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Résumé

On 
onsidère une équation aux dérivées partielles sto
hastique possédant deux non-linéarités de

type logarithmique, ave
 deux ré�exions en 1 et −1 sous la 
ontrainte de 
onservation de masse.

L'équation, dirigée par un bruit blan
 en espa
e et en temps, 
ontient un double Lapla
ien.

L'absen
e de prin
ipe de maximum pour le double Lapla
ien pose des di�
ultés pour l'utilisation

d'une méthode 
lassique de pénalisation, pour laquelle une importante propriété de monotonie

est utilisée. Etant inspiré par les travaux de Debuss
he, Goudenège et Zambotti, on démontre

l'existen
e et l'uni
ité de solutions pour des données initiales entre −1 et 1. En�n, on démontre

que l'unique mesure invariante est ergodique, et on énon
e un résultat de mélange exponentiel.

Abstra
t

We 
onsider a sto
hasti
 partial di�erential equation with two logarithmi
 nonlinearities, with two

re�e
tions at 1 and −1 and with a 
onstraint of 
onservation of the spa
e average. The equation,

driven by the derivative in spa
e of a spa
e-time white noise, 
ontains a bi-Lapla
ian in the drift.

The la
k of the maximum prin
iple for the bi-Lapla
ian generates di�
ulties for the 
lassi
al

penalization method, whi
h uses a 
ru
ial monotoni
ity property. Being inspired by the works of

Debuss
he, Goudenège and Zambotti, we obtain existen
e and uniqueness of solution for initial


onditions in the interval (−1, 1). Finally, we prove that the unique invariant measure is ergodi
,

and we give a result of exponential mixing.

Introdu
tion and main results

The Cahn-Hilliard-Cook equation is a model to des
ribe phase separation in a binary alloy (see [6℄,

[7℄ and [8℄) in the presen
e of thermal �u
tuations (see [11℄ and [27℄). It takes the form:











∂tu = −1

2
∆ (∆u− ψ(u)) + ξ̇, on Ω ⊂ R

n,

∇u · ν = 0 = ∇(∆u− ψ(u)) · ν, on ∂Ω,

(0.1)

where t denotes the time variable and ∆ is the Lapla
e operator. Also u ∈ [−1, 1] represents the
ratio between the two spe
ies and the noise term ξ̇ a

ounts for the thermal �u
tuations. The

nonlinear term ψ has the double-logarithmi
 form:

ψ : u 7→ θ

2
ln

(

1 + u

1− u

)

− θcu, (0.2)
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t 
lassi�
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where θ and θc are temperatures with θ < θc.
The study of this equation presents several di�
ulties. First, the singularities at ±1 have to be

treated 
arefully. Also, sin
e it is a fourth order equation, no 
omparison prin
iple holds.

The deterministi
 equation where ψ is repla
ed by a polynomial fun
tion have �rst been studied

(see [7℄, [27℄ and [32℄). Then non smooth ψ have been 
onsidered (see [5℄ and [17℄).

Phase separation have been analysed thanks to this model: see for example the survey [31℄,

and the referen
es therein, or others re
ent results on spinodal de
omposition and nu
leation in

[1, 4, 24, 28, 29, 35, 36, 37℄.

In the 
ase of a polynomial nonlinearity, some results have been obtained in the sto
hasti
 
ase

(see [2, 3, 9, 10, 12, 19℄).

Note that the solutions of the equation with polynomial nonlinearity do not remain in [−1, 1]
in general, and their physi
al interpretation is not 
lear.

To our knowledge, the 
ase of the logarithmi
 nonlinearity in the presen
e of noise have never

been studied. The presen
e of noise has a strong e�e
t and equation (0.1) 
annot have a solution.

Indeed, a solution should remain in [−1, 1] whi
h is impossible with an additive noise. Two re�e
tion

measures have to be added to the model to remedy this problem. In this arti
le, we propose to

study:











∂tu = −1

2
∆
(

∆u− ψ(u) + η− − η+

)

+ ξ̇, with θ ∈ [0, 1] = Ω,

∇u · ν = 0 = ∇(∆u) · ν, on ∂Ω,

(0.3)

where the measures are subje
t to the 
onta
t 
onditions almost surely:

∫

(1 + u)dη− =

∫

(1− u)dη+ = 0. (0.4)

The sto
hasti
 heat equation with re�e
tion, i.e. when the fourth order operator is repla
ed

by the Lapla
e operator, is a model for the evolution of random interfa
es near a hard wall. It

has been extensively studied in the literature (see [16℄, [21℄, [22℄, [33℄ [38℄, [39℄ and [40℄). Essential

tools in these arti
les are the 
omparison prin
iple and the fa
t that the underlying Diri
hlet form

is symmetri
 so that the invariant measure is known expli
itely.

In our 
ase, we 
onsider a noise whi
h is obtained as the spa
e derivative of the spa
e-time

white noise. In other words, the noise is the time derivative of a 
ylindri
al Wiener pro
ess in

H−1(0, 1). This is physi
ally reasonable sin
e the Cahn-Hilliard equation 
an be interpreted as a

gradient system in this spa
e. With su
h noise, the system is still symmetri
 and the invariant

measure is known expli
itely. As in the se
ond order 
ase, we use this fa
t in an essential way.

However, as already mentioned, no 
omparison prin
iple holds and new te
hniques have to be

developed. The equation (0.3) has been studied with a single re�e
tion and when no nonlinear

term is taken into a

ount in [18℄. The re�e
tion is introdu
ed to enfor
e positivity of the solution.

Various te
hniques have been introdu
ed to over
ome this la
k of 
omparison prin
iple. Moreover,

as in the se
ond order 
ase, an integration by part formula for the invariant measure has been

derived. Then, in [23℄, a singular nonlinearity of the form u−α
or lnu have been 
onsidered.

Existen
e and uniqueness of solutions have been obtained and using the integration by parts formula

as in [39℄, it has been proved that the re�e
tion measure vanishes if and only if α ≥ 3. In parti
ular,

for a logarithmi
 nonlinearity, the re�e
tion is a
tive.

Here, we 
onsider the original Cahn-Hilliard-Cook model (0.1) with the double-logarithmi


nonlinear term (0.2). The noise is as in the above mentioned arti
les and we still have an expli
it

invariant measure. Our method mixes ideas from [18℄, [23℄ and [39℄. Additional di�
ulties are

over
ome, the main one being to understand how to deal with the nonlinear term. Indeed, in [23℄,

the positivity of the nonlinear term was essential. We over
ome this di�
ulty thanks to a deli
ate a

priori estimate. Our main results state that equations (0.3), (0.4) together with an initial 
ondition

have a unique solution (see Proposition 2.3 and Theorem 1.1). As in [18℄, it is 
onstru
ted thanks to

the gradient stru
ture of (0.3) and strong Feller property. Moreover, we prove that this solution is

the limit of the solution of the Cahn-Hilliard-Cook equation with polynomial nonlinearity without

re�e
tions. This justi�es the use of the polynomial models. We also prove that the invariant

measure is unique and ergodi
. Su
h property is very easy to obtain if θc is small (see [18℄) or in
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the polynomial 
ase (see [12℄). Finally, a stronger result of exponential mixing is given in the last

Theorem 3.1. It is based on 
oupling and arguments developped by Odasso in [34℄.

In future studies, we shall generalize the integration by part formula obtain in [18℄ to prove

that the re�e
tion measure does not vanish. The presen
e of two re�e
tion measures introdu
es

additional di�
ulties. In the se
ond order 
ase, this has been studied in [20℄.

1 Preliminaries

We denote by 〈·, ·〉 the s
alar produ
t in L2(0, 1); A is the realization in L2(0, 1) of the Lapla
e

operator with Neumann boundary 
ondition, i.e.:

D(A) = Domain of A = {h ∈W 2,2(0, 1) : h′(0) = h′(1) = 0}

where we use Wn,p
and ||.||Wn,p

to denote the Sobolev spa
e Wn,p(0, 1) and its asso
iated norm.

Remark that A is self-adjoint on L2(0, 1) and we have a 
omplete orthonormal system of eigenve
-

tors (ei)i∈N in L2(0, 1) for the eigenvalues (λi)i∈N. We denote by h̄ the mean of h ∈ L2(0, 1):

h̄ =

∫ 1

0

h(θ)dθ.

We remark that A is invertible on the spa
e of fun
tions with 0 average. In general, we de�ne

(−A)−1h = (−A)−1(h− h̄) + h̄.
For γ ∈ R, we de�ne (−A)γ by 
lassi
al interpolation. We set Vγ := D((−A)γ/2). It is endowed

with the 
lassi
al seminorm and norm :

|h|γ =

(

+∞
∑

i=1

(−λi)γh2i

)1/2

, ‖h‖γ =
(

|h|2γ + h̄2
)1/2

, for h =
∑

i∈N

hiei.

| · |γ is asso
iated to the s
alar produ
t (·, ·)γ . To lighten notations, we set (·, ·) := (·, ·)−1 and

H := V−1. The average 
an be de�ned in any Vγ by h̄ = (h, e0). It plays an important role and

we often work with fun
tions with a �xed average c ∈ R. We de�ne Hc = {h ∈ H : h̄ = c} for all

c ∈ R.

We use the following regularization operators:

QNx =
1

N

N
∑

n=0

n
∑

i=0

(x, ei)ei.

It is de�ned on L2(0, 1) and 
an extended to any Vγ . Clearly QNx 
onverges to x in Vγ if x ∈ Vγ .
Moreover, it is well known that if x ∈ C([0, 1];R), then the 
onverges holds in C([0, 1];R). Note

also that QN is self-adjoint in Vγ and 
ommutes with A.
The 
ovarian
e operator of the noise is the operator B de�ned by

B =
∂

∂θ
,D(B) =W 1,2

0 (0, 1).

Note that

B∗ = − ∂

∂θ
, D(B∗) =W 1,2(0, 1), BB∗ = −A.

We denote by Bb(Hc) the spa
e of all Borel bounded fun
tions on Hc. We set Os,t := [s, t]× [0, 1]
for s, t ∈ [0, T ] with s < t and T > 0, and Ot = O0,t for 0 ≤ t ≤ T . Given a measure ζ on Os,t and

a 
ontinuous fun
tion v on Os,t, we write

〈

v, ζ
〉

Os,t
:=

∫

Os,t

v dζ.

3



For λ ∈ R, we de�ne:

f(x) :=































+∞, for all x ≤ −1,

ln

(

1− x

1 + x

)

+ λx, for all x ∈ (−1, 1),

−∞, for all x ≥ 1,

(1.1)

and the following antiderivative F of −f :

F (x) = (1 + x) ln(1 + x) + (1 − x) ln(1 − x)− λ

2
x2, for all x ∈ (−1, 1).

With these notations, we rewrite (0.3) in the abstra
t form:



























dX = −1

2
A (AX + f(X) + η− − η+) dt +BdW,

〈(1 +X), η−〉OT
= 〈(1−X), η+〉OT

= 0,

X(0, x) = x for x ∈ V−1,

(1.2)

where W is a 
ylindri
al Wiener pro
ess on L2(0, 1).

De�nition 1.1 Let x ∈ C([0, 1]; [−1, 1]). We say that

(

(X(t, x))t∈[0,T ] , η+, η−,W
)

, de�ned on a

�ltered 
omplete probability spa
e

(

Ω,P,F , (Ft)t∈[0,T ]

)

, is a weak solution to (0.3) on [0, T ] for the
initial 
ondition x if:

(a) a.s. X ∈ C ((0, T ]× [0, 1]; [−1, 1]) ∩ C([0, T ];H) and X(0, x) = x,

(b) a.s. η± are two positive measures on (0, T ]×[0, 1], su
h that η±(Oδ,T ) < +∞ for all δ ∈ (0, T ],

(
) W is a 
ylindri
al Wiener pro
ess on L2(0, 1),

(d) the pro
ess (X(·, x),W ) is (Ft)-adapted,

(e) a.s. f(X(·, x)) ∈ L1(OT ),

(f) for all h ∈ D(A2) and for all 0 < δ ≤ t ≤ T :

〈X(t, x), h〉 = 〈X(δ, x), h〉 − 1

2

∫ t

δ

〈X(s, x), A2h〉ds− 1

2

∫ t

δ

〈Ah, f(X(s, x))〉ds

−1

2

〈

Ah, η+
〉

Oδ,t
+

1

2

〈

Ah, η−
〉

Oδ,t
−
∫ t

δ

〈Bh, dW 〉, a.s.,

(g) a.s. the 
onta
t properties hold :

supp(η−) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = −1} and supp(η+) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = 1},
that is,

〈

(1 +X), η−
〉

OT
=
〈

(1−X), η+
〉

OT
= 0.

Finally, a weak solution (X, η+, η−,W ) is a strong solution if the pro
ess t 7→ X(t, x) is adapted to

the �ltration t 7→ σ(W (s, .), s ∈ [0, t])

Remark 1.1 In (f), the only term where we use the fun
tion f is well de�ned. Indeed, by (e) we

have f(X(·, x)) ∈ L1(OT ) and by Sobolev embedding Ah ∈ D(A) ⊂ L∞(OT ). Hen
e the notation

〈·, ·〉 should be interpreted as a duality between L∞
and L1

.
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The solution of the linear equation with initial data x ∈ H is given by

Z(t, x) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2BdWs.

As easily seen this pro
ess is in C([0,+∞[;H) (see [14℄). In parti
ular, the mean of Z is 
onstant

and the law of the pro
ess Z(t, x) is the Gaussian measure:

Z(t, x) ∼ N
(

e−tA2/2x,Qt

)

, Qt =

∫ t

0

e−sA2/2BB∗e−sA2/2ds = (−A)−1(I − e−tA2

).

If we let t→ +∞, the law of Z(t, x) 
onverges to the Gaussian measure on L2
:

µc := N (ce0, (−A)−1), where c = x̄.

Noti
e that µc is 
on
entrated on Hc ∩ C([0, T ]).
In order to solve equation (1.2), we use polynomial approximations of this equation. We denote

by {fn}n∈N the sequen
e of polynomial fun
tions whi
h 
onverges to the fun
tion f on (−1, 1),
de�ned for n ∈ N by:

fn(x) = −2

n
∑

k=0

x2k+1

(2k + 1)
+ λx, for all x ∈ R.

We use the following antiderivative Fn
of −fn

de�ned by:

Fn(x) = 2
n
∑

k=0

x2k+2

(2k + 2)(2k + 1)
− λ

2
x2, for all x ∈ R.

Then for n ∈ N, we study for the following polynomial approximation of (1.2) with an initial


ondition x ∈ H :











dXn +
1

2
(A2Xn +Afn(Xn))dt = BdW,

Xn(0, x) = x.

(1.3)

This equation has been studied in [12℄ in the 
ase B = I. The results generalize immediately and

it 
an be proved that for any x ∈ H , there exists a unique solution Xn(·, x) a.s. in C([0, T ];H) ∩
L2n+2((0, T )× (0, 1)). It is a solution in the mild or weak sense. Moreover the average of Xn(t, x)
does not depend on t.

For ea
h c ∈ R, (1.2) de�nes a transition semigroup (Pn,c
t )t≥0:

Pn,c
t φ(x) = E[φ(Xn(t, x)], t ≥ 0, x ∈ Hc, φ ∈ Bb(Hc), n ∈ N

∗.

Existen
e of an invariant measure 
an be proved as in [12℄.

Using Galerkin approximation and Bismut-Elworthy-Li formula, it 
an be seen that (Pn,c
t )t≥0

is Strong Feller. More pre
isely, for all φ ∈ Bb(Hc), n ∈ N and t > 0:

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤ 2eλ
2t/4

λ
√
t

‖φ‖∞|x− y|−1, for all x, y ∈ Hc. (1.4)

Irredu
ibility follows from a 
ontrol argument. By Doob Theorem we dedu
e that there exists an

unique and ergodi
 invariant measure νnc .
It is 
lassi
al that equation (1.3) is a gradient system in Hc and 
an be rewritten as:











dXn +
1

2
A(AXn −∇Un(Xn))dt = BdW,

Xn(0, x) = x ∈ L2(0, 1),

(1.5)

where ∇ denotes the gradient in the Hilbert spa
e L2(0, 1), and:

Un(x) :=

∫ 1

0

Fn(x(θ))dθ, x ∈ L2(0, 1).
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The measure νnc is therefore given by:

νnc (dx) =
1

Zn
c

exp(−Un(x))µc(dx),

where Zn
c is a normalization 
onstant.

We prove in se
tion 2 that, for c ∈ (−1, 1), the sequen
e (νnc )n∈N 
onverges to the measure

νc(dx) =
1

Zc
exp(−U(x))1x∈Kµc(dx),

where

U(x) :=

∫ 1

0

F (x(θ))dθ, x ∈ L2(0, 1).

and

K = {x ∈ L2 : 1 ≥ x ≥ −1}.
In se
tion 2, we prove the following result.

Theorem 1.1 Let c ∈ (−1, 1). Let x ∈ K su
h that x̄ = c, then there exists a 
ontinuous pro
ess

denoted (X(t, x))t≥0 and two nonnegative measures ηx+ and ηx− su
h that

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

is the unique strong solution of (0.3) with X(0, x) = x a.s.

The Markov pro
ess (X(t, x), t ≥ 0, x ∈ K∩Hc) is 
ontinous and has P
c
for transition semigroup

whi
h is strong Feller on Hc.

For all x ∈ K∩Hc and 0 = t0 < t1 < · · · < tm, (X(ti, x), i = 1, . . . , n) is the limit in distribution

of (Xn(ti, x))i=1,...,m.

Finally νc is an invariant measure for P c
.

In all the arti
le, C denotes a 
onstant whi
h may depend on T and its value may 
hange from

one line to another.

2 Proof of Theorem 1.1

2.1 Pathwise uniqueness

We �rst prove that for any pair (X i, ηi+, η
i
−,W ), i = 1, 2, of weak solutions of (0.3) de�ned on

the same probability spa
e with the same driving noise W and with X1(0) = X2(0), we have

(

X1, η1+, η
1
−

)

=
(

X2, η2+, η
2
−

)

. This pathwise uniqueness will be used in the next subse
tion to


onstru
t stationary strong solutions of (0.3).

Proposition 2.1 Let x ∈ C ([0, 1]; [−1, 1]). Let

(

X i, ηi+, η
i
−,W

)

, i = 1, 2 be two weak solutions of

(0.3) with X1(0) = X2(0) = x. Then
(

X1, η1+, η
1
−

)

=
(

X2, η2+, η
2
−

)

.

Proof : We use the following Lemma from [23℄.

Lemma 2.1 Let ζ be a �nite measure on Oδ,T and V ∈ C(Oδ,T ). Suppose that there exists a

positive 
ontinuous fun
tion cT : [0, T ] → R
+
su
h that :

i) for all r ∈ [δ, T ], for all h ∈ C([0, 1]), su
h that h̄ = 0, 〈h, ζ〉Or,T
= 0,

ii) for all r ∈ [δ, T ], V (r, ·) = cT (r) with 〈V, ζ〉Or,T
= 0,

then ζ is the null measure.

Let Y (t) = X1(t, x) − X2(t, x), ζ+ = η1+ − η2+ and ζ− = η1− − η2−, Y is the solution of the

following equation:











dY = −1

2
A
(

AY +
(

f(X1)− f(X2)
)

+ ζ− − ζ+
)

dt,

Y (0) = 0.

(2.1)
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Taking the s
alar produ
t in H with Y N = QNY and integrating in time, we obtain sin
e Y has

zero average:

|Y N (t)|2−1 − |Y N (δ)|2−1 = −
∫ t

δ

(

|Y N (s)|21 − 〈f(X1)− f(X2), Y N 〉
)

ds + 〈ζ− − ζ+, Y
N 〉Oδ,t

. (2.2)

For all s ∈ [δ, t],

〈Y N (s)− Y (s), f(X1(s, x))− f(X2(s, x))〉

≤ ‖Y N (s)− Y (s)‖L∞([0,1])‖f(X1(s, x))− f(X2(s, x))‖L1([0,1]),

where ‖ · ‖L∞([0,1]) and ‖ · ‖L1([0,1]) are the 
lassi
al norms on the spa
e [0, 1]. The latter term


onverges to zero sin
e Y N (s) 
onverges uniformly to Y (s) on [0, 1]. Sin
e f(x)−λx is nonin
reasing,
(

〈Y (s), f(X1(s, x)) − f(X2(s, x))〉
)

=
(

〈Y (s), f(X1(s, x)) − f(X2(s, x)) − λY (s)〉
)

+(〈Y (s), λY (s)〉)
≤ λ|Y (s)|20.

Taking the limit in (2.2) as N grows to in�nity, we obtain:

|Y (t)|2−1 − |Y (δ)|2−1 ≤
〈

Y, ζ− − ζ+
〉

Oδ,t
+ λ

∫ t

δ

|Y (s)|20 ds.

We now write

〈

Y, ζ− − ζ+
〉

Oδ,t

=
〈

1 +X1, η1−
〉

Oδ,t
−
〈

1 +X2, η1−
〉

Oδ,t
−
〈

1 +X1, η2−
〉

Oδ,t
+
〈

1 +X2, η2−
〉

Oδ,t

+
〈

1−X1, η1+
〉

Oδ,t
−
〈

1−X2, η1+
〉

Oδ,t
−
〈

1−X1, η2+
〉

Oδ,t
+
〈

1−X2, η2+
〉

Oδ,t

≤ 0

by the 
onta
t 
ondition and the positivity of the measures. It follows:

|Y (t)|2−1 − |Y (δ)|2−1 ≤ λ

∫ t

δ

|Y (s)|20 ds.

By Gronwall Lemma, and letting δ → 0, we have |Y (t)|−1 = 0 for all t ≥ 0. Sin
e Ȳ (t) = 0, we
dedu
e X1(t, x) = X2(t, x) for all t ≥ 0. Moreover, with the de�nition of a weak solution, we see

that :

for all h ∈ D(A2),
〈

Ah, ζ+ − ζ−
〉

Oδ,t
= 0.

By density, we obtain that ζ := ζ− − ζ+ and V := (1 −X1)(1 +X1) = (1 −X2)(1 +X2) satisfy
the hypothesis of Lemma 2.1, and therefore ζ = ζ− − ζ+ is the null measure. And sin
e ζ− and ζ+
have disjoint supports, then ζ− and ζ+ are the null measure, i.e. η1− = η2− and η1+ = η2+.

�

2.2 Convergen
e of invariants measures

We know (see [18℄) that µc is the law of Y c = B−B+ c, where B is brownian motion. Then for

0 ≤ c < 1, we remark the following in
lusion :

{Bθ ∈
[

c− 1

2
,
1− c

2

]

, for all θ ∈ [0, 1]} ⊂ {Y c ∈ K},

and we have a similar result for −1 < c ≤ 0. Therefore µc(K) > 0 with −1 < c < 1. Let us de�ne
U the potential asso
iated to the fun
tion f :

U(x) =







∫ 1

0

F (x(θ))dθ if x ∈ K,

+∞ else.

We have the following result :
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Proposition 2.2 For −1 < c < 1,

νnc ⇀ νc :=
1

Zc
exp−U(x)

1x∈Kµc(dx), when n→ +∞,

where Zc is a normalization 
onstant.

Proof : Let ψ ∈ Cb(L2,R). We want to prove that

∫

H

ψ(x) exp(−Un(x))µc(dx) −→
n→+∞

∫

H

ψ(x) exp(−U(x))1x∈Kµc(dx). (2.3)

We �rst prove,

exp(−Un(x)) −→
n→+∞

exp(−U(x))1x∈K , µc a.s. (2.4)

Sin
e µc(C([0, 1])) = 1, we 
an restri
t our attention to x ∈ C([0, 1]). Then if x /∈ K there exists

δx > 0 su
h that m({θ ∈ [0, 1] : x(θ) ≤ −1 − δx}) > 0 or m({θ ∈ [0, 1] : x(θ) ≥ 1 + δx}) > 0,
m being the Lebesgue measure. Suppose m({θ ∈ [0, 1]/x(θ) ≤ −1 − δx}) > 0, then we have sin
e

F̃n(x) = Fn(x) +
λ

2
x2 is positive and non in
reasing on (−∞,−1)

0 ≤ exp(−Un(x)) ≤ exp

(

−
∫ 1

0

F̃n(x(θ))1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−
∫ 1

0

F̃n(−1− δx)1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−F̃n(−1− δx)m({x ≤ −1− δx}) +
∫ 1

0

λ

2
x(θ)2dθ

)

.

And this latter term 
onverges to zero as n grows to in�nity.

Now for x ∈ K, Fn(x(θ)) 
onverges to F (x(θ)) almost everywhere as n grows to in�nity. More-

over −λ
2
x(θ)2 ≤ Fn(x(θ)) ≤ ln 2, and by the dominated 
onvergen
e Theorem, we dedu
e (2.4).

Finally, (2.3) follows again by dominated 
onvergen
e Theorem.

2.3 Existen
e of stationary solutions

In this se
tion, we prove the existen
e of stationary solutions of equation (1.2) and that they are

limits of stationary solutions of (1.3), in some suitable sense. Fix −1 < c < 1 and 
onsider the

unique (in law) stationary solution of (1.3) denote X̂n
c in Hc. We are going to prove that the laws

of X̂n
c weakly 
onverge as n grows to in�nity to a stationary strong solution of (0.3).

Proposition 2.3 Let −1 < c < 1 and T > 0, X̂n
c 
onverges in probability as n grows to in�nity

to a pro
ess X̂c in C(OT ). Moreover f(X̂c) ∈ L1(OT ) almost surely, and setting

dηn+ = −fn(X̂n
c (t, θ))1X̂n

c (t,θ)>0dtdθ + f(X̂c(t, θ))10<X̂c(t,θ)≤1dtdθ,

and

dηn− = fn(X̂n
c (t, θ))1X̂n

c (t,θ)≤0dtdθ − f(X̂c(t, θ))1−1≤X̂c(t,θ)≤0dtdθ,

then (ηn+, η
n
−) 
onverges in probability to (η+, η−) su
h that (X̂c, η+, η−,W ) is a stationary strong

solution of (0.3).

Proof : Pro
eeding exa
tly as in [18℄ (see Lemma 5.2), we prove that the laws of (X̂n
c ,W

n)n∈N

are tight in C(OT ) × C([0, T ];Vγ), γ < −1/2. We have set Wn = W , n ∈ N. We therefore 
an

extra
t 
onvergent subsequen
es. Let (X̂nk
c ,Wnk)k∈N be su
h a subsequen
e. Using Skohorod

theorem, one may �nd a probability spa
e and a sequen
e of random variables (X̃k
c ,Wk)k∈N on

this probability spa
e with the same laws as (X̂nk
c ,Wnk)k∈N whi
h 
onverge almost surely.
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Below, we show in Step 1 that its limit X̃c satis�es f(X̃c) ∈ L1(OT ) almost surely. Then in

Step 2, we prove that the measures η̃k±, de�ned as above with X̂nk
c repla
ed by X̃k

c , 
onverges to

two positive measures η̃± and that (X̃c, η̃+, η̃−) is a weak solution in the probabilisti
 sense. It

then remains to use pathwise uniqueness to 
on
lude in Step 3. In this proof, we only treat the


ase λ = 0. This assumption is not essential at all but lightens the 
omputations. For λ 6= 0, an
extra term has to be taken into a

ount. It is very easy to deal with.

Step 1.

Applying Ito formula to |QN X̂
n
c (t)|2−1, we obtain

|QNX̂
n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QN X̂
n
c (t)|21dt− 2

∫

OT

fn(X̂
n
c )
(

QN X̂
n
c − c

)

dsdθ

= 2

∫ T

0

(QN X̂
c
n, BdW (s)) + T Tr(QNB)

Note that

E





(

∫ T

0

(QN X̂
n
c , BdW (s))

)2


 = E

∫ T

0

|QNX̂
n
c |2−1ds = T

∫

H

|QNx|2−1ν
n
c (dx) ≤ C T

We set

ϕN
n = |QN X̂

n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QNX̂
n
c (t)|21dt

−2

∫

OT

fn(X̂
n
c )
(

QNX̂
n
c − c

)

dsdθ − T Tr(QNB)

and dedu
e

P(|ϕN
n | ≥M) ≤ C T

M2
.

Thus, for all N ∈ N, the laws of (ϕN
n )n∈N are tight. Therefore the laws of (X̂n

c ,W
n, (ϕN

n )N∈N)n∈N

are tight and using Skohorod theorem on this sequen
e, we 
an assume that X̃k
c , Wk

and, for

N ∈ N, ϕ̃N
k 
onverge almost surely. We have de�ned ϕ̃N

k as above with X̃k
c instead of X̂n

c . In

parti
ular, ϕ̃N
k is bounded almost surely:

|QN X̃
k
c (T )|2−1 − |QN X̃

k
c (0)|2−1 +2

∫ T

0

|QN X̃
k
c (t)|21dt

−2

∫

OT

fk(X̃
k
c )
(

QN X̃
k
c − c

)

dsdθ − T Tr(QNB)

≤ C(N, T, c)

where C(N, T, c) is random. The �rst three terms are 
learly also bounded almost surely. This

uses the fa
t that QN is a bounded operator from H to V1. Sin
e QN has �nite dimensional range,

we obtain

−
∫

OT

fnk
(X̃k

c )
(

QNX̃
k
c − c

)

dsdθ ≤ C(N, T, c) (2.5)

for a di�erent random 
onstant C(N, T, c).

Let us 
hoose ǫ0 = min

{

1− c

4
,
1 + c

4

}

and take N ∈ N su
h that

|QNX̃c − X̃c|C(OT ) ≤
1

2
ǫ0

and K0 su
h that for k ≥ K0

|X̃k
c − X̃c|C(OT ) ≤

1

4
ǫ0.
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Then, for all k ≥ K0,

|QN X̃
k
c − X̃k

c |C(OT ) ≤ ǫ0.

Moreover, if X̃k
c ≥ 1 + c

2
then fnk

(X̃k
c ) ≤ 0 and

QN X̃
k
c − c ≥ −ǫ0 +

1 + c

2
− c ≥ 1− c

4
≥ ǫ0.

Similarly, if X̃k
c ≤ −1 + c

2
then fnk

(X̃k
c ) ≥ 0 and

QN X̃
k
c − c ≤ −ǫ0.

Finally, noti
ing that fn is uniformly bounded by a 
onstant K(c) on [
−1 + c

2
,
1 + c

2
], we dedu
e

∫

OT

|fnk
(X̃k

c )|dsdθ ≤ − 1

ǫ0

∫

X̃k
c ≥

1+c
2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

− 1

ǫ0

∫

X̃k
c ≤

−1+c
2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ +K(c)

≤ − 1

ǫ0

∫

OT

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

+
1

8
(max{1− c, 1 + c})2K(c) +K(c).

Thanks to (2.5), we obtain

∫

OT

|fnk
(X̃k

c )|dsdθ ≤ C(N, T, c), (2.6)

where the value of the random 
onstant C(N, T, c) has again 
hanged. It easily dedu
ed from this

uniform bound that |X̃c| ≤ 1 almost everywhere with respe
t to t and ω and by Fatou Lemma that

f(X̃c) ∈ L1(OT ) almost surely.

�

Step 2.

Let now ξk be the following measure on OT :

dξk := −fnk(X̃k
c (t, θ))dtdθ.

and ξk+ and ξk− the positive and negative parts:

dξk+ := −fnk(X̃k
c (t, θ))1X̃k

c >0dtdθ, dξ
k
− := fnk(X̃k

c (t, θ))1X̃k
c ≤0dtdθ.

By step 1, f(X̃c) ∈ L1(OT ) and we 
an de�ne the following measure:

dλ := −f((X̃c(t, θ))1−1≤X̃c≤1dtdθ,

and the positive and negative parts:

dλ+ := −f((X̃c(t, θ))10<X̃c≤1dtdθ, dλ− := f((X̃c(t, θ))1−1≤X̃c≤0dtdθ.

By (2.6), fnk(X̃k
c )− f(X̃c) is bounded in L1(OT ). We dedu
e that ξk has a subsequen
e ξkℓ

whi
h


onverges to a measure ζ. Note that this subsequen
e may depend on the random parameter ω.
We set η̃ = ζ − λ.
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Thanks to Fatou Lemma we have the following inequality for all h ∈ C(OT ) nonnegative:

∫

OT

h(s, θ)
[

− f(X̃c(s, θ))10<X̃c≤1

]

dsdθ =

∫

OT

lim inf
ℓ→+∞

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ

≤ lim inf
ℓ→+∞

∫

OT

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ.

Therefore η̃kℓ

+ = ξkℓ

+ − λ+ 
onverges to a positive measure. Similarly, η̃kℓ

− = ξkℓ

− − λ− 
onverges to

a positive measure. It follows:

ξkℓ

+ − λ+ ⇀ η̃+ and ξkℓ

− − λ− ⇀ η̃−,

where η̃+ and η̃− are the positive and negative parts of η̃.

Let us now show that the 
onta
t 
onditions holds for

(

1− X̃c, η̃+

)

and

(

1 + X̃c, η̃−

)

. Let us

de�ne the following measures for ε > 0 and k ∈ N.

dξk+,ε := −fnk(X̃k
c (t, θ))11−ε≤X̃k

c
dtdθ, dτk+,ε := −fnk(X̃k

c (t, θ))10<X̃k
c <1−εdtdθ,

dλ+,ε := −f(X̃c(t, θ))11−ε≤X̃c
dtdθ, dτ+,ε := −f(X̃c(t, θ))10<X̃c<1−εdtdθ.

Clearly τk+,ε 
onverges to τ+,ε, it follows

lim sup
ℓ→+∞

〈

1− X̃kℓ
c , ξkℓ

+ − λ+

〉

OT

= lim sup
ℓ→+∞

(

〈

1− X̃kℓ
c , ξkℓ

+,ε

〉

OT
−
〈

1− X̃kℓ
c , λ+,ε

〉

OT

+
〈

1− X̃kℓ
c , τkℓ

+,ε

〉

OT
−
〈

1− X̃kℓ
c , τ+,ε

〉

OT

)

= lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c
dtdθ

+

∫

OT

(

1− X̃kℓ
c

)

f(X̃c)11−ε≤X̃c
dtdθ

)

≤ lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c ≤1

dtdθ

)

+ lim sup
ℓ→+∞

(∫

OT

(

1− X̃kℓ
c

)−

f(X̃c)11−ε≤X̃c
dtdθ

)

Sin
e (1 − X̃kℓ
c )− 
onverges uniformly to zero, we dedu
e:

lim sup
ℓ→+∞

〈1 − X̃kℓ
c , ξ

kℓ

+ − λ+
〉

OT
≤ T sup

x∈[1−ε,1]

|(x− 1)f(x)|

≤ −Tε ln
(

ε

2− ε

)

.

Letting ε → 0, we obtain the �rst 
onta
t 
ondition sin
e the left hand side 
learly 
onverges to

〈1− X̃c, η̃+〉. The se
ond is obtained similarly.

We now prove that ξk − λ does not have more than one limit point so that in fa
t the whole

sequen
e 
onverge to η̃. Let η̃i, i = 1, 2 be two limit points.

For all h ∈ D(A2) and for all 0 ≤ t ≤ T :

〈

Ah, ξk − λ
〉

Ot
= 〈X̃k

c (t, .), h〉 − 〈x, h〉+
∫

Ot

X̃k
c (s, θ)A

2h(θ)dsdθ

+

∫ t

0

〈Bh, dWk〉+
∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.
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We dedu
e

〈

Ah, η̃i
〉

Ot
= −〈X̃c(t, .), h〉+ 〈x, h〉 −

∫

Ot

X̃c(s, θ)A
2h(θ)dsdθ

−
∫ t

0

〈Bh, dW〉 −
∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.

And by density

〈

h, η̃1
〉

Ot
=
〈

h, η̃2
〉

Ot

for any h ∈ C([0, 1]) su
h that h̄ = 0. Sin
e by the 
onta
t 
ondition

〈

(1− X̃c)(1 + X̃c), η̃1
〉

Ot
=
〈

(1− X̃c)(1 + X̃c), η̃2
〉

Ot
.

We dedu
e from Lemma 2.1 that η̃1 = η̃2.

�

Step 3.

We use a result form [25℄ that allows to get the 
onvergen
e of the approximated solutions in

probability in any spa
e in whi
h these approximated solutions are tight.

Lemma 2.2 Let {Zn}n≥1 be a sequen
e of random elements on a Polish spa
e E endowed by its

borel σ-algebra. Then {Zn}n≥1 
onverges in probability to an E-valued random element if and any

if from every pair of subsequen
es {(Zn1
k
, Zn2

k
)k≥1, one 
an extra
t a subsequen
e whi
h 
onverges

weakly to a random element supported on the diagonal {(x, y) ∈ E × E, x = y}.

Assume (n1
k)k∈N and (n1

k)k∈N are two arbitrary subsequen
es. Clearly, the pro
ess

(

X̂
n1
k

c , X̂
n2
k

c ,W k
)

is tight in a suitable spa
e. By Skorohod's theorem, we 
an �nd a probability spa
e and a sequen
e

of pro
esses

(

X̃1,k
c , X̃2,k

c ,Wk
)

su
h that

(

X̃1,k
c , X̃2,k

c ,Wk
)

→
(

X̃1
c , X̃

2
c ,W

)

almost surely and

(

X̃1,k
c , X̃2,k

c ,Wk
)

has the same distribution as

(

X̂
n1
k

c , X̂
n2
k

c ,W k
)

for all k ∈ N. In the Skorohod's

spa
e, the approximated measures respe
tively 
onverge to two 
onta
t measures η̃1 and η̃2. By

the se
ond step, (X̃1
c , η̃1,W) and (X̃2

c , η̃2,W) are both weak solutions of (0.3). By uniqueness,

ne
essarily X̃1
c = X̂2

c and η̃1 = η̃2. Therefore the subsequen
e
(

X̂
n1
k

c , X̂
n2
k

c

)

k∈N


onverges in distri-

bution to a pro
ess supported on the diagonal. We use Lemma 2.2 to prove that the sequen
e (X̂n
c )


onverges in probability to a pro
ess X̂c. Clearly X̂c is stationary. Reprodu
ing the argument of

Step 1 and Step 2, we prove that it is a strong solution of (0.3) and the 
onvergen
e of the 
onta
t

measures.

�

2.4 Convergen
e of the semigroup

First we state the following result whi
h is a 
orollary of Proposition 2.3.

Corollary 2.1 Let c > 0.

i) There exists a 
ontinuous pro
ess (X(t, x), t ≥ 0, x ∈ K ∩Hc) with X(0, x) = x and a set K0

dense in K ∩ Hc, su
h that for all x ∈ K0 there exists a unique strong solution of equation

(0.3) given by

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

.

ii) The law of

(

X(t, x)t≥0, η
x
+, η

x
−

)

is a regular 
onditional distribution of the law of

(

X̂c, η+, η−

)

given X̂c(0) = x ∈ K ∩Hc.
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Proof : By Proposition 2.3, we have a stationary strong solution X̂c in Hc, su
h that W and

X̂c(0) are independent. Conditioning

(

X̂c, η+, η−

)

on the value of X̂c(0) = x, with c = x, we

obtain for νc-almost every x a strong solution that we denote

(

X(t, x), ηx+, η
x
−

)

for all t ≥ 0 and for

all x ∈ K ∩Hc. This pro
ess is the desired pro
ess. Indeed, sin
e the support of νc is K ∩Hc, we

have a strong solution for a dense set K0 in K ∩Hc.

Noti
e that all pro
esses (X(t, x))t≥0 with x ∈ K0 are driven by the same noise W and are


ontinuous with values in H . Moreover, we have the following obvious identity:

|Xn(t, x)−Xn(t, y)|−1 ≤ eλt|x− y|−1, x, y ∈ L2
c , t ≥ 0,

and by density we obtain a 
ontinuous pro
ess (X(t, x))t≥0 in Hc for all x ∈ K ∩Hc.

�

Proposition 2.4 Let c > 0, for all φ ∈ Cb(H) and x ∈ K ∩Hc:

lim
n→+∞

Pn,c
t φ(x) = E[φ(X(t, x))] =: P c

t φ(x). (2.7)

Moreover the Markov pro
ess (X(t, x), t ≥ 0, x ∈ K ∩Hc) is strong Feller and its transition semi-

group P c
is su
h that:

|P c
t φ(x) − P c

t φ(y)| ≤
2eλ

2t/4

λ
√
t

|x− y|−1, for all x, y ∈ K ∩Hc, for all t > 0. (2.8)

Proof : Sin
e (νnc )n≥1 is tight in Hc, then there exists an in
reasive sequen
e of 
ompa
t sets

(Jp)p∈N in H su
h that:

lim
p→+∞

sup
n≥1

νnc (H \ Jp) = 0.

Set J := ∪
p∈N

Jp∩K. Sin
e the support of νc is in K∩Hc and νc(J) = 1, then J is dense in K∩Hc.

Fix t > 0, by (1.4), for any φ ∈ Cb(H) :

sup
n∈N

(‖Pn,c
t φ‖∞ + [Pn,c

t φ]Lip(Hc)) < +∞.

Let (nj)j∈N be any sequen
e in N. With a diagonal pro
edure, by Arzelà-As
oli Theorem, there

exists (njl)l∈N a subsequen
e and a fun
tion Θt : J → R su
h that:

lim
l→+∞

sup
x∈Jp

|Pnjl
,c

t φ(x) −Θt(x)| = 0, for all p ∈ N.

By density, Θt 
an be extended uniquely to a bounded Lips
hitz fun
tion Θ̃t on K ∩Hc su
h that

Θ̃t(x) = lim
l→+∞

P
njl

,c
t φ(x), for all x ∈ K ∩Hc.

Note that the subsequen
e depends on t. Therefore, we have to prove that the limit de�nes a

semigroup and does not depend on the 
hosen subsequen
e.

By Proposition 2.3, we have for all φ, ψ ∈ Cb(H) :

E

[

ψ
(

X̂c(0)
)

φ
(

X̂c(t)
)]

= lim
l→+∞

E

[

ψ
(

X̂
njl
c (0)

)

φ
(

X̂
njl
c (t)

)]

= lim
l→+∞

∫

H

ψ(y)E
[

φ
(

X̂
njl
c (t)

) ∣

∣

∣X̂
njl
c (0) = y

]

ν
njl
c (dy)

= lim
l→+∞

∫

H

ψ(y)P
njl

,c
t φ(y)ν

njl
c (dy)

=

∫

H

ψ(y)Θ̃t(y)νc(dy).

Thus, by Corollary 2.1, we have the following equality:

E [φ (X(t, x))] = Θ̃t(x), for νc-almost every x. (2.9)

Sin
e E[φ(X(t, .))] and Θ̃t are 
ontinuous on K ∩ Hc, and νc(K ∩ Hc) = 1, the equality (2.9) is

true for all x ∈ K ∩ Hc. Moreover the limit does not depend on the 
hosen subsequen
e, and we

obtain (2.7). Letting n→ ∞ in (1.4), we dedu
e (2.8).

�
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2.5 End of the proof of Theorem 1.1

We have proved that there exists a 
ontinous pro
ess X whi
h is a strong solution of equation (0.3)

for an x in a dense spa
e. In this se
tion, we prove existen
e for an initial 
ondition in K ∩ Hc

with c > 0.
By Corollary 2.1 we have a pro
ess (X(t, x), t ≥ 0, x ∈ K ∩Hc), su
h that for all x in a set K0

dense in K ∩Hc we have a strong solution

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

of (0.3) with initial 
ondition

x. By Proposition 2.3, the Markov pro
ess X has transition semigroup P c
on Hc.

The strong Feller property of P c
implies that for all x ∈ K ∩ Hc and s > 0 the law of X(s, x)

is absolutely 
ontinous with respe
t to the invariant measure νc. Indeed, if νc(Γ) = 0, then
νc(P

c
s (1Γ)) = νc(Γ) = 0. So P c

s (1Γ)(x) = 0 for νc-almost every x and by 
ontinuity for all

x ∈ K ∩Hc.

Therefore almost surely X(s, x) ∈ K0 for all s > 0 and x ∈ K ∩ Hc. Fix s > 0, denote for all

θ ∈ [0, 1]:
X̃ := t 7→ X(t+ s, x), W̃ (·, θ) := t 7→W (t+ s, θ)−W (s, θ)),

and the measures η̃x± su
h that for all T > 0, and for all h ∈ C(OT ):

〈

h, η̃±
x
〉

OT
:=

∫

OT+s
s

h(t− s, θ)ηx±(dt, dθ).

So we have a pro
ess X̃ ∈ C([0, T ];H)∩ C(OT ) and two measures η̃x+ and η̃x− on OT whi
h is �nite

on [δ, T ]× [0, 1] for all δ ≥ 0, su
h that

(

(X̃(t, x))t≥0, η̃
x
+, η̃

x
−, W̃

)

is a strong solution of (0.3) with

initial 
ondition X(s, x). By 
ontinuity X(s, x) → x in H as s→ 0, so
(

(X(t, x))t≥0, η
x
+, η

x
−,W

)

is

a strong solution of (0.3) with initial 
ondition x in the sense of the de�nition 1.1.

3 Ergodi
ity and mixing

When λ is small, it 
an be easily shown that νc is the unique invariant measure and is ergodi
.

We now prove that this is in fa
t true for any λ. Note that sin
e (P c
t )t≥0 is Strong Feller, the

results follows from Doob theorem if we prove that (P c
t )t≥0 is irredu
ible (see for instan
e [15℄).

For additive noise driven SPDEs, this is often proved by a 
ontrol argument and 
ontinuity with

respe
t to the noise. This latter property is not 
ompletely trivial in our situation but we are able

to adapt the argument.

Proposition 3.1 For any c ∈ (−1, 1), the semigroup (P c
t )t≥0 is irredu
ible.

Proof :

Let x, y ∈ C∞([0, 1]) be su
h that |x|L∞(0,1) ≤ 1− δ and |y|L∞(0,1) ≤ 1− δ for some δ > 0 and

x̄ = ȳ = c. We set

u(t) =
t

T
y +

(

1− t

T

)

x

and de�ne g0 by

g0(θ, t) =

∫ θ

0

(

1

T
(y − x) +

1

2
A(Au + f(u))

)

(ϑ, t)dϑ

Then g0 is in C∞([0, T ]× [0, 1]), g0(t) ∈ D(B), t ∈ [0, T ], and:

d

dt
u = −1

2
A(Au+ f(u)) +Bg0.

Moreover

d

dt
u = −1

2
A(Au + fδ(u)) +Bg0 (3.1)

where fδ is any Lips
hitz fun
tion equal to f on [−1 + δ/2, 1− δ/2].

14



Let Xδ(·, x) be the solution of (0.3) with f repla
ed by fδ and set Y δ(·, x) = Xδ(·, x) − Z,
where Z = Z(·, 0) is the solution of the linear equation with 0 as initial data. Then

d

dt
Y δ = −1

2
A
(

AY δ + fδ(Y
δ + Z)

)

, Y δ(0, x) = x.

Let also

z0(t) =

∫ t

0

e−A2(t−s)/2Bg0(s)ds.

Sin
e the gaussian pro
ess Z is almost surely 
ontinuous and has a non degenerate 
ovarian
e, we


learly have

P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

for any ε > 0. Let us denote by Y z
the solution of

d

dt
Y z = −1

2
A (AY z + fδ(Y

z + z)) , Y z(0, x) = x. (3.2)

We prove below that the mapping

Φδ : z 7→ Y z

is 
ontinuous from C(OT ) into C(OT ). Sin
e u = Φδ(z0) + z0 and Xδ = Φδ(Z) + Z, we dedu
e

that there exists ε su
h that

P
(

|Xδ − u|C(OT ) ≤ δ/2
)

≥ P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

Let us now observe that |Xδ −u|C(OT ) ≤ δ/2 implies |Xδ|C(OT ) ≤ 1− δ/2 so that fδ(X
δ) = f(Xδ)

and Xδ
is fa
t solution of (0.3). By pathwise uniqueness, we dedu
e that |Xδ − u|C(OT ) ≤ δ/2

implies Xδ = X . It follows

P
(

|X − u|C(OT ) ≤ δ/2
)

≥ P
(

|Xδ − u|C(OT ) ≤ δ/2
)

> 0

In parti
ular

P (|X(T, x)− y| ≤ δ/2) > 0.

If we assume now that x, y ∈ Hc , we 
hoose x̃, ỹ ∈ C∞([0, 1]) su
h that

|x− x̃| ≤ δ, |y − ỹ| ≤ δ, |x̃|L∞(0,1) ≤ 1− δ and |ỹ|L∞(0,1) ≤ 1− δ,

and

¯̃x = ¯̃y = c. We have

|X(T, x)−X(T, x̃)| ≤ eλT |x− x̃|.
Therefore

P
(

|X(T, x)− y| ≤ δ/2 + (1 + eλT )δ
)

≥ P (|X(T, x̃)− ỹ| ≤ δ/2) > 0.

This proves the results.

It remains to prove that Φδ is 
ontinuous. This follows form the mild form of equation (3.2):

Y z(t) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2Afδ(Y
z(s) + z(s))ds.

It is 
lassi
al that, for t > 0, Ae−tA2/2
maps C([0, 1]) into itself and

∣

∣

∣Ae−tA2/2
∣

∣

∣

L(C([0,1]))
≤ Ct−1/2.

This 
an be seen from the formula

Ae−tA2/2u = −
∑

i∈N

λie
−λ2

i t/2〈u, ei〉ei,

15



where (ei)i∈N and (λi)i∈N are the eigenve
tors and eigenvalues of −A. Sin
e |ei|C([0,1] are equi-

bounded, we dedu
e

∣

∣

∣Ae−tA2/2u
∣

∣

∣

C([0,1]
≤ C

(

∑

i∈N

λie
−λ2

i t/2

)

|u|L1(0,1)

≤ C t−1/2|u|C([0,1])

We dedu
e

|Y z1(t)− Y z2(t)|C([0,1])

≤ C Lδ

∫ t

0

(t− s)−1/2
(

|Y z1(s)− Y z2(s)|C([0,1]) + |z1(s)− z2(s)|C([0,1])

)

ds

where Lδ is the Lips
hitz 
onstant of fδ. Gronwall Lemma implies the result for T su�
iently

small. Iterating the argument we obtain the 
ontinuity of Φδ.

�

Corollary 3.1 For every c ∈ (−1, 1), νc is the unique invariant measure of the transition semi-

group (P c
t )t≥0. Moreover it is ergodi
.

Using 
lassi
al arguments, it is easily seen that, for λ = 0, νnc satis�es a log-Sobolev inequality and

therefore a Poin
aré inequality. The 
onstant in these inequality do not depend on n so that we

have the same result for νc. For λ 6= 0, we 
an argue as in [13℄ and prove that this is still true.

We now want to prove a stronger result : exponential mixing. We use 
oupling arguments

developped by Odasso in [34℄.

Theorem 3.1 For every c ∈ (−1, 1), there exist a small β > 0 and a 
onstant C > 0 su
h that for

all ϕ ∈ Bb(K ∩Hc), t > 0 and x ∈ Hc

|E[ϕ(X(t, x))] − νc(ϕ)| ≤ C‖ϕ‖∞e−βt. (3.3)

Proof : By (2.8), we know that for any ϕ ∈ Bb(K ∩Hc), T > 0, ε > 0,

|P c
Tϕ(x)− P c

Tϕ(y)| ≤
4eλ

2T/4

λ
√
T

ε‖ϕ‖∞

if x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. By de�nition of the total variation norm, we dedu
e

‖ (P c
T )

∗
δx − (P c

T )
∗
δy‖var = sup

‖ϕ‖∞≤1

|P c
Tϕ(x)− P c

Tϕ(y)| ≤
4eλ

2T/4

λ
√
T

ε (3.4)

for T > 0, x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. We have denoted by δx the Dira
 mass at x ∈ Hc

so that (P c
T )

∗
δx is the law of X(T, x).

Re
all that a 
oupling of ((P c
T )

∗
δx, (P

c
T )

∗
δy) is a 
ouple of random variable (X1, X2) su
h that

the law of X1 is (P c
T )

∗ δx and the law of X2 is (P c
T )

∗ δy. By standard results on 
ouplings (see for

instan
e [26℄ se
tion 4, or [30℄), we know there exists a maximal 
oupling of ((P c
T )

∗
δx, (P

c
T )

∗
δy).

Let us denote by (Y1(x, y), Y2(x, y)) this maximal 
oupling, it satis�es

P(Y1(x, y) 6= Y2(x, y)) = ‖ (P c
T )

∗ δx − (P c
T )

∗ δy‖var. (3.5)

Moreover (Y1(x, y), Y2(x, y)) depends measurably on (x, y).
By the Strong Feller property, we know that x 7→ P(|X(T, x)|−1 ≤ ε) is 
ontinuous on Hc.

Therefore, thanks to Proposition 3.1, for any x ∈ K ∩Hc, there exists a ηx > 0 and a κx > 0 su
h

that

P(|X(T, y)|−1 ≤ ε) > κx
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for all y ∈ K ∩ Hc su
h that |x − y|−1 ≤ ηx. By 
ompa
tness of K ∩ Hc in Hc, we dedu
e that

that there exits κ0 > 0 su
h that

P(|X(T, y)|−1 ≤ ε) > κ0 (3.6)

for all y ∈ K ∩Hc.

Let W̃ a 
ylindri
al Wiener pro
ess independent onW and denote by X̃ the asso
iated solution

of the sto
hasti
 Cahn-Hilliard equation whi
h has the same law as X . For arbitrary x, y ∈ K∩Hc,

we de�ne the 
oupling (Z1(x, y), Z2(x, y) of ((P
c
T )

∗
δx, (P

c
T )

∗
δy) as follows

(Z1(x, y), Z2(x, y)) =























(X(T, x), X(T, y)) if x = y,

(Y1(x, y), Y2(x, y)) if |x|−1 ≤ ε, |y|−1 ≤ ε and x 6= y,

(X(T, x), X̃(T, y)) otherwise.

We now 
onstru
t re
ursively (X1(kT, x, y), X2(kT, x, y)) a 
oupling of ((P c
kT )

∗
δx, (P

c
kT )

∗
δy),

the laws of X(kT, x) and X(kT, y). For k = 0, we set (X1(kT, x, y), X2(kT, x, y)) = (x, y). For

k ≥ 0, we de�ne (X1 ((k + 1)T, x, y) , X2 ((k + 1)T, x, y)) by

X1 ((k + 1)T, x, y) = Z1 (X1 (kT, x, y) , X2 (kT, x, y)) ,

X2 ((k + 1)T, x, y) = Z2 (X1 (kT, x, y) , X2 (kT, x, y)) .

Let us de�ne

τ = inf{kT : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε}
If |x|−1 ≤ ε and |y|−1 ≤ ε, then τ = 0 and E(eατ ) = 1.
If τ 6= 0 i.e. if |x|−1 ≥ ε or |y|−1 ≥ ε, then by 
onstru
tion of the 
oupling and (3.6)

P(τ > T ) < 1− κ20.

More generally

P(τ > kT
∣

∣τ ≥ kT ) < 1− κ20.

We dedu
e

P(τ > kT ) < (1 − κ20)
k

and

E(eατ ) =
∑

k∈N

eαkTP(τ = kT ) ≤
∑

k∈N

eαkT (1− κ20)
k−1 =M <∞

for α small enough. Similarly, if we de�ne

τn = inf{kT > τn−1 : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε},

for all n ≥ 2 and with τ1 := τ . We have

E(eα(τn−τn−1)) ≤M

so that

E(eατn) ≤Mn.

De�ne

k0 = inf{n ≥ 1 : X1(τn + T, x, y) = X2(τn + T, x, y)}.
By (3.4), (3.5), for all n ≥ 1

P(k0 = n) ≤ P(k0 > n− 1) ≤
(

4eλ
2T/4

λ
√
T

ε

)n−1

.
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We 
hoose ε small enough su
h that

(

4eλ
2T/4

λ
√
T

ε

)

< 1.

Then we write

E(eβτk0 ) =
∑

n≥1

E
(

eβτn1k0=n

)

≤
∑

n≥1

(E(e2βτn))1/2(P(k0 = n))1/2

≤
∑

n≥1

Mnβ/α

(

4eλ
2T/4

λ
√
T

ε

)(n−1)/2

= M <∞

for β small enough.

By Markov's inequality, we 
on
lude that for all k ≥ 1

|E(ϕ(X(kT, x))) − E(ϕ(X(kT, y)))|

= |E(ϕ(X1(kT, x, y)))− E(ϕ(X2(kT, x, y)))|

≤ 2‖ϕ‖∞P(X1(kT, x, y) 6= X2(kT, x, y))

≤ 2‖ϕ‖∞P(kT > τk0
+ T )

≤ 2‖ϕ‖∞Me−β(k−1)T .

We de�ne k :=

⌊

t

T

⌋

su
h that we have P c
t = P c

kTP
c
t−kT . Thus we 
an write

|E[ϕ(X(t, x))] − νc(ϕ)| =

∣

∣

∣

∣

P c
t ϕ(x) −

∫

Hc

ϕ(y)νc(dy)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Hc

P c
t ϕ(x)νc(dy)−

∫

Hc

P c
t ϕ(y)νc(dy)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Hc

(

P c
kTP

c
t−kTϕ(x) − P c

kTP
c
t−kTϕ(y)

)

νc(dy)

∣

∣

∣

∣

≤
∫

Hc

2‖P c
t−kTϕ‖∞Me−β(k−1)T νc(dy)

≤ 2‖ϕ‖∞Me−β(k−1)T

≤ C‖ϕ‖∞e−βt.

�
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