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RECURSIVELY ACCELERATED MULTILEVEL AGGREGATION
FOR MARKOV CHAINS∗

H. DE STERCK† , K. MILLER† , G. SANDERS‡ , AND M. WINLAW†

Abstract. A recursive acceleration method is proposed for multiplicative multilevel aggregation
algorithms that calculate the stationary probability vector of large, sparse, and irreducible Markov
chains. Pairs of consecutive iterates at all branches and levels of a multigrid W cycle with simple,
nonoverlapping aggregation are recombined to produce improved iterates at those levels. This is
achieved by solving quadratic programming problems with inequality constraints: the linear combi-
nation of the two iterates is sought that has a minimal two-norm residual, under the constraint that
all vector components are nonnegative. It is shown how the two-dimensional quadratic programming
problems can be solved explicitly in an efficient way. The method is further enhanced by windowed
top-level acceleration of the W cycles using the same constrained quadratic programming approach.
Recursive acceleration is an attractive alternative to smoothing the restriction and interpolation
operators, since the operator complexity is better controlled and the probabilistic interpretation
of coarse-level operators is maintained on all levels. Numerical results are presented showing that
the resulting recursively accelerated multilevel aggregation cycles for Markov chains, combined with
top-level acceleration, converge significantly faster than W cycles and lead to close-to-linear compu-
tational complexity for challenging test problems.
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1. Introduction. In this paper, we consider multilevel iterative methods for
the numerical calculation of the stationary probability vector of large, sparse, and
irreducible Markov matrices [1]. Let B ∈ R

n×n be a column-stochastic matrix, i.e.,
0 ≤ bij ≤ 1 for all i, j, and

1T B = 1T ,(1.1)

with 1 the column vector of all ones. We seek a vector x ∈ R
n that satisfies

B x = x, xi ≥ 0 ∀i, ‖x‖1 = 1.(1.2)

If B is irreducible, then there exists a unique solution x to (1.2). (Matrix B is
irreducible iff there exists a path from each node i to each node j in the directed graph
of matrix B.) Moreover, this stationary probability vector x then satisfies the strict
inequality xi > 0 for all i [1]. All eigenvalues λi of B satisfy |λi| ≤ 1, and λ1 = 1 is
an eigenvalue of B. The power method for calculating x converges very slowly when
the subdominant eigenvalue satisfies |λ2| → 1 as the problem size increases, since
the error component associated with the subdominant eigenvalue is damped very
slowly [2, 3]. The Markov chain is said to be slowly mixing in this case. Multilevel
iterative methods aim to accelerate convergence for this type of problem by reducing
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error components with different scales on progressively coarser levels. (Note that the
weighted power method can sometimes be used to obtain satisfactory convergence
for problems for which some eigenvalues |λ| → 1, namely, for cases where the slowly
converging components have eigenvalues with real parts that are significantly smaller
than one.)

Methods based on aggregation of Markov states have proven to be a fruitful ap-
proach to accelerating convergence for slowly mixing Markov chains. In these meth-
ods, aggregates of Markov states are formed and a coarse-level transition matrix is
constructed using basic probability calculus that describes the transition probabilities
between the aggregated states. Iteration on the fine level is accelerated by iteration on
the coarse level using the coarse-level transition matrix, followed by multiplicative cor-
rection on the fine level. The earliest work along these lines is Takahashi’s two-level it-
erative aggregation/disaggregationmethod for Markov chains [4], and two-level aggre-
gation/disaggregation has been studied extensively ever since [5, 6, 7, 8, 9, 10, 11, 3].
Convergence proofs are given for two-level aggregation/disaggregation methods in
[9, 11].

Two-level iterative aggregation/disaggregation can naturally be extended to mul-
tiple levels, along the lines of multigrid methods for linear systems of equations [12].
Direct extension of two-level aggregation/disaggregation to multiple levels was first
explored in [13, 14] and later in [15]. In the latter, aggregates are formed algebraically
based on strength of connection in the problem matrix column-scaled by the current
iterate. Coarse grids on all levels are formed adaptively, based on the current iterate,
and are different in each cycle. The resulting methods are similar to the adaptive
smoothed aggregation (SA) and adaptive algebraic multigrid (AMG) methods of [16]
and [17]. However, numerical results in [18] show that the resulting multilevel aggre-
gation method, while improving on two-level aggregation results, does not give satis-
factory convergence for many slowly mixing Markov chains: the number of multigrid
iterations required for convergence grows significantly as a function of problem size,
resulting in computational complexity that is much worse than the optimal O(n) com-
plexity (linear in the number of unknowns). For these problems, so-called W cycles,
in which coarser levels are visited increasingly often, do not succeed in fully restoring
optimal convergence [18].

In this paper, we propose a new way to accelerate multilevel aggregation for
Markov chains. We start from the multiplicative nonoverlapping aggregation method
of [13, 14, 15], but we consider W cycles and use acceleration on all recursive levels
by selecting the best (in a sense to be defined below) linear combination of the two
iterates generated at all levels and branches of the W cycle. Our approach is inspired
by the work on K-cycle (which stands for Krylov cycle) multigrid by Notay and Vas-
silevski [19] (see also [20]) and is also closely related to recursive Krylov acceleration
methods for nonlinear multigrid proposed by Oosterlee and Washio [21]. The idea of
accelerating multilevel methods by combining iterates recursively on all levels is thus
not new; in fact, [21, 19] contain references to earlier work in which this was already
explored. What is different in our approach is that we solve a quadratic programming
problem with inequality constraints on all levels: we solve for the linear combination
of the two iterates that has a minimal two-norm residual, under the constraint that all
vector components are nonnegative. (We thus do not, as in [21, 19, 20], use Krylov-
type linear system accelerators like conjugate gradient (CG) or generalized minimal
residual (GMRES) or their so-called flexible variants.) We show how, for the case of
combining two previous iterates, the constrained quadratic programming problem can



1654 H. DE STERCK, K. MILLER, G. SANDERS, AND M. WINLAW

be solved explicitly in an efficient way. The method is further enhanced by windowed
top-level acceleration of the W cycles using the same constrained quadratic program-
ming approach. We present numerical results showing that the resulting recursively
accelerated multilevel aggregation (RAMA) cycles for Markov chains, combined with
top-level acceleration, converge significantly faster than W cycles and lead to close-
to-linear computational complexity for challenging test problems. Note that we do
not call our multigrid cycles K cycles, since we do not employ a Krylov method for
acceleration. In a generalized sense, however, they could also be called K cycles.

The RAMA method proposed in this paper compares favorably with other meth-
ods that have been developed to accelerate the multilevel aggregation algorithm of
[13, 14, 15], including two approaches we have described in recent work. The first of
these employs smoothing of the restriction and interpolation operators using the prob-
lem matrix [18]. The second employs algebraic multigrid coarsening and interpolation
[22] rather than aggregation to obtain coarse problem formulations while maintain-
ing the adaptive multiplicative setting of the above-discussed aggregation methods
for Markov chains [23]. Both of these methods lead to near-optimal computational
complexity. They both can be interpreted as employing overlapping aggregates to
accelerate convergence (the nonzeros in the columns of the interpolation operator
overlap). While this leads in both cases to near-optimal convergence properties, these
methods share two important disadvantages. First, the probabilistic interpretation
of the coarse-level operators is lost, and an ad hoc lumping procedure is required to
maintain the singular M-matrix nature of the coarse-level operators [18, 23], which
is a somewhat unnatural fix. Second, for some problems the memory and execution
time complexity per multigrid V cycle (as measured by the so-called operator com-
plexity; see section 4) can become very large with these methods, in particular the
smoothed aggregation method [18]. Our new RAMA method is attractive because
it is conceptually simpler than SA or AMG for Markov chains [18, 23] and easier to
implement, and it is built on a method for which two-level convergence proofs are
available [9, 11]. There are no overlapping aggregates, which makes the operator
complexity better controlled, and the probabilistic interpretation of coarse-level op-
erators is maintained on all levels. As such, our RAMA method is a direct extension
of the aggregation/disaggregation idea originally introduced by Takahashi [4], in that
our coarse-level operators are obtained by the standard aggregation mechanism, with
its probabilistic interpretation. Our recursive acceleration improves the convergence
of the multilevel aggregation approach of [13, 14, 15] significantly, maintaining the
probabilistic interpretation of the coarse-level operators. Finally, we also want to
mention some recent different approaches for accelerating the multiplicative aggrega-
tion method for Markov chains, including the so-called square-and-stretch multigrid
algorithm by Treister and Yavneh, which has shown good performance in a variety of
test problems [24].

The remainder of this paper is organized as follows. In section 2, we briefly review
the multilevel aggregation algorithm for Markov chains from [13, 14, 15]. The new
recursively accelerated multilevel aggregation algorithm is described in section 3, and
numerical results are presented in section 4. Conclusions are formulated in section 5.

2. Multilevel aggregation for Markov chains.

2.1. Multilevel aggregation algorithm. In this section, we briefly review the
multilevel aggregation algorithm for Markov chains from [13, 14, 15]. We follow the
presentation of [18].
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Let A = I −B and rewrite B x = x as

Ax = 0.(2.1)

We then rewrite the exact solution, x, in terms of the current approximate, xi, and
its multiplicative error, ei, as diag(xi) ei, obtaining

Adiag(xi) ei = 0.(2.2)

Note that we have to assume here that all components of the current approximate,
xi, are nonzero (the Perron–Frobenius theory guarantees that the exact solution, x,
also has this property; see [1]). At convergence, the multiplicative error is ei = 1.

The n fine-level degrees of freedom are aggregated into m groups according to the
columns of aggregation matrix Q ∈ R

n×m, where qij = 1 if fine-level node i belongs
to aggregate j and qij = 0 otherwise. For example, if the fine-level degrees of freedom
are ordered according to the aggregates they belong to, then Q has the form

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 1 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
0 0 1 · · ·
0 0 0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(2.3)

In our algebraic multilevel methods, the aggregates are determined at each level using
strength of connection in the scaled problem matrix, Adiag(xi). The details of the
aggregation algorithm we use are explained below in section 2.2.

Once Q has been determined, a coarse-level version of (2.2) is constructed:

QT Adiag(xi)Q ec = 0,(2.4)

where ec represents the coarse-level approximation of unknown fine-level multiplica-
tive error ei.

Define the restriction and prolongation operators, R and P , by R = QT and
P = diag(xi)Q, and write RAP ec = 0 with the coarse-level operator, Ac, defined
by

Ac = RAP.(2.5)

Note that PT 1 = Rxi = QT xi is the restriction of current fine-level approx-
imate xi to the coarse level. The coarse-level error, ec, can be used to define an
improved coarse-level approximation, xc = diag(QT xi) ec, leading to the coarse-level
probability equation

(2.6) Ac (diag(Q
T xi))

−1 xc = 0.
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Fig. 2.1. RAMA cycle: recursively accelerated W cycle. Fine-grid operations are represented at
the top of the diagram, coarse-grid operations are on the bottom, and intermediate-grid operations
are in between. The black dots represent relaxation operations on their respective grids, and the open
dots represent coarse-level solves. The iterates represented by two consecutive white square boxes on
each level are combined to produce a new accelerated iterate (gray square boxes). Several top-level
iterates (white square box) may be recombined to produce improved iterates on the top level (gray
diamond).

We define the coarse-level stochastic matrix, Bc, as

Bc = QTB diag(xi)Q (diag(QT xi))
−1.(2.7)

This matrix is nonnegative and satisfies 1T
c Bc = 1T

c , with the coarse-level vector of
all ones denoted by 1c. We then obtain

Ac (diag(Q
T xi))

−1 = R (I −B)P (diag(QT xi))
−1

= QTdiag(xi)Q (diag(QT xi))
−1

−QTB diag(xi)Q (diag(QT xi))
−1

= Ic −Bc.(2.8)

Coarse-level equation (2.6) was first introduced in [25] and has a straightforward
probabilistic interpretation (see, e.g., [14, 15]). It is well known that (2.6) can be used
to accelerate simple one-level iterative methods for (2.1), like the power or weighted
Jacobi relaxation methods. For example, a two-level numerical method (aggrega-
tion/disaggregation) may proceed by relaxation on (2.1) on the fine level, followed by
a coarse-level solve of (2.6), a coarse-level correction according to

xi+1 = P (diag(QT xi))
−1 xc = P ec,(2.9)

and another relaxation on the fine level.

In this paper, we use the weighted Jacobi method for all relaxation operations.
We split problem matrix A into its diagonal and lower and upper triangular parts as
A = D − (L + U), using standard notation. Weighted Jacobi relaxation with weight
w ∈ (0, 1) is given by x← (1 − w)x+ wD−1 (L+ U)x.

A multilevel method can then be obtained by recursively applying the two-level
method to coarse-level equation (2.6). In this paper, we consider so-called W cycles,
which are obtained by applying coarse-level correction twice (see Figure 2.1). The
resulting algorithm is given by Algorithm 1.
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Algorithm 1: multilevel aggregation for Markov chains (W cycle),
x←−MA(A,x, ν1, ν2):

if not on coarsest level then
x← Relax(A,x) ν1 times.
Build Q.
R← QT and P ← diag(x)Q.
Ac ← RAP .
xc ← MA(Ac diag(Q

T x)−1, QT x, ν1, ν2) (first coarse-level solve).
xc ← MA(Ac diag(Q

T x)−1,xc, ν1, ν2) (second coarse-level solve).
x← P (diag(QT x))−1 xc (coarse-level correction).
x← Relax(A,x) ν2 times.

else
x← direct solve of Ax = 0, ‖x‖1 = 1.

end

2.2. Strength-based neighborhood aggregation. We determine aggregates
based on strength of connection in the scaled problem matrix Â = Adiag(xi) [15]. In
this paper, we use a symmetrized strength of connection measure and the neighborhood-
based aggregation technique of [26]. Note that this aggregation is a more standard
version and differs from the aggregation technique used in [15, 18]. Node i is consid-
ered to be strongly connected to node j in the graph of Â if

(2.10) −âij ≥ θmax
k �=i
{−âik} or − âji ≥ θmax

k �=j
{−âjk}.

The strong neighborhood, Ni, of any point i is the set of all points that are strongly
connected to i within the graph of Â, including i. The neighborhood aggregation
method is described in Algorithm 2. In the description of the algorithm, QJ stands for
the index set of the nonzero elements of the Jth column of the aggregationmatrix from
(2.3), Q. The problems we consider in this paper have sparse local connectivity with
a small number of connections per node. For this type of problem, the neighborhood
aggregation method of Algorithm 2 is attractive because it usually results in well-
balanced aggregates of approximately equal size and in coarsening that reduces the
number of unknowns quickly. Coarse-level stencil sizes tend to be rather uniform and
do not grow too quickly.

In the numerical results to be presented below, we also briefly compare this
aggregation strategy with the double pairwise aggregation that was proposed in
[20] for use in a recursively accelerated multilevel aggregation method for nonsin-
gular linear systems; see Algorithm 3. This aggregation strategy proceeds by per-
forming pairwise aggregation (Algorithm 4) two consecutive times. Double pairwise
aggregation is attractive because the maximal size of aggregates is directly con-
trolled (the maximal size is four) and because points with few strong connections
are linked to their aggregate by at least one strong connection. For unsmoothed
aggregation, the approximation quality of algebraically smooth error can be sig-
nificantly improved with aggregates that are smaller than neighborhoods, without
increasing the operator complexity too much. While it is not our intent in this
paper to perform an in-depth study of the various types of aggregation that can
be considered for multilevel methods, we do find it interesting to include a brief
comparison of these two aggregation methods in the numerical results section be-
low, in part also to investigate how the performance of our recursive acceleration
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Algorithm 2: neighborhood-based aggregation, {QJ}mJ=1 ←− Neighbor-
hoodAgg (Adiag(x), θ)

For all points i, build strong neighborhoods Ni based on Adiag(x) and θ.
Set R← {1, . . . , n} and J ← 0.
/* 1st pass: assign entire neighborhoods to aggregates */

for i ∈ {1, . . . , n} do
if (R∩Ni) = Ni then

J ← J + 1.
QJ ← Ni, Q̂J ← Ni.
R← R \Ni.

end

end
m← J .
/* 2nd pass: put remaining points in aggregates they are most

connected to */

while R 
= ∅ do
Pick i ∈ R and set J ← argmaxK=1,...,m card (Ni ∩QK).

Set Q̂J ← QJ ∪ {i} and R← R \ {i}.
end

for J ∈ {1, . . . ,m} do QJ ← Q̂J .

Algorithm 3: double pairwise aggregation, {QJ}mJ=1 ←−
DoublePairwiseAgg(Adiag(x), θ)

{Q(1)
J }m1

J=1 ←PairwiseAgg(Adiag(x), θ).

{Q(2)
J }mJ=1 ←PairwiseAgg(Q(1)T Adiag(x)Q(1), θ).

Q = Q(1) Q(2).

Algorithm 4: pairwise aggregation, {QJ}mJ=1 ←−PairwiseAgg(Adiag(x), θ)

Set R← {1, . . . , n}, J = 0, Â = Adiag(x).
For all i, set Si ← {j ∈ R | âij < −θmaxi�=k |âik|}, and mi ← |{j | i ∈ Sj}|.
while R 
= ∅ do

Select i ∈ R with minimal mi; J ← J + 1.
/* choose strongest remaining negative connection */

Select j ∈ R such that âij = mink∈R âik.
if j ∈ Si then

QJ ← {i, j}.
else

QJ ← {i}.
end
R← R \QJ .
For all k ∈ QJ , update: ml ← ml − 1 for l ∈ Sk.

end

method may be influenced by which aggregation method we choose from the
literature.

Figures 2.2 and 2.3 show results of neighborhood aggregation and double pair-
wise aggregation applied to a tandem queueing test problem (see section 4). For this
problem, Markov states can be represented on a two-dimensional lattice, and points
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Fig. 2.2. Tandem queuing network (n = 15): aggregates formed using neighborhood aggregation.

Fig. 2.3. Tandem queuing network (n = 15): aggregates formed using double pairwise aggregation.

in the interior of the domain have neighborhoods of size seven. Note that, for this
problem, neighborhood aggregation generally leads to larger aggregates with a struc-
tured pattern, while double pairwise aggregation produces smaller aggregates that are
more randomly structured.

3. Recursively accelerated multilevel aggregation for Markov chains.
In this section, we explain how the W cycles of the Markov chain aggregation method
described above can be accelerated by combining iterates recursively on all levels.

3.1. Optimal iterate recombination with inequality constraints. Let x1

and x2 be the iterates obtained after the first and the second coarse-level solves in
any invocation of Algorithm 1. They are represented in Figure 2.1 by any consecutive
pair of small white boxes on a given level. We accelerate the cycle by considering
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linear combinations w of x1 and x2,

w = z1 x1 + z2 x2,(3.1)

and choosing the linear combination such that the two-norm of the residual Aw is
minimized subject to constraints on the sign and size of w. Let X̂ = [x1|x2] and
z = [z1 , z2]

T such that w = X̂ z. We then seek the linear combination w∗ of x1 and
x2 that satisfies

w∗ = argmin
w

‖Aw‖2
subject to w ≥ 0 and

‖w‖1 = 1,

(3.2)

with w = z1 x1 + z2 x2 = X̂ z. The optimal linear combination w∗ (represented
by small gray boxes in Figure 2.1) is then used for the coarse-grid correction (see
Algorithm 1), so its effect propagates through the subsequent parts of the W cycle.
Since w ≥ 0, we have that ‖w‖1 = 1Tw = 1T X̂ z = 1T z, and problem (3.2) can be
rewritten in terms of z as

z∗ = argmin
z

‖(AX̂)z‖2
subject to X̂ z ≥ 0 and

1T z = 1.

(3.3)

Note that this is a standard quadratic programming problem of dimension two, with
n linear inequality constraints and one linear equality constraint. In the next section,
it is explained how it can be solved explicitly in O(n) work. Recursive acceleration
of the W cycle in this way is similar in spirit and cost to the recursive acceleration of
linear and nonlinear multigrid cycles using Krylov subspace methods that produced
good results in [19, 20, 21]. We thus expect significantly improved convergence for
our accelerated W cycles, and this will be demonstrated in the numerical convergence
results of section 4. Convergence properties of recursively accelerated K cycles for
symmetric positive definite linear systems are studied in [19]. Theoretical conver-
gence study of our accelerated W cycles for Markov chains is difficult for the general
nonsymmetric case that is relevant for Markov chains and is outside the scope of this
paper, but we demonstrate their effectiveness by the numerical results of section 4.

One more modification needs to be made before we obtain a practically useful
algorithm. Throughout the W cycle of Algorithm 1, all components of the iterates xi

on all levels are required to be strictly positive, due to the multiplicative nature of
the algorithm (see (2.2)). However, quadratic programming problem (3.3) allows for
solutions with zero components. To preclude problems with vanishing components in
iterates xi, we modify the quadratic programming problem as follows:

z∗ = argmin
z

‖(AX̂)z‖2
subject to X̂ z ≥ δmin

i,j
(x̂i,j) and

1T z = 1,

(3.4)

with δ ∈ (0, 1) a fixed parameter. We choose δ = 0.1 for the numerical tests to be
reported below. This means that we constrain all components of w∗ to be at least
as large as 10% of the smallest component of x1 and x2. While this ensures that all
components of w∗ are strictly positive, this can potentially slow down convergence if
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components of the solution vector sought would still be more than 10 times smaller
than the smallest component of current iterates x1 and x2. Our experience shows
that this rarely happens, since initial relaxations and partial W cycles in most cases
already bring the components of x1 and x2 close to the exact solution values in a
relative sense. Note also that requiring X̂ z ≥ ε for a small ε of the order of machine
accuracy does not lead to a practical algorithm, since some components of x may be
much smaller than machine accuracy for many relevant Markov chain problems, and
a relative bound in the constraint is thus required. The choice in (3.4) for modifying
the inequality constraint worked well for all test problems considered below.

Note finally that it is important for obtaining a robust algorithm that the sign
constraints on the components of w be enforced in the optimization problem. If xi has
negative or vanishing components after acceleration at any level, then these incorrect
signs may propagate to finer levels via the coarse-level correction. Column-scaled
operators Adiag(xi) may then have entire columns that vanish or have incorrect
signs, and the resulting coarse-level problems QT Adiag(xi)Q ec = 0 may fail to have
a unique, strictly positive solution. Also, with incorrect signs in operators, relaxation
may produce further negative or vanishing components. These incorrect signs lead
in many cases to erratic or stalling convergence, or even divergence of the multigrid
process. In summary, we have found that enforcing the sign constraints is important
for the algorithm to be robust.

3.2. Efficient explicit solution of the two-dimensional quadratic pro-
gramming problem. For simplicity, we first consider optimization problem (3.3),
which has inequality constraint X̂ z ≥ 0. Since problem (3.3) is a two-dimensional
optimization problem, the set of n inequality constraints X̂ z ≥ 0 has at most two
relevant constraints (see Figure 3.1). Each inequality constraint defines a subset in
the (z1, z2) plane:

(3.5) Hi = {(z1, z2) : xi1 z1 + xi2 z2 ≥ 0} .
For any i, we have xi1, xi2 > 0, so Hi is the set of all points on the side of the line
normal to (xi1, xi2)

T that contains the first quadrant, including the line itself. The
n constraints imply that (z1, z2) ∈

⋂n
i=1Hi. To form this set, however, only two

constraints are required:

(3.6) xj1 z1 + xj2 z2 ≥ 0 and xk1 z1 + xk2 z2 ≥ 0,

where

(3.7) j = argmin
1≤i≤n

xi2

xi1
and k = argmax

1≤i≤n

xi2

xi1
.

Then,

(3.8) Hj ∩Hk =
n⋂

i=1

Hi.

Coefficients z are selected by minimizing a scalar quadratic function over a (possibly
infinite) line segment. Using the equality constraint in (3.3), we have z2 = 1− z1 and
we obtain an objective function f(z1) = ‖(AX̂) [z1 , 1 − z1]

T ‖2 that is quadratic in
z1:

f(z1) = 〈A (z1x1 + (1− z1)x2) , A (z1x1 + (1− z1)x2)〉
= z21 〈Ax1, Ax1〉+ 2 (1− z1) z1 〈Ax1, Ax2〉+ (1− z1)

2 〈Ax2, Ax2〉 .
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Fig. 3.1. Optimal iterate recombination with inequality constraints. The top-left panel shows
how a single inequality constraint from (3.5) limits (z1, z2). The shaded region is infeasible. The
top-right panel shows a combination of several constraints. The bottom-left panel shows that the
infeasible region of the two most extreme constraints is equivalent to that of all constraints and shows
where the equality constraint line intersects the boundaries of the feasible region. The bottom-right
panel shows the two relevant constraints for the modified inequality constraint X̂ z ≥ δ mini,j(x̂i,j),
and the intersection points with the equality constraint are indicated by black dots.

Function f(z1) is easily minimized over the line segment specified by

(3.9) {z1 + z2 = 1} ∩ Hj ∩Hk.

This segment normally has two finite boundary points (the intersection points of
{z1+z2 = 1} withHj andHk), but it can also be semi-infinite if one of the intersection
points does not lie in the feasible region, or it can be infinite if both intersection points
lie at infinity. The minimum of f(z1) is attained at

(3.10) z∗1 =
〈Ax2, Ax2〉 − 〈Ax1, Ax2〉

〈Ax1, Ax1〉 − 2 〈Ax1, Ax2〉+ 〈Ax2, Ax2〉 ,

and we can check to see if (z∗1 , 1− z∗1) lies on segment (3.9) by verifying that

(3.11) xj1 z
∗
1 + xj2 (1 − z∗1) ≥ 0 and xk1 z

∗
1 + xk2 (1− z∗1) ≥ 0.
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If so, z∗1 is used to produce the minimal vector. Otherwise, f(z1) is evaluated at the
points where {z1 + z2 = 1} intersects the boundaries of Hj and Hk:

(3.12) z1 =
xj2

xj2 − xj1
and z1 =

xk2

xk2 − xk1
.

(If xj2 = xj1 or xk2 = xk1, the corresponding intersection point lies at infinity.) The
intersection point that gives the minimal value should also be checked with (3.6),
since one of the intersection points may lie on the wrong side of one of the inequality
constraint boundaries (leading to a semi-infinite segment (3.9)). If both constraints
are satisfied in the intersection point with the minimal f(z1) value, then this point
is selected; otherwise the other point is selected. The procedure and expressions are
similar for the modified inequality constraint X̂ z ≥ δ mini,j(x̂i,j) of optimization
problem (3.4).

The cost of obtaining the accelerated iterate w∗ given x1 and x2 is modest:
all steps can be performed in O(n) work (with n the problem size at the current
level). The extra work is dominated by two residual calculations, Ax1 and Ax2, and
three inner products, 〈Ax1, Ax1〉, 〈Ax1, Ax2〉, and 〈Ax2, Ax2〉. In fact, in a careful
implementation the calculation of Ax1 does not incur extra work, since it is also
calculated in the relaxation at the beginning of the second coarse-level solve call, and
it can be saved. So in practice the extra work does not require much more than one
residual calculation and a few inner products at each level in each branch of the W
cycle. Note that optimized iterates in RAMA cycles are computed only starting from
the first coarse level, so there is no extra work on the finest level (for RAMA cycles
without top-level acceleration).

3.3. Top-level acceleration. Recombination of iterates can also be done at the
top level to further speed up convergence. We now briefly discuss top-level acceleration
of our recursively accelerated W cycle. A more detailed study of various types of
top-level acceleration methods applied to several variants of multiplicative multilevel
algorithms for Markov chains is presented in [28].

Recombination of top-level iterates is used often, for example in accelerating
multigrid for nonsingular linear systems using CG or GMRES processes on the top
level. (One can equivalently say that, in this case, multigrid is used as a preconditioner
for CG or GMRES.) In the case of CG or GMRES acceleration of stationary multigrid
cycles, excellent convergence properties are often obtained because the approximation
spaces are nested. For nonstationary cycles (our RAMA cycles are nonstationary),
this nesting cannot be taken advantage of, but generalized acceleration methods like
flexible CG and GMRES can still provide significant speedup in this case. An ap-
proach like this was, for example, used in top-level acceleration of nonlinear multigrid
[27] and in top-level acceleration of K cycles [19, 20].

Similarly, we employ top-level acceleration in this paper: a top-level iterate re-
sulting from a RAMA cycle (top-level white box in Figure 2.1) can be combined with
top-level iterates obtained by previous RAMA cycles using our constrained minimiza-
tion approach (3.3) to produce an improved approximation at the top level (top-level
gray diamond in Figure 2.1). On the top level, we can combine more than two iter-
ates: we use a windowed approach in which we take an optimal linear combination
of k previous iterates (except in the initial phase of the process, where we use fewer
than k previous iterates until k RAMA cycles have been executed). The optimization
problem for the case of window size k is still given by (3.3), with z now a k-dimensional
vector and the columns of X̂ now containing the iterates resulting from the k previous
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RAMA cycles. Note that the columns of X̂ do not contain the optimally top-level
accelerated linear combinations of RAMA cycle results from previous steps but rather
the results of the previous RAMA cycles themselves. This gives columns of X̂ that are
more linearly independent, and it saves work since most of the products 〈Axi, Axj〉
that were used to calculate the current optimal linear combination can be reused in
the next optimization step.

Numerical experiments have shown that top-level window size k = 3 is a good
choice for the test problems discussed in the next section, so our numerical results
all employ k = 3. Note that larger values of k typically do not further improve
convergence. This is most likely due to the lack of nested spaces for our nonstationary
algorithm. The n inequality constraints of problem (3.3) can be reduced only as
described above for the k = 2 case (for window size k ≥ 3, there is the possibility of
all n inequality constraints being relevant), so for k 
= 2 we use a general solver for
the quadratic programming problem. For our numerical results, we use the active set
method that is provided by the quadprog function of MATLAB [29]. While there is
no known theoretical complexity bound proven for this algorithm, we have performed
tests indicating that the execution time complexity is O(n). As above, to preclude
problems with zero components in the iterates, we replace the inequality constraint
in problem (3.3) by X̂ z ≥ δ min(X̂), with δ = 0.1. This also takes care of small
negative components that may occur in numerical solutions of problem (3.3) due to
rounding.

Finally, note that, instead of RAMA cycles based on W cycles, recursive accelera-
tion of so-called super-W cycles can also be considered. For example, three consecutive
coarse-level solves can be performed in Algorithm 1, and the resulting iterates in each
branch and on each level can be accelerated using a general solver for the quadratic
programming problem (k > 2). However, as in [19, 20], we have found in numerical
tests that recursively accelerated W cycles (k = 2) are more efficient than recursively
accelerated super-W cycles with three or more coarse-level solves in each branch and
on each level.

4. Numerical results. In this section, we present numerical performance tests
for recursively accelerated W cycles (RAMA cycles), compared with unaccelerated W
cycles. We also include results with additional top-level acceleration (window size 3)
for both W cycles and RAMA cycles. (We call the cycles with top-level acceleration
W+ and RAMA+ cycles.)

For all the numerical results presented in this paper, we start from a random,
strictly positive initial guess and iterate until the one-norm residual, ‖Axi‖1, has
been reduced by a factor of 10−8. We do a direct solve on the coarse level when
n < 12 [23]. All multilevel cycles used are (1,1) cycles (ν1 = ν2 = 1 in Algorithm 1),
and we use strength parameter θ = 0.25 for all test problems on all levels, as in [18, 23].
For simplicity, the weight in our weighted Jacobi relaxation scheme is always chosen
as 0.7. This value works well for all tests considered, but, if desired, convergence can
be further improved by choosing problem-dependent optimal weights.

In the tables with numerical results, “n” is the number of unknowns, “it” is the
number of iterations until the convergence tolerance is reached, and “Cop” is the
operator complexity of the last cycle. Cop is defined as the sum of the number of
nonzero elements in all operators A on all levels divided by the number of nonzero
elements in the fine-level operator. Note that all operators on each level are counted
in Cop (i.e., two operators on level two, four on level three, eight on level four, etc.).
Since most of the work in our algorithms consists of relaxations, this number gives a
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good indication of the amount of work required for a cycle: the work per cycle scales
linearly as a function of problem size if Cop is bounded by a constant. More generally,
a multigrid method attains optimal scalability (linear in the number of unknowns)
when the number of iterations is bounded as a function of problem size, and the work
per iteration scales linearly as a function of problem size.

We present five test problems. The test problems are described extensively in
[18, 23] and are introduced here only briefly. All test problems are slowly mixing:
|λ2| → 1 as n increases. The first and fourth test problems are random walks on
(undirected) graphs, and they lead to problem matrices that are similar to symmetric
matrices and thus have real eigenvalue spectra; their solution can be determined by
an inexpensive, local calculation. The other problems are more challenging: they are
nonsymmetric and have complex eigenvalue spectra [23].

Table 4.1 shows results for a random walk on a two-dimensional square lattice
[18, 23]. The eigenvalue spectrum for this problem is real [23]. It can be observed
that W cycles require a large number of iterations. Recursive acceleration reduces the
number of iterations significantly. Top-level acceleration with window size 3 improves
both the W cycle and RAMA cycle results significantly. Operator complexity is
nicely bounded. The number of iterations is relatively constant, but it increases for
the largest problem size. Scalability is thus not fully obtained for this problem, but
recursive and top-level acceleration improve convergence significantly.

Table 4.2 shows results for a queueing problem (two queues in tandem) from
[18, 3], which can be represented on a two-dimensional lattice. This problem has a
complex spectrum [23]. As in the previous test problem, a large number of W cycles
is required and recursive acceleration improves convergence. Top-level acceleration
again improves both the W cycle and RAMA cycle results.

Table 4.3 shows results for a Petri net problem from [13] (the original problem is
described in [30]). This problem has a complex spectrum [23]. W cycles are scalable for
this problem, but they require more iterations than RAMA cycles. Since the RAMA
results without top-level acceleration are already scalable, top-level recombination
does not provide significant further acceleration.

Table 4.1

Random walk on a two-dimensional lattice (neighborhood aggregation).

W cycles RAMA cycles W+ cycles RAMA+ cycles
n it Cop it Cop it Cop it Cop

64 39 1.47 35 1.47 18 1.47 18 1.47
256 62 1.51 40 1.51 26 1.51 20 1.51

1024 106 1.57 41 1.57 36 1.57 22 1.57
4096 104 1.60 41 1.61 36 1.60 21 1.61

16384 166 1.60 42 1.60 47 1.60 21 1.60
65536 187 1.60 68 1.60 50 1.60 28 1.61

Table 4.2

Tandem queueing problem (neighborhood aggregation).

W cycles RAMA cycles W+ cycles RAMA+ cycles
n it Cop it Cop it Cop it Cop

256 67 1.47 42 1.47 33 1.47 27 1.47
1024 121 1.47 48 1.47 53 1.47 31 1.47
4096 142 1.50 50 1.50 50 1.50 33 1.50

16384 212 1.51 57 1.51 63 1.51 32 1.51
65536 229 1.50 63 1.50 78 1.50 37 1.50
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Table 4.3

Petri net problem (neighborhood aggregation).

W cycles RAMA cycles W+ cycles RAMA+ cycles
n it Cop it Cop it Cop it Cop

819 61 1.79 38 1.79 26 1.79 24 1.79
5525 62 1.86 36 1.86 28 1.87 26 1.87

17575 62 1.91 38 1.91 31 1.94 36 1.92
23821 62 1.92 38 1.93 29 1.94 31 1.92

Table 4.4

Random walk on planar random graph (neighborhood aggregation).

W cycles RAMA cycles W+ cycles RAMA+ cycles
n it Cop it Cop it Cop it Cop

1024 90 1.24 56 1.24 33 1.24 26 1.24
2048 108 1.23 62 1.23 37 1.23 27 1.23
4096 107 1.24 66 1.24 38 1.24 28 1.24
8192 127 1.24 73 1.24 41 1.24 28 1.24

16384 150 1.25 79 1.25 45 1.25 31 1.25
32768 145 1.24 81 1.24 44 1.24 28 1.24

Table 4.4 shows results for a random walk on a planar unstructured graph that
is generated by Delaunay triangulation of uniformly distributed random points in the
unit square [18]. The eigenvalue spectrum for this problem is real [23]. Again, W
cycles require many iterations and recursive acceleration improves convergence. Top-
level acceleration further improves both the W cycle and RAMA cycle results, and
near-linear convergence is obtained.

Here it is also interesting to report on the relative cost in terms of runtime of the
W, RAMA, W+, and RAMA+ cycles. For the problem of Table 4.4 with problem
size n = 32768, we find in our MATLAB-based implementation that the runtime for a
RAMA cycle is only about 0.5% longer than the runtime for a W cycle. The additional
runtime is small because there is no extra work on the finest level and because we
implement an efficient exact solution of the quadratic programming problem on all
coarse levels. Top-level acceleration with window size 3, which occurs on the finest
level and for which there is no efficient exact solution procedure, adds approximately
5% of runtime to each cycle. Overall, we find that, for this problem, the total runtime
until convergence for the RAMA cycles is about 56% of the total W cycle runtime,
while W+ reduces the runtime to 32% of the total W cycle runtime, and RAMA+
reduces it to 20%.

Finally, Table 4.5 shows results for a random walk on a planar unstructured graph
that is generated as in the previous example [18], but now we delete directed edges
from some of the triangles in a way that maintains the irreducibility of the graph.
This leads to a more challenging, nonsymmetric unstructured problem with a complex
eigenvalue spectrum. Specifically, a single directed edge is removed from each triangle
in a subset of triangles that is selected from the Delaunay triangulation such that no
two triangles in the set share an edge. This is done by randomly selecting a triangle
in the triangulation, marking it as “deletable,” and marking all of its three neighbors
as “undeletable.” This process is repeated until all triangles are marked. One edge
of each “deletable” triangle is then made unidirectional by randomly deleting one
of the six directed edges that connect the three nodes of the triangle. This process
ensures that the Markov chain remains irreducible. A random walk is performed on
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Table 4.5

Random walk on planar random graph with some edges deleted (neighborhood aggregation).

W cycles RAMA cycles W+ cycles RAMA+ cycles
n it Cop it Cop it Cop it Cop

1024 113 1.32 61 1.32 38 1.32 28 1.32
2048 152 1.33 70 1.33 35 1.33 27 1.33
4096 180 1.35 75 1.35 52 1.35 31 1.35
8192 201 1.36 78 1.36 39 1.36 26 1.36

16384 214 1.36 67 1.36 43 1.36 27 1.36
32768 301 1.37 87 1.37 47 1.37 28 1.37

Fig. 4.1. Planar random graph with some edges deleted. Black dots represent nodes, light gray
segments represent bidirectional edges, and black segments represent directed edges. Triangles that
were marked as “deletable” are indicated by “+” signs.

the resulting graph: the transition probability from node i to node j is given by the
reciprocal of the number of outward links from node i. See Figure 4.1 for an example
graph for this problem. (In order to obtain a clearer picture, the graph shown here
has a more regular distribution of points than the actual points used to build the
Markov chains. For example, we have artificially located a certain number of points
on the edges of the unit square, and there are no very small triangles that would
be hard to discern.) As in Table 4.4, Table 4.5 shows that W cycles require many
iterations and recursive acceleration improves convergence significantly for this test
problem. Top-level acceleration further improves both the W cycle and RAMA cycle
results, and near-linear convergence is also obtained for this unstructured problem
with nonsymmetric sparsity structure.

4.1. Comparison with double pairwise aggregation. We now briefly report
on numerical results obtained with the double pairwise aggregation (DPA) algorithm
explained in section 2.2 and compare with the neighborhood aggregation (NA) results
presented above. Tables 4.6 and 4.7 show DPA results for the tandem queueing
problem and the random walk on a planar random graph problem. (For brevity, we
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Table 4.6

Tandem queueing problem (DPA). In the rightmost columns, top-level aggregates are frozen for
five RAMA cycles at a time.

W cycles RAMA cycles RAMA+ cycles RAMA+ cycles (frozen)
n it Cop it Cop it Cop it Cop

256 51 2.18 40 2.18 26 2.14 23 2.19
1024 57 2.36 39 2.39 35 2.35 25 2.39
4096 70 2.45 48 2.43 64 2.45 29 2.47

16384 82 2.54 58 2.51 76 2.51 34 2.50
65536 97 2.56 73 2.56 99 2.55 46 2.57

Table 4.7

Random walk on planar random graph (DPA). In the rightmost columns, top-level aggregates
are frozen for five RAMA cycles at a time.

W cycles RAMA cycles RAMA+ cycles RAMA+ cycles (frozen)
n it Cop it Cop it Cop it Cop

1024 37 1.87 30 1.88 24 1.88 19 1.87
2048 41 1.89 31 1.90 27 1.90 18 1.90
4096 45 1.95 35 1.95 35 1.95 19 1.95
8192 46 1.96 36 1.96 41 1.95 20 1.96

16384 49 1.98 39 1.98 49 1.98 21 1.98

discuss only two of the test problems here; the other problems discussed above behave
similarly.)

One can first observe that W cycles appear to work somewhat better for DPA
than for NA: the number of iterations is lower, and the product of the number of
iterations and the operator complexity (which gives a measure of the total amount of
work) is also smaller. Not unexpectedly, the operator complexity of DPA is somewhat
larger (its aggregates are smaller, so more levels are needed, and the shapes of the
aggregates result in stencil growth on coarser levels). A partial explanation for the
smaller number of iterations required may be that DPA has a more careful approach
in trying to group states with the strongest available connections. For RAMA cycles,
NA gives somewhat better results than DPA for the tandem queueing problem, but
for the random walk problem DPA performs a bit better.

A surprising observation is that, for both the tandem queueing and random walk
on a planar random graph problems, our top-level acceleration approach of RAMA
cycles with DPA does not reduce the number of iterations, but rather it leads to
significantly worse convergence. (We never observed such an increase for NA.) We were
puzzled by this at first, until we found the apparent cause of this undesirable effect. We
found that the DPA algorithm results in top-level aggregates that change significantly
from one RAMA cycle to the next, even after many cycles when convergence is nearly
attained. This means that the range of the fine-level coarse-grid correction operator is
very different in each cycle, implying that the low-frequency error components that are
most efficiently removed by coarse-grid correction change from iteration to iteration,
which apparently has a detrimental effect on the convergence rate of the iterative
process. The reason why top-level aggregates change in DPA is that seed nodes are
grouped with the most strongly connected available neighbor, and the sizes of the
connections in the scaled problem matrix, Â = Adiag(xi), can change slightly from
iteration to iteration. When some connections in Adiag(x) (with x the exact solution)
are equal or very close, the sizes of the corresponding entries in Adiag(xi) may change
slightly from iteration to iteration, and the relative magnitude is likely to change from
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step to step, resulting in changes in the aggregation. This problem does not occur
for NA for the range of problems tested (top-level aggregates remain fixed after a
few cycles). Once this problem was realized, it was not difficult to come up with a
simple solution that involves freezing the aggregates for a few cycles at a time. In the
rightmost columns of Tables 4.6 and 4.7, we show how freezing the top-level aggregates
for five RAMA cycles at a time results in a significant reduction in iterations of these
“frozen” RAMA+ cycles compared to unaccelerated RAMA cycles. For the resulting
“frozen” RAMA+ cycles, DPA performs somewhat worse than NA RAMA+ cycles
for the tandem queueing problem and performs similarly to NA RAMA+ cycles for
the random walk problem. (Note that our multilevel aggregation cycles with NA can
also be made more efficient by freezing the aggregation hierarchies after a few cycles,
but this has not been done for the NA results presented in this paper.)

Overall, we can say that both the DPA and NA methods for aggregation perform
well. Not surprisingly, which aggregation method is better appears to be problem
dependent. RAMA significantly speeds up W cycles for both NA and DPA, and
top-level acceleration leads to further improvements for both aggregation methods,
provided that slightly modified RAMA+ cycles are used for DPA that prevent top-
level aggregates from changing too much.

5. Discussion and conclusion. We have shown how recursively accelerated
W cycles of multiplicative multilevel algorithms for Markov chains that use simple
nonoverlapping aggregation [13, 14, 15], combined with top-level acceleration, con-
verge significantly faster than W cycles and lead to close-to-linear computational
complexity for challenging test problems. In our approach, pairs of consecutive iter-
ates at all branches and levels of the multigrid W cycle are recombined to produce an
improved iterate by solving a quadratic programming problem with inequality con-
straints. We have shown how the two-dimensional quadratic programming problem
can be solved explicitly in an efficient way. The additional top-level acceleration of the
W cycles uses the same constrained quadratic programming approach. Our approach
is inspired by the work on K-cycle multigrid by Notay and Vassilevski [19] and Notay
[20], and is also closely related to recursive Krylov acceleration methods for nonlinear
multigrid proposed by Oosterlee and Washio [21].

Our RAMA method forms an alternative to other recently proposed ways of over-
coming the slow convergence of simple nonoverlapping multilevel aggregation methods
for Markov chains [18, 23, 24]. As in [19, 20] for linear systems arising from ellip-
tic PDE discretization, the recursively accelerated method does for many problems
not lead to smaller iteration counts than competing approaches (and thus does not
necessarily perform better for simple problems), but its value lies in its conceptual
simplicity, probabilistic interpretation, and operator complexity, which may be lower
for difficult problems. Both our SA method [18] and our AMG method for Markov
chains [23] can be interpreted as employing overlapping aggregates to accelerate con-
vergence (the nonzeros in the columns of the interpolation operator overlap). While
this leads in both cases to near-optimal convergence properties, these methods have
several important disadvantages. First, the probabilistic interpretation of the coarse-
level operators is lost, which necessitates an ad hoc lumping procedure to maintain
the singular M-matrix nature of the coarse-level operators. Second, for some problems
the memory and execution time complexity per multigrid V cycle (as measured by the
operator complexity) can be large, in particular for the smoothed aggregation method
[18]. Our new RAMA method is attractive because it is conceptually simpler than
SA or AMG for Markov chains [18, 23] and easier to implement. There are no over-
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lapping aggregates, which makes the operator complexity better controlled, and the
probabilistic interpretation (2.8) of coarse-level operators is automatically maintained
on all levels.
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