
ar
X

iv
:0

90
8.

42
95

v1
  [

m
at

h.
A

P]
  2

8 
A

ug
 2

00
9

Stohasti Cahn-Hilliard equation with double singular

nonlinearities and two re�etions

Arnaud Debusshe, Ludovi Goudenège

ENS Cahan - Antenne de Bretagne, Campus de Ker-Lann, 35170 Bruz, Frane

arnaud.debusshe�bretagne.ens-ahan.fr, ludovi.goudenege�bretagne.ens-ahan.fr

Résumé

On onsidère une équation aux dérivées partielles stohastique possédant deux non-linéarités de

type logarithmique, ave deux ré�exions en 1 et −1 sous la ontrainte de onservation de masse.

L'équation, dirigée par un bruit blan en espae et en temps, ontient un double Laplaien.

L'absene de prinipe de maximum pour le double Laplaien pose des di�ultés pour l'utilisation

d'une méthode lassique de pénalisation, pour laquelle une importante propriété de monotonie

est utilisée. Etant inspiré par les travaux de Debusshe, Goudenège et Zambotti, on démontre

l'existene et l'uniité de solutions pour des données initiales entre −1 et 1. En�n, on démontre

que l'unique mesure invariante est ergodique, et on énone un résultat de mélange exponentiel.

Abstrat

We onsider a stohasti partial di�erential equation with two logarithmi nonlinearities, with two

re�etions at 1 and −1 and with a onstraint of onservation of the spae average. The equation,

driven by the derivative in spae of a spae-time white noise, ontains a bi-Laplaian in the drift.

The lak of the maximum priniple for the bi-Laplaian generates di�ulties for the lassial

penalization method, whih uses a ruial monotoniity property. Being inspired by the works of

Debusshe, Goudenège and Zambotti, we obtain existene and uniqueness of solution for initial

onditions in the interval (−1, 1). Finally, we prove that the unique invariant measure is ergodi,

and we give a result of exponential mixing.

Introdution and main results

The Cahn-Hilliard-Cook equation is a model to desribe phase separation in a binary alloy (see [6℄,

[7℄ and [8℄) in the presene of thermal �utuations (see [11℄ and [27℄). It takes the form:











∂tu = −1

2
∆ (∆u− ψ(u)) + ξ̇, on Ω ⊂ R

n,

∇u · ν = 0 = ∇(∆u− ψ(u)) · ν, on ∂Ω,

(0.1)

where t denotes the time variable and ∆ is the Laplae operator. Also u ∈ [−1, 1] represents the
ratio between the two speies and the noise term ξ̇ aounts for the thermal �utuations. The

nonlinear term ψ has the double-logarithmi form:

ψ : u 7→ θ

2
ln

(

1 + u

1− u

)

− θcu, (0.2)
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where θ and θc are temperatures with θ < θc.
The study of this equation presents several di�ulties. First, the singularities at ±1 have to be

treated arefully. Also, sine it is a fourth order equation, no omparison priniple holds.

The deterministi equation where ψ is replaed by a polynomial funtion have �rst been studied

(see [7℄, [27℄ and [32℄). Then non smooth ψ have been onsidered (see [5℄ and [17℄).

Phase separation have been analysed thanks to this model: see for example the survey [31℄,

and the referenes therein, or others reent results on spinodal deomposition and nuleation in

[1, 4, 24, 28, 29, 35, 36, 37℄.

In the ase of a polynomial nonlinearity, some results have been obtained in the stohasti ase

(see [2, 3, 9, 10, 12, 19℄).

Note that the solutions of the equation with polynomial nonlinearity do not remain in [−1, 1]
in general, and their physial interpretation is not lear.

To our knowledge, the ase of the logarithmi nonlinearity in the presene of noise have never

been studied. The presene of noise has a strong e�et and equation (0.1) annot have a solution.

Indeed, a solution should remain in [−1, 1] whih is impossible with an additive noise. Two re�etion

measures have to be added to the model to remedy this problem. In this artile, we propose to

study:











∂tu = −1

2
∆
(

∆u− ψ(u) + η− − η+

)

+ ξ̇, with θ ∈ [0, 1] = Ω,

∇u · ν = 0 = ∇(∆u) · ν, on ∂Ω,

(0.3)

where the measures are subjet to the ontat onditions almost surely:

∫

(1 + u)dη− =

∫

(1− u)dη+ = 0. (0.4)

The stohasti heat equation with re�etion, i.e. when the fourth order operator is replaed

by the Laplae operator, is a model for the evolution of random interfaes near a hard wall. It

has been extensively studied in the literature (see [16℄, [21℄, [22℄, [33℄ [38℄, [39℄ and [40℄). Essential

tools in these artiles are the omparison priniple and the fat that the underlying Dirihlet form

is symmetri so that the invariant measure is known expliitely.

In our ase, we onsider a noise whih is obtained as the spae derivative of the spae-time

white noise. In other words, the noise is the time derivative of a ylindrial Wiener proess in

H−1(0, 1). This is physially reasonable sine the Cahn-Hilliard equation an be interpreted as a

gradient system in this spae. With suh noise, the system is still symmetri and the invariant

measure is known expliitely. As in the seond order ase, we use this fat in an essential way.

However, as already mentioned, no omparison priniple holds and new tehniques have to be

developed. The equation (0.3) has been studied with a single re�etion and when no nonlinear

term is taken into aount in [18℄. The re�etion is introdued to enfore positivity of the solution.

Various tehniques have been introdued to overome this lak of omparison priniple. Moreover,

as in the seond order ase, an integration by part formula for the invariant measure has been

derived. Then, in [23℄, a singular nonlinearity of the form u−α
or lnu have been onsidered.

Existene and uniqueness of solutions have been obtained and using the integration by parts formula

as in [39℄, it has been proved that the re�etion measure vanishes if and only if α ≥ 3. In partiular,

for a logarithmi nonlinearity, the re�etion is ative.

Here, we onsider the original Cahn-Hilliard-Cook model (0.1) with the double-logarithmi

nonlinear term (0.2). The noise is as in the above mentioned artiles and we still have an expliit

invariant measure. Our method mixes ideas from [18℄, [23℄ and [39℄. Additional di�ulties are

overome, the main one being to understand how to deal with the nonlinear term. Indeed, in [23℄,

the positivity of the nonlinear term was essential. We overome this di�ulty thanks to a deliate a

priori estimate. Our main results state that equations (0.3), (0.4) together with an initial ondition

have a unique solution (see Proposition 2.3 and Theorem 1.1). As in [18℄, it is onstruted thanks to

the gradient struture of (0.3) and strong Feller property. Moreover, we prove that this solution is

the limit of the solution of the Cahn-Hilliard-Cook equation with polynomial nonlinearity without

re�etions. This justi�es the use of the polynomial models. We also prove that the invariant

measure is unique and ergodi. Suh property is very easy to obtain if θc is small (see [18℄) or in
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the polynomial ase (see [12℄). Finally, a stronger result of exponential mixing is given in the last

Theorem 3.1. It is based on oupling and arguments developped by Odasso in [34℄.

In future studies, we shall generalize the integration by part formula obtain in [18℄ to prove

that the re�etion measure does not vanish. The presene of two re�etion measures introdues

additional di�ulties. In the seond order ase, this has been studied in [20℄.

1 Preliminaries

We denote by 〈·, ·〉 the salar produt in L2(0, 1); A is the realization in L2(0, 1) of the Laplae

operator with Neumann boundary ondition, i.e.:

D(A) = Domain of A = {h ∈W 2,2(0, 1) : h′(0) = h′(1) = 0}

where we use Wn,p
and ||.||Wn,p

to denote the Sobolev spae Wn,p(0, 1) and its assoiated norm.

Remark that A is self-adjoint on L2(0, 1) and we have a omplete orthonormal system of eigenve-

tors (ei)i∈N in L2(0, 1) for the eigenvalues (λi)i∈N. We denote by h̄ the mean of h ∈ L2(0, 1):

h̄ =

∫ 1

0

h(θ)dθ.

We remark that A is invertible on the spae of funtions with 0 average. In general, we de�ne

(−A)−1h = (−A)−1(h− h̄) + h̄.
For γ ∈ R, we de�ne (−A)γ by lassial interpolation. We set Vγ := D((−A)γ/2). It is endowed

with the lassial seminorm and norm :

|h|γ =

(

+∞
∑

i=1

(−λi)γh2i

)1/2

, ‖h‖γ =
(

|h|2γ + h̄2
)1/2

, for h =
∑

i∈N

hiei.

| · |γ is assoiated to the salar produt (·, ·)γ . To lighten notations, we set (·, ·) := (·, ·)−1 and

H := V−1. The average an be de�ned in any Vγ by h̄ = (h, e0). It plays an important role and

we often work with funtions with a �xed average c ∈ R. We de�ne Hc = {h ∈ H : h̄ = c} for all

c ∈ R.

We use the following regularization operators:

QNx =
1

N

N
∑

n=0

n
∑

i=0

(x, ei)ei.

It is de�ned on L2(0, 1) and an extended to any Vγ . Clearly QNx onverges to x in Vγ if x ∈ Vγ .
Moreover, it is well known that if x ∈ C([0, 1];R), then the onverges holds in C([0, 1];R). Note

also that QN is self-adjoint in Vγ and ommutes with A.
The ovariane operator of the noise is the operator B de�ned by

B =
∂

∂θ
,D(B) =W 1,2

0 (0, 1).

Note that

B∗ = − ∂

∂θ
, D(B∗) =W 1,2(0, 1), BB∗ = −A.

We denote by Bb(Hc) the spae of all Borel bounded funtions on Hc. We set Os,t := [s, t]× [0, 1]
for s, t ∈ [0, T ] with s < t and T > 0, and Ot = O0,t for 0 ≤ t ≤ T . Given a measure ζ on Os,t and

a ontinuous funtion v on Os,t, we write

〈

v, ζ
〉

Os,t
:=

∫

Os,t

v dζ.
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For λ ∈ R, we de�ne:

f(x) :=































+∞, for all x ≤ −1,

ln

(

1− x

1 + x

)

+ λx, for all x ∈ (−1, 1),

−∞, for all x ≥ 1,

(1.1)

and the following antiderivative F of −f :

F (x) = (1 + x) ln(1 + x) + (1 − x) ln(1 − x)− λ

2
x2, for all x ∈ (−1, 1).

With these notations, we rewrite (0.3) in the abstrat form:



























dX = −1

2
A (AX + f(X) + η− − η+) dt +BdW,

〈(1 +X), η−〉OT
= 〈(1−X), η+〉OT

= 0,

X(0, x) = x for x ∈ V−1,

(1.2)

where W is a ylindrial Wiener proess on L2(0, 1).

De�nition 1.1 Let x ∈ C([0, 1]; [−1, 1]). We say that

(

(X(t, x))t∈[0,T ] , η+, η−,W
)

, de�ned on a

�ltered omplete probability spae

(

Ω,P,F , (Ft)t∈[0,T ]

)

, is a weak solution to (0.3) on [0, T ] for the
initial ondition x if:

(a) a.s. X ∈ C ((0, T ]× [0, 1]; [−1, 1]) ∩ C([0, T ];H) and X(0, x) = x,

(b) a.s. η± are two positive measures on (0, T ]×[0, 1], suh that η±(Oδ,T ) < +∞ for all δ ∈ (0, T ],

() W is a ylindrial Wiener proess on L2(0, 1),

(d) the proess (X(·, x),W ) is (Ft)-adapted,

(e) a.s. f(X(·, x)) ∈ L1(OT ),

(f) for all h ∈ D(A2) and for all 0 < δ ≤ t ≤ T :

〈X(t, x), h〉 = 〈X(δ, x), h〉 − 1

2

∫ t

δ

〈X(s, x), A2h〉ds− 1

2

∫ t

δ

〈Ah, f(X(s, x))〉ds

−1

2

〈

Ah, η+
〉

Oδ,t
+

1

2

〈

Ah, η−
〉

Oδ,t
−
∫ t

δ

〈Bh, dW 〉, a.s.,

(g) a.s. the ontat properties hold :

supp(η−) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = −1} and supp(η+) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = 1},
that is,

〈

(1 +X), η−
〉

OT
=
〈

(1−X), η+
〉

OT
= 0.

Finally, a weak solution (X, η+, η−,W ) is a strong solution if the proess t 7→ X(t, x) is adapted to

the �ltration t 7→ σ(W (s, .), s ∈ [0, t])

Remark 1.1 In (f), the only term where we use the funtion f is well de�ned. Indeed, by (e) we

have f(X(·, x)) ∈ L1(OT ) and by Sobolev embedding Ah ∈ D(A) ⊂ L∞(OT ). Hene the notation

〈·, ·〉 should be interpreted as a duality between L∞
and L1

.

4



The solution of the linear equation with initial data x ∈ H is given by

Z(t, x) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2BdWs.

As easily seen this proess is in C([0,+∞[;H) (see [14℄). In partiular, the mean of Z is onstant

and the law of the proess Z(t, x) is the Gaussian measure:

Z(t, x) ∼ N
(

e−tA2/2x,Qt

)

, Qt =

∫ t

0

e−sA2/2BB∗e−sA2/2ds = (−A)−1(I − e−tA2

).

If we let t→ +∞, the law of Z(t, x) onverges to the Gaussian measure on L2
:

µc := N (ce0, (−A)−1), where c = x̄.

Notie that µc is onentrated on Hc ∩ C([0, T ]).
In order to solve equation (1.2), we use polynomial approximations of this equation. We denote

by {fn}n∈N the sequene of polynomial funtions whih onverges to the funtion f on (−1, 1),
de�ned for n ∈ N by:

fn(x) = −2

n
∑

k=0

x2k+1

(2k + 1)
+ λx, for all x ∈ R.

We use the following antiderivative Fn
of −fn

de�ned by:

Fn(x) = 2
n
∑

k=0

x2k+2

(2k + 2)(2k + 1)
− λ

2
x2, for all x ∈ R.

Then for n ∈ N, we study for the following polynomial approximation of (1.2) with an initial

ondition x ∈ H :











dXn +
1

2
(A2Xn +Afn(Xn))dt = BdW,

Xn(0, x) = x.

(1.3)

This equation has been studied in [12℄ in the ase B = I. The results generalize immediately and

it an be proved that for any x ∈ H , there exists a unique solution Xn(·, x) a.s. in C([0, T ];H) ∩
L2n+2((0, T )× (0, 1)). It is a solution in the mild or weak sense. Moreover the average of Xn(t, x)
does not depend on t.

For eah c ∈ R, (1.2) de�nes a transition semigroup (Pn,c
t )t≥0:

Pn,c
t φ(x) = E[φ(Xn(t, x)], t ≥ 0, x ∈ Hc, φ ∈ Bb(Hc), n ∈ N

∗.

Existene of an invariant measure an be proved as in [12℄.

Using Galerkin approximation and Bismut-Elworthy-Li formula, it an be seen that (Pn,c
t )t≥0

is Strong Feller. More preisely, for all φ ∈ Bb(Hc), n ∈ N and t > 0:

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤ 2eλ
2t/4

λ
√
t

‖φ‖∞|x− y|−1, for all x, y ∈ Hc. (1.4)

Irreduibility follows from a ontrol argument. By Doob Theorem we dedue that there exists an

unique and ergodi invariant measure νnc .
It is lassial that equation (1.3) is a gradient system in Hc and an be rewritten as:











dXn +
1

2
A(AXn −∇Un(Xn))dt = BdW,

Xn(0, x) = x ∈ L2(0, 1),

(1.5)

where ∇ denotes the gradient in the Hilbert spae L2(0, 1), and:

Un(x) :=

∫ 1

0

Fn(x(θ))dθ, x ∈ L2(0, 1).
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The measure νnc is therefore given by:

νnc (dx) =
1

Zn
c

exp(−Un(x))µc(dx),

where Zn
c is a normalization onstant.

We prove in setion 2 that, for c ∈ (−1, 1), the sequene (νnc )n∈N onverges to the measure

νc(dx) =
1

Zc
exp(−U(x))1x∈Kµc(dx),

where

U(x) :=

∫ 1

0

F (x(θ))dθ, x ∈ L2(0, 1).

and

K = {x ∈ L2 : 1 ≥ x ≥ −1}.
In setion 2, we prove the following result.

Theorem 1.1 Let c ∈ (−1, 1). Let x ∈ K suh that x̄ = c, then there exists a ontinuous proess

denoted (X(t, x))t≥0 and two nonnegative measures ηx+ and ηx− suh that

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

is the unique strong solution of (0.3) with X(0, x) = x a.s.

The Markov proess (X(t, x), t ≥ 0, x ∈ K∩Hc) is ontinous and has P
c
for transition semigroup

whih is strong Feller on Hc.

For all x ∈ K∩Hc and 0 = t0 < t1 < · · · < tm, (X(ti, x), i = 1, . . . , n) is the limit in distribution

of (Xn(ti, x))i=1,...,m.

Finally νc is an invariant measure for P c
.

In all the artile, C denotes a onstant whih may depend on T and its value may hange from

one line to another.

2 Proof of Theorem 1.1

2.1 Pathwise uniqueness

We �rst prove that for any pair (X i, ηi+, η
i
−,W ), i = 1, 2, of weak solutions of (0.3) de�ned on

the same probability spae with the same driving noise W and with X1(0) = X2(0), we have

(

X1, η1+, η
1
−

)

=
(

X2, η2+, η
2
−

)

. This pathwise uniqueness will be used in the next subsetion to

onstrut stationary strong solutions of (0.3).

Proposition 2.1 Let x ∈ C ([0, 1]; [−1, 1]). Let

(

X i, ηi+, η
i
−,W

)

, i = 1, 2 be two weak solutions of

(0.3) with X1(0) = X2(0) = x. Then
(

X1, η1+, η
1
−

)

=
(

X2, η2+, η
2
−

)

.

Proof : We use the following Lemma from [23℄.

Lemma 2.1 Let ζ be a �nite measure on Oδ,T and V ∈ C(Oδ,T ). Suppose that there exists a

positive ontinuous funtion cT : [0, T ] → R
+
suh that :

i) for all r ∈ [δ, T ], for all h ∈ C([0, 1]), suh that h̄ = 0, 〈h, ζ〉Or,T
= 0,

ii) for all r ∈ [δ, T ], V (r, ·) = cT (r) with 〈V, ζ〉Or,T
= 0,

then ζ is the null measure.

Let Y (t) = X1(t, x) − X2(t, x), ζ+ = η1+ − η2+ and ζ− = η1− − η2−, Y is the solution of the

following equation:











dY = −1

2
A
(

AY +
(

f(X1)− f(X2)
)

+ ζ− − ζ+
)

dt,

Y (0) = 0.

(2.1)
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Taking the salar produt in H with Y N = QNY and integrating in time, we obtain sine Y has

zero average:

|Y N (t)|2−1 − |Y N (δ)|2−1 = −
∫ t

δ

(

|Y N (s)|21 − 〈f(X1)− f(X2), Y N 〉
)

ds + 〈ζ− − ζ+, Y
N 〉Oδ,t

. (2.2)

For all s ∈ [δ, t],

〈Y N (s)− Y (s), f(X1(s, x))− f(X2(s, x))〉

≤ ‖Y N (s)− Y (s)‖L∞([0,1])‖f(X1(s, x))− f(X2(s, x))‖L1([0,1]),

where ‖ · ‖L∞([0,1]) and ‖ · ‖L1([0,1]) are the lassial norms on the spae [0, 1]. The latter term

onverges to zero sine Y N (s) onverges uniformly to Y (s) on [0, 1]. Sine f(x)−λx is noninreasing,
(

〈Y (s), f(X1(s, x)) − f(X2(s, x))〉
)

=
(

〈Y (s), f(X1(s, x)) − f(X2(s, x)) − λY (s)〉
)

+(〈Y (s), λY (s)〉)
≤ λ|Y (s)|20.

Taking the limit in (2.2) as N grows to in�nity, we obtain:

|Y (t)|2−1 − |Y (δ)|2−1 ≤
〈

Y, ζ− − ζ+
〉

Oδ,t
+ λ

∫ t

δ

|Y (s)|20 ds.

We now write

〈

Y, ζ− − ζ+
〉

Oδ,t

=
〈

1 +X1, η1−
〉

Oδ,t
−
〈

1 +X2, η1−
〉

Oδ,t
−
〈

1 +X1, η2−
〉

Oδ,t
+
〈

1 +X2, η2−
〉

Oδ,t

+
〈

1−X1, η1+
〉

Oδ,t
−
〈

1−X2, η1+
〉

Oδ,t
−
〈

1−X1, η2+
〉

Oδ,t
+
〈

1−X2, η2+
〉

Oδ,t

≤ 0

by the ontat ondition and the positivity of the measures. It follows:

|Y (t)|2−1 − |Y (δ)|2−1 ≤ λ

∫ t

δ

|Y (s)|20 ds.

By Gronwall Lemma, and letting δ → 0, we have |Y (t)|−1 = 0 for all t ≥ 0. Sine Ȳ (t) = 0, we
dedue X1(t, x) = X2(t, x) for all t ≥ 0. Moreover, with the de�nition of a weak solution, we see

that :

for all h ∈ D(A2),
〈

Ah, ζ+ − ζ−
〉

Oδ,t
= 0.

By density, we obtain that ζ := ζ− − ζ+ and V := (1 −X1)(1 +X1) = (1 −X2)(1 +X2) satisfy
the hypothesis of Lemma 2.1, and therefore ζ = ζ− − ζ+ is the null measure. And sine ζ− and ζ+
have disjoint supports, then ζ− and ζ+ are the null measure, i.e. η1− = η2− and η1+ = η2+.

�

2.2 Convergene of invariants measures

We know (see [18℄) that µc is the law of Y c = B−B+ c, where B is brownian motion. Then for

0 ≤ c < 1, we remark the following inlusion :

{Bθ ∈
[

c− 1

2
,
1− c

2

]

, for all θ ∈ [0, 1]} ⊂ {Y c ∈ K},

and we have a similar result for −1 < c ≤ 0. Therefore µc(K) > 0 with −1 < c < 1. Let us de�ne
U the potential assoiated to the funtion f :

U(x) =







∫ 1

0

F (x(θ))dθ if x ∈ K,

+∞ else.

We have the following result :
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Proposition 2.2 For −1 < c < 1,

νnc ⇀ νc :=
1

Zc
exp−U(x)

1x∈Kµc(dx), when n→ +∞,

where Zc is a normalization onstant.

Proof : Let ψ ∈ Cb(L2,R). We want to prove that

∫

H

ψ(x) exp(−Un(x))µc(dx) −→
n→+∞

∫

H

ψ(x) exp(−U(x))1x∈Kµc(dx). (2.3)

We �rst prove,

exp(−Un(x)) −→
n→+∞

exp(−U(x))1x∈K , µc a.s. (2.4)

Sine µc(C([0, 1])) = 1, we an restrit our attention to x ∈ C([0, 1]). Then if x /∈ K there exists

δx > 0 suh that m({θ ∈ [0, 1] : x(θ) ≤ −1 − δx}) > 0 or m({θ ∈ [0, 1] : x(θ) ≥ 1 + δx}) > 0,
m being the Lebesgue measure. Suppose m({θ ∈ [0, 1]/x(θ) ≤ −1 − δx}) > 0, then we have sine

F̃n(x) = Fn(x) +
λ

2
x2 is positive and non inreasing on (−∞,−1)

0 ≤ exp(−Un(x)) ≤ exp

(

−
∫ 1

0

F̃n(x(θ))1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−
∫ 1

0

F̃n(−1− δx)1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−F̃n(−1− δx)m({x ≤ −1− δx}) +
∫ 1

0

λ

2
x(θ)2dθ

)

.

And this latter term onverges to zero as n grows to in�nity.

Now for x ∈ K, Fn(x(θ)) onverges to F (x(θ)) almost everywhere as n grows to in�nity. More-

over −λ
2
x(θ)2 ≤ Fn(x(θ)) ≤ ln 2, and by the dominated onvergene Theorem, we dedue (2.4).

Finally, (2.3) follows again by dominated onvergene Theorem.

2.3 Existene of stationary solutions

In this setion, we prove the existene of stationary solutions of equation (1.2) and that they are

limits of stationary solutions of (1.3), in some suitable sense. Fix −1 < c < 1 and onsider the

unique (in law) stationary solution of (1.3) denote X̂n
c in Hc. We are going to prove that the laws

of X̂n
c weakly onverge as n grows to in�nity to a stationary strong solution of (0.3).

Proposition 2.3 Let −1 < c < 1 and T > 0, X̂n
c onverges in probability as n grows to in�nity

to a proess X̂c in C(OT ). Moreover f(X̂c) ∈ L1(OT ) almost surely, and setting

dηn+ = −fn(X̂n
c (t, θ))1X̂n

c (t,θ)>0dtdθ + f(X̂c(t, θ))10<X̂c(t,θ)≤1dtdθ,

and

dηn− = fn(X̂n
c (t, θ))1X̂n

c (t,θ)≤0dtdθ − f(X̂c(t, θ))1−1≤X̂c(t,θ)≤0dtdθ,

then (ηn+, η
n
−) onverges in probability to (η+, η−) suh that (X̂c, η+, η−,W ) is a stationary strong

solution of (0.3).

Proof : Proeeding exatly as in [18℄ (see Lemma 5.2), we prove that the laws of (X̂n
c ,W

n)n∈N

are tight in C(OT ) × C([0, T ];Vγ), γ < −1/2. We have set Wn = W , n ∈ N. We therefore an

extrat onvergent subsequenes. Let (X̂nk
c ,Wnk)k∈N be suh a subsequene. Using Skohorod

theorem, one may �nd a probability spae and a sequene of random variables (X̃k
c ,Wk)k∈N on

this probability spae with the same laws as (X̂nk
c ,Wnk)k∈N whih onverge almost surely.
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Below, we show in Step 1 that its limit X̃c satis�es f(X̃c) ∈ L1(OT ) almost surely. Then in

Step 2, we prove that the measures η̃k±, de�ned as above with X̂nk
c replaed by X̃k

c , onverges to

two positive measures η̃± and that (X̃c, η̃+, η̃−) is a weak solution in the probabilisti sense. It

then remains to use pathwise uniqueness to onlude in Step 3. In this proof, we only treat the

ase λ = 0. This assumption is not essential at all but lightens the omputations. For λ 6= 0, an
extra term has to be taken into aount. It is very easy to deal with.

Step 1.

Applying Ito formula to |QN X̂
n
c (t)|2−1, we obtain

|QNX̂
n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QN X̂
n
c (t)|21dt− 2

∫

OT

fn(X̂
n
c )
(

QN X̂
n
c − c

)

dsdθ

= 2

∫ T

0

(QN X̂
c
n, BdW (s)) + T Tr(QNB)

Note that

E





(

∫ T

0

(QN X̂
n
c , BdW (s))

)2


 = E

∫ T

0

|QNX̂
n
c |2−1ds = T

∫

H

|QNx|2−1ν
n
c (dx) ≤ C T

We set

ϕN
n = |QN X̂

n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QNX̂
n
c (t)|21dt

−2

∫

OT

fn(X̂
n
c )
(

QNX̂
n
c − c

)

dsdθ − T Tr(QNB)

and dedue

P(|ϕN
n | ≥M) ≤ C T

M2
.

Thus, for all N ∈ N, the laws of (ϕN
n )n∈N are tight. Therefore the laws of (X̂n

c ,W
n, (ϕN

n )N∈N)n∈N

are tight and using Skohorod theorem on this sequene, we an assume that X̃k
c , Wk

and, for

N ∈ N, ϕ̃N
k onverge almost surely. We have de�ned ϕ̃N

k as above with X̃k
c instead of X̂n

c . In

partiular, ϕ̃N
k is bounded almost surely:

|QN X̃
k
c (T )|2−1 − |QN X̃

k
c (0)|2−1 +2

∫ T

0

|QN X̃
k
c (t)|21dt

−2

∫

OT

fk(X̃
k
c )
(

QN X̃
k
c − c

)

dsdθ − T Tr(QNB)

≤ C(N, T, c)

where C(N, T, c) is random. The �rst three terms are learly also bounded almost surely. This

uses the fat that QN is a bounded operator from H to V1. Sine QN has �nite dimensional range,

we obtain

−
∫

OT

fnk
(X̃k

c )
(

QNX̃
k
c − c

)

dsdθ ≤ C(N, T, c) (2.5)

for a di�erent random onstant C(N, T, c).

Let us hoose ǫ0 = min

{

1− c

4
,
1 + c

4

}

and take N ∈ N suh that

|QNX̃c − X̃c|C(OT ) ≤
1

2
ǫ0

and K0 suh that for k ≥ K0

|X̃k
c − X̃c|C(OT ) ≤

1

4
ǫ0.
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Then, for all k ≥ K0,

|QN X̃
k
c − X̃k

c |C(OT ) ≤ ǫ0.

Moreover, if X̃k
c ≥ 1 + c

2
then fnk

(X̃k
c ) ≤ 0 and

QN X̃
k
c − c ≥ −ǫ0 +

1 + c

2
− c ≥ 1− c

4
≥ ǫ0.

Similarly, if X̃k
c ≤ −1 + c

2
then fnk

(X̃k
c ) ≥ 0 and

QN X̃
k
c − c ≤ −ǫ0.

Finally, notiing that fn is uniformly bounded by a onstant K(c) on [
−1 + c

2
,
1 + c

2
], we dedue

∫

OT

|fnk
(X̃k

c )|dsdθ ≤ − 1

ǫ0

∫

X̃k
c ≥

1+c
2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

− 1

ǫ0

∫

X̃k
c ≤

−1+c
2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ +K(c)

≤ − 1

ǫ0

∫

OT

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

+
1

8
(max{1− c, 1 + c})2K(c) +K(c).

Thanks to (2.5), we obtain

∫

OT

|fnk
(X̃k

c )|dsdθ ≤ C(N, T, c), (2.6)

where the value of the random onstant C(N, T, c) has again hanged. It easily dedued from this

uniform bound that |X̃c| ≤ 1 almost everywhere with respet to t and ω and by Fatou Lemma that

f(X̃c) ∈ L1(OT ) almost surely.

�

Step 2.

Let now ξk be the following measure on OT :

dξk := −fnk(X̃k
c (t, θ))dtdθ.

and ξk+ and ξk− the positive and negative parts:

dξk+ := −fnk(X̃k
c (t, θ))1X̃k

c >0dtdθ, dξ
k
− := fnk(X̃k

c (t, θ))1X̃k
c ≤0dtdθ.

By step 1, f(X̃c) ∈ L1(OT ) and we an de�ne the following measure:

dλ := −f((X̃c(t, θ))1−1≤X̃c≤1dtdθ,

and the positive and negative parts:

dλ+ := −f((X̃c(t, θ))10<X̃c≤1dtdθ, dλ− := f((X̃c(t, θ))1−1≤X̃c≤0dtdθ.

By (2.6), fnk(X̃k
c )− f(X̃c) is bounded in L1(OT ). We dedue that ξk has a subsequene ξkℓ

whih

onverges to a measure ζ. Note that this subsequene may depend on the random parameter ω.
We set η̃ = ζ − λ.
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Thanks to Fatou Lemma we have the following inequality for all h ∈ C(OT ) nonnegative:

∫

OT

h(s, θ)
[

− f(X̃c(s, θ))10<X̃c≤1

]

dsdθ =

∫

OT

lim inf
ℓ→+∞

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ

≤ lim inf
ℓ→+∞

∫

OT

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ.

Therefore η̃kℓ

+ = ξkℓ

+ − λ+ onverges to a positive measure. Similarly, η̃kℓ

− = ξkℓ

− − λ− onverges to

a positive measure. It follows:

ξkℓ

+ − λ+ ⇀ η̃+ and ξkℓ

− − λ− ⇀ η̃−,

where η̃+ and η̃− are the positive and negative parts of η̃.

Let us now show that the ontat onditions holds for

(

1− X̃c, η̃+

)

and

(

1 + X̃c, η̃−

)

. Let us

de�ne the following measures for ε > 0 and k ∈ N.

dξk+,ε := −fnk(X̃k
c (t, θ))11−ε≤X̃k

c
dtdθ, dτk+,ε := −fnk(X̃k

c (t, θ))10<X̃k
c <1−εdtdθ,

dλ+,ε := −f(X̃c(t, θ))11−ε≤X̃c
dtdθ, dτ+,ε := −f(X̃c(t, θ))10<X̃c<1−εdtdθ.

Clearly τk+,ε onverges to τ+,ε, it follows

lim sup
ℓ→+∞

〈

1− X̃kℓ
c , ξkℓ

+ − λ+

〉

OT

= lim sup
ℓ→+∞

(

〈

1− X̃kℓ
c , ξkℓ

+,ε

〉

OT
−
〈

1− X̃kℓ
c , λ+,ε

〉

OT

+
〈

1− X̃kℓ
c , τkℓ

+,ε

〉

OT
−
〈

1− X̃kℓ
c , τ+,ε

〉

OT

)

= lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c
dtdθ

+

∫

OT

(

1− X̃kℓ
c

)

f(X̃c)11−ε≤X̃c
dtdθ

)

≤ lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c ≤1

dtdθ

)

+ lim sup
ℓ→+∞

(∫

OT

(

1− X̃kℓ
c

)−

f(X̃c)11−ε≤X̃c
dtdθ

)

Sine (1 − X̃kℓ
c )− onverges uniformly to zero, we dedue:

lim sup
ℓ→+∞

〈1 − X̃kℓ
c , ξ

kℓ

+ − λ+
〉

OT
≤ T sup

x∈[1−ε,1]

|(x− 1)f(x)|

≤ −Tε ln
(

ε

2− ε

)

.

Letting ε → 0, we obtain the �rst ontat ondition sine the left hand side learly onverges to

〈1− X̃c, η̃+〉. The seond is obtained similarly.

We now prove that ξk − λ does not have more than one limit point so that in fat the whole

sequene onverge to η̃. Let η̃i, i = 1, 2 be two limit points.

For all h ∈ D(A2) and for all 0 ≤ t ≤ T :

〈

Ah, ξk − λ
〉

Ot
= 〈X̃k

c (t, .), h〉 − 〈x, h〉+
∫

Ot

X̃k
c (s, θ)A

2h(θ)dsdθ

+

∫ t

0

〈Bh, dWk〉+
∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.
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We dedue

〈

Ah, η̃i
〉

Ot
= −〈X̃c(t, .), h〉+ 〈x, h〉 −

∫

Ot

X̃c(s, θ)A
2h(θ)dsdθ

−
∫ t

0

〈Bh, dW〉 −
∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.

And by density

〈

h, η̃1
〉

Ot
=
〈

h, η̃2
〉

Ot

for any h ∈ C([0, 1]) suh that h̄ = 0. Sine by the ontat ondition

〈

(1− X̃c)(1 + X̃c), η̃1
〉

Ot
=
〈

(1− X̃c)(1 + X̃c), η̃2
〉

Ot
.

We dedue from Lemma 2.1 that η̃1 = η̃2.

�

Step 3.

We use a result form [25℄ that allows to get the onvergene of the approximated solutions in

probability in any spae in whih these approximated solutions are tight.

Lemma 2.2 Let {Zn}n≥1 be a sequene of random elements on a Polish spae E endowed by its

borel σ-algebra. Then {Zn}n≥1 onverges in probability to an E-valued random element if and any

if from every pair of subsequenes {(Zn1
k
, Zn2

k
)k≥1, one an extrat a subsequene whih onverges

weakly to a random element supported on the diagonal {(x, y) ∈ E × E, x = y}.

Assume (n1
k)k∈N and (n1

k)k∈N are two arbitrary subsequenes. Clearly, the proess

(

X̂
n1
k

c , X̂
n2
k

c ,W k
)

is tight in a suitable spae. By Skorohod's theorem, we an �nd a probability spae and a sequene

of proesses

(

X̃1,k
c , X̃2,k

c ,Wk
)

suh that

(

X̃1,k
c , X̃2,k

c ,Wk
)

→
(

X̃1
c , X̃

2
c ,W

)

almost surely and

(

X̃1,k
c , X̃2,k

c ,Wk
)

has the same distribution as

(

X̂
n1
k

c , X̂
n2
k

c ,W k
)

for all k ∈ N. In the Skorohod's

spae, the approximated measures respetively onverge to two ontat measures η̃1 and η̃2. By

the seond step, (X̃1
c , η̃1,W) and (X̃2

c , η̃2,W) are both weak solutions of (0.3). By uniqueness,

neessarily X̃1
c = X̂2

c and η̃1 = η̃2. Therefore the subsequene
(

X̂
n1
k

c , X̂
n2
k

c

)

k∈N

onverges in distri-

bution to a proess supported on the diagonal. We use Lemma 2.2 to prove that the sequene (X̂n
c )

onverges in probability to a proess X̂c. Clearly X̂c is stationary. Reproduing the argument of

Step 1 and Step 2, we prove that it is a strong solution of (0.3) and the onvergene of the ontat

measures.

�

2.4 Convergene of the semigroup

First we state the following result whih is a orollary of Proposition 2.3.

Corollary 2.1 Let c > 0.

i) There exists a ontinuous proess (X(t, x), t ≥ 0, x ∈ K ∩Hc) with X(0, x) = x and a set K0

dense in K ∩ Hc, suh that for all x ∈ K0 there exists a unique strong solution of equation

(0.3) given by

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

.

ii) The law of

(

X(t, x)t≥0, η
x
+, η

x
−

)

is a regular onditional distribution of the law of

(

X̂c, η+, η−

)

given X̂c(0) = x ∈ K ∩Hc.
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Proof : By Proposition 2.3, we have a stationary strong solution X̂c in Hc, suh that W and

X̂c(0) are independent. Conditioning

(

X̂c, η+, η−

)

on the value of X̂c(0) = x, with c = x, we

obtain for νc-almost every x a strong solution that we denote

(

X(t, x), ηx+, η
x
−

)

for all t ≥ 0 and for

all x ∈ K ∩Hc. This proess is the desired proess. Indeed, sine the support of νc is K ∩Hc, we

have a strong solution for a dense set K0 in K ∩Hc.

Notie that all proesses (X(t, x))t≥0 with x ∈ K0 are driven by the same noise W and are

ontinuous with values in H . Moreover, we have the following obvious identity:

|Xn(t, x)−Xn(t, y)|−1 ≤ eλt|x− y|−1, x, y ∈ L2
c , t ≥ 0,

and by density we obtain a ontinuous proess (X(t, x))t≥0 in Hc for all x ∈ K ∩Hc.

�

Proposition 2.4 Let c > 0, for all φ ∈ Cb(H) and x ∈ K ∩Hc:

lim
n→+∞

Pn,c
t φ(x) = E[φ(X(t, x))] =: P c

t φ(x). (2.7)

Moreover the Markov proess (X(t, x), t ≥ 0, x ∈ K ∩Hc) is strong Feller and its transition semi-

group P c
is suh that:

|P c
t φ(x) − P c

t φ(y)| ≤
2eλ

2t/4

λ
√
t

|x− y|−1, for all x, y ∈ K ∩Hc, for all t > 0. (2.8)

Proof : Sine (νnc )n≥1 is tight in Hc, then there exists an inreasive sequene of ompat sets

(Jp)p∈N in H suh that:

lim
p→+∞

sup
n≥1

νnc (H \ Jp) = 0.

Set J := ∪
p∈N

Jp∩K. Sine the support of νc is in K∩Hc and νc(J) = 1, then J is dense in K∩Hc.

Fix t > 0, by (1.4), for any φ ∈ Cb(H) :

sup
n∈N

(‖Pn,c
t φ‖∞ + [Pn,c

t φ]Lip(Hc)) < +∞.

Let (nj)j∈N be any sequene in N. With a diagonal proedure, by Arzelà-Asoli Theorem, there

exists (njl)l∈N a subsequene and a funtion Θt : J → R suh that:

lim
l→+∞

sup
x∈Jp

|Pnjl
,c

t φ(x) −Θt(x)| = 0, for all p ∈ N.

By density, Θt an be extended uniquely to a bounded Lipshitz funtion Θ̃t on K ∩Hc suh that

Θ̃t(x) = lim
l→+∞

P
njl

,c
t φ(x), for all x ∈ K ∩Hc.

Note that the subsequene depends on t. Therefore, we have to prove that the limit de�nes a

semigroup and does not depend on the hosen subsequene.

By Proposition 2.3, we have for all φ, ψ ∈ Cb(H) :

E

[

ψ
(

X̂c(0)
)

φ
(

X̂c(t)
)]

= lim
l→+∞

E

[

ψ
(

X̂
njl
c (0)

)

φ
(

X̂
njl
c (t)

)]

= lim
l→+∞

∫

H

ψ(y)E
[

φ
(

X̂
njl
c (t)

) ∣

∣

∣X̂
njl
c (0) = y

]

ν
njl
c (dy)

= lim
l→+∞

∫

H

ψ(y)P
njl

,c
t φ(y)ν

njl
c (dy)

=

∫

H

ψ(y)Θ̃t(y)νc(dy).

Thus, by Corollary 2.1, we have the following equality:

E [φ (X(t, x))] = Θ̃t(x), for νc-almost every x. (2.9)

Sine E[φ(X(t, .))] and Θ̃t are ontinuous on K ∩ Hc, and νc(K ∩ Hc) = 1, the equality (2.9) is

true for all x ∈ K ∩ Hc. Moreover the limit does not depend on the hosen subsequene, and we

obtain (2.7). Letting n→ ∞ in (1.4), we dedue (2.8).

�
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2.5 End of the proof of Theorem 1.1

We have proved that there exists a ontinous proess X whih is a strong solution of equation (0.3)

for an x in a dense spae. In this setion, we prove existene for an initial ondition in K ∩ Hc

with c > 0.
By Corollary 2.1 we have a proess (X(t, x), t ≥ 0, x ∈ K ∩Hc), suh that for all x in a set K0

dense in K ∩Hc we have a strong solution

(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

of (0.3) with initial ondition

x. By Proposition 2.3, the Markov proess X has transition semigroup P c
on Hc.

The strong Feller property of P c
implies that for all x ∈ K ∩ Hc and s > 0 the law of X(s, x)

is absolutely ontinous with respet to the invariant measure νc. Indeed, if νc(Γ) = 0, then
νc(P

c
s (1Γ)) = νc(Γ) = 0. So P c

s (1Γ)(x) = 0 for νc-almost every x and by ontinuity for all

x ∈ K ∩Hc.

Therefore almost surely X(s, x) ∈ K0 for all s > 0 and x ∈ K ∩ Hc. Fix s > 0, denote for all

θ ∈ [0, 1]:
X̃ := t 7→ X(t+ s, x), W̃ (·, θ) := t 7→W (t+ s, θ)−W (s, θ)),

and the measures η̃x± suh that for all T > 0, and for all h ∈ C(OT ):

〈

h, η̃±
x
〉

OT
:=

∫

OT+s
s

h(t− s, θ)ηx±(dt, dθ).

So we have a proess X̃ ∈ C([0, T ];H)∩ C(OT ) and two measures η̃x+ and η̃x− on OT whih is �nite

on [δ, T ]× [0, 1] for all δ ≥ 0, suh that

(

(X̃(t, x))t≥0, η̃
x
+, η̃

x
−, W̃

)

is a strong solution of (0.3) with

initial ondition X(s, x). By ontinuity X(s, x) → x in H as s→ 0, so
(

(X(t, x))t≥0, η
x
+, η

x
−,W

)

is

a strong solution of (0.3) with initial ondition x in the sense of the de�nition 1.1.

3 Ergodiity and mixing

When λ is small, it an be easily shown that νc is the unique invariant measure and is ergodi.

We now prove that this is in fat true for any λ. Note that sine (P c
t )t≥0 is Strong Feller, the

results follows from Doob theorem if we prove that (P c
t )t≥0 is irreduible (see for instane [15℄).

For additive noise driven SPDEs, this is often proved by a ontrol argument and ontinuity with

respet to the noise. This latter property is not ompletely trivial in our situation but we are able

to adapt the argument.

Proposition 3.1 For any c ∈ (−1, 1), the semigroup (P c
t )t≥0 is irreduible.

Proof :

Let x, y ∈ C∞([0, 1]) be suh that |x|L∞(0,1) ≤ 1− δ and |y|L∞(0,1) ≤ 1− δ for some δ > 0 and

x̄ = ȳ = c. We set

u(t) =
t

T
y +

(

1− t

T

)

x

and de�ne g0 by

g0(θ, t) =

∫ θ

0

(

1

T
(y − x) +

1

2
A(Au + f(u))

)

(ϑ, t)dϑ

Then g0 is in C∞([0, T ]× [0, 1]), g0(t) ∈ D(B), t ∈ [0, T ], and:

d

dt
u = −1

2
A(Au+ f(u)) +Bg0.

Moreover

d

dt
u = −1

2
A(Au + fδ(u)) +Bg0 (3.1)

where fδ is any Lipshitz funtion equal to f on [−1 + δ/2, 1− δ/2].
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Let Xδ(·, x) be the solution of (0.3) with f replaed by fδ and set Y δ(·, x) = Xδ(·, x) − Z,
where Z = Z(·, 0) is the solution of the linear equation with 0 as initial data. Then

d

dt
Y δ = −1

2
A
(

AY δ + fδ(Y
δ + Z)

)

, Y δ(0, x) = x.

Let also

z0(t) =

∫ t

0

e−A2(t−s)/2Bg0(s)ds.

Sine the gaussian proess Z is almost surely ontinuous and has a non degenerate ovariane, we

learly have

P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

for any ε > 0. Let us denote by Y z
the solution of

d

dt
Y z = −1

2
A (AY z + fδ(Y

z + z)) , Y z(0, x) = x. (3.2)

We prove below that the mapping

Φδ : z 7→ Y z

is ontinuous from C(OT ) into C(OT ). Sine u = Φδ(z0) + z0 and Xδ = Φδ(Z) + Z, we dedue

that there exists ε suh that

P
(

|Xδ − u|C(OT ) ≤ δ/2
)

≥ P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

Let us now observe that |Xδ −u|C(OT ) ≤ δ/2 implies |Xδ|C(OT ) ≤ 1− δ/2 so that fδ(X
δ) = f(Xδ)

and Xδ
is fat solution of (0.3). By pathwise uniqueness, we dedue that |Xδ − u|C(OT ) ≤ δ/2

implies Xδ = X . It follows

P
(

|X − u|C(OT ) ≤ δ/2
)

≥ P
(

|Xδ − u|C(OT ) ≤ δ/2
)

> 0

In partiular

P (|X(T, x)− y| ≤ δ/2) > 0.

If we assume now that x, y ∈ Hc , we hoose x̃, ỹ ∈ C∞([0, 1]) suh that

|x− x̃| ≤ δ, |y − ỹ| ≤ δ, |x̃|L∞(0,1) ≤ 1− δ and |ỹ|L∞(0,1) ≤ 1− δ,

and

¯̃x = ¯̃y = c. We have

|X(T, x)−X(T, x̃)| ≤ eλT |x− x̃|.
Therefore

P
(

|X(T, x)− y| ≤ δ/2 + (1 + eλT )δ
)

≥ P (|X(T, x̃)− ỹ| ≤ δ/2) > 0.

This proves the results.

It remains to prove that Φδ is ontinuous. This follows form the mild form of equation (3.2):

Y z(t) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2Afδ(Y
z(s) + z(s))ds.

It is lassial that, for t > 0, Ae−tA2/2
maps C([0, 1]) into itself and

∣

∣

∣Ae−tA2/2
∣

∣

∣

L(C([0,1]))
≤ Ct−1/2.

This an be seen from the formula

Ae−tA2/2u = −
∑

i∈N

λie
−λ2

i t/2〈u, ei〉ei,
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where (ei)i∈N and (λi)i∈N are the eigenvetors and eigenvalues of −A. Sine |ei|C([0,1] are equi-

bounded, we dedue

∣

∣

∣Ae−tA2/2u
∣

∣

∣

C([0,1]
≤ C

(

∑

i∈N

λie
−λ2

i t/2

)

|u|L1(0,1)

≤ C t−1/2|u|C([0,1])

We dedue

|Y z1(t)− Y z2(t)|C([0,1])

≤ C Lδ

∫ t

0

(t− s)−1/2
(

|Y z1(s)− Y z2(s)|C([0,1]) + |z1(s)− z2(s)|C([0,1])

)

ds

where Lδ is the Lipshitz onstant of fδ. Gronwall Lemma implies the result for T su�iently

small. Iterating the argument we obtain the ontinuity of Φδ.

�

Corollary 3.1 For every c ∈ (−1, 1), νc is the unique invariant measure of the transition semi-

group (P c
t )t≥0. Moreover it is ergodi.

Using lassial arguments, it is easily seen that, for λ = 0, νnc satis�es a log-Sobolev inequality and

therefore a Poinaré inequality. The onstant in these inequality do not depend on n so that we

have the same result for νc. For λ 6= 0, we an argue as in [13℄ and prove that this is still true.

We now want to prove a stronger result : exponential mixing. We use oupling arguments

developped by Odasso in [34℄.

Theorem 3.1 For every c ∈ (−1, 1), there exist a small β > 0 and a onstant C > 0 suh that for

all ϕ ∈ Bb(K ∩Hc), t > 0 and x ∈ Hc

|E[ϕ(X(t, x))] − νc(ϕ)| ≤ C‖ϕ‖∞e−βt. (3.3)

Proof : By (2.8), we know that for any ϕ ∈ Bb(K ∩Hc), T > 0, ε > 0,

|P c
Tϕ(x)− P c

Tϕ(y)| ≤
4eλ

2T/4

λ
√
T

ε‖ϕ‖∞

if x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. By de�nition of the total variation norm, we dedue

‖ (P c
T )

∗
δx − (P c

T )
∗
δy‖var = sup

‖ϕ‖∞≤1

|P c
Tϕ(x)− P c

Tϕ(y)| ≤
4eλ

2T/4

λ
√
T

ε (3.4)

for T > 0, x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. We have denoted by δx the Dira mass at x ∈ Hc

so that (P c
T )

∗
δx is the law of X(T, x).

Reall that a oupling of ((P c
T )

∗
δx, (P

c
T )

∗
δy) is a ouple of random variable (X1, X2) suh that

the law of X1 is (P c
T )

∗ δx and the law of X2 is (P c
T )

∗ δy. By standard results on ouplings (see for

instane [26℄ setion 4, or [30℄), we know there exists a maximal oupling of ((P c
T )

∗
δx, (P

c
T )

∗
δy).

Let us denote by (Y1(x, y), Y2(x, y)) this maximal oupling, it satis�es

P(Y1(x, y) 6= Y2(x, y)) = ‖ (P c
T )

∗ δx − (P c
T )

∗ δy‖var. (3.5)

Moreover (Y1(x, y), Y2(x, y)) depends measurably on (x, y).
By the Strong Feller property, we know that x 7→ P(|X(T, x)|−1 ≤ ε) is ontinuous on Hc.

Therefore, thanks to Proposition 3.1, for any x ∈ K ∩Hc, there exists a ηx > 0 and a κx > 0 suh

that

P(|X(T, y)|−1 ≤ ε) > κx
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for all y ∈ K ∩ Hc suh that |x − y|−1 ≤ ηx. By ompatness of K ∩ Hc in Hc, we dedue that

that there exits κ0 > 0 suh that

P(|X(T, y)|−1 ≤ ε) > κ0 (3.6)

for all y ∈ K ∩Hc.

Let W̃ a ylindrial Wiener proess independent onW and denote by X̃ the assoiated solution

of the stohasti Cahn-Hilliard equation whih has the same law as X . For arbitrary x, y ∈ K∩Hc,

we de�ne the oupling (Z1(x, y), Z2(x, y) of ((P
c
T )

∗
δx, (P

c
T )

∗
δy) as follows

(Z1(x, y), Z2(x, y)) =























(X(T, x), X(T, y)) if x = y,

(Y1(x, y), Y2(x, y)) if |x|−1 ≤ ε, |y|−1 ≤ ε and x 6= y,

(X(T, x), X̃(T, y)) otherwise.

We now onstrut reursively (X1(kT, x, y), X2(kT, x, y)) a oupling of ((P c
kT )

∗
δx, (P

c
kT )

∗
δy),

the laws of X(kT, x) and X(kT, y). For k = 0, we set (X1(kT, x, y), X2(kT, x, y)) = (x, y). For

k ≥ 0, we de�ne (X1 ((k + 1)T, x, y) , X2 ((k + 1)T, x, y)) by

X1 ((k + 1)T, x, y) = Z1 (X1 (kT, x, y) , X2 (kT, x, y)) ,

X2 ((k + 1)T, x, y) = Z2 (X1 (kT, x, y) , X2 (kT, x, y)) .

Let us de�ne

τ = inf{kT : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε}
If |x|−1 ≤ ε and |y|−1 ≤ ε, then τ = 0 and E(eατ ) = 1.
If τ 6= 0 i.e. if |x|−1 ≥ ε or |y|−1 ≥ ε, then by onstrution of the oupling and (3.6)

P(τ > T ) < 1− κ20.

More generally

P(τ > kT
∣

∣τ ≥ kT ) < 1− κ20.

We dedue

P(τ > kT ) < (1 − κ20)
k

and

E(eατ ) =
∑

k∈N

eαkTP(τ = kT ) ≤
∑

k∈N

eαkT (1− κ20)
k−1 =M <∞

for α small enough. Similarly, if we de�ne

τn = inf{kT > τn−1 : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε},

for all n ≥ 2 and with τ1 := τ . We have

E(eα(τn−τn−1)) ≤M

so that

E(eατn) ≤Mn.

De�ne

k0 = inf{n ≥ 1 : X1(τn + T, x, y) = X2(τn + T, x, y)}.
By (3.4), (3.5), for all n ≥ 1

P(k0 = n) ≤ P(k0 > n− 1) ≤
(

4eλ
2T/4

λ
√
T

ε

)n−1

.
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We hoose ε small enough suh that

(

4eλ
2T/4

λ
√
T

ε

)

< 1.

Then we write

E(eβτk0 ) =
∑

n≥1

E
(

eβτn1k0=n

)

≤
∑

n≥1

(E(e2βτn))1/2(P(k0 = n))1/2

≤
∑

n≥1

Mnβ/α

(

4eλ
2T/4

λ
√
T

ε

)(n−1)/2

= M <∞

for β small enough.

By Markov's inequality, we onlude that for all k ≥ 1

|E(ϕ(X(kT, x))) − E(ϕ(X(kT, y)))|

= |E(ϕ(X1(kT, x, y)))− E(ϕ(X2(kT, x, y)))|

≤ 2‖ϕ‖∞P(X1(kT, x, y) 6= X2(kT, x, y))

≤ 2‖ϕ‖∞P(kT > τk0
+ T )

≤ 2‖ϕ‖∞Me−β(k−1)T .

We de�ne k :=

⌊

t

T

⌋

suh that we have P c
t = P c

kTP
c
t−kT . Thus we an write

|E[ϕ(X(t, x))] − νc(ϕ)| =

∣

∣

∣

∣

P c
t ϕ(x) −

∫

Hc

ϕ(y)νc(dy)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Hc

P c
t ϕ(x)νc(dy)−

∫

Hc

P c
t ϕ(y)νc(dy)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Hc

(

P c
kTP

c
t−kTϕ(x) − P c

kTP
c
t−kTϕ(y)

)

νc(dy)

∣

∣

∣

∣

≤
∫

Hc

2‖P c
t−kTϕ‖∞Me−β(k−1)T νc(dy)

≤ 2‖ϕ‖∞Me−β(k−1)T

≤ C‖ϕ‖∞e−βt.

�
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