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Abstract. Motivated by some recent work in active contour applications, we study the use of Sobolev gradients
for PDE-based image diffusion and sharpening. We begin by studying, for the case of isotropic
diffusion, the gradient descent/ascent equation obtained by modifying the usual metric on the space
of images, which is the L2 metric, to a Sobolev metric. We present existence and uniqueness results
for the Sobolev isotropic diffusion, derive a number of maximum principles, and show that the
differential equations are stable and well-posed both in the forward and backward directions. This
allows us to apply the Sobolev flow in the backward direction for sharpening. Favorable comparisons
to the well-known shock filter for sharpening are demonstrated. Finally, we continue to exploit this
same well-posed behavior both forward and backward in order to formulate new constrained gradient
flows on higher order energy functionals which preserve the first order energy of the original image
for interesting combined smoothing and sharpening effects.

Key words. image diffusion, partial differential equations, gradient descent, gradient ascent, Sobolev spaces,
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1. Introduction. We revisit the problem of image diffusion, which plays a key role in image
enhancement and denoising applications [3, 17, 1, 7, 8, 18, 21, 22, 25, 36, 35, 38], as well as
more recent applications such as image compression [12]. Recall that the problem of image
diffusion consists of designing a suitable differential operator A on a suitable function space
H of images (e.g., L2(Ω), where Ω ⊂ R

2 denotes the image domain), and of considering the
one-parameter family for which A is the infinitesimal generator; in other words, the following
functional differential equation is considered:

(1.1) u(0) = u0,
du

dt
= Au, t > 0,

where u0, the initial condition, is the image to be processed. Depending on the choice of the
operator A, the one-parameter family {u(t)}t≥0 thus obtained may correspond to successively
enhanced versions of the initial image u0.

A classical choice for A, first proposed by [35, 36], is the Laplace operator, which leads to
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982 J. CALDER, A. MANSOURI, AND A. YEZZI

the heat equation

(1.2) u(0) = u0,
du

dt
= Δu, t > 0.

The one-parameter family obtained in this way (in L2(R2)) corresponds to successively blurred
versions of the initial image u0, where the blurring achieved is equivalent to convolving the
image with Gaussian kernels of successively increasing variance. The key drawback of the
heat equation for denoising purposes is that it blurs out important image structure as well;
this is already suggested by the rotational invariance of the Laplace operator, which leads to
isotropic smoothing.

To remedy the isotropic nature of the heat equation, Perona and Malik [22] proposed the
PDE

(1.3) u(0) = u0,
du

dt
= ∇ · (c(‖∇u‖)∇u), t > 0,

where c > 0 is a smooth monotonically decreasing function typically chosen so that c(s) → 0
as s → ∞ and c(s) → 1 as s → 0; the key idea here is that diffusion should be inhibited in the
presence of strong edges (as measured by c) and should proceed in the presence of weak edges.
It can be shown that the diffusion induced by this PDE is such that it takes place along edges
and not across edges, and hence is anisotropic. It is important to note that choosing c to be
the constant function with value 1 yields the heat equation.

The isotropic diffusion (heat) equation can be interpreted as a gradient descent equation
on the functional

u �→
∫
Ω
‖∇u‖2,

and similarly the anisotropic diffusion equation proposed by [22] can be interpreted as a
gradient descent equation on a functional of the form

u �→
∫
Ω
g(‖∇u‖2)

for some suitable function g. It is important to note, however, that, in both cases, the gradient
is meant with respect to the L2 metric. Natural questions at this point include: What if the
metric is modified from L2 to some other metric? How does the corresponding gradient
descent equation (on the very same functional) behave? What properties does the solution (if
it exists) have?

In terms of Riemannian geometry, modifying the Riemannian metric implicitly changes
the notion of distance on a manifold. In the context of image processing, modifying the metric
on the space of images (from L2 to another metric) yields a new distance function between
images. It has long been suggested that the L2 distance function is a poor approximation to
our perceptual notion of the distance between images. Therefore, it is certainly of interest
to study the gradient descent PDE (for various classical functionals) with respect to other
metrics which may be more aligned with our visual perception.

In this paper, we study, for the case of isotropic diffusion, the gradient flows obtained by
modifying the metric on the space of images from L2 to a Sobolev metric. We prove existence
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and uniqueness and a number of maximum principles for the corresponding gradient descent
differential equation. In particular, we show that the new gradient flow is well-posed both
in the forward and backward directions, allowing us to reverse the flow direction for image
sharpening effects. We further exploit this same well-posed behavior in order to formulate
new constrained gradient flows on other energy functionals which preserve this original energy
(via orthogonal projection) for interesting combined smoothing and sharpening effects. We
compare our Sobolev sharpening algorithm to the well-known shock filter [21] and show that,
aside from being well-posed, the Sobolev sharpening PDE generates natural-looking images
devoid of the “staircasing” artifacts which plague the shock filter.

2. Previous and related works.

2.1. Sobolev gradient flows. The work presented here is directly inspired by works on
active contours [28, 27, 29], where the gradient descent PDEs for segmentation and tracking
energies are recast under a Sobolev metric. The resulting tracking and segmentation algo-
rithms, referred to as Sobolev active contours, are found to be far more robust with respect
to noise and more global in nature. Charpiat et al. [9] study the case for active contours in
more generality and show how to design inner products in order to achieve a desired amount
of spatial coherency in the gradient flow. They also show how computing the gradient with
respect to an arbitrary inner product can be interpreted as solving a minimization problem,
and they use this as motivation for defining the notion of an “extended gradient.”

Richardson [24] studied the use of Sobolev gradients for image decomposition tasks. Such
tasks include decomposing an image into its constituent smooth, texture, and noise parts.
These decompositions are typically obtained via the minimization of a least squares func-
tional, and by using Sobolev gradient flows, one can obtain faster convergence rates and avoid
irrelevant local minima. Richardson [23] also studied the use of high order Sobolev gradients
in the context of numerically solving nonlinear differential equations. For further reading on
Sobolev gradients and differential equations, see the book by Neuberger [20].

As can be seen, much of the previous and related work on Sobolev gradients in the context
of image processing and computer vision is aimed at recasting a gradient descent algorithm
under a Sobolev inner product to achieve better convergence results and less susceptibility to
local minima. All that is important in these approaches is (1) which local minimum is reached
by the gradient descent procedure and (2) how quickly one reaches this local minimum. We
study Sobolev gradients for an entirely different purpose. In image processing, it is not the
limit point of the gradient descent process that matters; instead it is the family of images
generated by the gradient descent procedure that we are interested in. As such, we are
far more interested in the properties of the solutions to these gradient flows and much less
interested in their convergence properties as t → ∞. Also, we will be interested in both the
gradient descent and ascent flows, as the first leads to image smoothing while the second yields
image sharpening.

2.2. Image smoothing via PDEs. Many researchers have explored image restoration and
smoothing via extensions and modifications of the Perona–Malik functional. Weickert [32, 33]
proposed a generalization of the Perona–Malik equation where the diffusion coefficient c(|∇u|)
depends not only on the magnitude of∇u but also on local variations in its orientation, and has
established rigorous existence and uniqueness results for the resulting PDE. Bai and Feng [4]
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984 J. CALDER, A. MANSOURI, AND A. YEZZI

proposed a class of fractional order anisotropic diffusion PDEs, which are the Euler–Lagrange
equations for a Perona–Malik-style functional which depends on fractional order derivatives of
the image. Guidotti and coworkers [15, 16] introduced a variant on the Perona–Malik equation
where the diffusion coefficient c(|∇u|) depends on the fractional gradient ∇εu, and established
existence and uniqueness in the weak setting. Sapiro and Ringach [26] proposed anisotropic
diffusion for multivalued images, and Martin-Herrero [19] extended this work to hyperspectral
images. Lysaker, Lundervold, and Tai [18] proposed a class of fourth order PDEs for noise
removal. Tschumperlé [30] and Tschumperlé and Deriche [31] proposed anisotropic diffusion
for multivalued images and a unifying framework for vector-valued image regularizing PDEs.
Yezzi [37] proposed viewing an image as a surface embedded in R

3 and performed denoising
by curvature evolution equations. Zhang and Hancock [39] proposed a discrete framework for
anisotropic diffusion based on the heat equation on a graph.

The above summary is by no means exhaustive, but it is important to note that all of
these restoration algorithms are performing image diffusion and smoothing. We now present
a summary of the relevant sharpening algorithms in the literature.

2.3. Image sharpening via PDEs. Although there is an enormous amount of literature
on image diffusion via PDEs, there is relatively little on image sharpening and enhancement.
This is perhaps due to the inherently ill-posed nature of such PDEs. One of the oldest and
most familiar image sharpening PDEs is the shock filter proposed by Osher and Rudin [21].
The general form for the shock filter is

(2.1) u(0) = u0,
du

dt
= −|∇u|L(u), t > 0,

where L is an edge detecting operator. Typical choices for L are

L(u) = Δu

1 + |Δu| and L(u) = uηη
1 + |uηη | ,

where uηη =
∑

i,j uxiuxjuxixj is the second derivative in the direction of the gradient ∇u.
From a mathematical point of view, the shock filter looks severely ill-posed; however, Osher
and Rudin [21] devised a sophisticated numerical scheme which gives satisfying results. They
have conjectured that, for continuous initial data u0(x), the one-dimensional shock filter has a
unique solution which is continuous everywhere except at a finite number of points that corre-
spond to the inflection points of u0. Despite its apparent ill-posedness, the shock filter can be
combined with anisotropic diffusion in a well-posed sharpening and smoothing framework [2].

More recently, Gilboa, Sochen, and Zeevi [14] proposed a forward and backward diffusion
model based on the Perona–Malik model (1.3) with diffusion coefficient

(2.2) c(s2) =
1

1 + (s/kf )n
− α

1 + ((s − kb)/w)2m
,

where kf , kb, w,m, n are all constants. Such a model behaves like the smoothing Perona–Malik
model for weak gradients but becomes a reverse diffusion process for large gradients. They
give a stability condition for the one-dimensional case, but the two-dimensional model has
observed instabilities [34]. A sophisticated numerical method has been proposed for these
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forward/backward diffusion PDEs that is provably stable [34]; however, these stability results
are discrete and rely heavily on the relative amounts of smoothing and sharpening. Thus,
these PDEs cannot be used for pure sharpening.

3. Preliminaries.

3.1. Gâteaux-differentials and gradients. Let H be a (possibly infinite-dimensional)
Hilbert space, with inner product 〈·, ·〉H . H is canonically endowed with the structure of
a Hilbert manifold, and the tangent space to H at every u ∈ H, denoted by TuH, can be
canonically identified with H itself. The dual space T �

uH to TuH is defined to be the space
of continuous linear functionals on TuH, and is therefore identified with the dual space to H.
The inner product 〈·, ·〉H on H also defines (by virtue of identifying TuH with H) an inner
product on TuH for all u ∈ H and, as a result, a Riemannian structure on H. We now
recall some preliminary definitions regarding Gâteaux-differentials and gradients. In the fol-
lowing, let E : H → R be a functional on H and g : H ×H → R a bilinear, symmetric, and
positive-definite form on H.

Definition 3.1. We say that E is Gâteaux-differentiable at u ∈ H if there exists a continuous
linear functional dE|u : H → R such that

lim
t→0

E(u+ tv)− E(u)

t
= dE|u(v) ∀v ∈ H.

dE|u is called the Gâteaux-differential of E at u.

Definition 3.2. Suppose that E : H → R is Gâteaux-differentiable at some u ∈ H. Then if
there exists a unique w ∈ H such that

g(w, v) = dE|u(v) ∀v ∈ H,

then we call w the gradient of E at u with respect to the Riemannian structure induced by g.
In this case, we will denote w by ∇gE|u.

Remark 1. If E : H → R is Gâteaux-differentiable at u ∈ H and H is a Hilbert space (i.e.,
complete) with respect to the inner product induced by g, then the existence and uniqueness
of ∇gE|u follows from the Riesz representation theorem. If H endowed with g is not a Hilbert
space, then E being Gâteaux-differentiable need not imply the existence of a gradient.

Definition 3.3. The gradient descent differential equation for E, with respect to the Rie-
mannian structure induced by g, is defined to be the differential equation

(3.1) u(0) = u0,
du

dt
(t) = −∇gE|u(t), t > 0,

where u0 ∈ H is a given initial condition.

We define the gradient ascent equation of E in the same way, except for removing the
minus sign in (3.1). We interpret solutions to (3.1) in the strong sense; i.e., a solution is a
function u ∈ C1([0, T ];H) for some T > 0 such that ∇gE|u(t) exists for all t ∈ [0, T ] and
u satisfies the differential equation (3.1). As a remark, note that if u is a solution to (3.1),
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then E ◦ u is a monotonically decreasing function of t. In fact, given u0 ∈ H and ξ < E[u0],
solutions of (3.1) are precisely the shortest paths1 from u0 to the level-set E = ξ.

From an image processing perspective, the goal is to identify a suitable Hilbert space H of
images and a suitable functional E on H; the solution t �→ u(t) ∈ H to the gradient descent
equation on E (if it exists) with initial condition u(0) = u0 is then interpreted as a family of
images which correspond, with increasing t, to successively “denoised” or “enhanced” versions
of the initial image u0. Again, from the same perspective, what is important is not so much
the minimizer of the functional E but rather the one-parameter family defined by the gradient
descent equation on E.

3.2. Sobolev spaces of images. Let Ω ⊂ R
n be an open subset of R

n, with smooth
boundary ∂Ω, and with coordinate functions (x1, . . . , xn); we consider Ω as the domain of our
image functions. We define an image (or image function) to be a mapping u : Ω → R. For each
multi-index α = (α1, . . . , αn) ∈ N

n
0 ,

2 we define |α| = α1 + · · · + αn and Dα = Dα1
x1

· · ·Dαn
xn

,
where Dxi denotes the distributional derivative with respect to xi. For each k ∈ N0, the
Sobolev space Hk(Ω) is defined as

Hk(Ω) = {u ∈ L2(Ω) | Dαu ∈ L2(Ω), ∀α ∈ N
n
0 such that |α| ≤ k}

together with the Hilbert space structure induced by the inner product

(u, v) �→ 〈u, v〉Hk =
∑
|α|≤k

〈Dαu,Dαv〉L2 ,

where 〈·, ·〉L2 denotes the usual L2 inner product. Note that H0(Ω) is nothing other than the
usual Hilbert space L2(Ω).

We denote by D(Ω) the vector space of infinitely differentiable compactly supported
R-valued functions on Ω. D(Ω) is a vector subspace of Hk(Ω) for every k ≥ 1, and the
closure of D(Ω) in Hk(Ω) is denoted by Hk

0 (Ω). The inner product on Hk
0 (Ω) is taken to be

the same as the inner product on Hk(Ω).
We now consider two distinct Riemannian structures on H1

0 (Ω):
(a) Consider first the mapping g0 : H

1
0 (Ω)×H1

0 (Ω) → R defined by

(v,w) �→ g0(v,w) = 〈v,w〉L2 ,

where 〈·, ·〉L2 denotes the L2 inner product on H1
0 (Ω). Note that H

1
0 (Ω) is not a Hilbert

space (as it is not complete) for the inner product g0. We shall refer to the metric g0
as the L2 metric on H1

0 (Ω).
(b) Consider now, for each λ > 0, the mapping gλ : H1

0 (Ω)×H1
0 (Ω) → R defined by

(v,w) �→ gλ(v,w) = (1− λ)〈v,w〉L2 + λ〈v,w〉H1 .

1Recall that the length of a piecewise C1 curve γ : R ⊃ I → H with respect to the Riemannian structure
induced by g is defined by

L(γ) =
∫
I

(g(γ̇(s), γ̇(s)))1/2ds.

2
N0 denotes the nonnegative integers; i.e., N0 = {0, 1, 2, 3, . . . }.
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For any λ > 0, the norm defined on H1
0 (Ω) by u �→ (gλ(u, u))

1/2 is equivalent to the
standard norm on H1

0 (Ω), and hence the Hilbert space structure induced by gλ on
H1

0 (Ω) is isomorphic to the standard Hilbert space structure of H1
0 (Ω). We shall refer

to the metric gλ as the Sobolev metric on H1
0 (Ω).

Consider now a functional
E : H1

0 (Ω) → R

and assume it is Gâteaux-differentiable at every u ∈ H1
0 (Ω). The gradient of E at u ∈ H1

0 (Ω)
with respect to the metric gλ must satisfy

gλ(∇gλE|u, v) = dE|u(v) ∀v ∈ H1
0 (Ω).

Since H1
0 (Ω) equipped with the inner product gλ is a Hilbert space, it follows from the Riesz

representation theorem that the gradient ∇gλE|u exists and is unique for every u ∈ H1
0 (Ω);

we shall refer to this gradient as the Sobolev gradient of E. It is important to note that the
gradient of E with respect to the L2 metric g0 is not defined at all points of H1

0 (Ω) since
H1

0 (Ω) is not a Hilbert space under the inner product defined by g0. If for some u ∈ H1
0 (Ω)

there exists w ∈ H1
0 (Ω) such that

g0(w, v) = dE|u(v) ∀v ∈ H1
0 (Ω),

then ∇g0E|u = w. Note that, by the definiteness of g0, the L2 gradient of E at a point is
unique if it exists.

3.3. Hölder spaces. In order to refine certain regularity results, it will be useful to con-
sider Hölder spaces. Let Ω ⊂ R

n be open. For k ∈ N0 and γ ∈ R, 0 < γ ≤ 1, the Hölder space
Ck,γ(Ω̄) consists of all functions u ∈ Ck(Ω̄) for which the norm

‖u‖Ck,γ (Ω̄) :=
∑
|α|≤k

sup
x∈Ω

|Dαu(x)|+
∑
|α|=k

sup
x,y∈Ω
x �=y

{ |Dαu(x)−Dαu(y)|
|x− y|γ

}

is finite. It is a classical result that, under the above norm, Ck,γ(Ω̄) is a Banach space.
We will also use the notation BCk(Ω̄) to denote the Banach space of k-times continuously
differentiable functions on Ω̄ under the norm

‖u‖BCk(Ω̄) =
∑
|α|≤k

sup
x∈Ω

|Dαu(x)|.

4. Isotropic diffusion under the L2 and Sobolev metrics. We consider the functional
E : H1

0 (Ω) → R defined by

E(u) =
1

2

∫
Ω
‖∇u‖2 =

1

2

∫
Ω
(|Dx1u|2 + · · ·+ |Dxnu|2).

E is Gâteaux-differentiable at every u ∈ H1
0 (Ω), and dE|u is the continuous linear functional

on H1
0 (Ω) defined by

v �→ dE|u(v) =
∫
Ω
〈∇u,∇v〉.

We wish to investigate the differences between gradient descent on the functional E with
respect to the L2 metric and gradient descent on E with respect to the Sobolev metric gλ.D
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4.1. Gradient descent on E in the L2 metric. We recall here the classical result on
gradient descent on E with respect to the L2 metric. The L2 gradient of E is defined not on
all of H1

0 (Ω) but on the vector subspace H1
0 (Ω) ∩H2(Ω); indeed, for all u ∈ H1

0 (Ω) ∩H2(Ω)
we can write

(4.1) dE|u(v) =
∫
Ω
〈∇u,∇v〉 =

∫
Ω
(−Δu)v ∀v ∈ H1

0 (Ω).

The L2 gradient descent equation on E is the familiar heat equation

(4.2)

⎧⎪⎨
⎪⎩

du
dt = Δu in Ω× ]0,∞[,

u = 0 on ∂Ω× ]0,∞[,

u(x, 0) = u0(x) in Ω,

where u0 denotes the initial condition. Associated with this gradient descent equation, we
have the following classical regularity result [6, 11].

Theorem 4.1. For all u0 ∈ H1
0 (Ω), the solution u to the L2 gradient descent equation on E

is C∞ on Ω̄× [ε,∞[ for all ε > 0.

Of course the heat equation is one of the oldest and most familiar PDEs in image pro-
cessing [3, 36, 35]. The interpretation of this regularity result from an image processing
perspective is that the heat equation diffuses the image “instantaneously” and in such a way
that all “nonregularities” (e.g., points of discontinuity of the function or its derivatives) are
instantaneously removed. It is precisely this regularity result which renders the heat equation
ill-posed in the reverse direction [3]. If it were not for this ill-posedness, one could attempt
to construct a very simple sharpening algorithm by just running the heat equation backward.
This is the premise of Laplacian sharpening (i.e., subtracting a fraction of the Laplacian from
an image), but such algorithms introduce unstable oscillations into the image after only a few
iterations. As we shall see, the instability present in the reverse heat equation is not present
when one considers gradient descent/ascent on E with respect to Sobolev metrics.

4.2. Gradient descent on E in the Sobolev metric. The Sobolev gradient descent/ascent
equation on E is given by

(4.3) u(0) = u0,
du

dt
= −ξ∇gλE|u(t), t > 0,

where the Sobolev gradient ∇gλE|u at u satisfies

(4.4) gλ(∇gλE|u, v) =
∫
Ω
〈∇u,∇v〉 ∀v ∈ H1

0 (Ω)

and ξ = ±1. By selecting ξ = 1 (resp., ξ = −1), we obtain the Sobolev gradient descent
(resp., ascent) equation on E. Associated with this differential equation, we have the following
existence and uniqueness theorem.

Theorem 4.2. Let λ > 0, and let Ω ⊂ R
n be an open set. Then for all u0 ∈ H1

0 (Ω) there
exists a unique u ∈ C1([0,∞[;H1

0 (Ω)) solving (4.3).
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(a) L2 diffusion. (b) Sobolev (gλ) diffusion.

Figure 1. Sobolev versus L2 diffusion of a 1D step function. In (a) we see that the L2 equations instantly
smooth the discontinuity, whereas in (b) the discontinuity remains for finite period of time. This helps to
explain why edges persist a little bit longer in 2D Sobolev diffusion.

Proof. Let Au := ξ∇gλE|u. By the Cauchy–Schwarz inequality and the definition of gλ,
we have

(4.5) ‖Au‖2H1
0
≤ 1

λ
gλ(Au,Au) =

1

λ

∫
Ω
〈∇u,∇(Au)〉 ≤ 1

λ
‖Au‖H1

0
‖u‖H1

0
.

Hence the mapping defined by u �→ Au is a bounded linear operator on H1
0 (Ω), and the result

follows from the classical theory of ODEs [6].

As a corollary of this theorem, we note that (1) the Sobolev gradient descent equation is
an ODE in H1

0 (Ω), and hence we should not expect the same type of regularity result as for the
heat equation (i.e., we should not expect the image to be instantaneously blurred) and, more
importantly, (2) the Sobolev gradient ascent equation on E is well-posed, suggesting that it
can be used for image sharpening tasks. See Figures 1, 2, and 3 for illustrative examples of
the differences between L2 and Sobolev diffusion on a step function, and some standard test
images.

We now intend to explore further properties of (4.3), but first we need a more explicit
form for the gradient ∇gλE|u.

Proposition 4.3. For all u ∈ H1
0 (Ω), the Sobolev gradient ∇gλE|u is given by

(4.6) ∇gλE|u = −Δ(I − λΔ)−1u =
1

λ

(
I − (I − λΔ)−1

)
u,

where I denotes the identity operator and w = (I − λΔ)−1u ∈ H1
0 (Ω) is the unique solution

of the PDE

(4.7)

{
w − λΔw = u in Ω,

w = 0 on ∂Ω.
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(a) 75%. (b) 90%. (c) 75%. (d) 90%.

Figure 2. Sobolev (top) versus L2 (bottom) diffusion on Lena and Baboon test images shown when u �→∫ ‖∇u‖2 has decreased by 75% and 90%.

(a) 75%. (b) 90%. (c) 75%. (d) 90%.

Figure 3. Sobolev (top) versus L2 (bottom) diffusion on book and handwriting test images shown when
u �→ ∫ ‖∇u‖2 has decreased by 75% and 90%.

Proof. It is a classical result [11] that for all u ∈ H1
0 (Ω) there exists a unique w ∈

H1
0 (Ω) ∩H3(Ω) solving (4.7). Furthermore, for any v ∈ H1

0 (Ω), integration by parts yields∫
Ω
uv =

∫
Ω
(w − λΔw) v =

∫
Ω
wv + λ

∫
Ω
〈∇w,∇v〉.

Thus for all v ∈ H1
0 (Ω) we have

(4.8) gλ

(
1

λ
(u− w), v

)
=

∫
Ω

1

λ
(u− w)v +

∫
Ω
〈∇(u− w),∇v〉 = dE|u(v).
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Furthermore, for any u ∈ H1
0 (Ω) we have

−λΔ(I − λΔ)−1u = −λΔ(I − λΔ)−1u+ (I − λΔ)−1u− (I − λΔ)−1u

= (I − λΔ)(I − λΔ)−1u− (I − λΔ)−1u

= u− (I − λΔ)−1u.

Interestingly, ∇gλE|u = Δ(I − λΔ)−1u is well defined for all u ∈ L2(Ω); thus we can
consider extending the Sobolev gradient descent PDE (4.3) to initial conditions u0 ∈ L2(Ω).
We consider the PDE

(4.9) u(0) = u0,
du

dt
= ξΔ(I − λΔ)−1u(t), t > 0,

where again we take ξ = ±1. We should note that, in considering the Sobolev gradient descent
PDE with initial data in H1

0 (Ω), we have implicitly enforced the boundary condition u = 0 on
∂Ω× [0,∞[. In generalizing the PDE from H1

0 (Ω) to L2(Ω), we lose any notion of boundary
conditions for the PDE (because ∂Ω has zero Lebesgue measure). We also lose the notion
of the PDE representing gradient descent on the functional E (which is not defined for a
general u ∈ L2(Ω)). However, from an image processing perspective, it is certainly interesting
to consider L2(Ω) since H1

0 (Ω) excludes many discontinuous functions which may represent
images with sharp edges. For u0 ∈ L2(Ω) we have the following existence and uniqueness
result.

Theorem 4.4. Let λ > 0, and let Ω ⊂ R
n be an open set. Then for all u0 ∈ L2(Ω) there

exists a unique u ∈ C1([0,∞[;L2(Ω)) solving (4.9).
Proof. Let D(A) = H1

0 (Ω) ∩ H2(Ω), and define the operator A : D(A) → L2(Ω) by
Av = −Δv for every v ∈ D(A). It is a classical result that A is a maximal monotone operator
on the Hilbert space L2(Ω) (we refer the interested reader to [5, 6] for an excellent exposition
on this topic). It follows from the theory of maximal monotone operators that for all λ > 0
the operator ±Δ(I − λΔ)−1 is a bounded linear operator on L2(Ω) with operator norm ≤ 1

λ
(the Yosida regularization of −Δ); hence the result follows directly from the classical theory
of ODEs [6].

It is worth noting that, since the Sobolev gradient is the Yosida regularization of −Δ,
it follows [6] that as λ → 0, the solution to the Sobolev diffusion equation (4.9) with ξ = 1
converges uniformly on any compact interval [0, T ] to the solution of the heat equation (4.2).
This suggests that the gradient ascent equation (with ξ = −1) may prove to be a useful
regularization of the ill-posed reverse heat equation for deblurring and sharpening images.

The previous two theorems show that the Sobolev gradient descent/ascent PDE on E
satisfies a regularity preservation property. If u0 ∈ H1

0 (Ω) (resp., L
2(Ω)), then u(t) ∈ H1

0 (Ω)
(resp., L2(Ω)) for all t > 0. The natural question to ask is whether this property can be
extended to initial data with more regularity. Thus we will consider initial data u0 ∈ Ck,γ(Ω̄).
For bounded Ω, Ck,γ(Ω̄) ⊂ L2(Ω), so Theorem 4.4 gives us an existence and uniqueness result
for such initial data; thus the question becomes whether u(t) ∈ Ck,γ(Ω̄) for all t > 0.

Theorem 4.5. Let λ > 0, and let Ω ⊂ R
n be a bounded open set with a smooth boundary ∂Ω.

Let k ∈ N0, 0 < γ < 1. Then for all u0 ∈ Ck,γ(Ω̄) there exists a unique u ∈ C1([0,∞[;Ck,γ(Ω̄))
solving (4.9).
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Proof. Let f ∈ Ck,γ(Ω̄). It is a classical result from the theory of elliptic PDEs [13] that
there exists a unique u ∈ Ck+2,γ(Ω̄) satisfying

(4.10)

{
u− λΔu = f in Ω,

u = 0 on ∂Ω,

and

‖u‖Ck+2,γ (Ω̄) ≤ C

(
sup
x∈Ω

|u(x)|+ ‖f‖Ck,γ(Ω̄)

)
,

where C > 0 can be chosen independently of f . It is also a classical result [6, 13] that (4.10)
satisfies the maximum principle supx∈Ω |u(x)| ≤ supx∈Ω |f(x)|. It follows immediately that
(I − λΔ)−1 : Ck,γ(Ω̄) → Ck+2,γ(Ω̄) is a bounded linear operator. Hence the Sobolev gradient

Δ(I − λΔ)−1 =
1

λ
((I − λΔ)−1 − I) : Ck,γ(Ω̄) → Ck,γ(Ω̄)

is a bounded linear operator.

It follows from Theorem 4.5 that if the initial data, u0, is continuous, then applying the
reverse Sobolev diffusion equations ((4.9) with ξ = −1) will not lead to discontinuities (or
shocks) in the image, contrary to other enhancement PDEs such as shock filters [21].

We now wish to extend these results to unbounded domains, specifically Ω = R
n. In this

case, we can find an explicit form for the operator (I − λΔ)−1.

4.3. Fundamental solution for Ω = R
n. We now address the problem of finding an

explicit form for the operator (I − λΔ)−1 for the case Ω = R
n. The fundamental solution Sλ

of the PDE u − λΔu = f in the domain R
n is a rescaled Bessel potential (see section 9.1 of

the appendix),

(4.11) Sλ(x) =
1

(4λπ)n/2

∫ ∞

0

e−t− |x|2
4tλ

tn/2
dt.

Figure 4 depicts graphs of Sλ for various values of λ. Thus we can express (I − λΔ)−1f as

(4.12) (I − λΔ)−1f =
1

(4λπ)n/2

∫
Rn

⎛
⎝∫ ∞

0

e−t− |x|2
4tλ

tn/2
dt

⎞
⎠ f(y − x)dx.

In the special case of n = 1, Sλ simplifies to

(4.13) Sλ(x) =
1√
4λ

e
− |x|√

λ .

It is immediate that Sλ is a positive averaging kernel (i.e., Sλ > 0 and
∫
Rn Sλ = 1).
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(a) λ = 1. (b) λ = 2. (c) λ = 5.

Figure 4. Fundamental solution Sλ in R
2 restricted to one axis for various values of λ. Note the singularity

at the origin.

4.4. Existence and uniqueness for Ω = R
n. Now that we have a more explicit form for

the operator (I −λΔ)−1, we can extend the existence and uniqueness theorems to the special
case Ω = R

n. Also, since Sλ ∈ L1(Rn), the convolution form (I − λΔ)−1u = Sλ ∗ u is valid
for any u ∈ Lp(Rn); thus we can extend (I − λΔ)−1 to a linear operator on Lp(Rn). For this
case, we have the following existence and uniqueness result.

Theorem 4.6. Let λ > 0, p ≤ 1 ≤ ∞, and k ∈ N0. Then the following hold:
(i) For all u0 ∈ BCk(Rn) there exists a unique u ∈ C1([0,∞[;BCk(Rn)) solving (4.9).
(ii) For all u0 ∈ Lp(Rn) there exists a unique u ∈ C1([0,∞[;Lp(Rn)) solving (4.9).
Proof. In each case, it is enough to show that Aλ := 1

λ((I−λΔ)−1−I) is a bounded linear
operator on the appropriate Banach space.

(i) Let u ∈ BCk(Rn). Using the convolution form for the operator (I − λΔ)−1, we see
that

(4.14) Aλu =
1

λ
Sλ ∗ u− 1

λ
u.

Since Sλ ∈ L1(Rn) and u ∈ BCk(Rn) we see that Sλ ∗ u ∈ BCk(Rn) and therefore Aλ :
BCk(Rn) → BCk(Rn) is well defined. Now, for any multi-index α, |α| ≤ k, we have

Dα(Aλu) =
1

λ
Sλ ∗Dαu− 1

λ
Dαu.

Since
∫
Rn Sλ = 1 we have

(4.15) ‖Aλu‖BCk(Rn) =
∑
|α|≤k

sup |Dα(Aλu)| ≤ 2

λ
‖u‖BCk(Rn).

(ii) Let u ∈ Lp(Rn). It is a standard result that since Sλ ∈ L1(Rn) and u ∈ Lp(Rn) we have
Sλ ∗ u ∈ Lp(Rn) and ‖Sλ ∗ u‖Lp(Rn) ≤ ‖Sλ‖L1(Rn)‖u‖Lp(Rn); therefore Aλ : Lp(Rn) → Lp(Rn)
is well defined, and since

∫
Rn Sλ = 1 we have

(4.16) ‖Aλu‖Lp(Rn) =
1

λ
‖Sλ ∗ u− u‖Lp(Rn) ≤

2

λ
‖u‖Lp(Rn).
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4.5. Maximum principles. We now investigate maximum principles for the Sobolev dif-
fusion PDE (4.9). Since both the L2 and Sobolev gradient descent PDE are minimizing the
same functional, it is reasonable to suspect they satisfy the same type of maximum principle.

4.5.1. Maximum principles for bounded Ω. We begin with a maximum principle for
bounded domains Ω ⊂ R

n.

Theorem 4.7. Let Ω ⊂ R
n be a bounded open set and 0 < γ < 1. Let u0 ∈ C0,γ(Ω̄)∩H1

0(Ω),
and let u ∈ C1([0,∞[;C0,γ(Ω̄)) ∩ C1([0,∞[;H1

0 (Ω)) be the unique solution to (4.9). Then for
all (x, t) ∈ Ω× [0,∞[

min
y∈Ω

u0(y) ≤ u(x, t) ≤ max
y∈Ω

u0(y).

Proof. Fix T > 0, and define g(t) = maxx∈Ω̄ u(x, t) for t ∈ [0, T ]. Since u ∈
C1([0,∞[;C0,γ(Ω̄)) ⊂ Lip([0, T ];BC0(Ω̄)), it follows that g is Lipschitz continuous on [0, T ]
and hence differentiable a.e. Let t ∈ [0, T ] be a point of differentiability of g, and let x0 ∈ Ω̄
be such that u(x0, t) = g(t). It follows from the maximum principles for elliptic operators
[13, 6] that

∂u

∂t
(x0, t) =

1

λ

(
(I − λΔ)−1u− u

)
(x0, t) ≤ 0.

Thus, we have

g′(t) = lim
h→0+

1

h

(
max
x∈Ω̄

u(x, t)−max
x∈Ω̄

u(x, t− h)

)
≤ lim

h→0+

u(x0, t)− u(x0, t− h)

h
≤ 0.

Therefore g′ ≤ 0 a.e., and hence g(t) − g(0) =
∫ t
0 g

′(s)ds ≤ 0 for all t ∈ [0, T ]. To show that
u(x, t) ≥ miny∈Ω u0(y), we can apply the same reasoning to the Sobolev diffusion PDE with
initial condition −u0.

The previous theorem also implies that the reverse Sobolev diffusion equation (with
ξ = −1) cannot satisfy any maximum principle. In fact, in this case, the maximum of u(x, t)
over all x ∈ Ω will be a nondecreasing function of t, contrary again to other enhancement
algorithms such as the shock filter [21], whose discretization satisfies a maximum principle.
We now use Theorem 4.7 in order to extend the maximum principle to the more general case
of initial conditions in L∞(Ω).

Theorem 4.8. Let Ω ⊂ R
n be a bounded open subset with a smooth boundary ∂Ω. Let

u0 ∈ L∞(Ω) ⊂ L2(Ω) such that

(4.17) lim
ε→0+

‖u‖L∞(Ω\Ωε) = 0,

where Ωε := {x ∈ Ω | dist(x, ∂Ω) > ε}, and let u ∈ C1([0,∞[;L2(Ω)) be the unique solution
to (4.9) with initial condition u0. Then for each t > 0

ess inf
y∈Ω

u0(y) ≤ u(x, t) ≤ ess sup
y∈Ω

u0(y) a.e. in Ω.

Proof. Let ε > 0, and define the cutoff function ζε ∈ C∞
c (Rn) such that 0 ≤ ζε ≤ 1,

ζε(x) = 1 for all x ∈ Ωε, and ζε(x) = 0 for all x /∈ Ω. Let uε0 = ζε(x) (ηε ∗ ũ0) (x) be the
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truncated mollification (see appendix 9.2) of u0, where ũ0(x) = u0(x) for x ∈ Ω, and ũ0(x) = 0
for x /∈ Ω. Now, for any x ∈ Ωε, we have

uε0(x) =

∫
Rn

ηε(x− y)ũ0(y)dy ≤ ess sup
y∈Rn

ũ0(y) = ess sup
y∈Ω

u0(y),

and for any x ∈ Ω\Ωε we have

|uε0(x)| ≤ |ζε(x)|
∫
Ω\Ω2ε

ηε(x− y)|ũ0(y)|dy ≤ ‖u0‖L∞(Ω\Ω2ε).

Thus, for any x ∈ Ω, we have the bound

(4.18) uε0(x) ≤ max

(
‖u‖L∞(Ω\Ω2ε), ess sup

y∈Ω
u0(y)

)
.

Let uε ∈ C1([0,∞[;C0,γ(Ω̄)) be the solution to the Sobolev PDE (4.9) with initial condition
uε0 ∈ H1

0 (Ω) ∩ C∞(Ω). As ε → 0+, we have that uε0 → u0 in L2, and that uε(t) → u(t) a.e. in
Ω. Thus, we can employ (4.18) and Theorem 4.7 to obtain

u(x, t) = lim
ε→0+

uε(x, t) ≤ lim
ε→0+

sup
y∈Ω

uε0(y) ≤ ess sup
y∈Ω

u0(y)

for almost every x ∈ Ω. To obtain the opposite direction, we can apply the same reasoning to
the Sobolev PDE with initial condition −u0.

Remark 2. Alternatively, one can prove Theorems 4.7 and 4.8 by considering the fact that
the Sobolev gradient Δ(I−λΔ)−1 is the L2 gradient of the Moreau–Yosida regularization [10]
of E(u) =

∫ ‖∇u‖2,

Eλ(u) = inf
v∈H1

0 (Ω)

∫
Ω
‖∇v‖2 dx+

1

λ
‖u− v‖2L2(Ω),

and using the fact that Eλ decreases by positive truncation (i.e., Eλ(min(u, k)) ≤ Eλ(u)
for k > 0). This approach can also be used to show that the Sobolev flows are semigroup
contractions on Lp(Ω).

4.5.2. Maximum principles for Ω = R
n. We now extend Theorems 4.7 and 4.8 to the

case where Ω = R
n.

Theorem 4.9. Let u0 ∈ BC0(Rn), and let u ∈ C1([0,∞[;BC0(Rn)) be the unique solution
to (4.9). Then for all (x, t) ∈ R

n × [0,∞[

inf
y∈Rn

u0(y) ≤ u(x, t) ≤ sup
y∈Rn

u0(y).

Proof. Let g(t) = supx∈Rn u(x, t). Then, as in Theorem 4.7, we have that

(4.19)
∂u

∂t
(x, t) =

1

λ

(
(I − λΔ)−1u− u

)
(x, t) ≤ 1

λ
(g(t) − u(x, t))
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for any (x, t) ∈ Ω × [0,∞[. Now fix t > 0, ε > 0, and let xk ∈ R
n be a sequence satisfying

g(t) < u(xk, t) +
ε
k for all k ≥ 1. In particular, this yields the estimates ∂u

∂t (xk, t) <
ε
kλ and

g(t)− g(t− h)

h
=

1

h

(
g(t) − sup

x∈Rn
u(x, t− h)

)
≤ u(xk, t)− u(xk, t− h)

h
+

ε

kh
.

Now, since u ∈ C1([0,∞[;BC0(Ω)), we may choose δ > 0 so that for all 0 < h < δ and x ∈ R
n

we have
u(x, t)− u(x, t− h)

h
≤ ∂u

∂t
(x, t) + ε.

Taking the limit as k → ∞, we obtain

g(t)− g(t− h)

h
≤ lim inf

k→∞

(
∂u

∂t
(xk, t) +

ε

kh
+ ε

)
= ε

for all 0 < h < δ. Taking h → 0+, we obtain that g′(t) ≤ 0 at any point t where g is
differentiable. As in Theorem 4.7, since g is Lipschitz, this implies that g(t) ≤ g(0) for all
t > 0. To show that infy∈Rn u0(y) ≤ u(x, t), we can apply the same reasoning to the Sobolev
diffusion PDE with initial condition −u0.

The previous theorem can be extended to initial data u0 ∈ L∞(Rn).

Theorem 4.10. Let u0 ∈ L∞(Rn), and let u ∈ C1([0,∞[;L∞(Rn)) be the unique solution
to (4.9). Then for each t > 0

ess inf
y∈Rn

u0(y) ≤ u(x, t) ≤ ess sup
y∈Rn

u0(y) a.e. in R
n.

Proof. Let ε > 0, and let uε0 = ηε ∗ u0 be the mollification of u0 (see appendix 9.2). Then,
for any x ∈ R

n we have

uε0(x) =

∫
Rn

ηε(x− y)u0(y)dy ≤ ess sup
y∈Rn

u0(y).

Let uε ∈ C1([0,∞[;BC0(Rn)) be the solution to (4.9) with initial condition uε0, and fix t > 0.
Then, as in Theorem 4.8, as ε → 0+, we have uε(t) → u(t) a.e., and so it follows from Theorem
4.9 that

u(x, t) = lim
ε→0+

uε(x, t) ≤ lim
ε→0+

sup
y∈Rn

uε0(y) ≤ ess sup
y∈Rn

u0(y)

for almost every x ∈ R
n. To obtain that ess infy∈Rn u0(y) ≤ u(x, t), we can apply the same

reasoning to the Sobolev diffusion PDE with initial condition −u0.

5. Applications of Sobolev diffusion.

5.1. Image sharpening. Due to the reversibility of the Sobolev diffusion equations, we
can explore new techniques for image sharpening that were previously impossible with the L2

diffusion equations. The most basic approach would be to run the Sobolev diffusion equations
in the backward direction on a given image u0, and at some stopping time, say τ > 0, to
declare u(τ) to be the sharpened version of u0. However, it is not clear in the approach how
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one would appropriately select the stopping time τ > 0, as it would necessarily vary between
images and application domains.

We will consider a slightly more sophisticated approach in which the stopping time is
encoded into the functional. Since

∫
Ω ‖∇u‖2 is a measure of the “sharpness” of an image u,

it is natural to use this term as a stopping condition. Hence consider the functional

(5.1) u �→ E[u;u0] =
1

4

(∫
Ω
||∇u0||2

)( ∫
Ω ||∇u||2∫
Ω ||∇u0||2 − α

)2

,

where α ∈ R is the sharpness factor. For α < 1 we get blurring, and for α > 1 we get
sharpening. The gradient descent PDE for the above functional with respect to the Sobolev
metric is

(5.2) u(0) = u0,
du

dt
=

(∫
Ω ||∇u(t)||2∫
Ω ||∇u0||2 − α

)
Δ(I −Δ)−1u(t), t > 0.

Thus we have forward or reverse diffusion until the ratio of
∫
Ω ||∇u||2 to

∫
Ω ||∇u0||2 is α, so

this is really equivalent to selecting a stopping time for the forward or reverse Sobolev diffusion
equation, where this stopping time is encoded into the sharpness factor α. We should note
that for α > 1 the L2 gradient descent equation on (5.1) is ill-posed, so we can perform this
kind of sharpening only with our proposed Sobolev gradient descent framework.

For any value of α this functional admits stable minima, so there is no opportunity
for unbounded gradient flow. We should note that there are infinitely many u satisfying∫
Ω ||∇u||2/ ∫Ω ||∇u0||2 = α, many of which we would not consider as sharpened versions of u0.
However, since we are considering a gradient descent flow, we will find the closest local min-
imizer to u0 (in the H1 norm) of (5.1). Thus, just by using a gradient descent flow, we are
implicitly incorporating a data fidelity term into the sharpening process.

Next, we consider adding a data fidelity term explicitly to the heat equation functional.
The most natural data fidelity term is the L2 distance, which yields

(5.3) u �→ E[u;u0] = −1

2

∫
Ω
||∇u||2dx+

μ

2
||u− u0||2L2 ,

where u0 is the initial image. However, (5.3) is not coercive for any μ > 0, and hence we
cannot expect it to admit a stable minimizer. Hence we must consider the H1 distance for
the data fidelity term, which yields the functional

(5.4) u �→ E[u;u0] = −1

2

∫
Ω
||∇u||2dx+

μ

2
||u− u0||2H1 .

For μ > 1, (5.4) is coercive and hence admits a minimizer. Any minimizer of (5.4) represents a
sharpened version of the initial image u0. If we were to seek this minimizer via an L2 gradient
descent PDE, we would obtain

(5.5) u(0) = u0,
du

dt
= (μ− 1)Δu(t) − μΔu0 + μ(u0 − u(t)), t > 0.
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(a) Original. (b) Sobolev: μ = 0.9.

(c) Sobolev: μ = 0.8. (d) Sobolev: μ = 0.5 after 75 iterations.

(e) L2: μ = 0.9. (f) L2: μ = 0.8 after 30 iterations.

Figure 5. Stable Sobolev sharpening vs. unstable L2 sharpening. (b), (c) For μ = 0.9, 0.8 the discretized
gradient descent PDE (5.6) converges to a local minimum (though the true continuous PDE would not). (d)
For μ = 0.5 the PDE does not converge but does yield a family of sequentially sharper images. In (e) and (f),
we see that the L2 gradient descent PDE very quickly exhibits instabilities and oscillatory behavior (diffusion
was performed on the luminance component only).

However, as seen in Figure 5, (5.5) immediately introduces unstable oscillations into the image
and hence cannot be used for well-posed image sharpening.

Such instability can be avoided by considering gradient descent on (5.4) with respect to
the Sobolev metric, which yields

(5.6) u(0) = u0,
du

dt
= −Δ(I − λΔ)−1u(t) + μ(u0 − u(t)), t > 0.
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Again, we expect a stable minimum for μ > 1. For μ < 1 there is indeed no stable minimum;
however, the resulting gradient descent is a well-posed PDE which results in a family of images
that are sequentially sharper. In this way, the Sobolev gradient offers much more than an
improvement on the L2 gradient, opening up options for image sharpening that were not even
possible under the L2 gradient. See section 7 for image sharpening experiments.

5.2. Connections between Sobolev sharpening and removing Gaussian blur. It is well
known that evolving the heat equation in the forward direction for time t is equivalent to
convolution with a Gaussian kernel of variance 2t. It is also well known that this process is
ill-posed in the reverse direction, meaning that we cannot deblur Gaussian blur by simply
running the heat equation backward. However, the Sobolev diffusion equations are well-posed
in the reverse direction, so the natural question to ask is: Is reverse Sobolev diffusion good at
deblurring Gaussian blur?

To answer this question, we examine Sobolev diffusion in the Fourier domain. Sup-
pose that we have an image u0 which is then convolved with a Gaussian kernel Gσ(x) :=
(2πσ2)−n/2 exp(−|x|2/2σ2). The convolution ub = Gσ ∗ u0 is represented in the Fourier do-
main via the convolution theorem as

(5.7) ûb(ω) = exp

(
−σ2

2
|ω|2

)
û0(ω).

Now set ub as the initial condition for the reverse Sobolev diffusion PDE. Then by taking
Fourier transforms of (4.9), we have

û(0) = ûb,
dû

dt
=

|ω|2
1 + λ|ω|2 û(t), t > 0.

Solving this ODE yields

(5.8) û(t) = exp

(
−σ2

2
|ω|2 + |ω|2

1 + λ|ω|2 t
)
û0.

If we select t = σ2/2 as our stopping condition, then we obtain

(5.9) û

(
σ2

2

)
= û0 exp

(
− λσ2|ω|4
2(1 + λ|ω|2)

)
.

So define

(5.10) Fσ,λ(ω)
Δ
= exp

(
− λσ2|ω|4
2(1 + λ|ω|2)

)
.

Then running reverse Sobolev diffusion on a Gaussian blurred image is equivalent to filtering
the original image with Fσ,λ. Figure 6 shows the profile of Fσ,λ for various values of λ. We can
see that Fσ,λ has unity gain at low frequencies, but then it tails off for high frequencies. This
means that reverse Sobolev diffusion behaves as an ideal inverse filter for Gaussian blurring
at low frequencies while tailing off (for stability) at higher frequencies. Furthermore, we can
see that the choice of λ selects the cutoff frequency of Fσ,λ. In the results section we compare
Sobolev diffusion against the shock filter on Gaussian blurred images.
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1000 J. CALDER, A. MANSOURI, AND A. YEZZI

Figure 6. Plot of the deblurring filter Fσ,λ for σ2 = 2 and (from inside to outside) λ = 1000, 1, 0.05, 0.01.

5.3. Other possibilities. The well-posedness of the Sobolev gradient both forward and
backward to energies involving only first-order image derivatives considered thus far may be
further exploited in conjunction with higher order image derivative energies for combinations
of simultaneous sharpening and smoothing. In this section we explore a few interesting appli-
cations, but many more are possible. The key point is that none of these options are available
under the L2 topology as they all yield unstable gradient flows.

Consider, for example, the functional

(5.11) u �→ E[u] =
1

2

∫
Ω
(Δu)2.

In order to justify the use of such a functional, note that if u ∈ H1
0 (Ω) and Ω ⊂ R

n, then we
can integrate by parts twice to obtain

∫
Ω
(Δu)2dx =

n∑
i,j=1

∫
Ω
uxixiuxjxjdx = −

n∑
i,j=1

∫
Ω
uxixixjuxjdx =

n∑
i,j=1

∫
Ω
(uxixj)

2dx.

Indeed, this functional is quite well justified, as it is a measure of the L2 norm of all second
order partial derivatives. The L2 gradient, ∇g0E, of the above functional is

(5.12) ∇g0E = Δ2u.

Thus the Sobolev gradient ∇gλE is (in a similar spirit to Proposition 4.3)

∇gλE = Δ2(I − λΔ)−1u =
1

λ
(−Δu+Δ(I − λΔ)−1u).
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5.3.1. Second order smoothing + sharpening (first order) constraints. Now consider
the constrained minimization (second order smoothing) problem

(5.13) min
u∈H1

0 (Ω):∫
Ω
||∇u||2=C

1

2

∫
Ω
(Δu)2

for some constant C > 0. We would like to minimize E1[u] := 1/2
∫
Ω(Δu)2 while keeping

E2[u] :=
∫
Ω ||∇u||2 constant. We can achieve this by performing gradient descent on E1 while

removing any component of ∇H1E1 that is in the direction of ∇H1E2, thereby remaining on
a level set of E2. This process yields the PDE

(5.14) u(0) = u0,
du

dt
= −

(
∇gλE1|u − gλ (∇gλE1|u,∇gλE2|u)

gλ (∇gλE2|u,∇gλE2|u)∇gλE2|u
)
, t > 0.

Such a constrained minimization would be ill-posed under the L2 metric; hence this is possible
only with a Sobolev gradient descent PDE. As always, one could further temper the second
order smoothing by adding a data fidelity term to E1 so that

E1[u;u0] =
1

2

∫
Ω
(Δu)2dx+

μ

2
||u− u0||2H1 .

We now address issues of numerical implementation and then present experimental results.

6. Numerical implementation. In this section we will describe in detail the numerical
implementation methods used to compute the Sobolev gradient Δ(I−λΔ)−1u. For the choice
of the Sobolev inner product gλ, the image diffusion equations involve a convolution with
a kernel Sλ which was determined in the previous sections. For the case n = 1, Sλ is a
continuous, bounded, and integrable function, and so the usual discrete convolution scheme
(derived from the Riemann sum) can be used to approximate Sλ ∗ f . However, for n ≥ 2,
Sλ has a singularity at x = 0; thus one needs to be careful about how this convolution is
implemented in order to obtain accurate numerical results without the need to perform any
complicated numerical integration during the diffusion process. The idea is to obtain a similar
discrete convolution scheme by precomputing the integral of Sλ over a sufficiently fine disjoint
covering of the image domain. Such a scheme can then be applied to a convolution kernel Sλ

which is merely integrable. Although most applications will be in dimensions n = 1, 2, 3, we
will describe our numerical scheme for any n ≥ 1 for the sake of generality.

Lemma 6.1. Let u : Rn → R be continuous and bounded, and let g ∈ L1(Rn). Suppose that
for any ε > 0 we have a disjoint covering {Aε

n}n∈N of R
n by measurable sets satisfying

(6.1) sup
x,y∈Aε

n

‖x− y‖ < ε ∀n ∈ N.

Furthermore, suppose that for each ε > 0 we have a sequence {xεn}n∈N in R
n such that xεn ∈ Aε

n

for each n ∈ N. Then

(6.2) lim
ε→0

∑
n∈N

u(xεn)

∫
Aε

n

g(x)dx =

∫
Rn

u(x)g(x)dx.
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Proof. Let uε : R
n → R be the piecewise constant approximation to u defined by

uε(x) =
∑
n∈N

χAε
n
(x)u(xεn),

where χA denotes the indicator (or characteristic) function of the set A. We claim that for
each x ∈ R

n, uε(x) → u(x) as ε → 0. To see this, fix x ∈ R
n. Then for each ε > 0 there exists

a unique Aε
n(ε) with x ∈ Aε

n(ε), and hence uε(x) = u(xεn(ε)). Since |xεn(ε) − x| < ε and u is

continuous, we have xεn(ε) → x and hence uε(x) → u(x). Now we have

∑
n∈N

u(xεn)

∫
Aε

n

g(x)dx −
∫
Rn

u(x)g(x)dx =

∫
Rn

g(x) (uε(x)− u(x)) dx.

Since u is bounded and g ∈ L1(Rn), the dominated convergence theorem yields

lim
ε→0

∫
Rn

g(x) (uε(x)− u(x)) dx = 0.

In particular, for any continuous and bounded image u and any y ∈ R
n, we can apply

Lemma 6.1 to the translation of u to obtain

(6.3) lim
ε→0

∑
n∈N

u(y − xεn)

∫
Aε

n

Sλ(x)dx = (u ∗ Sλ)(y) = ((I − λΔ)−1u)(y).

6.1. Discretization of the convolution kernel Sλ. We now describe the discrete convo-
lution scheme. Take h to denote the sampling period, and assume that all images u : Rn → R

are bounded such that 0 ≤ u(x) ≤ M for some M ∈ R. The previous lemma allows us to ac-
curately compute the convolution of a continuous function with an L1 function. However, the
discrete sum may have an infinite number of terms since Sλ does not have compact support;
thus the need to truncate the support of Sλ. Since Sλ ∈ L1(Rn), for any ε > 0 there exists a
W ∈ N such that

(6.4) 0 <

∫
Rn\UW

Sλ(x)dx < ε,

where UW := {x ∈ R
n | −W − h/2 ≤ xi < W + h/2, i = 1, . . . , n}. Thus we will approximate

the convolution Sλ ∗ u by

(Sλ ∗ u)(y) ≈
∫
UW

Sλ(x)u(y − x)dx

for some W > h to be chosen later. Now let A := {x ∈ R
n | −h/2 ≤ xi < h/2, i = 1, . . . , n}

be the hypercube of side length h, centered at the origin, and for y = (y1, . . . , yn) ∈ R
n let

Ay := y +A = {y + x | x ∈ A}
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be the translated hypercube. Define

VW := {z = (z1, . . . , zn) ∈ Z
n | h|zi| ≤ W + 1, i = 1, . . . , n}.

The sets {Ahz}z∈VW
form a disjoint covering of UW , and we have the bound

sup
x,y∈Ahz

‖x− y‖ =
√
nh ∀z ∈ VW .

Thus the sets {Ahz}z∈VW
satisfy the hypothesis of the lemma, and we therefore approximate

the convolution Sλ ∗ u at a point y ∈ R
n by

(Sλ ∗ u)(y) ≈
∑
z∈VW

u(y − hz)

∫
Ahz

Sλ(x)dx.

It follows from (6.4) and Lemma 6.1 that∣∣∣∣∣ limh→0+

∑
z∈VW

u(y − hz)

∫
Ahz

Sλ(x)dx− (Sλ ∗ u)(y)
∣∣∣∣∣ < ε‖u‖L∞ ;

hence, for bounded images, the discretization error of this scheme can be made arbitrarily
small by selecting h > 0 small enough and the window of the filter W large enough. However,
one of the key properties of Sλ is that it is an averaging kernel (i.e.,

∫
Rn Sλ = 1). Since we

have truncated the support of Sλ, the coefficients of our discrete convolution kernel will sum to
slightly less than 1. For longer simulations (as t → ∞), this introduces a shift in the image as
the truncation errors build up iteration after iteration. Therefore, we have decided to include
a normalization factor into the kernel. Let C =

∫
UW

Sλ, and define

(6.5) Kλ(z) =
1

C

∫
Ahz

Sλ(x)dx.

We obtain the discrete convolution approximation

(Sλ ∗ u)(hy) ≈
∑
z∈VW

u(hy − hz)Kλ(z) (y ∈ Z
n).

For the special case where n = 2 and the image sampling period is taken to be h = 1, we have

(6.6) Kλ(i, j)
Δ
=

1

C

∫ j+1/2

j−1/2

∫ i+1/2

i−1/2
Sλ(x, y)dxdy, −W ≤ i, j ≤ W,

and the discrete convolution is given by

(6.7) (Sλ ∗ u)(k, �) =
W∑

j=−W

W∑
i=−W

u(k − i, �− j)Kλ(i, j) ((k, �) ∈ Z
2).
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In our experiments, we take h = 1, n = 1, 2, and W = 5. This yields C =
∫
UW

Sλ > 0.99.
The coefficients K(i, j) can be computed offline and are provided in Figure 7 to facilitate
implementation of our method. Equation (6.7) is used to compute the Sobolev gradient in
all the experimental results of the next section. Algorithm 1 shows the explicit discretization
scheme of the diffusion PDE. Note that we could have used either ξ

λ((I − λΔ)−1u − u)
or ξΔ(I − λΔ)−1u for the Sobolev gradient. The numerical advantage of the first form is
that it does not involve computing discrete derivatives. At the boundaries of the image, the
convolutions are performed by reflecting the image about its boundary. Note that for forward
diffusion, a constant time step of δt = 0.1 may be chosen. For reverse diffusion, since the
gradients of the image increase with time, for any prolonged simulations the time step δt
should be constrained according to line 7 of Algorithm 1 for numerical stability.

10−3 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0.61700 0.55367 0.40523 0.24979 0.13474 0.06585
1.86521 1.62596 1.10380 0.61740 0.30170
5.80472 4.81757 2.90906 1.42427
19.01402 14.29655 7.09452
69.80074 40.13533
201.79638

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 7. Coefficients of Kλ(i, j) for 0 ≤ i ≤ j ≤ 5 with λ = 1. Note that these coefficients are the results
of local integrations of the kernel Sλ as per (6.6).

Algorithm 1. Sobolev diffusion in R
2: One iteration.

1: u0 := Initial Image
2: δt = 0.1, ξ = ±1, λ > 0, M = 0
3: for (k, �) ∈ Ω do

4: Compute: ρ(k, �) =
(∑W

j=−W

∑W
i=−W un(k − i, �− j)Kλ(i, j)

)
− un(k, �)

5: Set: M = max(M, |ρ(k, �)|)
6: end for
7: Set: δt = min(0.1, 2.5/M)
8: for (k, �) ∈ Ω do
9: Update step: un+1(k, �) = un(k, �) + δt ξλρ(k, �)

10: end for

6.2. Error bounds on discretization. Lemma 6.1 is a type of consistency result; it says
that as the sampling period tends to zero, the discretization error of our numerical scheme
also tends to zero. However, since we must choose some small, but fixed, sampling period,
it is useful to obtain explicit error bounds on our discretization scheme as a function of the
sampling period. Before we do this, let us be more explicit about the relationship between
the image sampling period, denoted by h, and the parameter λ. In image processing, we are
given an image ū : Zn → R, usually defined on a lattice, which is assumed to be a sampled
representation of some image u : Rn → R. The sampling period is often taken to be h = 1,
but we are free to alter this, so suppose the sampling period was h �= 1. But since sampling
with period h �= 1 must yield the same sampled image ū that we have been given, we should
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view ū as the image uh(x)
Δ
= u(x/h) sampled with period h. Then it is immediate that

(Sλ ∗ uh)(y) =
∫
Rn

Sλ(x)u

(
y − x

h

)
dx

=

∫
Rn

hnSλ(hx)u
( y
h
− x
)
dx

= (Sλ/h2 ∗ u)
(y
h

)
.

This tells us that changing the sampling period from 1 → h is equivalent to changing the
parameter of Sλ from λ → λ/h2.

Hence we will fix the sampling period at h = 1 and study the effect of changing λ on
the discretization error. Since Sλ is a continuous function away from the origin, the case
of interest is the discretization cell which contains the singularity of Sλ at the origin. Let
B := {(x, y) ∈ R

n | −0.5 ≤ x, y ≤ 0.5} be the discretization cell containing the origin (with
respect to a sampling period h = 1). Then, given an image u : Rn → R, the discretization
error introduced into the computation of the convolution Sλ ∗u by replacing Sλ by its integral
over B is given by∣∣∣∣

∫
B
Sλ(x)u(x)dx −

∫
B
u(x)

∫
B
Sλ(z)dzdx

∣∣∣∣ ≤ ‖u‖L∞

∫
B

∣∣∣∣Sλ(x)−
∫
B
Sλ(z)dz

∣∣∣∣ dx.
If we assume that all images of interest are bounded uniformly (i.e., ‖u‖L∞ ≤ M for some
M > 0), then we should study the error term

(6.8) V (λ)
Δ
=

∫
B

∣∣∣∣Sλ(x)−
∫
B
Sλ(z)dz

∣∣∣∣ dx.
V (λ) is difficult to work with analytically, so we have numerically computed V (λ) for various
values of λ, and a plot is shown in Figure 8. Since λ → ∞ is equivalent to h → 0+, Lemma 6.1
guarantees that V (λ) → 0 as λ → ∞, so this property of Figure 8 is not surprising. What
is useful is the rate of convergence, as it can give us information about how to choose the
parameter λ. We can see that a choice of λ = 1 yields a very accurate numerical scheme while
keeping the essential support of Sλ small enough (an 11 × 11 window) that the numerical
method is fast. Although we can increase λ to reduce the discretization error V (λ) even
further, we are at the point on the graph of V (λ) where we have a diminishing rate of return, so
each additional percentage point of improvement in V (λ) comes at an increasing computational
cost.

7. Experimental results and applications to image sharpening.

7.1. Reversibility of the Sobolev diffusion equations. It is well known that the reverse
L2 diffusion equation is ill-posed; thus this is one of the key differences between the Sobolev
diffusion equations and the L2 diffusion equations. As we have already noted, the reverse
Sobolev diffusion equation is well-posed; thus we can perform forward Sobolev diffusion fol-
lowed by reverse Sobolev diffusion and theoretically arrive back at our original image! Figure 9
experimentally validates this assertion; given an initial image, we can run the Sobolev diffusion
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1006 J. CALDER, A. MANSOURI, AND A. YEZZI

Figure 8. Plot of λ versus the discretization error introduced by averaging the kernel Sλ about its singularity.
Note that V (1) = 0.0546.

(a) Original image. (b) Forward Sobolev diffusion:
40 steps.

(c) Reversed Sobolev diffusion:
40 steps.

Figure 9. Reversibility of the Sobolev diffusion equations. (a) Original image, (b) results after 40 iterations
of forward Sobolev diffusion, and (c) results after 40 follow-up iterations of reverse Sobolev diffusion (diffusions
performed on each color component, Y, Cb, Cr, with δt = 0.1).

equations forward (for 40 iterations) to introduce a certain amount of smoothing, and then
we can reverse the equations (for 40 more iterations) to recover the initial image. Although
it is theoretically possible to do this for an arbitrary number of iterations, this is not possible
in practice with a fixed discretization (and quantization) step size. Note that running the
L2 equations backward would exhibit clearly noticeable instabilities immediately (just one
or two iterations with the same time step δt = 0.1). As such a procedure is not justified
mathematically, we have omitted such a meaningless comparison with L2 in this figure.

7.2. Well-posed sharpening. As discussed in section 5, we can apply the Sobolev diffusion
equations in the reverse direction for image sharpening. We consider first the sharpening
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(a) Original. (b) α = 2.

(c) α = 5. (d) α = 10.

Figure 10. Stable Sobolev sharpening without stopping times. For each sharpness factor α the gradient
descent PDE (5.2) converged to a local minimum in under 25 iterations using a time step δt = 0.1 (diffusion
performed on the luminance component only).

scheme (5.2) which is reproduced below:

u(0) = u0,
du

dt
=

(∫
Ω ‖∇u(t)‖2∫
Ω ‖∇u0‖2 − α

)
Δ(I −Δ)−1u(t), t > 0.

Thus we are evolving an image under reverse/forward Sobolev diffusion until the ratio of∫
Ω ‖∇u‖2 to

∫
Ω ‖∇u0‖2 is α. Here, α controls the level of sharpening/smoothing; for α < 1 we

get smoothing and for α > 1 sharpening. The results of this well-posed sharpening algorithm
are shown in Figure 10.

We now consider the well-posed sharpening scheme with an explicit data fidelity term
(5.6), which is reproduced below:

u(0) = u0,
du

dt
= −Δ(I − λΔ)−1u(t) + μ(u0 − u(t)), t > 0.

The results of this well-posed sharpening algorithm are illustrated in Figure 5 without the
instabilities apparent in the previous L2 results. Note the lack of staircasing in both Figures
5 and 10. This is a direct result of the regularity properties of Theorems 4.2, 4.4, 4.5, and 4.6.
We see that Sobolev sharpening tends to produce natural-looking images and does not create
artifacts which were not present in the original image.
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7.3. Comparison with shock filter. In this section we compare our sharpening technique
with the popular L2-based PDE technique for sharpening, known as the shock filter [21]. In
our experiments, we found that the shock filter gave visually pleasing results when applied
to original images that did not already appear blurred nor contain many smooth-looking
regions. However, when we applied even slight levels of blurring to an otherwise clean-looking
image (see top row of Figure 11) the shock filter would produce unnatural-looking “staircasing
artifacts” in the smooth regions as the local numerical differencing schemes attempted to
preserve and reinforce edges where there really were none to begin with (see bottom row of
Figure 11). Such local artifacts were not created with the more global behavior of Sobolev-
based sharpening. Hence, the resulting sharpened images look much more natural (see middle
row of Figure 11). This same local-versus-global difference between the two sharpening filters
makes the Sobolev sharpening less sensitive to changes in scale. In Figure 12 we compare the
effects of running the shock filter on the baboon image and then subsampling the result versus
first subsampling the baboon image and then running the shock filter on the result. It is not
difficult to see, when examining the two results, that the order of these operations makes a
difference. The difference image shows large positive (white) and negative (black) swings with
a peak signal to noise ratio (PSNR) of 20.7 dB. The same experiment in Figure 12 with the
more global Sobolev sharpening filter yields two results whose differences are much harder to
perceive. The difference image shows much less drastic swings from zero (gray), with a PSNR
of 29.7 dB, a difference of 9 dB. Note that we have applied exactly the same Sobolev diffusion
PDE (i.e., with the same λ). We could get even better results if we scaled the Sobolev kernel
(by decreasing λ) to match the image sampling period when processing the subsampled image.

7.4. Combined sharpening and smoothing. Finally, we show the results of a new com-
bined sharpening and smoothing PDE which is derived from Sobolev diffusions. Figure 13
shows the results of (5.14), which is reproduced below:

u(0) = u0,
du

dt
= −

(
∇gλE1|u − gλ (∇gλE1|u,∇gλE2|u)

gλ (∇gλE2|u,∇gλE2|u)∇gλE2|u
)
, t > 0.

Recall that this PDE is derived from the following constrained minimization problem:

min
u∈H1

0 (Ω):∫
Ω
||∇u||2=C

1

2

∫
Ω
(Δu)2,

where E1[u] := 1/2
∫
Ω(Δu)2 and E2[u] :=

∫
Ω ||∇u||2. Since an unconstrained second order

regularization will also regularize the first order image derivatives as a side effect, this first
order constraint effectively forces any such local reduction in first order image derivatives to
be compensated by local increases in first order derivatives elsewhere in the image. As shown
in Figure 13, this has the effect of enhancing larger scale edges, while smaller scale noise and
texture are smoothed away.

8. Conclusion and future work. In this paper we demonstrated, both theoretically and
experimentally, how Sobolev gradients can be used for well-posed (and thereby more natural-
looking) image sharpening. While our work was strongly motivated by some recent work
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(a) Original (Baboon). (b) Original (Lena).

(c) Gaussian blurred original. (d) Gaussian blurred original.

(e) Sobolev sharpening (α = 10). (f) Sobolev sharpening (α = 5).

(g) Shock filter. (h) Shock filter.

Figure 11. Sobolev sharpening versus shock filter. The Sobolev sharpening (third row) was performed with
the PDE (5.2) on Gaussian blurred versions (second row, 5 iterations of the heat equation with δ = 0.1) of the
Baboon and Lena images. Notice the lack of unnatural-looking “staircase artifacts” compared to the shock filter
results (bottom row) for the same two images.
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1010 J. CALDER, A. MANSOURI, AND A. YEZZI

(a) Original Baboon image.

(b) Sharpened then subsampled via (left) shock filter or (right) Sobolev.

(c) Subsampled then sharpened via (left) shock filter or (right) Sobolev.

(d) Difference image: (left) Shock filter: PSNR 20.7 dB. (right) Sobolev: PSNR 29.7 dB.

Figure 12. Scale sensitivity: Shock filter vs. Sobolev. The shock filter (left) and Sobolev sharpening (right)
were each run on both the original and subsampled images. Sobolev sharpening was performed with the PDE
(5.2) with a sharpness factor of α = 5. The difference between sharpening then subsampling versus subsampling
then sharpening for the shock filter is easily apparent when looking at the two results (e.g., the whites of the
eyes). The PSNR of the Sobolev difference image is a full 9 dB higher than that of the shock filter.

D
ow

nl
oa

de
d 

08
/2

9/
13

 to
 1

30
.2

07
.5

0.
15

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGE SHARPENING VIA SOBOLEV GRADIENT FLOWS 1011

Figure 13. Second order smoothing with sharpening constraints. Equation (5.14) evolved for 0, 100, 200,
600 iterations (δt = 0.1) from top left to bottom right. All three color components (Y, Cb, Cr) were processed.

using geometric Sobolev gradients in active contour applications, we found that the benefits
in image processing took on a very different twist. Sobolev active contours have been touted
primarily for their robustness to noise in segmentation and tracking applications, whereas the
well-posedness in the reverse direction is a key property for image processing.

We showed how this property can be exploited by demonstrating a stable Sobolev image
sharpening filter which compares favorably to the well-known shock filter, yielding much more
natural-looking images without exhibiting any staircase artifacts. We also demonstrated how
the Sobolev sharpening PDE naturally leads to a class of interesting constrained flows on
higher order energy functionals for simultaneous smoothing and sharpening effects. In this
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paper we have only begun to explore the possible applications of reverse diffusion techniques;
there are undoubtedly many other interesting applications.

We are currently investigating the use of Hk Sobolev metrics with k > 1 for the same
functional and for the same image enhancement and sharpening applications that were de-
scribed in this paper. We expect gradient flows on functionals with higher order derivatives to
be well-posed in this context. In addition, we are also investigating the use of Sobolev metrics
in image space for functionals which yield anisotropic diffusion equations under the L2 metric.
In parallel we are also investigating the use of Sobolev metrics in spaces of vector fields, with
a particular eye on motion estimation applications. We expect the same smoothing properties
and discontinuity-preserving behavior that were observed in the Sobolev diffusion equations
to manifest themselves in this context. This could open the way for new possibilities in motion
segmentation. We are also investigating the use of Sobolev metrics in other functional spaces
which occur in variational problems in image processing.

9. Appendix.

9.1. Fundamental solution. We now show how to compute the fundamental solution of
u−λΔu = f in R

n. The main computational tool that we will need for this task is the Fourier
transform. For u ∈ L1(Rn) we define its Fourier transform as

(9.1) û(ω) :=
1

(2π)n/2

∫
Rn

e−ix·ωu(x)dx (ω ∈ R
n),

where x · ω =
∑n

i=1 xiωi, with x = (x1, . . . , xn) and ω = (ω1, . . . , ωn). The inverse Fourier
transform is defined as

(9.2) ǔ(x) :=
1

(2π)n/2

∫
Rn

eiω·xu(ω)dω (x ∈ R
n).

It is well known that the Fourier transform can be linearly extended to an isometry from
L2(Rn) to L2(Rn).

Now, computing (I − λΔ)−1f for an arbitrary f ∈ L2(Rn) is equivalent to solving the
following PDE:

(9.3) u− λΔu = f in R
n

for the unknown function u. It is a well-known result [11] that, for every λ > 0, (9.3) has a
unique weak solution u ∈ H2(Rn). Now, take the Fourier transform of both sides of (9.3) to
obtain

û(ω) =
f̂(ω)

1 + λ|ω|2 (ω ∈ R
n).

Thus, by taking the inverse Fourier transform, we obtain u = Sλ ∗ f , where Sλ is a rescaled
Bessel potential [11]:

(9.4) Ŝλ(ω) =
1

(2π)n/2

(
1

1 + λ|ω|2
)
, Sλ(x) =

1

(4λπ)n/2

∫ ∞

0

e−t− |x|2
4tλ

tn/2
dt.
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9.2. Mollification. We define the standard mollifier η ∈ C∞(Rn) by

η(x) :=

⎧⎪⎨
⎪⎩

C exp

(
1

|x|2 − 1

)
if |x| < 1,

0 if |x| ≥ 1,

where C > 0 is selected so that
∫
Rn ηdx = 1. For each ε > 0 we set

ηε(x) :=
1

εn
η
(x
ε

)
and Ωε := {x ∈ Ω | dist(x, ∂Ω) > ε}.

The functions ηε are C∞ and satisfy∫
Rn

ηε dx = 1 and supp(ηε) ⊂ {x ∈ R
n | |x| ≤ ε}.

For any u ∈ L1
loc(R

n), we define its mollification, uε, by uε := ηε ∗ u. It is a standard result
that uε ∈ C∞(Rn) for all ε > 0 and uε → u0 a.e. as ε → 0 [11].
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