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A NOVEL METHOD FOR SOLVING MULTISCALE ELLIPTIC
PROBLEMS WITH RANDOMLY PERTURBED DATA∗
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Abstract. We propose a method for efficient solution of elliptic problems with multiscale features
and randomly perturbed coefficients. We use the multiscale finite element method (MsFEM) as a
starting point and derive an algorithm for solving a large number of multiscale problems in parallel.
The method is intended to be used within a Monte Carlo framework where solutions corresponding to
samples of the randomly perturbed data need to be computed. We show that the proposed method
converges to the MsFEM solution in the limit for each individual sample of the data. We also show
that the complexity of the method is proportional to one solve using MsFEM (where the fine scale
is resolved) plus N (number of samples) solves of linear systems on the coarse scale, as opposed
to solving N problems using MsFEM. A set of numerical examples is presented to illustrate the
theoretical findings.
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1. Introduction. Multiscale problems are some of the greatest challenges in
computational mathematics today. In all branches of the engineering sciences, we en-
counter problems with features on several different scales. Flow in a porous medium,
such as the earth’s subsurface, is a typical example. Many of these problems can
be modeled using partial differential equations with multiscale features in the coef-
ficients. In practice, these coefficients are often the result of experimental and/or
field measurements, which causes some level of uncertainty. This uncertainty can be
modeled as random perturbations.

We consider the problem of finding u satisfying

(1.1)

{
−∇ ·

(
A(x)∇u

)
= f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where Ω ⊂ Rdim is a polygonal domain with boundary ∂Ω, where dim = 1, 2, 3, A(x)
is a scalar stochastic function governed by some probability structure, and f(x) is a
given deterministic function. In particular, we assume that samples of A are positive,
bounded coefficients exhibiting heterogeneity in multiple scales with measurement
errors and f ∈ L2(Ω).

In order to get a reliable solution to (1.1) we need to address two problems:
1. The coefficient A varies over different scales in space. Resolving the finest

scale on a single mesh would yield a huge number of unknowns. This calls
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for multiscale methods. The idea is to divide the fine scale field into many
local subproblems and solve these in order to modify a global coarse scale
equation. This leads to a coarse scale equation in which the fine scales are
taken into account.

2. The coefficient A has measurement errors which can be modeled as a random
perturbation around a mean. This yields a distribution of A as input data and
a distribution of u as output data. Obtaining access to stochastic quantities
of interest of the output is computationally challenging.

During the last decade several multiscale methods have been developed which deal
with the first difficulty, see, e.g., [3, 11, 19, 21, 24]. In these works two scales are
mainly considered; a coarse scale, on which the multiscale features are not resolved but
where computations can be performed globally, and a fine scale, where the multiscale
features are resolved but where global computations are not possible. The fine scale
equations are decoupled and solved locally. The result is used to modify the coarse
scale equations so that they include information from the fine scale.

The second issue has also been studied extensively. A common approach is the
perturbation method. Here the random functions and operators in the differential
equation are expanded in a Taylor series about their respective mean values (see
[23]). Another approach is to expand the random function in a Karhunen–Loève
expansion (see, e.g., [7, 18]). A third approach often used in applications due to its
simplicity is Monte Carlo simulation, i.e., to solve (1.1) for a large number of samples
of the coefficient A in order to get the distribution of the solution u.

Recently, works that consider both issues simultaneously have been presented
(see, e.g., [1, 8, 25]). In [1] a small number of realizations A are selected, and the mul-
tiscale finite element method (MsFEM) is used to compute corresponding multiscale
basis functions. Then given an arbitrary realization A, the solution u is sought within
the span of the precomputed multiscale basis functions. In this paper we attack a
related issue. We consider a Monte Carlo type situation where a number of samples of
A are given and we wish to compute corresponding solutions u by solving (1.1) using
MsFEM. We present an efficient way of doing this for a vast number of samples by
using the fact that the local matrices we need to invert on the fine scale are very simi-
lar in structure among the samples. This idea was first presented in a series of papers
[15, 16, 17] where nonoverlapping domain decomposition was used to localize the com-
putations. A great advantage of using MsFEM instead of domain decomposition is
that no iteration is needed and no communication between the subdomains is needed.

The method depends on an assumption that the random variation of the elliptic
coefficient is described as a piecewise constant (or polynomial) function on the coarse
mesh. The multiscale basis functions associated with a coarse grid are represented as a
truncated Neumann series expansion. We give a theoretical convergence analysis that
shows that this series converges geometrically, with respect to the number of terms
in the Neumann series, to the exact multiscale basis functions as we add more terms
to the series. A similar convergence property holds for the global solution computed
with this representation approximating the global MsFEM solution. The complexity
of the method, when solving for N samples of the data A, is proportional to solving
once using standard MsFEM plus solving N linear systems of equations on the coarse
scale. This should be compared to solving N problems using standard MsFEM.

The rest of the paper is organized as follows. In section 2 we present modeling
assumptions and the computational method. We derive a rigorous convergence anal-
ysis of the method in section 3. Section 4 gives a set of numerical examples to confirm
the theoretical results.
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2. Modeling assumption and computational method. In this section we
focus on modeling assumptions and present the method we use for computing samples
of the solution to (1.1). We start by establishing some notation.

2.1. Preliminaries. For an arbitrary domain ω ⊂ Ω we denote the L2(ω) norm
‖ ·‖L2(ω) and L2(ω) scalar product (·, ·)ω. When ω = Ω we simply write (·, ·) = (·, ·)Ω.
We let ‖ · ‖L∞(ω) be the L∞-norm on ω and H1(ω) be the standard Sobolev space

of functions in L2(Ω) that has gradients in (L2(Ω))dim. In particular, H1
0 (ω) denotes

the space of functions in H1(ω) with vanishing trace on the boundary. See [2] for an
extensive discussion on these function spaces. Furthermore, ‖v‖k,ω = ‖k1/2∇v‖L2(ω)

for any given positive function k ∈ L∞(ω). When ω = Ω we drop the subscript,
i.e., ‖v‖k = ‖k1/2∇v‖L2(Ω), and when k = A we write |||v|||ω = ‖A1/2∇v‖L2(ω) and

|||v||| = ‖A1/2∇v‖L2(Ω). We also introduce a scalar product 〈v, w〉 = (A∇v,∇w) for
all v, w ∈ H1(Ω).

We let Th be a set of finite elements τ discretizing Ω, i.e., Ω =
⋃

τ∈Th
τ , hτ being

the diameter of τ and h = maxτ∈Th
hτ . Each element τ has d vertices, i.e., we

assume that τ are simplices. Finally, for a point in R
2, we use the notation (x, y),

which should be clearly distinguishable from the L2 scalar product by examining the
context.

2.2. Weak formulation and modeling assumption. We formulate the vari-
ational formulation of (1.1): find u ∈ H1

0 (Ω) such that

(2.1) (A∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω).

We assume that the stochastic elliptic coefficient can be decomposed into deterministic
and random components, A = a + A. Further we assume that there exist constants
0 < a0,τ ≤ a1,τ < ∞ so that a0,τ ≤ a(x) ≤ a1,τ for all x ∈ τ for all τ ∈ Th
and that −δ0a0,τ ≤ Aτ ≤ δ1a0,τ < ∞ for all τ ∈ Th, where 0 ≤ δ0 < 1 and
1 ≤ δ1 < ∞. A simple application of the Lax–Milgram theorem guarantees the
existence and uniqueness of the corresponding solution for each sample of A, and
furthermore,

(2.2) |||u||| ≤ c‖f‖L2(Ω)

for some constant c > 0 depending on a0,τ , δ0, and Ω.
We assume that the random perturbation A has a particular structure. Let

(2.3) A(x) =
∑
τ∈Th

Aτχτ (x),

where χτ (x) denotes the characteristic function on τ . With this structure, the varia-
tional formulation for (1.1) is to seek u ∈ H1

0 (Ω) satisfying

(2.4) aΩ(u, v) +
∑
τ∈Th

Aτ bτ (u, v) = (f, v) for all v ∈ H1
0 (Ω),

where

(2.5) aD(u, v) =

∫
D

a(x)∇u · ∇v dx and bD(u, v) =

∫
D

∇u · ∇v dx

for an arbitrary domain D ⊆ Ω.
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Within the framework of Monte Carlo simulation for quantifying uncertainty ef-
fects of this random coefficient, the basic idea relies on treating (2.4) as a black box
producing u given finite samples of A(x). The realization data can then be used to
calculate the probability distribution and/or some statistics of a functional (quan-
tity of interest) of u. In practice, one employs the finite element method to find the
approximation of u belonging to certain finite dimensional subspace of H1

0 (Ω). The
finite element method reads: find uh ∈ Vh such that

(2.6) aΩ(uh, vh) +
∑
τ∈Th

Aτ bτ (uh, vh) = (f, vh) for all vh ∈ Vh,

where Vh, e.g., could be the space of continuous piecewise linear functions on Th
vanishing on ∂Ω.

A heuristic consideration of accuracy suggests that the elliptic coefficient A dic-
tates the mesh configuration Th. In this case, the deterministic coefficient a can
exhibit heterogeneity in several different length scales of several orders of magnitude.
Consequently, for an accurate solution, Th is constructed so that the heterogeneity
of a is captured. This leads to a large linear system of equations that needs to be
solved for each sample of A. Obviously this fact requires a tremendous amount of
computational work when a large number of samples are used in the Monte Carlo
simulation. In the next section, we discuss one alternative to overcome this, namely,
the use of the MsFEM.

From now on, we only consider samples of the stochastic function A. In particular,
the method we present is designed so that samples of the corresponding solutions u
are computed in parallel with no interaction. This means that both the method and
the analysis can be performed on a single sample of A without loss of generality. For
this reason we will, from now on, refer to A as a particular realization of the data. In
the same way, u will be the corresponding realization of the solution. The reason for
this slight abuse of notation is that the paper will be easier to follow.

2.3. The MsFEM. The MsFEM was introduced in [19] and further analyzed in
[20]. In its basic form, MsFEM is a finite element method that is based on solving the
variational equation (2.6) in a finite dimensional subspace of H1

0 (Ω). The distinction
is in its aim to compute the solution on a coarse scale (posed on coarser mesh Th)
without directly resolving the fine scale heterogeneity globally. The key ingredient is
the construction of an appropriate multiscale finite dimensional space in which the
solution is sought. In particular, the fine scale heterogeneity in a should be imbedded
in this finite dimensional space. This information is incorporated into coarse scale
formulation through the global/coarse scale stiffness matrix. We point out that the
idea of using basis functions satisfying certain differential equations has been used
before (see, e.g., [4, 5, 6] and references therein).

We set the so-called multiscale basis functions φi,τ for vertices i = 1, . . . , d of
finite element τ to satisfy

(2.7)

{
−∇ · ((a(x) +Aτ )∇φi,τ ) = 0 x ∈ τ,

φi,τ (x) = gi,τ (x) x ∈ ∂τ,

where gi,τ (x) is a piecewise linear/bilinear function on ∂τ with gi,τ (xj) = δij , xj being
the vertex coordinate of τ . Then the multiscale finite dimensional space is defined as

(2.8) Vms,h = span
{
φi,τ : i = 1, . . . , d; τ ∈ Th

}
⊂ H1

0 (Ω).
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The MsFEM solution is ums,h ∈ Vms,h satisfying

(2.9) aΩ(ums,h, vh) +
∑
τ∈Th

Aτ bτ (ums,h, vh) = (f, vh) for all vh ∈ Vms,h.

Application of this procedure is summarized in Algorithm 1.

Algorithm 1 MsFEM.
Construct the multiscale basis functions {φi,τ , i = 1, . . . , d} for every τ ∈ Th,
satisfying −∇ · ((a(x) +Aτ )∇φi,τ ) = 0 for x ∈ τ with φi,τ (x) = gi,τ (x)
for x ∈ ∂τ .
Compute ums,h ∈ Vms,h satisfying

aΩ(ums,h, vh) +
∑
τ∈Th

Aτ bτ (ums,h, vh) = (f, vh) for all vh ∈ Vms,h.

At this stage we define a projection operator Qms,h : H1
0 (Ω) → Vms,h so that

(2.10) 〈Qms,hv, w〉 = (A∇Qms,hv,∇w) = (A∇v,∇w) = 〈v, w〉 for all w ∈ Vms,h.

We note that Q2
ms,h = Qms,h and that 〈Qms,hv, w〉 = 〈v,Qms,hw〉 for all v, w ∈ H1

0 (Ω).
Using this projection we have the identity ums,h = Qms,hu.

2.4. A Neumann series approximation of MsFEM basis functions. Ms-
FEM appropriately addresses the first problem described in the introduction. How-
ever, within the framework of Monte Carlo simulation, we want to solve u associated
with a given realization of A. Thus, for a large number of realizations which is com-
mon in Monte Carlo simulation, building up the statistics for u translates into many
executions of Algorithm 1. In particular, we need to compute the multiscale basis
functions for a given realization of A. This can easily become very expensive due to
the slow convergence of the Monte Carlo algorithm.

In a series of papers [15, 16, 17], a technique using truncated Neumann series
was introduced for Lions’ nonoverlapping domain decomposition algorithm. In this
section we propose that a similar idea is directly applicable for MsFEM and has the
potential for an efficient and robust numerical procedure when applied to problems
described in section 2. In this setting, the multiscale basis functions in MsFEM will be
approximated by a truncated Neumann series. Using this representation, computation
of the multiscale basis functions can be reduced to a one-time preprocessing effort.
We now describe the procedure in detail.

We let Π : H1(τ) → H1
0 (τ) be a projection onto H1

0 (τ) so that

aτ (Πv, w) = aτ (v, w) for all w ∈ H1
0 (τ).

Notice that by letting φ̂i,τ = φi,τ − (I −Π)gi,τ ∈ H1
0 (τ), where I is the identity, and

by using (2.7), we may write a variational formulation: seek φ̂i,τ ∈ H1
0 (τ) satisfying

(2.11)
aτ (φ̂i,τ , v) +Aτ bτ (φ̂i,τ , v) = aτ (Πgi,τ − gi,τ , v) +Aτbτ (Πgi,τ − gi,τ , v)

= Aτbτ (Πgi,τ , v)

for all v ∈ H1
0 (τ), since Δgi,τ = 0 and aτ (Πgi,τ − gi,τ , v) = 0 for all v ∈ H1

0 (τ). We

write φi,τ = φ̂i,τ + (I −Π)gi,τ .
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At this stage, we are in position to construct the Neumann series multiscale basis
functions. To offer some motivation, we consider a linear algebra example associated
with the variational formulation (2.11)

(S + AτB)Φ = AτBb,

which can be written as

(I +AτS−1B)Φ = S−1AτBb

if S has an inverse. Given a constant λτ , we multiply the last equation by 2/(2+Aτλτ )
and rewrite it appropriately as(

I +
2Aτ

2 +Aτλτ

(
S−1B − λτ

2
I

))
Φ =

2Aτ

2 +Aτλτ
S−1Bb.

Under appropriate assumptions the solution can be written as a Neumann series,

Φ = −
( ∞∑

p=0

( −2Aτ

2 +Aτλτ

)p+1 (
S−1B − λτ

2
I

)p
)

S−1Bb.

Our intention is to apply the linear algebra exercise in formulating the Neumann
series multiscale basis functions within the variational formulation (2.11). We propose
Algorithm 2.

Algorithm 2 Neumann Series Multiscale Basis Functions
Fix i and τ , and set a positive constant λτ .

Compute φ̃
(1)
i,τ ∈ H1

0 (τ) satisfying aτ (φ̃
(1)
i,τ , v) = bτ (Πgi,τ , v) for every v ∈ H1

0 (τ).
for p = 2 to P do

Compute φ̃
(p)
i,τ ∈ H1

0 (τ) satisfying

aτ (φ̃
(p)
i,τ , v) = bτ (φ̃

(p−1)
i,τ , v)− λτ

2
aτ (φ̃

(p−1)
i,τ , v)

for every v ∈ H1
0 (τ).

end for
Let φ̃i,τ ∈ H1(τ) be expressed as

(2.12) φ̃i,τ = −
[ P∑

p=1

( −2Aτ

2 +Aτλτ

)p

φ̃
(p)
i,τ

]
+ (I −Π)gi,τ .

Note that when λτ = 0, this procedure is similar to the one introduced in [15]
for nonoverlapping domain decomposition. We will show later that a judicious choice
of λτ will guarantee convergence of the series for any Aτ fulfilling −δ0,τa0,τ ≤ Aτ ≤
δ1,τa0,τ , where 0 ≤ δ0 < 1 and δ1 ≥ 1. We also note that similar expansion has
been introduced in [14]. Once this is in place, the corresponding multiscale finite
dimensional space is defined as

(2.13) Ṽms,h = span
{
φ̃i,τ : i = 1, . . . , d; τ ∈ Th

}
⊂ H1

0 (Ω).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MsFEM FOR PROBLEMS WITH RANDOMLY PERTURBED DATA 983

The MsFEM with truncated Neumann series solution is given by the following: find
ũms,h ∈ Ṽms,h such that

(2.14) aΩ(ũms,h, vh) +
∑
τ∈Th

Aτ bτ (ũms,h, vh) = (f, vh) for all vh ∈ Ṽms,h.

We may now modify Algorithm 1 to include the Neumann series approximation (see
Algorithm 3).

Algorithm 3 MsFEM with Truncated Neumann Series

For every τ ∈ Th and i = 1, . . . , d call Algorithm 2 to get
{
φ̃
(p)
i,τ , i = 1, . . . , d, p =

1, . . . ,P
}
.

Construct the multiscale basis functions {φ̃i,τ , i = 1, . . . , d} for every τ ∈ Th
with

φ̃i,τ = −
[ P∑

p=1

( −2Aτ

2 +Aτλτ

)p

φ̃
(p)
i,τ

]
+ (I −Π)gi,τ .

Compute ũms,h ∈ Ṽms,h satisfying

aΩ(ũms,h, vh) +
∑
τ∈Th

Aτ bτ (ũms,h, vh) = (f, vh) for all vh ∈ Ṽms,h

Again we define a projection operator Q̃ms,h : H1
0 (Ω) → Ṽms,h so that

(2.15) 〈Q̃ms,hv, w〉 = 〈v, w〉 for all w ∈ Ṽms,h.

We have the identity ũms,h = Q̃ms,hu.

2.5. Complexity. Here we give a brief description of the amount of work re-
quired for the MsFEM Neumann series approximation. We think of the complexity in
the framework of the Monte Carlo procedure, where N samples need to be computed.

We let |Th| be the number of coarse elements τ ∈ Th, nτ be the degrees of freedom
on the subgrid of element τ (for simplicity we assume the same number for all coarse
elements), and nT be the degrees of freedom on the coarse mesh Th. Furthermore, we
let L(n) be the amount of work needed to compute the solution to one linear system
with n unknowns.

We start by computing the work needed for matrix assembly from one coarse ele-
ment τ . The coarse entries that need to be computed are aτ (φ̃i,τ , φ̃j,τ ), bτ (φ̃i,τ , φ̃j,τ ),

and (f, φ̃j,τ ) for 1 ≤ i, j ≤ d. In order to minimize the work it is crucial not to

compute the basis functions {φ̃i,τ}di=1 first and then compute the products needed for
the coarse scale computation. Instead we expand φ̃i,τ in terms of φ̃

(p)
i,τ and (I −Π)gi,τ

and compute terms of the form aτ (φ̃
(p)
i,τ , φ̃

(q)
j,τ ), aτ (φ̃

(p)
i,τ , (I −Π)gj,τ ), bτ (φ̃

(p)
i,τ , φ̃

(q)
j,τ ), and

so on for 1 ≤ i, j ≤ d and 1 ≤ p, q ≤ P . This way we avoid multiplying the random
numbers Aτ with vectors of size nτ . Instead we multiply Aτ with numbers.

The amount of work needed to compute φ̃
(p)
i,τ and Πgi,τ for all 1 ≤ i ≤ d and

1 ≤ p ≤ P is of the order d · P · L(nτ ). The amount of work needed to compute the
products of type aτ (φ̃

(p)
i,τ , φ̃

(q)
j,τ ) for all 1 ≤ i, j ≤ d and 1 ≤ p, q ≤ P is of the order
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d2 ·P2 ·nτ . This means that the amount of work needed before we involve the random
numbers is proportional to |Th| · d · P · (L(nτ ) + d · P · nτ ).

Given the numbers aτ (φ̃
(p)
i,τ , φ̃

(q)
j,τ ) and the corresponding numbers for bτ (·, ·) and

(f, ·) for all 1 ≤ i, j ≤ d and 1 ≤ p, q ≤ P , we can assemble the matrices and vectors
for all N samples. This work will be proportional to N · d2 · P2 ·C(Aτ ), where C(Aτ )
is the amount of work needed to compute (−2Aτ/(2 + λτA

τ ))2P (worst case) given a
single realization Aτ , i.e., it is proportional to P . If we do this for all coarse elements
τ the work scales like |Th| ·N · d2 · P3. Finally we need N global solves on the coarse
grid at the cost N · L(nT ). In total we get

(2.16) |Th| · d · P · (L(nτ ) + d · P · nτ ) +N · (|Th| · d2 · P3 + L(nT )).

The constants we have neglected are independent of the other quantities in the cal-
culation d,P , nτ , nT , |Th|, and N . For small values of P (which is what we typically
are interested in) and small values of d (typically 3 or 4), we essentially get that the
work is proportional to

(2.17) |Th| · L(nτ ) +N · L(nT )

with some moderate-sized constant. Equation (2.17) should be compared to solving
for all samples using MsFEM without truncation which would be

(2.18) N · |Th| · L(nτ ) +N · L(nT ).

Note that N typically scales like one over the subgrid mesh size squared in order to
balance the discretization error (proportional to the subgrid mesh size for energy norm
estimates) and the statistical error (proportional to N−1/2 according to the CLT) in
a computation. (See [15, 16] for a more extensive discussion.) This means that N
typically needs to be very large if we want to get convergence for some statistical
output quantity of interest.

2.6. Piecewise polynomial perturbation. The method can easily be ex-
tended to piecewise polynomial perturbations. This makes it possible to consider
continuous perturbations which can be more natural if a is continuous in itself. We
give a brief description of how the algorithm is modified when the perturbation is not
piecewise constant.

On each element τ we assume that Aτ =
∑m

j=1 A
τ
jϕj , where {ϕi}mi=1 is a partition

of unity that forms a basis for polynomials of a certain degree on τ . The standard
MsFEM basis functions would then fulfill

aτ (φ̂i,τ , v) +
m∑
j=1

Aτ
j b

j
τ (φ̂i,τ , v) =

m∑
j=1

Aτ
j b

j
τ (Πgi,τ − gi,τ , v),

where bjτ (v, w) = (ϕj∇v,∇w)τ . If, for simplicity, we let λτ = 0 and study the
equivalent linear algebra example, we get

Φ =

⎛⎝I +

m∑
j=1

Aτ
jS

−1Bj

⎞⎠−1
m∑
j=1

Aτ
jS

−1Bjb = −
∞∑
p=1

⎛⎝−
m∑
j=1

Aτ
jS

−1Bj

⎞⎠p

b.
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This series can again be truncated (in p). The computational cost increases since we
need to solve P · mP + 1 systems on each element for each basis function initially,
instead of P + 1. This is because the number of terms in the highest power of the
sum is mP , and for each term P linear systems need to be solved. The addition 1
is in order to compute the projection Πgi,τ . The entries in the lower powers p are
given during the computation of the highest power P . It is clear that m and P need
to be fairly small numbers; otherwise, this procedure will be very costly. Given this
formulation, an algorithm which is very similar to Algorithm 2 can be constructed.

2.7. Oversampling. One drawback of MsFEM is the error resulting from im-
posing an artificial boundary condition gi,τ when computing the multiscale basis func-
tion (2.7). This creates a discrepancy which in general can be quantified by the ratio
of the physical scale to the coarse mesh size. An analysis of the linear MsFEM, which
shows that the convergence depends on this ratio, has been done in [20]. Oversam-
pling is a technique to overcome this drawback, in which the local problems (2.7) are
solved in domains whose size is larger than τ . This procedure has been proposed and
analyzed in [13] for linear MsFEM.

In the context of Neumann series approximation, oversampling yields a situation
in which Aτ is a piecewise constant function in the domain where the multiscale
basis functions are computed. Ideally, this is taken into account by introducing more
parameters in the local approximation of Aτ , one for each neighboring element, in
the same fashion as in the section on nonpiecewise constant perturbation above. This
technique has also been studied in [17]. A simpler approach is to approximate Aτ by
its value on the original coarse element τ . We intend to study these approaches in
the future.

3. Error analysis. The aim of this error analysis is primarily to show the con-
vergence of the Neumann series and to estimate the error introduced by truncating
the Neumann series in the global MsFEM solution. Thus, the expectation from this
analysis is to devise a way for controlling the error produced by the Neumann series
approximation in terms of the method parameters. We start by proving that the Neu-
mann series approximation of the multiscale basis functions converges on each coarse
element τ . We first prove the following three technical lemmas.

Lemma 3.1. Let φ̃i,τ ∈ H1(τ) be expressed as

φ̃i,τ = −
[ P∑

p=1

( −2Aτ

2 +Aτλτ

)p

φ̃
(p)
i,τ

]
+ (I −Π)gi,τ .

Then φ̃i,τ satisfies

aτ (φ̃i,τ − (I −Π)gi,τ , v) +Aτ bτ (φ̃i,τ − (I −Π)gi,τ , v)

= −Aτ

( −2Aτ

2 +Aτλτ

)P
aτ (φ̃

(P+1)
i,τ , v) +Aτ bτ (Πgi,τ , v)

for every v ∈ H1
0 (τ).

Proof. In order to simplify the presentation, we let γ = −2Aτ/(2+Aτλτ ). Using
(2.12), we interchange the bilinear form and the sum, and we use the recursive relation
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in Algorithm 2 to get

aτ (φ̃i,τ − (I −Π)gi,τ ,v) +Aτ bτ (φ̃i,τ − (I −Π)gi,τ , v)

= −
P∑

p=1

γp
(
aτ (φ̃

(p)
i,τ , v) +Aτ bτ (φ̃

(p)
i,τ , v)

)
= −

P∑
p=1

γp

(
aτ (φ̃

(p)
i,τ , v) +Aτaτ (φ̃

(p+1)
i,τ , v) +

Aτλτ

2
aτ (φ̃

(p)
i,τ , v)

)

= −
P∑

p=1

(−Aτ )γp−1 aτ (φ̃
(p)
i,τ , v) +Aτγpaτ (φ̃

(p+1)
i,τ , v)

= Aτaτ (φ̃
(1)
i,τ , v)−AτγPaτ (φ̃

(P+1)
i,τ , v)

since 1 + Aτλτ

2 = −Aτ

γ . The lemma follows immediately by noting that aτ (φ̃
(1)
i,τ , v) =

bτ (Πgi,τ , v).
Lemma 3.2. Let T : H1

0 (τ) → H1
0 (τ) be an operator defined as

aτ (Tv, w) = bτ (v, w)−
λτ

2
aτ (v, w)

for every v, w ∈ H1
0 (τ) and T p = T ◦ T ◦ · · · ◦T (i.e., p-times applications of T ), with

T 0 = I. Let a0,τ and a1,τ be two positive constants such that a0,τ ≤ a(x) ≤ a1,τ for
all x ∈ τ . Then

‖T pv‖a,τ ≤ cpλ,τ‖v‖a,τ

for all v ∈ H1
0 (τ), where

(3.1) cλ,τ =
1

2a0,τ
− 1

2a1,τ
+

∣∣∣∣λτ

2
− 1

2a0,τ
− 1

2a1,τ

∣∣∣∣ .
Proof. We use the identity bτ (v, w)− λτ

2 aτ (v, w) = (( 1a − λτ

2 )a∇v,∇w)τ with the
definition of T to get

aτ (T
pv, T pv) ≤ max

a0,τ≤a≤a1,τ

∣∣∣∣1a − λτ

2

∣∣∣∣ ‖T p−1v‖a,τ‖T pv‖a,τ

≤
(

1

2a0,τ
− 1

2a1,τ
+

∣∣∣∣λτ

2
− 1

2a0,τ
− 1

2a1,τ

∣∣∣∣) ‖T p−1v‖a,τ‖T pv‖a,τ

= cλ,τ‖T p−1v‖a,τ‖T pv‖a,τ ,

which we combine with the energy norm definition to get ‖T pv‖a,τ ≤ cpλ,τ ‖v‖a,τ for
p = 1, 2, . . . .

Lemma 3.3. Define

Aλ,τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ R2 : −a0,τ < x <
a0,τ

1− a0,τy
when 0 ≤ y ≤ a−1

0,τ ,

(x, y) ∈ R2 : x > −a0,τ when a−1
0,τ ≤ y ≤ a−1

0,τ + a−1
1,τ ,

(x, y) ∈ R2 : x >
a1,τ

1− a1,τy
when y > a−1

0,τ + a−1
1,τ

(3.2)
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Aτ

−a0,τ a0,τ0

λτ

a−1
0,τ

a−1
0,τ + a−1

1,τ

a0,τ

1 − a0,τλτ

a1,τ

1 − a1,τλτ

Fig. 3.1. To the left: The shaded region represents combinations (Aτ , λτ ) for which I(Aτ , λτ ) <
1. To the right: Here min(I(Aτ , λτ ), 1) is plotted in the special case when a0,τ = 1 and a1,τ = 2.

The optimal value of λτ = a−1
0,τ + a−1

1,τ = 3/2.

(see left plot of Figure 3.1). Then
2|Aτ |cλ,τ

|2+Aτλτ | < 1 for all (Aτ , λτ ) ∈ Aλ,τ , where cλ,τ is

defined in (3.1).
Proof. The proof is a straightforward calculus exercise which we present in the

Appendix.
Theorem 3.4. Let (Aτ , λτ ) ∈ Aλ,τ be fixed. Then the Neumann series multiscale

basis function φ̃i,τ converges to φi,τ as P → ∞.
Proof. Given (Aτ , λτ ) ∈ Aλ,τ , we assume that there exist constants 0 ≤ δ0 < 1

and δ1 ≥ 1 such that−δ0a0,τ ≤ Aτ < δ1a0,τ < ∞. Denoting ei,τ = φi,τ−φ̃i,τ ∈ H1
0 (τ),

we then subtract the equation in Lemma 3.1 from (2.11) to get an error equation

(1−δ0)‖ei,τ‖2a,τ ≤ aτ (ei,τ , ei,τ )+Aτ bτ (ei,τ , ei,τ ) = Aτ

( −2Aτ

2 +Aτλτ

)P
aτ (φ̃

(P+1)
i,τ , ei,τ ).

Continuity of aτ (·, ·) and Lemma 3.2 give

(3.3)

(1− δ0)‖ei,τ‖2a,τ ≤ |Aτ |
(

2|Aτ |
|2 +Aτλτ |

)P
‖φ̃(P+1)

i,τ ‖a,τ ‖ei,τ‖a,τ

= |Aτ |
(

2|Aτ |
|2 +Aτλτ |

)P
‖TP φ̃(1)

i,τ ‖a,τ ‖ei,τ‖a,τ

≤ |Aτ |
(

2|Aτ |cλ,τ
|2 +Aτλτ |

)P
‖φ̃(1)

i,τ ‖a,τ ‖ei,τ‖a,τ .

We note that ‖φ̃(1)
i,τ ‖a,τ ≤ 1

a0,τ
‖gi,τ‖a,τ , i.e.,

(3.4) ‖ei,τ‖a,τ ≤ δ1
1− δ0

(
2|Aτ |cλ,τ
|2 +Aτλτ |

)P
‖gi,τ‖a,τ .

We now apply Lemma 3.3 to conclude that ei,τ → 0 when P → ∞. We note that
because ei,τ ∈ H1

0 (τ), Poincaré–Friedrich inequality guarantees the equivalence of the
seminorm ‖ · ‖a,τ and the norm ‖ · ‖H1(τ).

We now turn to the global solution. We show that ũms,h converges to ums,h as
P → ∞, and we also compute a rate for this convergence. We start with a lemma.
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Lemma 3.5. Let (Aτ , λτ ) ∈ Aλ,τ , and assume that there exist constants 0 ≤ δ0 <
1 and δ1 ≥ 1 such that −δ0a0,τ ≤ Aτ ≤ δ1a0,τ . Then

(3.5) |||(I−Q̃ms,h)Qms,hu|||+ |||(I−Qms,h)Q̃ms,hu||| ≤
1 + δ1
1− δ0

(
εP +

εP

1− εP

)
|||u|||,

where ε = maxτ∈Th

2|Aτ |cλ,τ

|2+Aτλτ | < 1.

Proof. Since Qms,hu ∈ Vms,h and Q̃ms,hu ∈ Ṽms,h, we write

Qms,hu =
∑
τ∈Th

d∑
i=1

αi,τφi,τ and Q̃ms,hu =
∑
τ∈Th

d∑
i=1

βi,τ φ̃i,τ

for some coefficients αi,τ ’s and βi,τ ’s. Using these coefficients, we define

w̃ =
∑
τ∈Th

d∑
i=1

αi,τ φ̃i,τ and w =
∑
τ∈Th

d∑
i=1

βi,τφi,τ .

We note that by using (2.12) and Theorem 3.4 and by denoting γ = −2Aτ

2+Aτλτ
,

φi,τ − φ̃i,τ =
∞∑

p=P+1

γpT pφ̃
(1)
i,τ = (γT )P

∞∑
p=1

γpT pφ̃
(1)
i,τ = −(γT )P(φi,τ − (I − Π)gi,τ ).

With all these identities and setting zτ =
∑d

i=1 αi,τ (φi,τ − (I − Π)gi,τ ) ∈ H1
0 (τ), we

write

(3.6) (Qms,hu− w̃)
∣∣∣
τ
=

d∑
i=1

αi,τ (φi,τ − φ̃i,τ ) = −(γT )Pzτ ,

(3.7)

(Q̃ms,hu− w)
∣∣∣
τ
=

d∑
i=1

βi,τ (φ̃i,τ − φi,τ ) = (γT )P
(
w|τ −

d∑
i=1

βi,τ (I −Π)gi,τ

)
.

We first bound (Qms,hu−w̃) and (Q̃ms,hu−w). Using (3.6) and applying the Cauchy–
Schwarz inequality and Lemma 3.2 gives

|||Qms,hu− w̃|||2τ =
(
A∇(Qms,hu− w̃),∇(Qms,hu− w̃)

)
τ

= −
(
A∇
(
(γT )Pzτ

)
,∇(Qms,hu− w̃)

)
τ

≤ |||(γT )Pzτ |||τ |||Qms,hu− w̃|||τ
≤ (1 + δ1)|γ|P ‖TPzτ‖a,τ |||Qms,hu− w̃|||τ
≤ (1 + δ1)|γ|P cPλ,τ ‖zτ‖a,τ |||Qms,hu− w̃|||τ ,

from which we get |||Qms,hu− w̃|||τ ≤ (1 + δ1)|γ|P cPλ,τ ‖zτ‖a,τ . Moreover,

‖z‖2a,τ =

d∑
i=1

αi,τaτ (φi,τ − (I −Π)gi,τ , z) = aτ (Qms,hu, z) ≤
1

1− δ0
|||Qms,hu|||τ‖z‖a,τ ,
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where we have used aτ (gi,τ −Πgi,τ , z) = 0. We apply these to get the estimate

(3.8) |||Qms,hu− w̃||| ≤ 1 + δ1
1− δ0

∑
τ∈Th

cPλ,τ |γ|P |||Qms,hu|||τ ≤ 1 + δ1
1− δ0

εP |||u|||,

where we have also used |||Qms,hu||| ≤ |||u||| and the definition of ε in the statement of
the lemma. Next, we take the norm of (3.7), apply Lemma 3.2, and add and subtract

Q̃ms,hu, to get

‖Q̃ms,hu−w‖a,τ ≤ |γ|PcPλ,τ

(
‖Q̃ms,hu−

d∑
i=1

βi,τ (I −Π)gi,τ‖a,τ + ‖Q̃ms,hu− w‖a,τ
)
.

Since |γ|PcPλ,τ < 1, we can collect the second term on the right side to the left side of
this last inequality. Moreover, using a similar argument for deriving the estimate of
zτ , we deduce that ‖Q̃ms,hu−∑d

i=1 βi,τ (I −Π)gi,τ‖a,τ ≤ ‖Q̃ms,hu‖a,τ . We get

(3.9) ‖Q̃ms,hu− w‖a,τ ≤
|γ|PcPλ,τ

1− |γ|PcPλ,τ
‖Q̃ms,hu‖a,τ ,

which in turn yields

|||Q̃ms,hu− w||| ≤ 1 + δ1
1− δ0

εP

1− εP
|||Q̃ms,hu||| ≤

1 + δ1
1− δ0

εP

1− εP
|||u|||.(3.10)

Finally, since both Qms,h and Q̃ms,h are projections, we have

|||(I − Q̃ms,h)Qms,hu|||+ |||(I −Qms,h)Q̃ms,hu||| ≤ |||Qms,hu− w̃|||+ |||Q̃ms,hu− w|||.

The conclusion of the lemma follows immediately by applying (3.8) and (3.10) to this
last inequality.

We are now ready to present the main result of the analysis.
Theorem 3.6. Let u ∈ H1

0 (Ω) be the solution of (1.1), ums,h ∈ Vms,h be the

solution of (2.9), and ũms,h ∈ Ṽms,h be the solution of (2.14). Then

(3.11) |||ums,h − ũms,h||| ≤
(
1 + δ1
1− δ0

)1/2(
εP +

εP

1− εP

)1/2

|||u|||,

where ε = maxτ∈Th

2|Aτ |cλ,τ

|2+Aτλτ | .

Proof. By definition,

|||ums,h − ũms,h|||2 = 〈Qms,hu− Q̃ms,hu,Qms,hu− Q̃ms,hu〉
= 〈Qms,hu− Q̃ms,hu,Qms,hu〉 − 〈Qms,hu− Q̃ms,hu, Q̃ms,hu〉
= I1 − I2.
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990 VICTOR GINTING, AXEL MÅLQVIST, AND MICHAEL PRESHO

Using the definition of the projections Qms,h and Q̃ms,h we write

I1 = 〈Qms,hQms,hu−Qms,hQ̃ms,hu, u〉 = 〈Qms,hu−Qms,hQ̃ms,hu, u〉,

I2 = 〈Q̃ms,hQms,hu− Q̃ms,hQ̃ms,hu, u〉 = 〈Q̃ms,hQms,hu− Q̃ms,hu, u〉.

Rearranging these identities and applying the Cauchy–Schwarz inequality, we get

I1 − I2 = 〈Qms,hu− Q̃ms,hQms,hu, u〉+ 〈Q̃ms,hu−Qms,hQ̃ms,hu, u〉

≤
(
|||(I − Q̃ms,h)Qms,hu|||+ |||(I −Qms,h)Q̃ms,hu|||

)
|||u|||

≤ 1 + δ1
1− δ0

(
εP +

εP

1− εP

)
|||u|||2,

where we use Lemma 3.5 in the last step. This concludes the proof.
Corollary 3.7. The solution to the modified system ũms,h converges to ums,h

as P → ∞ if (Aτ , λτ ) ∈ Aλ,τ .
Proof. This follows immediately from Theorem 3.6 since ε < 1.
We emphasize here that Theorem 3.6 shows the robustness of the Neumann series

multiscale basis functions within the framework of MsFEM. This has been accom-
plished by comparing the usual MsFEM solution with the MsFEM solution using this
truncated series. The comparison results in bounding the difference between the two
solutions in terms of known constants which can also be made arbitrarily small by
choosing sufficiently large P , i.e., more terms in the series.

Having said this, the fact remains that the MsFEM solution has its own error as
compared to the true solution of the original problem (1.1). Several attempts have
been made to derive errors in the MsFEM solution. (See [12, 19, 20] for details.)
It suffices to say that most of the analyses apply homogenization techniques which
restrict the elliptic coefficient to periodic functions. Nevertheless, MsFEM has been
tested extensively during the last decade and has been shown to perform well for
many applications. (See, for example, [9, 10, 11, 22].) Below we present a theorem
where we bound the total error in terms of the error in the standard MsFEM solution
and in the error committed by using the truncated Neumann series.

Theorem 3.8. Let u ∈ H1
0 (Ω) be the solution of (1.1), ums,h ∈ Vms,h be the

solution of (2.9), and ũms,h ∈ Ṽms,h be the solution of (2.14). Then

|||u− Q̃ms,hu||| ≤ C1(β)
1 + δ1
1− δ0

(
εP +

εP

1− εP

)
|||u|||+ C2(β)|||u −Qms,hu|||,(3.12)

where ε = maxτ∈Th

2|Aτ |cλ,τ

|2+Aτλτ | , C1(β) = ( 2
β(2−β))

1/2, C2(β) = (1 + ( β
2−β )

1/2), and

0 < β < 2 is arbitrary.
Proof. We use the triangle inequality to get

(3.13) |||u− Q̃ms,hu||| ≤ |||u−Qms,hu|||+ |||Qms,hu− Q̃ms,hu|||.

We refine the analysis from Theorem 3.6 as follows. Consider I1 and I2 in the proof of
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Theorem 3.6 and estimate using the Cauchy–Scwharz inequality, and |ab| ≤ β
2 |a|2 +

1
2β |b|2:
(3.14)

I1 − I2 = 〈(I − Q̃ms,h)Qms,hu, (I − Q̃ms,h)u〉+ 〈(I −Qms,h)Q̃ms,hu, (I −Qms,h)u〉
≤ |||(I − Q̃ms,h)Qms,hu||| |||u− Q̃ms,hu|||

+ |||(I −Qms,h)Q̃ms,hu||| |||u−Qms,hu|||
≤
(
|||(I − Q̃ms,h)Qms,hu|||+ |||(I −Qms,h)Q̃ms,hu|||

)
|||u− Q̃ms,hu|||

+ |||(I −Qms,h)Q̃ms,hu||| |||Q̃ms,hu−Qms,hu|||

≤ 1

2β

(
|||(I − Q̃ms,h)Qms,hu|||+ |||(I −Qms,h)Q̃ms,hu|||

)2
+

β

2
|||u− Q̃ms,hu|||2

+
1

2β
|||(I −Qms,h)Q̃ms,hu|||2 +

β

2
|||Q̃ms,hu−Qms,hu|||2

for any 0 < β < 2. Because |||Qms,hu− Q̃ms,hu|||2 = I1− I2, we subtract
β
2 |||Q̃ms,hu−

Qms,hu|||2 from both sides, divide with (1− β
2 ), take square roots, and use

√
|x|2 + |y|2

≤ |x|+ |y| to get

(3.15)

|||Qms,hu− Q̃ms,hu||| ≤ C1(β)
(
|||(I − Q̃ms,h)Qms,hu|||+ |||(I −Qms,h)Q̃ms,hu|||

)
+ (C2(β) − 1)|||u− Q̃ms,hu|||.

We combine (3.13) and (3.15) and use Lemma 3.5 to get the desired
result.

Remark 3.1. For simplicity we have considered P to be a fixed number. It
can easily be chosen differently on different coarse elements τ based on the local size
of a1,τ/a0,τ . This will not affect the results in the analysis, but it will make the
presentation more cumbersome.

Remark 3.2. When comparing Theorems 3.6 and 3.8, it appears that the order
in terms of ε differs. The trick from (3.14) could be used in the proof of Theorem
3.6 as well, leading to terms of the form |||u − Qmsu||| instead of |||u|||. But since
we have no assumption on the quality of the standard MsFEM solution Qmsu and no
possibility to find a similar term in that left-hand side to subtract against we have
decided to leave it out. This means that if Qmsu is close to u, the bound in Theorem
3.6 might be too pessimistic.

Remark 3.3. The convergence of the method suffers clearly when ε gets close
to 1, i.e., when the perturbations are large compared to the underlying deterministic
function a(x). This means that the method works best if the randomness is a per-
turbation around some mean. In practice this corresponds to a situation where we
have a fairly good understanding of the main features of the diffusion coefficient a(x)
but the data are associated with measurement errors. If the measurements are very
sparse and the coefficients in the computation are basically given as realizations of
some stochastic model, this will not be achieved and the convergence will be slow.

4. Numerical examples. We present several numerical experiments which il-
lustrate the theoretical investigations described in the previous sections. Our examples
are mainly used to study the convergence of the Neumann series in MsFEM.

4.1. Convergence of the Neumann series multiscale basis functions.
Figure 4.1 shows two deterministic elliptic coefficients a(x) that we use to test the
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Fig. 4.1. Two deterministic elliptic coefficients for testing the Neumann multiscale basis func-
tion: periodic (left) and channelized (right).

λτ

I
(2

,λ
τ
)

||φ
i,

τ
−

φ̃
i,

τ
|| a

,τ

I(2, λτ )
||φ

i,
τ

−
φ̃

i,
τ
|| a

,τ

I(2, λτ )

Fig. 4.2. Convergence of the Neumann series multiscale basis function against λτ (with fixed
Aτ = 2) for a periodic coefficient: P = 4 (middle) and P = 9 (right).

convergence of the multiscale basis functions. For this purpose, we use an element τ =
[0, 1]× [0, 1] in which we compute a nodal basis function associated with the lower left
vertex. In this figure, the left profile is a periodic coefficient such that 0.25 ≤ a(x) =
(1− 0.99 sin(10πx1))

−1(1− 0.99 sin(10πx2))
−1 ≤ 104 with an average of 62.4, and the

right profile is a coefficient exhibiting channelized features with 0.24 ≤ a(x) ≤ 15459.1
and an average of 108.865. The multiscale basis functions are computed by discretizing
τ into 100 × 100 squares for the periodic coefficient and into 120 × 120 squares for
the channelized coefficient. A comparison is made between the usual multiscale basis
functions and the truncated Neumann series multiscale basis functions. A standard
linear finite element is employed to compute these functions.

As described in the proof of Theorem 3.4, the error associated with the Neumann
series approximation of the multiscale basis functions is bounded by Aτ [I(Aτ , λτ )]

P ,
where I(Aτ , λτ ) = 2|Aτ |/|2 +Aτλτ |. One way to attempt to numerically observe the
dependency of λτ is to fix Aτ and vary λτ accordingly.

We note that the deterministic periodic coefficient has 1/a0,τ + 1/a1,τ ≈ 3.9, so
by consulting Lemma 3.3, we fix Aτ = 2 and vary λτ ≥ 3.9. The left plot of Figure 4.2
shows the values of I(2, λτ ). The middle and right plots show the error as a function
of I(2, λτ ) for P = 4 and P = 9, respectively, in log-scale. A linear regression done
for these data reveals that the slopes are 4.8 and 10.7. This confirms the theoretical
convergence in Theorem 3.4. Figure 4.3 shows a similar assessment for a deterministic
channelized coefficient. Here 1/a0,τ+1/a1,τ ≈ 4.1, so we fix Aτ = 1 and vary λτ ≥ 4.1.

Figures 4.4 and 4.5 show the error of the Neumann series multiscale basis function
in the energy norm, plotted against I(Aτ , λτ ) for various number of terms P . Each of
these figures uses the periodic and channelized coefficients, respectively. Here we have
used Aτ ’s which correspond to 20–30% of the average values for the heterogeneous
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Fig. 4.3. Convergence of the Neumann series multiscale basis function against λτ (with fixed
Aτ = 1) for a channelized coefficient: P = 4 (middle) and P = 9 (right).
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Fig. 4.4. Convergence of the Neumann series multiscale basis function for a periodic coefficient
with P = 0 (left), P = 2 (middle), and P = 4 (right).
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Fig. 4.5. Convergence of the Neumann series multiscale basis function for a channelized coef-
ficient with P = 0 (left), P = 2 (middle), and P = 4 (right).

deterministic coefficients. All plots are in logarithmic scale, and the slopes in each
of them are obtained by linear regression of the data involved. Again, the slopes in
these figures confirm the theoretical finding in Theorem 3.4.

4.2. Convergence of MsFEM solutions using Neumann series basis
functions. In this subsection we present a numerical experiment to show conver-
gence of MsFEM using the Neumann series basis functions. Here we compare uh

(MsFEM solution using the usual multiscale basis functions) and ũh (MsFEM so-
lution using the Neumann series basis functions). We solve the elliptic problem



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

994 VICTOR GINTING, AXEL MÅLQVIST, AND MICHAEL PRESHO
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Fig. 4.6. Behavior of the error of the MsFEM solution using the Neumann series multiscale
basis function with respect to ε for periodic (left) and channelized (right) deterministic elliptic coef-
ficients.

P = 1, Error = 0.5% P = 10, Error = 0.2%

P = 1, Error = 8.1% P = 10, Error = 2.9%

Fig. 4.7. Profile of the MsFEM solutions with Neumann series multiscale basis functions for
periodic (top) and channelized (bottom) deterministic coefficients.

−∇ ·
(
(a(x) + A(x))∇u

)
= 1 in [0, 1]× [0, 1], where the deterministic coefficient a(x)

is as in Figure 4.1. The domain is discretized into 10× 10 coarse elements, while each
coarse element is discretized into 12× 12 smaller finite elements aimed for solving the
multiscale basis functions. A fixed number of terms P is used for all coarse elements
and for all nodal multiscale basis functions associated with these elements. Figure 4.6
shows the convergence for the two deterministic coefficients. We use P = 4 for this
example. The asymptotic slopes for both results are 5.3 and 5.5, respectively.

Figure 4.7 shows a comparison of the MsFEM solutions for several numbers of
terms in the Neumann series, using periodic and channelized deterministic coefficients.
The averages of a(x) in the coarse elements range from 0.44869 to 181.359 for the peri-
odic coefficient and from 4.39 to 1114.02 for the channelized coefficient. Perturbation
in each element is 30% of its average for the periodic coefficient and 50% of its average
for the channelized coefficient. The plots indicated by “Reference” are the MsFEM
solutions using the usual multiscale basis functions. We can see that as we add more
terms in the series, the approximate solutions do converge to the reference solutions.
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5. Conclusion. In this paper, we have proposed an efficient procedure for solv-
ing multiscale elliptic problems with randomly perturbed coefficients. The theoretical
perspective that we offer confirms that the Neumann series approach for computing
the multiscale basis functions in MsFEM converges geometrically with respect to the
number of terms in the series. Similarly, the MsFEM solution computed using these
Neumann series converges to the MsFEM solution computed using the usual multi-
scale basis functions. The complexity of the method when solving N samples of the
data is proportional to using standard MsFEM on a single sample plus solving N
linear systems of equations on the coarse scale.

We wish to investigate a number of open problems in the future. As mentioned in
section 2, an interesting extension to this method is to use the oversampling in com-
puting the multiscale basis functions. Moreover, we would like to apply the method
to several applications, e.g., in oil reservoir simulation. One idea is to quantify uncer-
tainty in the carbon production due to the randomness of the measured data of the
reservoir’s permeability. This would be done within the Monte Carlo framework, and
we aim at including statistical errors for a given output quantity in the analysis.

Appendix. We present the proof of Lemma 3.3.

Proof. Let I(Aτ , λτ ) =
2|Aτ |cλ,τ

|2+Aτλτ | . The basic assumptions are Aτ > −a0,τ and

λτ ≥ 0. In accordance with the wayAλ,τ is defined, we split the proof into three parts:
Case λτ < a−1

0,τ : Observe that

(5.1)
1

a0,τ
− 1

a1,τ
+

∣∣∣∣λτ − 1

a0,τ
− 1

a1,τ

∣∣∣∣ = 2

a0,τ
− λτ and |2 +Aτλτ | = 2 +Aτλτ .

For −a0,τ ≤ Aτ < 0, we have

I(Aτ , λτ ) =

(
2a−1

0,τ − λτ

)
|Aτ |

2 + λτAτ
=

(
2− λτa0,τ
2− λτ |Aτ |

)
|Aτ |
a0,τ

< 1.

Furthermore, I(Aτ , λτ ) < 1 for Aτ ≥ 0 only if (2a−1
0,τ − λτ )A

τ < 2 + λτA
τ . In other

words, Aτ <
a0,τ

1−a0,τλτ
.

Case a−1
0,τ ≤ λτ ≤ a−1

0,τ + a−1
1,τ : Notice that (5.1) are still valid. This means

I(Aτ , λτ ) < 1 only if
(
2a−1

0,τ − λτ

)
|Aτ | < 2 + λτ |Aτ | or

(
a−1
0,τ − λτ

)
|Aτ | < 1. But this

is true for any λτ ≥ a−1
0,τ .

Case λτ > a−1
0,τ + a−1

1,τ : Now we have

1

a0,τ
− 1

a1,τ
+

∣∣∣∣λτ − 1

a0,τ
− 1

a1,τ

∣∣∣∣ = λτ − 2

a1,τ
.

If Aτ ≥ 0, we get

I(Aτ , λτ ) =

(
λτ − 2a−1

1,τ

)
Aτ

2 + λτAτ
≤

λτ − 2a−1
1,τ

λτ
=

λτa1,τ − 2

λτa1,τ
< 1.

On the other hand, when −a0,τ < Aτ < 0, we get

I(Aτ , λτ ) =

(
λτ − 2a−1

1,τ

)
|Aτ |

2− λτ |Aτ | ,

and thus I(Aτ , λτ ) < 1 only if (2λτ −2a−1
1,τ )|Aτ | < 2, which gives Aτ >

a1,τ

1−a1,τλτ
. This

completes the proof.
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