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Abstract

Owing to their high accuracy and ease of formulation, there has been great interest in
applying convex optimization techniques, particularly that of semidefinite programming
(SDP) relaxation, to tackle the sensor network localization problem in recent years. How-
ever, a drawback of such techniques is that the resulting convex program is often expensive
to solve. In order to speed up computation, various edge sparsification heuristics have been
proposed, whose aim is to reduce the number of edges in the input graph. Although these
heuristics do reduce the size of the convex program and hence making it faster to solve, they
are often ad hoc in nature and do not preserve the localization properties of the input.
As such, one often has to face a tradeoff between solution accuracy and computational
effort. In this paper we propose a novel edge sparsification heuristic that can provably
preserve the localization properties of the original input. At the heart of our heuristic is
a graph decomposition procedure, which allows us to identify certain sparse generically
universally rigid subgraphs of the input graph. Our computational results show that the
proposed approach can significantly reduce the computational and memory complexities
of SDP—based algorithms for solving the sensor network localization problem. Moreover,
it compares favorably with existing speedup approaches, both in terms of accuracy and
solution time.

1 Introduction

In recent years, the graph realization problem has attracted a lot of attention in many commu-
nities. Such an interest can be attributed to the fundamental nature and practical significance
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of the problem. Indeed, the graph realization problem arises in many different contexts, such
as distance geometry [7], wireless sensor network localization [15], and molecular conformation
[18]. In the context of wireless sensor network localization — which is the one we shall focus on
in this paper — the problem can be formulated as follows. Let d > 1 be an integer (in practice,
we usually have d = 2 or 3), and let G = (V, E) be a graph. The vertices of G are partitioned
into two sets: the set V; = {1,...,n} of sensors, and the set V, = {n+1,...,n+m} of anchors.
Together, they induce two subsets Fg, s, C E, which are defined as follows:

Ess:{(,la.]>€EZ7]€‘/8} and ESUL:{(Z?J>€EZ€‘/3’]E‘/@}

Now, each anchor i € V, is given a position a; € RZ Moreover, each edge (i,7) € E,
(resp. (i,j) € E,,) is given a positive weight d;; (resp. d;;), which can be viewed as the dis-
tance between sensor i and sensor j (resp. sensor ¢ and anchor 7). In particular, the existence of
an edge between i, 7 € V means that the distance between ¢ and j is known. This allows us to
assume without loss that E,, = {(i,j) :n+1<i<j <n+m} C E, as the distance between
any two anchors is trivially known. To summarize, an instance of the sensor network localization
problem is given by a 4-tuple (G, (d,d),a,d), where G = ((V,, V), (Ess, Esa; Euq)) is the input
graph, d = (d;j) i j)cE., € R'f“' and d = (dij)(ij)ep.. € ]R‘fm‘ are the vectors of edge weights,
a=(a;)ey, € R%™ is the vector containing the positions of the anchors, and d > 1 is the given
dimension. For simplicity’s sake, suppose that the given distance data are exact. Our goal then
is to determine the positions of the sensors so that they satisfy the given distance measurements.
In other words, we are interested in finding an assignment of coordinates X = (Z;...;%,) € R
to the vertices in V; (which, together with a € R¥™ | is called a localization or realization of G)
such that x satisfies the following system:

HIEZ — [B]H% = d2 fOI' (Z,j) € ESS,
la; — z;||3 = & for (i,7) € F, (1)

r; € RY fort=1,...,n.

Here, we use (u;v) to denote the (p + ¢)—dimensional column vector obtained by stacking the
p—dimensional column vector u on top of the g—dimensional column vector v. Problem (1) arises
as an important sub—problem in many wireless sensor network applications, such as target
detection and tracking, geographic routing, and collaborative signal processing [29]. In those
applications, location—dependent data are collected either over a vast geographical area or in
an indoor environment. Thus, it is typically infeasible or impractical to “solve” Problem (1) by
installing GPS-like systems in the sensors. Furthermore, from a computational point of view,
it is NP-hard to decide whether Problem (1) has a feasible solution or not [32], even when
the input graph is a so—called unit disk graph [5, 14]. As a result, many heuristics for solving
Problem (1) have been proposed. One family of heuristics that has received much attention
lately is the convex relaxation approach initiated by Doherty et al. [20] and Biswas and Ye [10].
The idea behind that approach is to develop efficiently solvable convex relaxations of Problem
(1), so that approximate solutions to the original problem can be easily derived. As a concrete
example, consider the following semidefinite programming (SDP) relaxation of Problem (1),

2



which is first proposed by Biswas and Ye [10] and refines the convex relaxations proposed in
Doherty et al. [20]:

(Oa € — ej)(o; € — 6j)T °Z = dz2] for (7’7]) S E.937
(ai; —e;)(a;; —e;)T 0 Z = ij for (i,7) € FEsa,
Lo 2)
Xt vy Y
Z e 8¢

Here, e; € R™ is the i—th standard basis vector (where i = 1,...,n), I is the d x d identity matrix,
ST is the set of (d+n) x (d+n) symmetric positive semidefinite matrices, and Ae B = tr(AB)
is the trace inner product of two symmetric matrices A, B of the same dimension. As is well-
known, the SDP (2) can be solved (to any desired accuracy) efficiently using standard interior
point algorithms [37]. Moreover, an approximate solution to Problem (1) can be extracted
directly from the X component of the matrix Z (see [10, 35] for details). One advantage
of the SDP relaxation (2) (and in fact of most convex relaxations of Problem (1)) is that
it can be applied to any dimension d > 1. This should be contrasted with some existing
localization algorithms (see, e.g., [30, 13]), which relies heavily on the geometry of the two—
dimensional Euclidean space and cannot be easily extended to higher dimensions. Moreover, as
demonstrated in [10, 35, 34, 33], the SDP relaxation (2) not only can produce highly accurate
results, but also possesses nice theoretical properties. However, a major drawback of (2) is that
it is computationally demanding. Indeed, the SDP (2) contains (d + n)(d + n + 1)/2 variables
and d(d +1)/2 + |Ess| + |Fsq| equality constraints. As such, an instance of (2) with only a few
hundred sensors is considered to be a challenge for standard SDP solvers [11]. Thus, there has
been a lot of interest recently in designing faster algorithms for solving the SDP (2), as well
as in developing other more computationally efficient convex relaxations of (1). Some of the
proposed approaches include:

1. Distributed Computation. One natural way to handle a large instance of Problem (1) is
to first divide the graph G into small subgraphs, then find a localization of each subgraph
using, say, the SDP (2), and finally stitch the subgraphs back together to produce a
localization of G. Such an approach is explored in various recent work (see, e.g., [11, 16, 9]),
where the difference lies mainly in how the subgraphs are formed and how they are stitched
back together. However, we note that the distributed computation approaches proposed so
far tend to be ad hoc, and the error incurred in each subgraph often propagates throughout
the entire graph. Thus, the solution produced by this approach can be quite inaccurate.

2. Alternative Convex Relaxations. Another way to obtain fast heuristics for solving
Problem (1) is to consider other, possibly weaker, convex relaxations. For instance, Tseng
[36] proposed a second—order cone programming (SOCP) relaxation of (1) and showed
that it can be solved much faster than the SDP relaxation (2). Later, motivated by ideas
in Fukuda et al. [21] and Nie [31], Wang et al. [39] proposed a further relaxation of (2),
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in which the (d + n) x (d + n) positive semidefinite cone constraint in (2) is replaced
by a number of smaller positive semidefinite cone constraints that correspond to the local
connectivity of the input graph. Such an idea is later generalized by Kim et al. [27] to allow
for more general connectivity constraints. We remark that although the above relaxations
can be solved much more efficiently than the SDP relaxation (2), they are not as tight as
the SDP relaxation. Consequently, the solutions produced by the above relaxations are
usually not as accurate as those produced by the SDP relaxation (2).

3. Exploiting Sparsity in SDPs. In recent years, a lot of effort has been spent on im-
proving the computational efficiency in solving large—scale SDPs. One particular approach
is to exploit the sparsity in the data matrices to decompose a large positive semidefinite
cone constraint into an equivalent system of smaller positive semidefinite cone constraints
(see, e.g., [21, 38, 26]). (This should not be confused with the decomposition proposed
in [39], which results in a relazation of the original SDP.) In [27] the authors applied the
above approach to solve the SDP relaxation (2) and another, tighter, SDP relaxation of
Problem (1). The reported computational results are very promising. We remark that the
techniques proposed in [21, 26] are very general and can be applied to any SDP. As such,
they do not exploit the geometric structure of the sensor network localization problem.

In this paper we present another novel approach for speeding up the solution time of the SDP
(2). Our approach exploits both the combinatorial and geometric aspects of the sensor network
localization problem and is motivated by various theoretical properties of (2) established in
(35, 33]. Specifically, we first propose an edge sparsification algorithm that, given any graph
G = (V, E), returns an edge—sparsified subgraph G’ = (V, E’) such that G and G’ have essentially
the same localization properties. In other words, under some mild assumptions, one can conclude
that every localization of the sparsified instance (G, (d,d)|a, a,d) is also a localization of the
original instance (G, (d, d), a, d) (the converse is trivial, as G’ is a subgraph of G). Here, (d,d)|c
denotes the restriction of (d,d) onto the edges of . At the heart of our algorithm is a graph
decomposition procedure, which allows us to identify certain sparse generically universally rigid
subgraphs of the input graph. Our algorithm has polynomial complexity for any fixed d > 1,
and the number of edges in the subgraph it produces can be bounded and is typically small.
In the context of the SDP (2), our result implies that we can reduce the number of equality
constraints without changing the set of feasible solutions. This should be contrasted with the
edge sparsification algorithms proposed in [11, 16, 9, 39, 27], which do not guarantee that the
edge—sparsified subgraph has the same localization properties as the original graph, and hence
the resulting size-reduced SDP is not necessarily equivalent to the original SDP. Recently,
Krislock and Wolkowicz [28] have developed a speedup approach that has a similar flavor as
ours. Their algorithm proceeds by identifying cliques in the input graph, and in some sense it
can be viewed as a combinatorial algorithm for solving the SDP (2). However, the runtime of
their algorithm is not clear. Moreover, as we shall see, our approach can identify a larger class
of graphs (i.e. beyond cliques) for which edge sparsification is possible.

Next, we combine our edge sparsification algorithm with existing speedup techniques (see,
e.g., [27]) to develop a fast SDP-based algorithm for the sensor network localization problem.
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The proposed SDP-based algorithm not only guarantees to find a solution to the original SDP
(2) (i.e. with the full set of edge-distance data), but also runs significantly faster and has a
much lower memory requirement than the original SDP (2). Our preliminary computational
results also show that the proposed algorithm compares very favorably with existing ones, both
in terms of accuracy and solution time.

The rest of the paper is organized as follows. In Section 2, we give the motivation of our
approach and show how it can be formalized and studied under the framework of rigidity theory.
Then, we show that there exists a family of sparse graphs (i.e. graphs with only O(|V]) edges,
where |V| is the number of vertices in the graph) for which the SDP relaxation (2) is essentially
exact. Such a family forms the basic building block of our edge sparsification algorithm, which
we introduce in Section 3. Then, we analyze the properties of the proposed algorithm. In
particular, we establish the precise conditions under which the size-reduced SDP is equivalent
to the original SDP. In Section 4, we discuss some further techniques for improving both the
accuracy and solution speed of the size-reduced SDP. We then report our computational results
and experiences in Section 5 and close with some concluding remarks in Section 6.

2 Preliminaries

2.1 DMotivation of Our Approach

Before we delve into the details of the edge sparsification algorithm, let us motivate our approach
and introduce some relevant concepts. In recent years, there has been some interest in applying
rigidity theory (see, e.g., [23, 17]) to study the sensor network localization problem (see, e.g.,
[4, 40]). Roughly speaking, the theory of rigidity is concerned with the problem of determining
whether a given realization of a graph is unique (up to congruence) in a given dimension. In other
words, given a realization p = (p1;...;p) € R of an [-vertex graph G = (V, E) in R¢, where
vertex i € V is assigned the coordinates p; € R? for i = 1,..., 1, we would like to know whether
there exists another realization q = (q1;...;q) € R¥ of G such that ||p; — p;lla = |lai — ¢l2
for all (i,j) € E, but ||p; — pjll2 # |l¢i — ;2 for some (i,5) ¢ E. If such a q does not exist,
then p is the unique (up to congruence) realization of GG in R?, and the pair (G, p) is said to be
globally rigid in R%. We should point out that in the setting of rigidity theory, all vertices of G
are considered as sensors, and hence one is interested only in non—congruent realizations.

At first sight, it seems natural to apply rigidity—theoretic techniques to tackle the sensor
network localization problem. Afterall, there exist efficient algorithms that, given an integer
d > 1 and an [-vertex graph G, can decide whether (G, p) is globally rigid in R? for all generic!
realizations p € R¥ [24, 25, 22]. Now, if G is generically globally rigid in R? 2, then any
instance (G, (d,d),a,d) will admit a unique localization in R? (i.e. there is a unique solution
to the system in (1)), provided that (d,d) and a induce a generic realization of G in R, and

'We say that the point p = (p1,...,p) € R¥ is generic if there does not exist a non-zero polynomial
h:R¥ — R with integer coefficients such that h(py,...,p;) = 0.

2A graph G is said to be generically globally rigid in R? if (G,p) is globally rigid in R? for all generic
realizations p of G in RY.



that there are at least d + 1 anchors. Moreover, it is clear that for any generically globally rigid
graph G = (V, E) in R?, there exists a minimal subset £’ C E of edges such that G’ = (V, E’)
is also generically globally rigid in R?. Thus, in order to reduce the size of a given instance
(G, (d,d),a,d) of the sensor network localization problem, one could try to identify generically
globally rigid subgraphs of G and sparsify them as much as possible while preserving their
generic global rigidity. Unfortunately, there is a serious obstacle in the above approach, namely,
we may not be able to find the actual realizations of those generically globally rigid subgraphs in
an efficient manner. Indeed, Aspnes et al. [5] showed that unless RP=NP, there does not exist an
efficient randomized algorithm that, given an instance of the sensor network localization problem
with a unique localization in R?, finds that localization. In other words, the knowledge that
an instance has a unique localization in R? does not make the task of finding that localization
any easier. Consequently, the applicability of rigidity theory to the sensor network localization
problem is somewhat limited.

In order to circumvent the above difficulty, one could try instead to identify so—called
uniquely d-localizable sub—instances of a given instance of the sensor network localization
problem. The notion of unique d-localizability was introduced by So and Ye [35] and can
be viewed as a computationally efficient alternative to global rigidity. Specifically, an instance
(G,(d,d),a,d) of the sensor network localization problem is said to be uniquely d-localizable
if (i) the system in (1) has a unique solution X = (Z1;...;%,) € R%, and (ii) for any | > d,
((Z1;0); (Z;0);. . .; (¥,;0)) € R™ is the unique solution to the following system:

o —ajlls =y for (i,5) € Eu,
I(ai;0) — ;|3 = df;  for (i) € Eu, (3)
r, € R fori=1,...,n.

Geometrically, the above conditions state that the given instance has a unique localization in
R! for all [ > d, and that localization is given by (x,a) € R% x R¥™. We should emphasize that
the notion of unique d-localizability depends both on the combinatorial structure of G and the
geometric information embedded in (d,d) € ]R'f”l X Rfm‘ and a € R¥™. Moreover, unlike in
the setting of rigidity theory, as long as the given instance of the sensor network localization
problem has more than one distinct localizations, that instance is not considered as uniquely
d-localizable, even if all those distinct localizations are congruent to each other.

As shown in [35], an instance of the sensor network localization problem is uniquely d—
localizable iff the maximum rank solution to the SDP (2) is d. In this case, the SDP (2) is
an exact relaxation of (1), i.e. Problem (1) and Problem (2) are equivalent. Thus, the SDP
(2) provides an efficient means to check whether an instance of the sensor network localization
problem is uniquely d-localizable, and if so, find that unique localization. Now, in view of our
earlier discussion and to further take advantage of the above results, we are led to the following
questions:

1. Given a uniquely d-localizable instance (G, (d,d), a,d) of the sensor network localization
problem, can we identify a set of edges of G such that the instance obtained by removing
those edges is still uniquely d-localizable?



2. More generally, given an arbitrary instance of the sensor network localization problem, can
we decompose it into a number of uniquely d—localizable sub—instances and sparsify them,
while at the same time preserving the localization properties of the original instance?

In other words, we are interested in sparsifying a given instance (G, (d,d),a, d) of the sensor
network localization problem, so that the total number of edges in E,, and F,, is small, and
yet the localization properties of the original instance are preserved. This will then allow us to
speed up the solution time of the SDP (2). As we shall see, both of the above questions can be
answered in the affirmative to some extent. Our approach is to first identify a family H of sparse
graphs (i.e. with only O(|V|) edges) such that if H € H, then the instance (H,(d,d),a,d) is
uniquely d-localizable whenever (d,d) € R'f“l X R‘fs“l and a € R%™ induce a generic realization
of G in RY, and there are at least d + 1 anchors. Now, if G’ = (V,E') € H and if G = (V, E)
is such that E' C E, then we can remove the edges in F\E’ from G without affecting its
localization properties. Thus, given an arbitrary instance (G, (d,d),a,d) of the sensor network
localization problem, we can first search for those subgraphs of G that contain a graph from
‘H as a spanning subgraph, and then remove any redundant edges in each of those subgraphs.
In this way we can reduce the size of the given instance, whence its associated SDP (2) can be
more efficiently solved.

To carry out the above program, we need some theoretical preparations. These will be
detailed in the next section.

2.2 Trilateration Graphs and Their Properties

To begin, let us introduce the family of trilateration graphs, which will be the main object of
interest in our study.

Definition 1 Let d,l > 1 be integers with | > d + 1. An l-vertex graph G = (V, E) is called
a d-trilateration graph if there ezists an ordering {1,2,...,1} of the vertices in V (called a d—
trilateration ordering) such that (i) the first d+ 1 vertices 1,2,...,d+ 1 form a complete graph,
and (i) every vertex j > d + 2 is connected to at least d 4+ 1 of the vertices 1,2,...,j — 1.

The family of trilateration graphs was studied in [4], where it was shown that a d—trilateration
graph is generically globally rigid in R?. This implies that if G is an (n+m)-vertex d-trilateration
graph with n > 1 sensors and m > d+ 1 anchors, then the instance (G, (d,d), a, d) has a unique
localization in R? (i.e. there is a unique solution to the system in (1)) whenever (d,d) and
a induce a generic realization of G in R?. We now sharpen this result by showing that the
instance (G, (d,d), a, d) is in fact uniquely d-localizable, i.e. it has a unique localization in R’
forall I > d.

Theorem 1 Let G be an (n + m)-vertex d—trilateration graph with n > 1 sensors and m >
d+1 anchors. Given an instance (G, (d,d),a,d) of the sensor network localization problem, let
X € R be a feasible realization of the sensors. Suppose that the realization (X,a) € R x RI™
of G is generic. Then, the instance (G, (d,d),a,d) is uniquely d-localizable, and (X,a) is its
unique localization.



Proof Let Vi, = {1,...,n} be the set of sensors and V,, = {n+1,...,n + m} be the set of
anchors. Since G is a d—trilateration graph, there exists an ordering 7 of the vertices that satisfies
the conditions in Definition 1. Let us first consider the case where the first d + 1 vertices under
7 are all anchors and show that the desired conclusion holds. Towards that end, consider the
vertex m(d 4+ 2), which is the (d + 2)-nd vertex under 7. If it is an anchor, then there is nothing
to argue. Hence, suppose that it is a sensor. Since it is connected to vertices 7(1),...,7(d+ 1),
we have the following constraints in the SDP (2):

||a7r(i)||% - 2“5(i)%(d+2) + Yr(ar2)n(are) = Jgr(i)ﬂr(d-ﬂ) fori=1,....d+1.

where 2 (412) is the 7(d + 2)-nd column of the matrix X € R™™ in (2), and Yy (a12)r(d+2) is the

(m(d+2),7(d+2))nd entry of the matrix ¥ € R™*™ in (2). Upon eliminating Yz (412)r(d+2), we
obtain the following system of linear equations:

(”aw(z’)H% - Haw(dﬂ)Hg + d?r(d+1),7r(d+2) - d?r(i),w(d-i—Q)) fori=1,...,d

DN | —

(%(i) - aﬂ'(dJrl))Txfr(dJrZ) =

Since (%, a) is generic, the vectors {a(1) — Gr(a+1), - - -, @r(@) — Gr(a+1)} are linearly independent.
Thus, there is a unique solution to the above system, namely, Tr(442) = Tr(d442). This in turn
implies that Y (q10) r(a42) = ||5£7r(d+2) |2. Moreover, since Y — X7 X = 0 by the Schur complement
and (Y — XTX)ﬂ(d+2),7r(d+2) = 0, we conclude that

Yrar2), = Yirare) = ff(dﬁ)xl fori=1,....n.

Now, suppose that for i = d +2,...,j with (i) € V;, we have zy = Zr(i), Yr)r() = | Zn()||3,
and Yz, = Yiro) = jTTr(i)xl forl =1,...,n. Consider vertex 7(j+1). Without loss of generality,
we may assume that it is a sensor. Then, we have the following constraints in the SDP (2):

[ 2*%£(l)x77(j+1) + Ya(+1) a1 = d72r(l),7r(j+1) for (w(l),m(j +1)) € Ess, I =1,...., 7,
lax 3 = 2050 x4y + Yagrn ey = Gganyaq  for (7 +1),7(0) € Ew, 1 =1,..., .

Since vertex m(j + 1) is connected to at least d 4+ 1 of the vertices m(1),...,7(j), there are at
least d + 1 linear equations in the above system. Since (X,a) is generic, we can extract d + 1
independent linear equations from it. Then, upon using the same argument as before, we see

that Tr(j11) = Tr(i1)s Yr(+1)m(i+1) = Hi’w(jﬂ)”%a and
Yagend = YixGieny = Trgynt forl=1,...,n,

Hence, the inductive step is completed. In particular, we conclude that Y = X7 X, where
X =1[& --- #,],is the unique solution to (2). It then follows from [35, Theorem 2] that
(G, (d,d),a,d) is uniquely d-localizable.

In summary, we have shown that if p € R¥ is a generic realization of an [-vertex d—
trilateration graph G = (V, E) (where | > d 4 1), and if the positions of the first d + 1 vertices
under the d-trilateration ordering of V' are given, then p can be found by solving systems of
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linear equations whenever the distances d;; = ||p; — p;l|2 (for (4,j) € E) are given. Moreover, it
will be the unique realization of G' (with respect to the positions of the first d + 1 vertices) in
R for all h > d.

Now, let us consider the case where the first d+1 vertices under 7 are not all anchors. Suppose
that there are two generic realizations (X,a) and (y,a) of G. Note that by our remark in the
preceding paragraph, both realizations must lie in R¢ and are unique with respect to the positions
of the first d + 1 vertices under 7. This implies that there exists an isometry T : R — R? that
maps (X,a) to (y,a). However, since the m > d + 1 generically positioned anchors are fixed by
T, it follows that 7" must be the identity. In particular, we have (X,a) = (y, a), and the desired
conclusion in the theorem statement follows. ad

One of the important consequences of Theorem 1 is that it establishes the existence of
sparse uniquely d-localizable instances of the sensor network localization problem (i.e. those
whose graphs have only O(|V|) edges). Recall that for such instances, the SDP relaxation (2)
is exact, i.e. the SDP (2) will produce the unique localization of such instances. Thus, our
result refutes a common belief in the literature (see, e.g., [5, 4, 6, 29, 13]) that every uniquely
d-localizable instance must have Q(|V]?) edges.

Another consequence of Theorem 1 is that it suggests a way to simultaneously reduce the
size of a given instance (G, (d,d), a,d) of the sensor network localization problem and preserve
its localization properties. Specifically, we can first try to identify subgraphs of G that contain
a d-trilateration graph as a spanning subgraph, and then remove any redundant edges in each
of those subgraphs. Before we investigate this approach in more detail, however, let us provide
further theoretical justification for it and discuss how the notion of unique d-localizability fits
into the framework of rigidity theory.

2.3 Unique d—Localizability and Its Rigidity—Theoretic Counterpart

As mentioned in Section 2.1, when we consider the rigidity—theoretic aspects of a graph, we
do not make any distinction among its vertices. By contrast, in the definition of unique d-
localizability, the distinction between sensor and anchor vertices is crucial. Thus, in order to
discuss unique d-localizability in the context of rigidity theory, we need to somehow do away
with the anchors. One possible way to achieve that is as follows:

Definition 2 Let d,l > 1 be integers. Let G = (V,E) be an l-vertex graph, and let p =
(p1;...;p) € RY be its realization in RY. We say that (G, p) is universally rigid in R? if for
any realization q = (q1; .. .;q) € R™ of G in R" (where h > 1 is arbitrary), we have:

Ip: = pilla = llg: = asll2 for (i,5) € B = [Ipi = pyll: = llas = qsll: for 1< i< j <1

In other words, p is the unique (up to congruence) realization of G in any Euclidean space.
If (G, p) is universally rigid in R? for all generic realizations p € R¥, then we say that G is
generically universally rigid in R?.



Although the notion of universal rigidity has been introduced before (see [1, 2] and the refer-
ences therein), it does not seem to be well-studied. For instance, it is not entirely clear what
the relationship is between unique d-localizability and universal rigidity in R?. The following
theorem addresses this issue and makes the relationship explicit:

Theorem 2 Suppose that (G, (d,d),a,d), where G = ((Vs, Vo), (Ess, Esa, Faa)), is a uniquely
d-localizable instance of the sensor network localization problem, with p = (X;a) € RANVsl+[Val)
being its unique localization in R' for all | > d. Then, (G,p) is universally rigid in RY.

Conversely, let G = (V, E) be a graph with |V| > d+ 1, and let p € R be a realization of
G in R Suppose that (G,p) is universally rigid in R%. Then, whenever V, C V is such that
|Va| > d + 1 and there exist d + 1 wvectors in the family {p;}icv, that are affinely independent,
the instance (G, (d,d), ply,,d), where:

d = (llpi = pill2)ijevive: A= (Ipi = pjll2)ievivijeve:  Plve = (Pi)ieva
15 uniquely d—localizable.

Proof Let q € RAIV:I+Val) he a realization of G in R” for some h > 1. Since G contains the
complete subgraph G, = (V,, E,,), we can apply an isometry 7" to q so that T'(¢;) = a; for all
i € V,. However, since (G, (d,d),a,d) is uniquely d-localizable with p = (x;a) € R IVsl+IVal)
being its unique localization in R! for all [ > d, we must have T(q) = p. Since T is an isometry,
it follows that ||p; — p;ll2 = ||¢i — ¢jl|2 for 1 < i < j < |Vi| + |V4]|, whence (G, p) is universally
rigid in R,

Conversely, suppose that (G,p) is universally rigid in R?, and that (G, (d,d),ply,,d) is
not uniquely d-localizable. Then, there exists another realization p’ € RMV! of G in R" for
some h > d, such that p; = (p;;0) € R”* for all i € V,. Since (G,p) is universally rigid in
R?, there exists an isometry T such that T(p’) = p. On the other hand, since T fixes p|y,
and there are d + 1 affinely independent vectors in {p;}icv,, we conclude that 7" must be the
identity. In particular, this implies that p’ = p, which is a contradiction. Hence, the instance
(G, (d,d),ply,,d) is uniquely d-localizable, as desired. O

We remark that the affine independence assumption in the statement of Theorem 2 cannot
be dropped. Indeed, consider the instance shown in Figure 1. Suppose that the anchors as, as, a4
are collinear, and that there is an edge between the sensor z; and every anchor. Then, it is clear
that the given instance is universally rigid in R? for any placement of the anchors and sensor.
However, it is not uniquely 2-localizable, as one can obtain another (congruent) realization by
reflecting x; along the axis defined by the anchors as, as, as.

Theorem 2 has some interesting consequences. For instance, let G = (V, E) be an [-vertex
graph and p € R% be a realization of G in R?. Suppose that the family {p;}scy contains d + 1
affinely independent vectors. Then, by Theorem 2 and the result in [35], we see that it is possible
to check whether (G, p) is universally rigid in R? efficiently using SDP. Moreover, if (G, p) is
indeed universally rigid in R, then the unique realization p can also be found efficiently using
SDP. By contrast, Saxe [32] showed that it is NP-hard to check whether (G, p) is globally rigid in
R? and Aspnes et al. [5] showed that unless RP=NP, there does not exist an efficient algorithm
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X

Figure 1: Importance of the Affine Independence Assumption in Theorem 2

for finding the unique realization p of a globally rigid instance (G,p). Thus, it seems that
the notion of universal rigidity is more amenable to algorithmic treatment than that of global
rigidity. Furthermore, upon combining Theorems 1 and 2, we have the following corollary:

Corollary 1 d-trilateration graphs are generically universally rigid in R? for all d > 1.

In particular, if G = (V, E) contains a spanning d—trilateration subgraph G’ = (V| E’), then the
instances (G, (d,d),a,d) and (G, (d,d),a, d) have the same localization properties for almost
all (d,d) and a. Such an observation forms the basis of our edge sparsification algorithm, which
we will detail in the next section.

We remark that universal rigidity is not a generic property. In other words, given two
realizations p,q € R% of an [-vertex graph G in R?, it is possible that (G, p) is universally rigid
in R? while (G,q) is not (see, e.g., [35, Figure 1]). This should be contrasted with the notion
of global rigidity, which is a generic property [22]. Moreover, there is an efficiently computable
characterization of generically globally rigid graphs, while no such characterization is known for
generically universally rigid graphs. Naturally, it would be interesting to obtain an efficiently
computable characterization of generically universally rigid graphs, and we leave this as an open
question to the reader.

Before we leave this section, let us show how generically universally rigid graphs can be
constructed in an incremental manner. We begin with a definition.

Definition 3 Let d > 1 be an integer. We say that a graph G' = (V', E') is a d-trilateration
extension of another graph G = (V, E), where |V| > d+1, if V' = VU{w} withw ¢V, E C E',
and [{(w,v) € E' v € V} >d+ 1. In other words, G’ is obtained from G by adding a new
vertex to G and connecting it to at least d + 1 vertices of G.

Theorem 3 Let G = (V,E) be generically universally rigid in R® with |V| > d + 1, and let
G' = (V',E') be a d-trilateration extension of G. Then, G' is generically universally rigid in
R4,

Proof Let V

={1,...,0} and V' = {1,...,0,1 + 1}. Define G = (V’,E"), where E' =
EU{(i,j):1<i<

j < 1}. Note that since G is generically universally rigid in R%, any two
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generic realizations p = (p;)iev and q = (¢;)iev’ of G’ that satisfy ||p; — p;ll2 = |l¢; — ¢;l|2 for
all (i,7) € E' will also satisfy ||p; — p;|l2 = ||¢: — ¢;|2 for all (i,5) € E’. Thus, in order to show
that G’ is generically universally rigid in R?, it suffices to show that G’ is generically universally
rigid in R?. Towards that end, let p = (p1;...;pis1) € R¥HD be a generic realization of G’ in
R?, and consider the instance (G” ,(0,d),a,d) of the sensor network localization problem, where

d= (||Pz+1 —pz‘||2)z‘ev7 a= (pi)iGV-

In other words, we treat the vertices 1,2,...,[ as anchors and the vertex [ + 1 as the only
sensor in the instance. Upon following the argument in the proof of Theorem 1, we see that
(é’, (0,d), a, d) is uniquely d-localizable, with p being its unique localization in R’ for all [ > d.
Thus, by Theorem 2, we conclude that (C?’ ,p) is universally rigid in R?. Since p is an arbitrary
generic realization of G in R, it follows that G’, and hence G’, is generically universally rigid
in R%. O

Another construction is based on taking the union of generically universally rigid graphs.
Specifically, we prove the following theorem:

Theorem 4 Let G; = (Vi, E1) and Gy = (Va, Es) be two generically universally rigid graphs in
R? with Vi NVy| > d+ 1. Then, the graph G = (ViU Va, E; U Es) is also generically universally
rigid in RY.

Proof Let p € RVl be a generic realization of G in R%, and let q € RMV1YV2l be an arbitrary
realization of G in R” for some h > 1. Since (7 is generically universally rigid in R?, there exists
an isometry 77 such that 71(q)|g, = pla,- Here, T1(q)|c, (resp. p|g,) denotes the restriction of
T1(q) (resp. p) onto the coordinates corresponding to the vertices of G;. By a similar argument,
there exists an isometry 75 such that Th(q)|g, = Plg,- Now, observe that there exists an
isometry 7T such that T(71(q))|c, = 12(d)|g, = P|ag,- Since T fixes the generically positioned
vertices in V) N V4 and since |V} NV,| > d 4 1 by assumption, it follows that 7" must be the
identity. In particular, since T1(q)|e, = Plg, and T1(q)|e, = Pla,, we conclude that T7(q) = p.
This completes the proof. O

3 Graph Sparsification and Reduction

Recall that given an instance (G, (d,d),a,d) of the sensor network localization problem, our
goal is to speed up the solution time of its associated SDP relaxation (2). A natural way to
achieve this is to reduce the number of constraints in (2), which corresponds to removing edges
from G. Such an approach has indeed been pursued by several researchers. For instance, Wang
et al. [39] proposed to impose an upper bound A > 1 on the degree of each vertex (i.e. both
sensors and anchors) of the graph G and use an edge selection rule to determine which edge to
keep so that the degree at each vertex is bounded above by A. In their simulations, they set
A = 7 for the case where d = 2, and the edges are chosen at random. Later, Kim et al. [27]
adopted the same idea for edge reduction, except that their upper bound on the degree of each
vertex has the form min{deg(u, Fss U Ey,), k}, where deg(u, Fss U Ey,) is the number of edges in
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E,, U FE,, that are incident to the vertex u, and k > d + 1 is some integer. Their edge selection
rule is also different, in that for each vertex u, the edges in F,, that are incident to u are chosen
before those in Fg. Simulation results in [27] showed that such a heuristic does indeed perform
better than that proposed by Wang et al. [39].

Although the aforementioned edge sparsification heuristics do in general reduce the size of
a given instance of the sensor network localization problem and hence speed up the solution
time of its associated SDP relaxation, they are quite ad hoc in nature and may remove edges
that are crucial to an accurate localization of the sensors. To illustrate this, consider the graph
G=(V,E), where V. ={1,2,...,n+ 3} and

n+3

E={(ij):1<i<j<3yulJ{(i.j):i=1,23}

j=4

We designate the first 3 vertices as anchors, and the rest as sensors. Suppose that the distances
d = (dij) (i j)er are given, and that the instance (G, (0,d), a, 2) has a generic realization (x,a) €
R?*" x R?*3. Since G is a 2-trilateration graph, it is uniquely 2-localizable, and hence (x,a) is
its unique localization in R?%. However, if we remove any of the anchor-sensor edges (i.e. edges
of the form (i,7), where 1 < i < 3 and 4 < j < n + 3), then the instance will no longer be
uniquely 2-localizable. In particular, if we restrict the degree of each vertex in G to be at most
a constant (as is done, e.g., in [39, 27]), then the SDP relaxation associated with the resulting
sparsified instance will no longer be exact, and we will not be able to recover (X,a) from the
SDP. In view of the above discussion, we are thus interested in developing edge sparsification

heuristics that can preserve the localization properties of the input.

3.1 The Equivalent Edge Sparsification Heuristic

Our edge sparsification heuristic is motivated by the results developed in Section 2. The high—
level idea is straightforward — decompose the input graph into a number of d—trilateration
subgraphs and remove any redundant edges in those subgraphs. For concreteness’ sake, let us
describe our edge sparsification heuristic — which we call the Fquivalent Edge Sparsification
(EES) heuristic — for the case where d = 2 (which, of course, is a case of practical interest).
The generalization to other values of d will be straightforward.

EQUIVALENT EDGE SPARSIFICATION (EES) HEURISTIC
Input: A graph G = (V, E).
Output: An edge-sparsified graph EES(G).

1. Initialization: Set S < (), T <~ V, and E’ < (). The set E’ contains the edges of E that
will be included in the final output.

2. If there exists a 3—clique K3 = {iy, 9,73} in G, then set
S<—SUK3, T(-T\Kg, El<—{(2]17?,]2) : 1§j1 <]2§3}

Otherwise, return G' and stop.
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3. While || < |V, do:

(a) Let i € T be such that |{(i,j) € E:j € S} >3. Set S < SU{i}, T+ T\{i}, and
E' «— E'U{(i,jx) : jr € S, k =1,2,3}, where the vertices i € T and j1, jo, j3 € S are
chosen according to some pre—specified rule.

(b) If {(i,5) € E:j€ S} <3foralli €T, thenlet Gr = (T, Er), where Er = {(i,]) €
E :i,j € T}. Compute (T, E}) = EES(Gr), and set

E'+ E'U{(i,j)eF:ieS, jeT}UE, S« SUT, T+ 0.
4. Return (V, E').

Note that in Step 3a of the heuristic, there is some freedom in choosing which vertex 7 is to
enter S and which three edges that connect i to S are to be included in E’. In Section 5, we
shall discuss the specific selection rules used in our simulations. For now, let us assume that
they are chosen in an arbitrary fashion.

3.2 Analysis of the EES Heuristic

Naturally, we would be interested in determining various theoretical properties of the EES
heuristic. Towards that end, let us first analyze the structure of the graph produced by the
heuristic. We begin with a definition:

Definition 4 Let Gy = (Wi, E1) and Gy = (Va, Es) be vertex—disjoint subgraphs of a graph
G = (V, E). The graph join of Gy and Gy under G is the graph G1 +% Gy defined by

Gi+Gy=(ViUVy, BLUE, U{(u,v) € E:ue Vi, vely)}).

Theorem 5 Let EES(G) be the output of the EES heuristic when applied to the input graph
G = (V,E). Then, we have the following decomposition:

EES(G) = Gy +% G, +9 Gy +¢ - - +9 Gy, (4)

Here, k > 0 is some integer, G; = (V;, E;) is a minimal 2-trilateration graph (i.e. G, = (V;, EY)
is not a 2-trilateration graph for any E; C E;) fori=0,1,...,k —1, Gy = (Vi, E}) is either a
minimal 2—trilateration graph or a triangle—free graph, and Vy, ..., Vi are mutually disjoint with
V = UL V. In particular, each G; is a subgraph of G, and the number of edges in EES(G) is
bounded above by

O(k|V|) if Gi is a minimal 2—trilateration graph,
O(K|V|+ Vi|?) if Gy is a triangle—free graph.
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Proof The desired decomposition follows directly from the construction of the EES heuristic.
To determine the number of edges in EES(G), we first note that the number of edges in an
[-vertex minimal 2-trilateration graph is O(l). Thus, if G}, is a minimal 2-trilateration graph,
then the number of edges in EES(G) can be bounded above by

Z (IVil) +2ZZO Vil) = O(kV),

Jj=1 i=j

since |V| = Z?:o |Vi]. On the other hand, if G}, is a triangle—free graph, then by Turdn’s theorem
(see, e.g., [12, Chapter VI, Theorem 1.1]), we have |E;| = O(|Vi|?). Thus, it follows that the
number of edges in EES(G) is bounded above by

k—1 k— k-1
ZO Vi) + O(IVil*) Z (ZO Vil) +O(|Vk|>> = O(k|V| + [Vil*).

This completes the proof. O

Theorem 5 shows that the graph returned by the EES heuristic does indeed have a small
number of edges in general. Another important property of the EES heuristic is that it preserves
the localization properties of the input graph. We first prove the following theorem:

Theorem 6 Consider an arbitrary feasible instance (G, (d,d),a,2) of the sensor network lo-
calization problem, where G = ((V, Va), (Ess, Esa, Faa))- Suppose that p = (X;a) € R2(IVsl+IVal)
is a generic realization of the instance (EES(G),(d,d)|ggs G),a 2) in R?, where (d,d)|prps)
is the restriction of (d,d) onto the edges of EES(G). Then, p is also a generic realization of
(G,(d,d),a,?2) in R2.

Remarks Since EES(() is a subgraph of G, it is clear that any realization p € R2IVsl+Val) of
(G,(d,d),a,2) will also be a realization of (EES(G), (d,d)|ggs(c),a,2). Thus, the converse to
Theorem 6 holds even without the genericity assumption.

Proof Let F = E,, U Ey U E,,, and consider the decomposition of EES(G) given by (5).
Recall that by Theorem 5, Gy, ..., Gy, are 2-trilateration graphs. Thus, by Corollary 1 and
the genericity of p, we see that (Gj,pl|g,) is universally rigid in R? for j = 0,1,...,k — 1,
where p|g; is the restriction of p onto the vertices of (5. In particular, since p satisfies the
distance constraints corresponding to the edges in E; and (G, (d, d), a, 2) is feasible, we see that
p must also satisfy the distance constraints corresponding to the edges in (V; x V;) N E for
7 =20,1,...,k — 1. This, together with the construction of the EES heuristic, implies that p
satisfies the distance constraints corresponding to the edges in ((V\Vy) x V)N E.

Now, if G is a 2-trilateration graph, then by the above argument, we see that p also
satisfies the distance constraints corresponding to the edges in (Vi x V)N E. Otherwise, Gy, is a
triangle—free graph, and we have Ey = (V; x Vi) N E by the construction of the EES heuristic.
In particular, we see that p again satisfies the distance constraints corresponding to the edges
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in (Vi x V)N E. Thus, in both cases, we can conclude that p satisfies the distance constraints
corresponding to the edges in

[(V\V) x V)NE]U[(Va x V)NE] = (V x V)N E = E.

In other words, p is a generic realization of (G, (d,d),a,2) in R?, as desired. a

In a similar fashion, we can prove the following theorem, which can be viewed as a partial
converse to Theorem 6:

Theorem 7 Suppose that (G, (d,d),a,2), where G = ((Vs, Vo), (Ess, Esa, Faa)), is a uniquely
2-localizable instance of the sensor network localization problem, with p = (X;a) € R2(IVsl+IVal)
being its unique localization in R' for all | > 2. Furthermore, suppose that p is generic. Then,
the instance (EES(G), (d,a)|EE5(G),a, 2) is also uniquely 2—localizable, and p is its unique lo-
calization in R! for all 1 > 2.

Proof Let q € RMIV:I+IVall he an arbitrary localization of (EES(G), (d,d)|gesc),a,2) in R*
for some h > 1. Our goal is to show that q is also a feasible localization of (G, (d,d), a, 2),
from which it would follow that p = q, as p is the unique localization of (G, (d,d),a,2) in R’
for all [ > 2. Towards that end, we again use the decomposition of EES(G) given by (5) and
the argument in the proof of Theorem 6 to conclude that (G, plg,) is universally rigid in R
for j =0,1,...,k — 1. In particular, since ||p, — pvll2 = ||¢u — @v||2 for all (u,v) € E;, we have
lpw — Poll2 = llgu — @ol|2 for all (u,v) € V; x V. This implies that for all i € Vo U --- U Vi_q, we
have

||pz - pu||2 = ||QZ - Qu||2 for all (Z’ U) €EE=FE,UE,UFE.,. (5)

Now, if Gy, is a 2—-trilateration graph, then by the above argument, we see that (5) holds for all
i € Vi, as well. Otherwise, Gy, is a triangle—free graph, and we have Ey = (Vi x Vi) N E by the
construction of the EES heuristic. In particular, we see that (5) also holds in this case. Thus, in
both cases, we have ||p, — py|l2 = ||gu — @u||2 for all (u,v) € E, which implies that q is a feasible
localization of (G, (d,d), a, 2). Since (G, (d,d), a, 2) is uniquely 2-localizable, we conclude that
P = q, as desired. O

We remark that although Theorems 5 to 7 are stated for the case where d = 2, they can be
generalized to other values of d in a straightforward manner.

Now, let us analyze the computational complexity of the EES heuristic. First, observe that
Step 1 and Step 3a can be implemented in O(|V]) and O(|S| - |V'|) time, respectively. Moreover,
using an algorithm of Alon et al. [3], Step 2 can be implemented in O(|E|*?) time. Since
|E| = O(|V]?), the runtime of the EES heuristic satisfies the following recurrence relation:

T(v))=0(vP Ok|V]) +T(|V]—k)}.
(VD= O (VF) + max {OGV]) +T(V| -k}
Using induction, one can show that T'(|V|) = O(|V'|?). In particular, observe that the complexity
of the EES heuristic is much lower than that required for solving the SDP relaxation (2). This

justifies the use of the EES heuristic as a preprocessing procedure for speeding up the solution
time of (2).
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4 Further Processing of the SDP Relaxation

In previous sections we developed a novel edge sparsification heuristic that can provably preserve
the localization properties of the input. To the best of our knowledge, this is the first heuristic
with such a theoretical guarantee. The instance obtained after we apply the edge sparsification
heuristic typically has fewer distance constraints, and hence its associated SDP relaxation can
already be solved faster than the SDP relaxation associated with the original instance. However,
using recently developed speedup techniques (see, e.g., [21, 26, 27]), one can further improve
the computational efficiency of solving those SDP relaxations. To illustrate those techniques,
consider the following general (primal) standard form SDP:

inf AO o X
(P) subject to A; e X =b; fori=1,...,s,
X =0,
where Ay, Ay, ..., As and X are symmetric n X n matrices. One of the main ideas in [21, 26]

is to formulate an equivalent SDP in which the n x n positive semidefinite cone constraint in
(P) is replaced by a number of potentially smaller positive semidefinite cone constraints. The
motivation for such a transformation is that the smaller positive semidefinite cone constraints can
be handled much more efficiently by state—of-the—art interior—point algorithms. To formulate
such an SDP, we first let V = {1,...,n} be the set of row/column indices of the given data
matrices Ag, Ay, ..., As and define the so—called aggregated sparsity pattern € of Ag, Ay, ..., A
by (see [21])
E=A{(i,j) € V: (Ar)i; #0 for some k € {0,1,...,s}}.

(The word “sparsity” here should not be confused with that used in the phrase “edge sparsifica-
tion”. The latter has the meaning of removing edges from a certain graph.) Upon treating the
pair (V, ) as a graph G, we consider one of its chordal extensions G’, i.e. G’ is a chordal graph?
obtained from G by adding edges to it. Let C4,...,C; C V be a family of maximal cliques in
G, i.e. each subset C; C V of vertices induces a clique in G, and there does not exist a C; 2 Cj
such that € induces a clique in G for j = 1,...,t. Then, it can be shown [21] that the following
SDP:
inf Ape X
(P.) subject to A; e X =b; fori=1,...,s,
XC’j,Cth forjzl,...,t,

is equivalent to (P). Here, X¢; ¢, is the principal sub-matrix of X whose rows and columns are
those indexed by C;. The upshot of (P.) is that the positive semidefinite cone constraints are
typically smaller and hence (P.) can be solved much faster than (P). Note, however, that the
SDP (P,) is not yet in standard form, as some variables may appear in several of the positive
semidefinite cone constraints. To transform (P.) into a standard form SDP, we may use either
one of the following methods:

3Recall that an undirected graph is chordal if every cycle of length greater than 3 has a chord, i.e. an edge
that connects two non-adjacent vertices on the cycle.
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1. Treat each X¢, o, as an independent matrix cone, and add linkage constraints for those
variables that appear in multiple X¢; ¢,’s. We refer the reader to [21, Section 4] for details.

2. View each X;; as a dual variable, and treat (P.) as an SDP in dual standard form. We
refer the reader to [27, Section 4.4] for details.

The transformed SDP can then be solved by any standard SDP solvers.

Finally, we note that besides improving the solution time of the SDP (P), one can also
improve the accuracy of the solution by using a gradient descent procedure (see, e.g., [8]).
Specifically, after solving the SDP (P.) and obtaining a solution X*, one can use it as a starting
point for local gradient descent procedures. We refer the reader to [8] for details.

5 Simulation Results

In this section, we present some preliminary computational results to show the effectiveness of
our edge sparsification approach in solving the network localization problem.

5.1 Effectiveness of the EES Heuristic

To demonstrate the effectiveness of the EES heuristic, we randomly place 500 nodes over the unit
square [0, 1] x [0, 1]. Two vertices are connected by an edge if their distance is at most p, where
p = 0.05,0.06,...,0.15 (we shall refer to the parameter p as the radio range of the sensors).
Moreover, in step 3(a) of the EES heuristic, we choose the vertices i € T and j;, 72,73 € S
according to the following strategy. First, we label the vertices using the Reverse Cuthill-
McKee Ordering [19] (this typically can speed up matrix computations). Then, we pick the
vertices ¢ € T and ji, ja, j3 € S so that {j1, j2, js} forms a 3—clique. If this is not possible, then
we just pick the vertex ¢ € T with the smallest label; and among the neighbors of ¢ that are in
S, we choose three that have the largest labels.

The percentage of edges kept by the EES heuristic is shown in Figure 2. As the plot
demonstrates, the reduction in the number of edges becomes more substantial as the radio
range increases. One particular example is shown in Figure 3. There are 3482 edges in the
500-node network before we apply the EES heuristic. After we apply the heuristic, only 1494
edges are left.

5.2 Performance of EES—Preprocessed SDP—-Based Localization Al-
gorithms

Next, we consider various SDP-based localization algorithms and compare their performance
when the input instance is first sparsified by the EES heuristic and the edge sparsification
heuristic of Kim et al. [27] (which we refer to as ES), respectively. To begin, we generate
random sensor networks over the unit square with 90% sensors and 10% anchors, where the
total number n of nodes ranges from 100 to 1600. We set p = 2/4/n and solve the resulting
network localization problems using six different schemes:
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Figure 2: The ratios of the number of edges before and after applying the EES heuristic to
randomly generated 500-node sensor networks.

1494 edges after EES

Figure 3: Effect of the EES heuristic on a randomly generated 500-node sensor network.
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n | FSDP | EES-FSDP | ES-FSDP | SSDP | EES-SSDP | ES-SSDP
100 2.0 3.9 4.8 1.4 1.0 1.1
200 29.0 24.8 26.8 3.5 2.5 2.0
400 || 265.0 206.9 211.9 11.3 5.2 4.3
800 || 2577.4 1648.3 1601.4 38.2 9.2 9.4

1600 * * 1 163.9 19.9 23.8

Wk

Table 1: Computation time comparison (in seconds); = Out of Memory

FSDP: the SDP formulation (2) of Biswas and Ye [10]

SSDP: the so—called sparse SDP formulation of Kim et al. [27]

EES-FSDP: FSDP after applying the EES heuristic

EES-SSDP: SSDP after applying the EES heuristic

ES-FSDP: FSDP after applying the ES heuristic

ES-SSDP: SSDP after applying the ES heuristic

The average computation time of each of these schemes is given in Table 1. As one can see,
the EES heuristic does help to significantly reduce the computation time of the various SDP
formulations in question.

Figure 4 shows one of the results produced by EES-SSDP with gradient descent (see the
discussion in Section 4). We use “o” to denote the true location of a sensor (whose position is
not known to the SDP) and “x” to denote the location of a sensor computed by the algorithm.
As can be seen from the figure, EES-SSDP with gradient descent can give a very accurate
localization of the sensors.

To further evaluate the accuracy of the above schemes, we follow [10, 36, 39, 27| and use the
Root Mean Square Distance (rmsd) to measure the discrepancy between the computed locations

and true locations of the sensors:

_ 1/2
d=| — i — T; 2 .

Here, z; € R? is the position of sensor i as computed by any one of the schemes above, and
7; € R? is its true position. As an illustration, we record the corresponding average rmsd values
of FSDP, EES-FSDP and ES-FSDP in Table 2. The discrepancy in the average rmsd values
between FSDP and EES-FSDP can be attributed to the fact that the input instances may not
be uniquely 2-localizable. In such cases, the SDP (2) is simply a relazation of the original
problem, and the localizations returned by the respective schemes could be different.
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EES SSDP with gradlent descent

Figure 4: Localization (x) of a sensor network with 475 sensors (o), 25 anchors ({) and p = 0.1,
computed by EES-SSDP with gradient descent.

n 100 200 400 800

FSDP || 2.55e-02 | 5.29e-03 | 1.18e-02 | 5.52e-03
EES-FSDP || 2.56e-02 | 6.12e-03 | 1.26e-02 | 5.48e-03
ES-FSDP || 8.32e-02 | 2.29e-02 | 1.80e-02 | 9.86e-03

Table 2: rmsd comparison among FSDP, EES-FSDP and ES-SSDP
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EES-FSDP: rmsd=8.37e-05 ES-FSDP: rmsd=8.96e-02
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Figure 5: Comparison for EES and ES: localization (x) of a sensor network with 90 sensors (o),
10 anchors (O) and p = 0.2.

Since the EES heuristic preserves the localization properties of the input instance, the
schemes that use it should perform better than those that use other, more ad hoc, edge sparsi-
fication heuristics. As can be seen from Table 2, EES-FSDP indeed achieves a better accuracy
than ES-FSDP in terms of the average rmsd. One particular example is shown in Figure 5,
where we have a sensor network with 90 sensors, 10 anchors and p = 0.2. We compare the
positions of the sensors computed by EES-FSDP and ES-FSDP, respectively. As can be seen
from the figure, EES-FSDP can localize all the sensors accurately (rmsd=8.37e-05). On the
other hand, ES-FSDP fails to localize some of the sensors correctly (rmsd=8.96¢-02).

6 Conclusion and Future Directions

In this paper, we developed a novel edge sparsification heuristic for the sensor network local-
ization problem and showed that it possesses some nice theoretical properties. Specifically, we
showed that our heuristic can reduce the number of edges (and hence distance measurements) in
the input network, while at the same time preserving its localization properties. An important
component in our heuristic is a graph decomposition procedure, which allows us to identify
certain sparse generically universally rigid subgraphs of the input graph. We then used our edge
sparsification heuristic to speed up existing convex optimization—based localization algorithms,
and simulation results showed that our approach is promising. Moreover, our speedup technique
can be applied in conjunction with existing ones (see, e.g., [21, 26, 27]), and they complement
each other well.
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The notion of universal rigidity plays an important role in the development of our edge
sparsification heuristic. In the future, it would be interesting to further investigate the properties
of universally rigid instances, as they are still not fully understood. Moreover, it would be nice to
develop more efficient algorithms for verifying and realizing universally rigid instances. Finally,
in view of the complexity results in [32, 5, 4, 14], it is worthy to identify other classes of efficiently
realizable globally rigid instances. Such instances could potentially lead to more efficient edge
sparsification heuristics, and hence faster algorithms for solving the sensor network localization
problem.
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