh)
∣

∣ ≤ h
∣

∣Exth vh
∣

∣

W 2,1

h
(2Ωh)

(5.7)

where J⊕⊖ is any discrete variation defined in (1.8).
Proof. We only prove the case for J⊕⊖ = J++. The other cases are the same.
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Note that

|∇+
x vh

i |
2 = |∇+

x vh
i ∨ 0|2 + |(−∇+

x )vh
i ∨ 0|2,

so we can write J++(vh) in a similar way to JU (vh) as

J++(vh) =
∑

i∈Ωh

∣

∣

∣

∣

∣

∣

∣

∣









−∇+
x vh

i ∨ 0
∇+

x vh
i ∨ 0

−∇+
y vh

i ∨ 0
∇+

y vh
i ∨ 0









∣

∣

∣

∣

∣

∣

∣

∣

h2,

Thus,

∣

∣JU (vh) − J++(vh)
∣

∣ =

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈Ωh















∣

∣

∣

∣

∣

∣

∣

∣









−∇+
x vh

i ∨ 0
∇−

x vh
i ∨ 0

−∇+
y vh

i ∨ 0
∇−

y vh
i ∨ 0









∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣









−∇+
x vh

i ∨ 0
∇+

x vh
i ∨ 0

−∇+
y vh

i ∨ 0
∇+

y vh
i ∨ 0









∣

∣

∣

∣

∣

∣

∣

∣















h2

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

i∈Ωh

∣

∣

∣

∣

∣

∣

∣

∣









0
∇−

x vh
i ∨ 0 −∇+

x vh
i ∨ 0

0
∇−

y vh
i ∨ 0 −∇+

y vh
i ∨ 0









∣

∣

∣

∣

∣

∣

∣

∣

h2

≤
∑

i∈Ωh

( ∣

∣∇−
x vh

i ∨ 0 −∇+
x vh

i ∨ 0
∣

∣+
∣

∣∇−
y vh ∨ 0 −∇+

y vh ∨ 0
∣

∣

)

h2.

Because |a ∨ 0 − b ∨ 0| ≤ |a − b| , we have

∣

∣JU (vh) − J++(vh)
∣

∣ ≤
∑

i∈Ωh

( ∣

∣∇−
x vh

i −∇+
x vh

i

∣

∣+
∣

∣∇−
y vh

i −∇+
y vh

i

∣

∣

)

h2

≤ h
∣

∣Exth vh
∣

∣

W 2,1

h
(2Ωh)

.

We use Lemma 5.2 and Lemma 5.3 to prove the following lemma that corresponds
to Lemma 2.1.

Lemma 5.4. There exists a C > 0 such for any v ∈ L1(Ω)

JU (Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) (5.8)

and for any vh defined on Ωh

| Int vh|BV(Ω) ≤ JU (vh) + Ch|Exth vh|W 2,1

h
(2Ωh). (5.9)

Proof. The second inequality can be proved by simply combining (2.2) and (5.7).
To prove the first inequality, again we assume that Ext v ∈ W 2,1(2Ω), otherwise

it is trivial. We apply Lemma 5.3 with vh = Phv, then

JU (Phv) ≤ J⊕⊖(Phv) + Ch|Exth Phv|W 2,1

h
(2Ωh).

Then by (2.1) in Lemma 2.1

JU (Phv) ≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) + Ch|Exth Phv|W 2,1

h
(2Ωh)

= |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω) + Ch|Ph Ext v|W 2,1

h
(2Ωh)

≤ |v|BV(Ω) + Ch|Ext v|W 2,1(2Ω).
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The last line follows from (1.25).
Lemma 5.5 is the counterpart of the first inequality (1.32) in Lemma 1.7.
Lemma 5.5.

JU (SLvh) ≤ JU (vh). (5.10)

Proof. The result comes from the symmetry and convexity of JU . The proof is
exactly the same as the proof for J∗ in Lemma 1.7.

We note that the proofs of Lemmas 3.1 and 4.1 carry over directly to JU , and we
obtain the following theorem for the “upwind” discrete variation.

Theorem 5.1 (Error bounds for upwind scheme). Assume u is the minimizer of

the functional

E(v) =
1

2λ
‖v − g‖2

L2(Ω) + |v|BV(Ω)

for g ∈ Lip(α, L2(Ω)) and uh is the minimizer of the discrete functional

Eh(vh) =
1

2λ
‖vh − Phg‖2

L2(Ωh) + JU (vh).

Then

‖Ihuh − u‖2
L2(Ω) ≤ C‖g‖2

Lip(α,L2(Ω))h
α/(α+1).

The proof is the same as the proof for the symmetric discrete variation J∗.

6. Conclusions and extensions. We have proved error bounds for discrete
minimizers of two symmetric approximations to the ROF image smoothing model.
We remark that our bounds are not “optimal” in an approximation-theory sense, as
one can approximate Lip(α, L2(Ω)) functions in L2(Ω) to order hα and we achieve an
error bound of hα/(2α+2). This bound, coincidentally, coincides with the rate of noise
removal using linear methods applied to wavelets, see, e.g., [4]. (The resuls stated
there are for functions in Wα,2(Ω), but they use only inequalities that are equally
true for Lip(α, L2(Ω)).)

Somewhat weaker results were proved by the first author in [14] for the functional

Jh(vh) =
1

2

(

J++(vh) + J−−(vh)
)

.

The arguments there exploit the fact that for this particular Jh

| Int vh|BV(Ω) = Jh(vh);

they also require that g ∈ Lip(β, L1(Ω))∩L∞(Ω), which implies that g ∈ Lip(α, L2(Ω))
for α = β/2, and they achieve the same convergence rate of hα/(2α+2).

Finally, similar techniques have been applied to analyze a central difference ap-
proximation to |v|BV(Ω) in [11]; there the same convergence rate of approximation

O(h1/4)(α = 1) was achieved, but for quite smooth functions: g is required to be in
the Sobolev space W 1,2(Ω), a space that does not contain “images with edges”.
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