
An Analysis of Random-Walk Cuckoo Hashing

Alan Frieze∗, Páll Melsted
Department of Mathematical Sciences

Carnegie Mellon University
Pittsburgh PA 15213

U.S.A.

Michael Mitzenmacher†

School of Engineering and Applied Sciences
Harvard University

Cambridge MA 02138

Abstract

In this paper, we provide a polylogarithmic bound that holds with high probability on the
insertion time for cuckoo hashing under the random-walk insertion method. Cuckoo hashing
provides a useful methodology for building practical, high-performance hash tables. The es-
sential idea of cuckoo hashing is to combine the power of schemes that allow multiple hash
locations for an item with the power to dynamically change the location of an item among its
possible locations. Previous work on the case where the number of choices is larger than two
has required a breadth-first search analysis, which is both inefficient in practice and currently
has only a polynomial high probability upper bound on the insertion time. Here we significantly
advance the state of the art by proving a polylogarithmic bound on the more efficient random-
walk method, where items repeatedly kick out random blocking items until a free location for
an item is found.

1 Introduction

Cuckoo hashing [12] provides a useful methodology for building practical, high-performance hash
tables by combining the power of schemes that allow multiple hash locations for an item (e.g.,
[1, 2, 3, 13]) with the power to dynamically change the location of an item among its possible
locations. Briefly (more detail is given in Section 2), each of n items x has d possible locations
h1(x), h2(x), . . . , hd(x), where d is typically a small constant and the hi are hash functions, typically
assumed to behave as independent fully random hash functions. (See [11] for some justification of
this assumption.) We assume each location can hold only one item. When an item x is inserted
into the table, it can be placed immediately if one of its d locations is currently empty. If not, one
of the items in its d locations must be displaced and moved to another of its d choices to make room
for x. This item in turn may need to displace another item out of one its d locations. Inserting an
item may require a sequence of moves, each maintaining the invariant that each item remains in
one of its d potential locations, until no further evictions are needed. Further variations of cuckoo
hashing, including possible implementation designs, are considered in for example [5, 6, 7, 8, 9].

It is often helpful to place cuckoo hashing in a graph theoretic setting, with each item corre-
sponding to a node on one side of a bipartite graph, each bucket corresponding to a node on the
other side of a bipartite graph, and an edge between an item x and a bucket b if b is one of the
d buckets where x can be placed. In this case, an assignment of items to forms a matching and a
∗Supported in part by NSF Grant CCF-0502793.
†Supported in part by NSF Grant CNS-0721491 and grants from Cisco Systems Inc., Yahoo!, and Google.

1

sequence of moves that allows a new item to be placed corresponds to a type of augmenting path
in this graph. We call this the cuckoo graph (and define it more formally in Section 2).

The case of d = 2 choices is notably different than for other values of d. When d = 2, after
the first choice of an item to kick out has been made, there are no further choices as one walks
through the cuckoo graph to find an augmenting path. Alternatively, in this case one can think of
the cuckoo graph in an alternative form, where the only nodes are buckets and items correspond to
edges between the buckets, each item connecting the two buckets corresponding to it. Because of
these special features of the d = 2 case, its analysis appears much simpler, and the theory for the
case where there are d = 2 bucket choices for each item is well understood at this point [4, 10, 12].

The case where d > 2 remains less well understood, although values of d larger than 2 rate to be
important for practical applications. The key question is if when inserting a new item x all d > 2
buckets for x are already full, what should one do? A natural approach in practice is to pick one
of the d buckets randomly, replace the item y at that bucket with x, and then try to place y in one
of its other d− 1 bucket choices [6]. If all of the buckets for y are full, choose one of the other d− 1
buckets (other than the one that now contains x, to avoid the obvious cycle) randomly, replace the
item there with y, and continue in the same fashion. At each step (after the first), place the item
if possible, and if not randomly exchange the item with one of d − 1 choices. We refer to this as
the random-walk insertion method for cuckoo hashing.

There is a clear intuition for how this random walk on the buckets should perform. If a fraction
f of the items are adjacent to at least one empty bucket in the corresponding graph, then we might
expect that each time we place one item and consider another, we should have approximately a
probability f of choosing an item adjacent to an empty bucket. With this intuition, assuming the
load of the hash table is some constant less than 1, the time to place an item would be at most
O(log n) with high probability 1.

Unfortunately, it is not clear that this intuition should hold true; the intuition assumes in-
dependence among steps when the assumption is not necessarily warranted. Bad substructures
might arise where a walk could be trapped for a large number of steps before an empty bucket is
found. Indeed, analyzing the random-walk approach has remained open, and is arguably the most
significant open question for cuckoo hashing today.

Because the random-walk approach has escaped analysis, thus far the best analysis for the case
of d > 2 is due to Fotakis et al. [6], and their algorithm uses a breadth-first search approach.
Essentially, if the d choices for the initial item x are filled, one considers the other choices of the
d items in those buckets, and if all those buckets are filled, one considers the other choices of the
items in those buckets, and so on. They prove a constant expected time bound for an insertion for a
suitably sized table and constant number of choices, but to obtain a high probability bound under
their analysis requires potentially expanding a logarithmic number of levels in the breadth-first
search, yielding only a polynomial bound on the time to find an empty bucket with high probability.
It was believed this should be avoidable by analyzing the random-walk insertion method. Further,
in practice, the breadth-first search would not be the choice for most implementations because of
its increased complexity and memory needs over the random-walk approach.

In this paper, we demonstrate that, with high probability, for sufficiently large d the cuckoo
graph has certain structural properties that yield that on the insertion of any item, the time
required by the random-walk insertion method is polylogarithmic in n. The required properties
and the intuition behind them are given in subsequent sections. Besides providing an analysis for
the random-walk insertion method, our result can be seen as an improvement over [6] in that the

1An event En occurs with high probability if P(En) = 1−O(1/nα) for some constant α > 0, see also discussion on
page 3

2

bound holds for every possible starting point for the insertion (with high probability). The breadth-
first search of [6] gives constant expected time, implying polylogarithmic time with probability 1−
o(1). However when inserting Ω(n) element into the hash table, the breadth-first search algorithm
cannot guarantee a sub-polynomial running time for the insertion of each element. This renders
the breadth-first search algorithm unsuitable for many applications that rely on guarantees for
individual insertions and not just expected or amortized time complexities.

While the results of [6] provide a starting point for our work, we require further deconstruction
of the cuckoo graph to obtain our bound on the performance of the random-walk approach.

Simulations in [6] (using the random-walk insertion scheme), indicate that constant expected
insertion time is possible. While our guarantees do not match the running time observed in simu-
lations, they give the first clear step forward on this problem for some time.

2 Definitions and Results

We begin with the relevant definitions, followed by a statement of and explanation of our main
result.

Let h1, . . . hd be independent fully random hash functions hi : [n] → [m] where m = (1 + ε)n.
The necessary number of choices d will depend on ε, which gives the amount of extra space in
the table. We let the cuckoo graph G be a bipartite graph with a vertex set L ∪ R and an edge
set

⋃
x∈L{(x, h1(x)), . . . (x, hd(x)}, where L = [n] and R = [m]. We refer to the left set L of the

bipartite graph as items and the right set R as buckets.
An assignment of the items to the buckets is a left-perfect matching M of G such that every

item x ∈ L is incident to a matching edge. The vertices F ⊆ R not incident to the matching M
are called free vertices. For a vertex v the distance to a free vertex is the shortest M -alternating
path from v to a free vertex.

We present the algorithm for insertion as Algorithm 1 below. The algorithm augments the
current matching M with an augmenting path P . An item is assigned to a free neighbor if one
exists; otherwise, a random neighbor is chosen to displace from its bucket, and this is repeated
until an augmenting path is found. In practice, one generally sets an upper bound on the number
of moves allowed to the algorithm, and a failure occurs if there remains an unassigned item after
that number of moves. Such failure can be handled by additional means, such as stashes [8].

We note that our analysis that follows also holds also when the table experiences deletions. This
is because our result is based on the structure of the underlying graph G, and not on the history
that led to the specific current matching. The statement of the main result is that given that G
satisfies certain conditions, which it will with high probability, the insertion time is polylogarithmic
with high probability. It is important to note that we have two distinct probability spaces, one for
the hash functions which induce the graph G, and another for the randomness employed by the
algorithm. For the probability space of hash function, we say that an event En occurs with high
probability if P(En) = 1−O(n−2d). For the probability space of randomness used by the algorithm
we use the regular definition of with high probability.

Theorem 1 Conditioned on an event of probability 1 − O(n4−2d) regarding the structure of the
cuckoo graph G, the expected time for insertion into a cuckoo hash-table using Algorithm 1 is
O
(
log1+γ0+2γ1 n

)
where γ0 = d+log d

(d−1) log(d/3) and γ1 = d+log d
(d−1) log(d−1) , assuming d ≥ 8 and if ε ≤ 1

6 ,

d ≥ 4 + 2ε − 2(1 + ε) log
(

ε
1+ε

)
. Furthermore, the insertion time is O

(
log2+γ0+2γ1 n

)
with high

probability.

3

Algorithm 1 Insert-node
1: procedure Insert-node(G,M ,u)
2: P ← ()
3: v ← u
4: i← d+ 1
5: loop
6: if hj(v) is not covered by M for some j ∈ {1, . . . , d} then
7: P ← P ⊕ (v, hj(v))
8: return Augment(M ,P)
9: else

10: Let j ∈R {1, . . . , d} \ {i} and w be such that (hj(v), w) ∈M
11: P ← P ⊕ (v, hj(v))⊕ (hj(v), w)
12: v ← w
13: i← j
14: end if
15: end loop
16: end procedure

The algorithm will fail if the graph does not have a left-perfect matching, which happens
with probability O(n4−2d) [6]. We show that all necessary structural properties of G hold with
probability 1 − O(n−2d), so that the probability of failure is dominated by the probability that G
has no left-perfect matching.

At a high level, our argument breaks down into a series of steps. First, we show that the cuckoo
graph expands suitably so that most vertices are within O(log log n) distance from a free vertex.
Calling the free vertices F and this set of vertices near to the free vertices S, we note that if reach
a vertex in S, then the probability of reaching F from there over the next O(log log n) steps in
the random walk process is inverse polylogarithmic in n, so we have a reasonable chance of getting
to a free vertex and finishing. We next show that if the cuckoo graph has an expansion property,
then from any starting vertex, we are likely to reach a vertex of S though the random walk in only
O(log n) steps. This second part is the key insight into this result; instead of trying to follow the
intuition to reach a free vertex in O(log n) steps, we aim for the simpler goal of reaching a vertex
S close to F and then complete the argument.

As a byproduct of our Lemma 4 (below), we get an improved bound on the expected running
time for the breadth-first variation on cuckoo hashing from [6],

(
1
ε

)O(1) instead of
(

1
ε

)O(log d).

Theorem 2 The breadth-first search insertion procedure given in [6] runs in O

(
max

{
d4
(

1
6ε

) 1

1− log 6
log d , d5

})
expected time, provided d ≥ 8 and if ε ≤ 1

6 if d ≥ 4 + 2ε− 2(1 + ε) log
(

ε
1+ε

)
.

Proof of Theorem 2
We follow the proof of Theorem 1 in [6]. The breadth-first search insertion procedure takes time
O(|Tv|) where Tv is a BFS tree rooted at the newly inserted vertex v, which is grown until a free
vertex is found.

4

The expected size of Tv is bounded above by dk
∗

which is at most d5 for ε ≥ 1
6 and

d4+log(1
6ε)/ log(d6) = d4

(
1
6ε

) log d
log d−log 6

= d4

(
1
6ε

) 1

1− log 6
log d

if ε ≤ 1
6 . �

We prove the necessary lemmas below. The first lemma shows that large subsets of R have large
neighborhoods in L. Using this we can show in our second lemma that the number of R-vertices at
distance k from F shrinks geometrically with k. This shows that the number of vertices at distance
Ω(log logn) from F is sufficiently small. The second lemma shows that at least half the vertices of
L are at a constant distance from F . The next two lemmas will be used to show that successive
levels in a breath first search expand very fast i.e. at a rate close to d−1. The first of these lemmas
deals with the first few levels of the process by showing that small connected subgraphs cannot
have to many “extra” edges. The second will account for subsequent levels through expansion.

3 Expansion and Related Graph Structure

We first show that large subsets of R have corresponding large neighborhoods in L.

Lemma 3 If 1/2 ≤ β ≤ 1− 2d3 logn
n and α = d−1− d+log d

1−log(1−β) > 0 then with high probability every

subset Y ⊆ R of size |Y | = (β + ε)n, has a G-neighborhood X ⊆ L of size at least n
(

1− 1−β
α

)
.

Proof: We show by a union bound that with high probability, there does not exist a pair X,Y
such that |Y | = (β + ε)n, |X| < n− (1+ε)n−|Y |

α and X is the neighborhood of Y in G.
Let S = L \X and T = R \ Y . Then |S| ≥ (1+ε)n−|Y |

α = n(1−β)
α and |T | = (1 + ε)n− (β + ε)n =

(1−β)n. Each vertex in L has all of its edges in T with probability
(

1−β
1+ε

)d
independently of other

vertices. Thus for any T the size of S is a binomially distributed random variable, Bin(n,
(

1−β
1+ε

)d
).

Thus the probability of the existence of a pair X,Y is at most(
(1 + ε)n
(β + ε)n

)
P

(
|S| ≥ (1− β)n

α

)
=
(

(1 + ε)n
(1− β)n

)
P

(
Bin

(
n,

(
1− β
1 + ε

)d)
≥ (1− β)n

α

)

≤
(
e

1 + ε

1− β

)(1−β)n

e
(

1−β
1+ε

)d
1−β
α

1−β
α
n

=
(
αe1+α(1 + ε)α−d

(1− β)α−d+1

) 1−β
α
n

(1)

where we have used the inequality P (Bin(n, p) ≥ ρpn) ≤
(
e
ρ

)ρpn
. (While there are tighter bounds,

this is sufficient for our purposes.)
Taking logarithms,dropping the 1 + ε factor, and letting D = d+ log d and L = log(1−β) gives

log(LHS(1)) ≤ log
(
d− 1−D/(1− L)

d

)
+D − D

1− L
+

DL

1− L

= log
(
d− 1−D/(1− L)

d

)
≤ log

(
d− 1
d

)

5

Then we can upper bound (1) by(
d− 1
d

) 1−β
α
n

≤ exp
(
−1
d

2d3 log n
d

n

)
≤ n−2d

�
The following Lemma corresponds to Lemma 8 in [6]. We give an improved bound on an

important parameter k∗ which gives an improvement for the running time of the breadth-first
search algorithm.

Lemma 4 Assume d ≥ 8 and furthermore if ε ≤ 1
6 we assume d ≥ 4 + 2ε − 2(1 + ε) log

(
ε

1+ε

)
.

Then the number of vertices in L at distance at most k∗ from F is at least n
2 , where k∗ = 4+

log(1
6ε)

log(d6)
if ε ≤ 1

6 and k∗ = 5 if ε ≥ 1
6 .

Proof
Let M be any left-perfect matching of the cuckoo graph G. Let Y0 be the free vertices in R

and X1 = N(Y0). The vertices of X1 are adjacent to free vertices, and thus are at augmentation
distance 1. Let Y1 be the matching neighbors of vertices in X1 in addition to Y0. In general given
Xi we let

Yi = Y0 ∪ {y ∈ R : (x, y) ∈M for some x ∈ Xi} and Xi+1 = N(Yi)

Note that |Y0| = ε and |Xi| = |Yi| + εn for i ≥ 1. Thus to show that |Xi| ≥ n
2 for some i it is

enough to concentrate on expansion properties of the Y sets in R.

Claim 5 Any set Y ⊆ R of size x(1 + ε)n has a neighborhood of size at least

d
6xn if x ≤ 6

d2
Case 1

1
dn if 6

d2
≤ x ≤ 1

d Case 2
1
5n if 1

d ≤ x ≤
1
5 Case 3

3
10n if 1

5 ≤ x ≤
3
10 Case 4

2
5n if 3

10 ≤ x ≤
2
5 Case 5

1
2n if 2

5 ≤ x Case 6

Using Claim 5 we see that it will take at most log d
6

(
6
d2

ε

)
steps to go from size εn to at least

6
d2

and 5 additional steps to go from 6
d2
n to 1

2n. This makes for a total of at most

i∗ ≤ log d
6

(
6
d2

ε

)
+ 6

=
− log(ε)− 2 log d+ log 6

log
(
d
6

) + 6

= 4 +
log
(

1
6ε

)
log
(
d
6

)
steps to go from Y0 of size εn to Xi∗ of size at least 1

2n. Note that if ε ≥ 1
6 we can use i∗ ≤ 5, since

then x ≥ 1
7 ≥

1
d .

6

Proof of claim 5
Assume d ≥ 8 and if ε ≤ 1

6 we require d ≥ 4 + 2ε − 2(1 + ε) log
(

ε
1+ε

)
. For ε ≤ 1 this implies

log
(

ε
1+ε

)
≥ 1− d−2

2(1+ε) . Now let Y ⊂ R, |Y | = x(1 + ε)n and assume |Y | ≥ εn. So ε
1+ε ≤ x and for

ε ≥ 1 we have x ≥ 1
2 .

We upper bound the probability than any set Y , has than sn neighbours in L by(
(1 + ε)n
x(1 + ε)n

)(
n

sn

)(
(1− x)d

)(1−s)n
(1− (1− x)d)sn (2)

≤ exp
(
n
(

(1 + ε)H (x) +H(s) + (1− s)d log(1− x) + s log(1− (1− x)d)
))

where H(x) = −x log(x)− (1− x) log(1− x) and
(
n
k

)
≤ enH(kn). We will assume that

s ≤ 1− (1− x)d. (3)

The product of the terms involving s in (2) is monotone increasing up to this point.
It is enough to show that the factor

Φ1 = (1 + ε)H (x) +H(s) + (1− s)d log(1− x) + s log(1− (1− x)d) (4)

is strictly negative.
It is enough to show that Φ1 is strictly negative for some particular value of s∗ ≤ 1− (1− x)d.

Inflating by a factor n for smaller s we get a bound O(ne−Ω(n)) = e−Ω(n).
Case 1: ε

1+ε ≤ x ≤
6
d2

.
We start with (4) and write s = γdx and assume s ≤ 1

d . We also use the upper bound H(x) ≤
x(1− log x) and get

(1 + ε)x(1− log x) + γdx(1− log(γdx)) + (1− γdx)d log(1− x) + γdx log(1− (1− x)d) (5)

Now use log(1 − x) ≤ −x − x2

2 , (1 − γdx)d ≥ (1 − 1
d)d = d − 1 and log(1 − (1 − x)d) ≤ log dx to

obtain

Φ1 ≤ Φ2 = x ((1 + ε)(1− log x) + γd(1− log γ)− (d− 1))− (d− 1)
x2

2
(6)

Since x ≥ ε
1+ε and (1 + ε)

(
1− log

(
ε

1+ε

))
≤ d−2

2 , we see that using γ = 6 gives γ(1− log γ) < 1/2
and so the coefficient of x in (6) is negative.
Case 2: 6

d2
≤ x ≤ 1

d .
If |Y | ∈

[
6n
d2
, nd
]

we can choose a subset Y ′ of Y of size exactly 6n
d2

and use |N(Y)| ≥ |N(Y ′)| ≥ n
d .

Case 3: 1
d ≤ x and s ≤ 1/5.

Φ1 is increasing with respect to ε and x ≥ ε
1+ε . So we can take ε = x

1−x in order to bound Φ1.

Φ1 ≤ Φ3 =
1

1− x
H(x) +H(s) + (1− s)d log(1− x) + s log(1− (1− x)d) (7)

The derivative of the RHS of (7) with respect to x is given by

d

(
s(1− x)d−1

1− (1− x)d
− 1− s

1− x

)
− log x

(1− x)2
=
−d(1− x)

(
1− s

1−(1−x)d

)
− log x

(1− x)2
(8)

7

Note that both −d(1 − s
1−(1−x)d

) and − log x
1−x are decreasing in x, so it is enough to verify that

the numerator in the RHS of (8) is negative at the left endpoint x = 1/d.
For s ≤ 1

5 we get

− d
(

1− 1
d

)(
1− s

1− (1− 1
d)d

)
+ log d

≤− (d− 1)
(

1− 0.2
1− e−1

)
+ log d ≤ −0.68(d− 1) + log d

which is decreasing and negative for d ≥ 8.
So for s ≤ 1

5 we see that Φ3 is decreasing in x. Since x ≥ 1
d , the maximum is obtained at x = 1

d
and plugging in x = 1

d yields.

Φ4 =
d

d− 1
H

(
1
d

)
+H(s) + (1− s)d log

(
1− 1

d

)
+ s log

(
1−

(
1− 1

d

)d)
(9)

Taking the derivative of Φ4 with respect to d gives

(d− 1)(1− (1− 1
d)d − s)(1 + (d− 1) log(1− 1

d))− (log d)(1− (1− 1
d)d))

(d− 1)2(1− (1− 1
d)d)

(10)

Note that

0 ≤ (d− 1)
(

1 + (d− 1) log
(

1− 1
d

))
≤ (d− 1)/d.

We want to show that Φ′4 < 0 and so we can drop the contribution from s. Factoring 1− (1−1/d)d

from the remainder of the numerator gives at most (d− 1)/d− log d < 0.
For an upper bound we plug in d = 8 into equation (9) and get

8
7
H

(
1
8

)
+H(s) + (1− s)8 log

(
7
8

)
+ s log

(
1−

(
7
8

)8
)

(11)

The derivative with respect to s is

log
(

1− s
s

)
+ s log

(
1−

(
7
8

)8(
7
8

)8
)

which is positive for s ≤ 1/5. Thus plugging in s = 1
5 we get

8
7
H

(
1
8

)
+H

(
1
5

)
+

32
5

log
(

7
8

)
+

1
5

log

(
1−

(
7
8

)8
)
< −0.006

which is strictly negative.
Case 4: 1/5 ≤ x ≤ 3/10.
Starting from (7) we see that the derivative of Φ3 with respect to d is(

1− s

1− (1− x)d

)
log(1− x)

8

which is negative since we are assuming s ≤ 1− (1− x)d. So we will use d = 8 from now on to get
an upper bound on Φ3 and obtain

Φ3 ≤ Φ5 =
1

1− x
H(x) +H(s) + 8(1− s) log(1− x) + s log(1− (1− x)8) (12)

The derivative of Φ5 with respect to x is

Φ′5 =
−8(1− x)

(
1− s

1−(1−x)8

)
− log x

(1− x)2
(13)

If 1
5 ≤ x ≤ 1 and s ≤ 1

2 , then we can upper bound the numerator by

−8(1− x)

(
1−

1
2

1−
(

4
5

)8
)
− log x ≤ −3(1− x)− log x

which is convex and negative at both endpoints, x = 1/5 and x = 1. Thus Φ5 is decreasing in x on
[1
5 , 1]. Evaluating Φ5 with x = 1

5 and s = 3
10 gives Φ5 < −0.06.

Case 5: 3/10 ≤ x ≤ 2/5.
We evaluate Φ5 at x = 3

10 and s = 2
5 , and get Φ5 < −0.19.

Case 6: 2/5 ≤ x ≤ 1.
Evaluating Φ5 with x = 2

5 and s = 1
2 gives Φ5 < −.23. �

Let k∗ = max{4 +
log(1

6ε)
log(d6) , 5} and let Yk be the vertices in R at distance at most k∗ + k from F

and let |Yk| = (βk + ε)n. We note that Lemma 4 guarantees that with high probability at most n
2

vertices in R are at distance more than k∗ from F and so with high probability βk ≥ 1/2 for k ≥ 0.
We now move to showing that for sufficiently large k of size O(log log n), a large fraction of the

vertices are within distance k of the free vertices F with high probability.

Lemma 6 Suppose that d ≥ 8 and if ε ≤ 1
6 assume d ≥ 4 + 2ε − 2(1 + ε) log

(
ε

1+ε

)
. Then with

high probability 1− βk = O
(

logγ0 n
(d−1)k

)
for k such that 1/2 ≥ 1− βk ≥ 2d3 log n/n.

The reader should not be put off by the fact that the lemma only has content for k = Ω(log log n).
It is only needed for these values of k. Proof: We must show that

1− βk = O

(
logγ0 n

(d− 1)k

)
whenever 1− βk ≥ 2d3 log n/n. (14)

Assume that the high probability event in Lemma 3 occurs and 1 − βk ≥ log n/n and the G-
neighborhood Xk of Yk in L has size at least n− (1−βk)n

αk
where αk = d− 1− d+log d

1−log(1−βk) . Note that
for βk ≥ 3

4 and d ≥ 8 this implies

αk ≥
d

3
and

(d+ log d)/(d− 1)
1− log(1− βk)

≤ 0.9. (15)

First assume that β0 ≥ 3/4, we will deal with the case of β0 ≥ 1
2 later. Note now that

Yk+1 = F ∪M(Xk) where M(Xk) = {y : (x, y) ∈M for some x ∈ Xk}. Thus |Yk+1| = (βk+1 +

9

ε)n ≥ εn+ n− (1−βk)n
αk

. This implies that

1− βk+1 ≤ 1− βk
αk

(16)

=
1− βk
d− 1

(
1− (d+ log d)/(d− 1)

1− log(1− βk)

)−1

≤ 1− βk
d− 1

exp
(
h

(
(d+ log d)/(d− 1)

1− log(1− βk)

))
(17)

≤ 1− βk
d− 1

exp
(
h

(
(d+ log d)/(d− 1)

1− log(1− β0) + k log(d/3)

))
. (18)

In (17) we let h(x) = x+ 3x2 and note that (1− x)−1 ≤ exp(h(x)) for x ∈ [0, .9]. For (18) we have
assumed that 1− βk ≤ 3k(1− β0)/dk, which follows from (15) and (16) provided βk ≥ 3/4.

For β ∈ [1
2 ,

3
4] note that αk is increasing in d and β. Also starting with β0 = 1

2 and using d = 8

we see numerically that 1− β3 ≤
1
2

α0α1α2
≤ 1

4 . Thus after at most 3 steps we can assume β ≥ 3/4.
To simplify matters we will assume β0 ≥ 3/4, since doing this will only “shift” the indices by at
most 3 and distort the equations by a O(1) factor.
Using inequality (18) repeatedly gives

1− βk+1 ≤

1− β0

(d− 1)k+1
exp

 d+ log d
(d− 1) log(d/3)

k∑
j=0

1

j + 1−log(1−β0)
log(d/3)

+O

 k∑
j=0

1(
j + 1−log(1−β0)

log(d/3)

)2

≤ 1− β0

(d− 1)k+1
exp

(
d+ log d

(d− 1) log(d/3)
log
(

1− log(1− βk)
1− log(1− β0)

)
+O(1)

)
(19)

≤ O
(

logγ0 n
(d− 1)k+1

)
.

Note that (19) is obtained as follows:

k∑
j=0

1

j + 1−log(1−β0)
log(d/3)

= log
(
k + ζ

ζ

)
+O(1) ≤ log

(
1− log(1− βk)
1− log(1− β0)

)
+O(1) (20)

where ζ = 1−log(1−β0)
log(d/3) . Now 1−βk ≤ 3k(1−β0)/dk implies that k ≤ log((1−β0)/(1−βk))/ log(d/3).

Substituting this upper bound for k into the middle term of (20) yields the right hand side. �
We now require some additional structural lemmas regarding the graph in order to show that

a breadth first search on the graph expands suitably.

Lemma 7 Whp G does not contain a connected subgraph H on 2k+1 vertices with 2k+3d edges,
where k + 1 vertices come from L and k vertices come from R for k ≤ 1

6 logd n.

Proof: We put an upper bound on the probability of the existence of such a subgraph using the
union bound. Let the vertices of H be fixed, any such graph H can be constructed by taking a
bipartite spanning tree on the k + 1 and k vertices and adding j edges. Thus the probability of

10

such a subgraph is at most(
n

k + 1

)(
(1 + ε)n

k

)
k(k+1)−1(k + 1)k−1 (k(k + 1))j

(
j

(1 + ε)n

)2k+j

≤
(

en

k + 1

)k+1(e(1 + ε)n
k

)k
kk(k + 1)k−1

(
jk(k + 1)
(1 + ε)n

)j
j2k

(
1

(1 + ε)n

)2k

≤ n (ej)2k

(
jk(k + 1)

n

)j
(21)

For j = 3d and k ≥ 1
6 logd n we have 3dk(k+1)

n ≤ n−1+ 1
d and (3ed)2k ≤ exp

(
log(d3) logn

3 log d

)
= n and

(21) is at most n2n−3d+2 = O(n−2d). �

Lemma 8 Whp there do not exist S ⊆ L, T ⊆ R such that N(S) ⊆ T , 2d2 log n ≤ s = |S| ≤
n/d, t = |T | ≤ (d− 1− θs)s and θs = d+log d

log(n/((d−1)s)) ≥
d+log d
log(n/t) .

Proof: The expected number of pairs S, T satisfying (i),(ii) can be bounded by

n/d∑
s=2d2 logn

(
n

s

)(
(1 + ε)n

t

)(
t

(1 + ε)n

)ds
≤

n/d∑
s=2d2 logn

(ne
s

)s((1 + ε)ne
t

)t(t

(1 + ε)n

)ds

≤
n/d∑

s=2d2 logn

(ne
s

)s
e(d−1−θs)s

(
t

(1 + ε)n

)ds−(d−1−θs)s

≤
n/d∑

s=2d2 logn

(
t

s

ed−θs

(1 + ε)1+θs

(
t

n

)θs)s
≤

n/d∑
s=2d2 logn

(
(d− 1)ed−θs

(
t

n

)θs)s

≤
n/d∑

s=2d2 logn

(
d− 1
d

)s
= O

(
n−

2d2 logn
d

)
= O

(
n−2d

)
�

4 Random Walks

Suppose now that we are in the process of adding u to the hash table. For our analysis, we consider
exploring a subgraph of G using breadth-first search, starting with the root u ∈ L and proceeding
until we reach F . We emphasize that this is not the behavior of our algorithm; we merely need to
establish some properties of the graph structure, and the natural way to do that is by considering
a breadth-first search from u.

Let L1 = {u}. Let the R-neighbors of x be w1, w2, . . . , wd and suppose that none of them are
in F . Let R1 = {w1, w2, . . . , wd}. Let L1 = {v1, v2, . . . , vd} where vi is matched with wi in M ,
for i = 1, 2, . . . , d. In general, suppose we have constructed Lk for some k. Rk consists of the
R-neighbors of Lk that are not in R≤k−1 = R1∪· · ·∪Rk−1 and Lk+1 consists of the M -neighbors of
Ri. An edge (x, y) from Lk to R is wasted if either (i) y ∈ Rj , j < k or if there exists x′ ∈ Lk, x′ < x
such that the edge (x′, y) ∈ G. We let

k0 =
⌊
logd−1(n)− 1

⌋
11

and ρk = |Rk|, λk = |Lk| for 1 ≤ k ≤ k0. Assume for the moment that

|Rk| ∩ F = ∅ for 1 ≤ k ≤ k0. (22)

Lemma 9 Assume that (22) holds. Then

ρk0 = Ω
(

n

logγ1 n

)
. (23)

Proof: We can assume that 1− βk0 ≥ 2d3 log n/n. If 1 ≤ k ≤ k1 =
⌊

logd n
6

⌋
then Lemma 7 implies

that we generate at most 3d wasted edge in the construction of Lj , Rj , 1 ≤ j ≤ k. If we consider
the full BFS path tree, where vertices can be repeated, then each internal vertex of the tree L has
d− 1 children. For every wasted edge we cut off a subtree of the full BFS tree, what remains when
all the wasted edges have been cut is the regular BFS tree. Clearly the worst case is when all the
subtrees cut off are close to the root, thus 3d wasted edges can at most stunt the growth of the
tree for 4 levels (d− 2 edges cut at the 3 lowest levels and 6 edges cut off at the 4-th level). This
means that

ρk > (d− 1)k−5 for 1 ≤ k ≤ k1. (24)

In particular ρk1 = Ω
(

(d− 1)
logd n

6

)
= Ω

(
2d2 log n

)
so Lemma 8 applies to the BFS tree at this

stage. In general Lemma 8 implies that for j ≥ k1

ρ1 + ρ2 + · · ·+ ρj ≥ (d− 1− θs)s (25)

where
s = λ1 + λ2 + · · ·+ λj = 1 + ρ1 + ρ2 + · · ·+ ρj−1. (26)

This follows from the fact that λ1 = 1 and (22) implies λj = ρj−1 for j ≥ 2.
Now λj ≤ (d−1)λj−1 for j ≥ 3 and so s in (26) satisfies s ≤ 1+d+d(d−1)+ · · ·+d(d−1)j−2 <

(d− 1)j−1. Thus θs in (25) satisfies

θs ≤ φj =
d+ log d

log n− j log(d− 1)
.

Thus, by (25) and (26) we have (after dropping a term)

ρj ≥ (d− 2− φj)(ρ1 + ρ2 + · · ·+ ρj−1). (27)

An induction then shows that for ` ≥ 1,

ρk1+` ≥ (ρ1 + · · ·+ ρk1)(d− 2− φk1+`)
`−1∏
k=1

(d− 1− φk1+k). (28)

Indeed the case ` = 1 follows directly from (27). Then, by induction,

ρk1+`+1 ≥ (ρ1 + · · ·+ ρk1)(d− 2− φk1+`+1)

(
1 +

∑̀
k=1

(d− 2− φk1+k)
k−1∏
i=1

(d− 1− φk1+i)

)

= (ρ1 + · · ·+ ρk1)(d− 2− φk1+`+1)
∏̀
k=1

(d− 1− φk1+k). (29)

12

To check (29) we can use induction. Assume that

1 +
`+1∑
k=2

(d− 2− φk1+k)
k∏
i=2

(d− 1− φk1+i) =
`+1∏
k=2

(d− 1− φk1+k)

and then multiply both sides by d− 1− φk1+1.
We deduce from (24) and (28) that provided k1 + ` ≤ k0 (which implies φk1+`

d−1 ≤
1
2),

ρk1+` ≥ ((d− 1)k1−5 − 1)(d− 2− φk1+`)
`−1∏
k=1

(d− 1− φk1+k)

≥ 1
2

(d− 1)k1+`−4 exp

{
− 1
d− 1

∑̀
k=1

φk1+k −
1

(d− 1)2

∑̀
k=1

φ2
k1+k

}
(30)

Note next that

∑̀
k=1

φk1+k =
d+ log d

log(d− 1)

(
log
(

log n− k1 log(d− 1)
log n− (k1 + `) log(d− 1)

)
+O(1)

)
≤ d+ log d

log(d− 1)
(log log n+O(1))

and
∑`

k=1 φ
2
k1+k = O(1). Thus, putting ` = k0 − k1 we get

ρk0 = Ω
(

(d− 1)k0

(log n)(d+log d)/((d−1) log(d−1))

)
and the lemma follows. �

5 Proof of Theorem 1

Let S denote the set of vertices v ∈ R at distance at most ∆ = k∗ + (γ0 + γ1) logd−1 log n + 2K
from F , where K is a large constant and k∗ is given in Lemma 4. Then by Lemma 6

|R \ S| ≤ n

(d− 1)K logγ1(n)
.

We have used (d − 1)K to “soak up” the hidden constant in the statement of Lemma 6 and the
requirement 1 − βk ≥ 2d2 log n/n in Lemma 6 does not cause problems. If it fails then at most
O(log n) vertices are at distance greater than ∆ from F .

If K is sufficiently large then Lemma 9 implies that

|R \ S| ≤ ρk0/2. (31)

Every vertex v ∈ S has a path of length l ≤ ∆ to a free vertex and the probability that the

random walk follows this path is
(

1
d−1

)l
≥
(

1
d−1

)∆
, which is a lower bound on the probability the

algorithm finds a free vertex within ∆ steps, starting from v ∈ S. We now split the random walk
into rounds, and each round into two phases.

The first phase starts when the round starts and ends when the random walk reaches a vertex
of S or after k0 steps(possibly the first phase is empty). Then, the second phase starts and ends
either when the random walk reaches a free vertex or after ∆ steps, finishing this round. The length
of the first phase is at most k0 and in the second phase takes at most ∆ steps.

13

Claim 10 Starting from a vertex v /∈ S the expected number of rounds until the random walk is in
S is at most O(logγ1 n). Indeed the probability that a random walk of length k0 passes through S is
at least ρk0−|R\S|

(d−1)k0
= Ω(log−γ1 n).

By Claim 10 we have a Ω(log−γ1 n) chance of reaching S at the end of the first phase. When

we start the second phase we have at least a
(

1
d−1

)∆
probability of reaching a free vertex, thus

ending the random walk. Then the number of rounds until we reach a free vertex is dominated by

a geometric distribution with parameter Ω
((

1
d−1

)∆
log−γ1 n

)
and thus the expected number of

rounds is O((d − 1)∆ logγ1 n). Since both Lemma 6 and Claim 10 apply regardless of the starting
vertex, this shows that the expected number of steps until we reach a free vertex is at most

O
(
k0 logγ1 n(d− 1)∆

)
= O

(
(log n) (logγ1 n)(d− 1)(γ0+γ1) logd−1 logn+O(1)

)
= O

(
log1+γ0+2γ1 n

)
.

There is still the matter of Assumption (22). This is easily dealt with. If we find v ∈ Rk ∩ F
then we are of course delighted. So, we could just add a dummy tree extending 2(k0−k) levels from
v where each vertex in the last level is in F . The conclusion of Claim 10 will remain unchanged.
This completes the proof of Theorem 1.

6 Conclusion

We have demonstrated that for sufficiently large d with high probability the graph structure of
the resulting cuckoo graph is such that, regardless of the staring vertex, the random-walk insertion
method will reach a free vertex in polylogarithmic time with high probability. Obvious directions
for improvement include reducing the value of d for which this type of result holds, and reducing
the exponent in the time bound.

References

[1] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced Allocations. SIAM Journal on Com-
puting, 29(1):180-200, 1999.

[2] A. Broder and A. Karlin. Multilevel Adaptive Hashing. In Proceedings of the 1st ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 43-53, 1990.

[3] A. Broder and M. Mitzenmacher. Using Multiple Hash Functions to Improve IP Lookups.
Proceedings of the 20th IEEE International Conference on Computer Communications (IN-
FOCOM), pp. 1454-1463, 2001.

[4] L. Devroye and P. Morin. Cuckoo Hashing: Further Analysis. Information Processing Letters,
86(4):215-219, 2003.

[5] M. Dietzfelbinger and C. Weidling. Balanced Allocation and Dictionaries with Tightly Packed
Constant Size Bins. Theoretical Computer Science, 380(1-2):47-68, 2007.

[6] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space Efficient Hash Tables With Worst
Case Constant Access Time. Theory of Computing Systems, 38(2):229-248, 2005.

14

[7] A. Kirsch and M. Mitzenmacher. Using a Queue to De-amortize Cuckoo Hashing in Hardware.
In Proceedings of the Forty-Fifth Annual Allerton Conference on Communication, Control,
and Computing, 2007.

[8] A. Kirsch, M. Mitzenmacher, and U. Wieder. More Robust Hashing: Cuckoo Hashing with a
Stash. In Proceedings of the 16th Annual European Symposium on Algorithms, pp. 611-622,
2008.

[9] A. Kirsch and M. Mitzenmacher. The Power of One Move: Hashing Schemes for Hardware.
In Proceedings of the 27th IEEE International Conference on Computer Communications
(INFOCOM), pp. 565-573, 2008.

[10] R. Kutzelnigg. Bipartite Random Graphs and Cuckoo Hashing. In Proceedings of the Fourth
Colloquium on Mathematics and Computer Science, 2006.

[11] M. Mitzenmacher and S. Vadhan. Why Simple Hash Functions Work: Exploiting the En-
tropy in a Data Stream. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 746-755, 2008.

[12] R. Pagh and F. Rodler. Cuckoo Hashing. Journal of Algorithms, 51(2):122-144, 2004.

[13] B. Vöcking. How Asymmetry Helps Load Balancing. Journal of the ACM, 50(4):568-589,
2003.

15

