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COMPATIBLE RELAXATION AND COARSENING IN ALGEBRAIC
MULTIGRID

JAMES J. BRANNICK∗ AND ROBERT D. FALGOUT†

Abstract. We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the
concept of compatible relaxation (CR). The algorithm is significantly different from standard meth-
ods, most notably because it does not rely on any notion of strength of connection. We study its
behavior on a number of model problems, and evaluate the performance of an AMG algorithm that
incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper
metric of coarse-grid quality and demonstrate its potential with two simple examples.
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1. Introduction. Algebraic multigrid (AMG) [5, 3, 18] was introduced as a
method for solving linear systems based on multigrid principles, but in a way that re-
quires no explicit knowledge of the problem geometry. The AMG method determines
coarse “grids”, inter-grid transfer operators, and coarse-grid equations based solely on
the matrix entries. Since the original introduction of the method, many AMG algo-
rithms have been developed, targeting different problem classes and yielding different
robustness and efficiency properties.

One common feature of all AMG algorithms is a method for choosing coarse
grids, which, in the simplest context, can be thought of as a subset of the nodes
of the graph of the fine-grid matrix. (We provide a more general definition later.)
This paper presents an approach for selecting coarse grids based on the concept of
compatible relaxation (CR) [4]. The approach differs significantly from most existing
methods, but has the additional property that it guarantees the quality of the coarse
grid, as established theoretically in [14]. In [15], a sharp AMG convergence theory was
developed. Exploiting the similarity between this sharp theory and its predecessor in
[14], we also present a CR approach that more accurately predicts the convergence
factor of AMG.

The idea of coarsening based on CR first appeared in [4], while the first CR
coarsening algorithm appeared in [17]. An outline of the algorithm in this paper
was given in [14], and many of the details appeared in [6]. In [8], CR was used to
choose coarse grids in an AMG algorithm based on energy-minimization. A method
called compatible coarsening was used in [2] to select the fine-coarse partition in the
multigraph solver. Lastly, an early version of our CR algorithm was parallelized and
studied in [1].

In Section 2, we introduce some notation and summarize the theory underlying
our CR-based coarsening algorithm. We then describe the algorithm in Section 3. In
Section 4, we study the behavior of the algorithm on a number of model problems, and
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we evaluate the performance of an AMG method that incorporates the new coarsening
approach. In Section 5, we introduce a more predictive variant of CR and demonstrate
its potential with two simple examples.

2. Preliminaries and Theoretical Considerations. In [14], a two-grid vari-
ational multigrid theory allowing for more general relaxation and coarsening processes
was developed. Several variants of compatible relaxation (CR) were introduced, along
with a supporting theory that ties CR convergence to two-grid multigrid convergence.
In addition, a general algorithm was outlined for selecting coarse grids in an algebraic
multigrid (AMG) method. Our aim in this section is to summarize the theory in [14],
as it underpins the CR coarsening algorithms described in this paper.

Consider solving the linear system of equations

(2.1) Au = f ,

where u, f ∈ Rn and A is a symmetric positive definite (SPD) matrix. Define the
smoother error propagator by

(2.2) I −M−1A,

and assume that the smoother is convergent (in energy norm ‖·‖A) so that M+MT−A
is SPD. Denote the symmetrized smoother operator by

(2.3) M̃ = MT (MT + M −A)−1M,

so that I−M̃−1A = (I−M−1A)(I−M−T A). Let P : Rnc 7→ Rn be the interpolation
(or prolongation) operator, where Rnc is some lower-dimensional (coarse) vector space
of size nc. The two-grid error transfer operator with no post-smoothing steps is then
given by

ETG = (I − P (PT AP )−1PT A)(I −M−1A),(2.4)

where PT is the restriction operator and Ac = PT AP is the Galerkin coarse-grid
operator. Note that coarse-grid correction involves an A-orthogonal projection onto
range(P ).

Let R : Rn 7→ Rnc be any matrix for which RP = Ic, the identity on Rnc , so
that PR is a projection onto range(P ). We can think of R as defining the coarse-grid
variables, i.e., uc = Ru. Also, let S : Rns 7→ Rn be any full-rank matrix for which
RS = 0, where ns = n−nc. Here, the unknowns us = ST u are analogous to the fine-
grid-only variables (i.e., F -points) in AMG. In addition, R and S form an orthogonal
decomposition of Rn: any e can be expressed as e = Ses + RT ec, for some es and ec.
The next two theorems summarize the main convergence results in [14].

Theorem 2.1. (see Theorem 2.2 in [14])

(2.5) ‖ETG‖2A ≤ 1− 1
K

, where K = sup
e

‖(I − PR)e‖2
M̃

‖e‖2A
≥ 1.

Theorem 2.2. (see Theorem 5.1 in [14])

(2.6) K ≤ ηK?, where η = ‖PR‖A , K? = inf
P : RP=Ic

sup
e

‖(I − PR)e‖2
M̃

‖e‖2A
.
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Theorem 2.1 gives conditions that P must satisfy in order to achieve a fast uni-
formly convergent multigrid method. It is clear that to make K small, then eigenvec-
tors of A belonging to small eigenvalues must either be interpolated accurately by P
or else attenuated efficiently by the smoother (since the denominator is small for these
eigenvectors). For brevity, we refer to these as small eigenvectors. The choice of which
small eigenvectors to eliminate by smoothing and which to eliminate by coarse-grid
correction depends on the “localness” of the modes. Essentially, modes that can be
eliminated by a local process (i.e., one that is equivalent to applying an operator with
a comparable sparse nonzero structure to A) should be handled by the smoother.

In Theorem 2.2, the constant K is bounded by two new constants, η and K?.
The significance of this theorem is that it separates the construction of P into its
natural two components: coarse-grid selection and definition of P ’s coefficients. The
constant K? is the K in Theorem 2.1 for the “best” P possible. Hence, K? measures
the quality of the coarse grid in some sense because, if it is small, we know there exists
an interpolation operator that gives good AMG convergence. Said another way, K?

measures the ability of the coarse-grid variables Ru to represent algebraically smooth
error, i.e., error not treated well by the relaxation process. Throughout the remainder
of the paper, we use the term coarse grid as a synonym for R. Once we have a
coarse grid, the expression for η gives us guidance on how to define the coefficients
of P . Bounding η is both a necessary and sufficient condition for AMG (two-grid)
convergence, and the requirement of accurately interpolating small eigenvectors of
A arises naturally here as before. An important aspect of Theorem 2.2 is that K?

depends on the smoother, but η does not. Hence, this result suggests that, given a
coarse grid, the approach for defining P ’s coefficients need not involve the smoother
(although it does not preclude us from using the smoother to define P in practice).
The expression for K? is analyzed more carefully in the following theorem.

Theorem 2.3. (see Theorem 3.1 in [14]) Assume that R, S, and P satisfy
RS = 0 and RP = Ic as above. Then K? in Theorem 2.2 is given by

(2.7) K? =
1

λmin((ST M̃S)−1(ST AS))
,

and the corresponding minimizer is

(2.8) P? = (I − S(ST AS)−1ST A)RT .

It is easy to see from (2.7) that the coarse grid must be selected such that A is
spectrally similar to M̃ on range(S). In addition, equation (2.8) defines the so-called
ideal interpolation operator. Notice that, if K? is uniformly bounded with respect
to parameters such as the mesh spacing, then using P? as the interpolation operator
results in a uniformly convergent two-grid method. The form of this minimizer cannot
in general lead to an efficient method, because the inverse of ST AS can in general
be a dense matrix, implying that the resulting Galerkin coarse-grid operator is also a
full matrix. However, we use P? to motivate a number of the algorithmic heuristics
presented later in this paper.

One way to ensure that K? is nicely bounded in practice is through compatible
relaxation (CR). The notion of compatible relaxation was introduced by Brandt in [4]
as a modified relaxation scheme that keeps the coarse-grid variables invariant. Brandt
stated that the convergence rate of CR is a general measure for the quality of the set of
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coarse variables (for the given relaxation scheme). This statement was proved in [14]
by showing that fast convergence of CR implies a small K? (a good coarse grid). We
include this result below in Theorem 2.4, but first introduce two variants of CR.

Define the primary CR iteration (represented here by its corresponding error
iteration) as

(2.9) es ← (Is −M−1
s As)es,

where Ms = ST MS, As = ST AS, es ∈ Rns , and Is denotes the identity on Rns .
Consider, for example, the classical AMG setting where the coarse-grid variables Ru
are a subset of the fine-grid variables:

R =
[

0 Ic

]
, S =

[
If

0

]
, P =

[
W
Ic

]
.(2.10)

Here, the iteration in (2.9) is simply F -relaxation. However, for more elaborate forms
of M or S, this iteration may become impractical (consider, for example, the M for
an overlapping Schwarz method). Another form of CR is the so-called habituated
compatible relaxation scheme due to Brandt and Livne [17], given by

(2.11) es ← ST (I −M−1A)Ses,

where S must be normalized here so that ST S = Is. This form of CR is always
computable, and it is the easiest to implement in practice because it directly involves
the global smoother. Note that when using Habituated CR it is also easy to account
for ν > 1 relaxation sweeps in the multigrid method since we can always write (I −
M−1A)ν in the form (I −M−1

ν A) for some Mν .
Define σ(M) = 1

2 (M + MT ) to be the symmetric part of M , and let

%s =
∥∥(Is −M−1

s As)
∥∥

As
.(2.12)

The next theorem establishes that %s bounds K? and, hence, serves as a measure of
the quality of the coarse grid. A similar (but somewhat weaker) bound on K? can
also be shown for the habituated form of CR.

Theorem 2.4. (see Theorem 5.1 in [14])

K? ≤
∆2

2− ω
· 1
1− %s

,

where ∆ ≥ 1 measures the deviation of M from its symmetric part in the sense that

∆2 =
∥∥∥σ(M)−1/2Mσ(M)−1/2

∥∥∥2

,

and constant ω satisfies

0 < ω := λmax(σ(M)−1A) < 2.

To use this result in practice, we must be able to estimate %s. As we show below,
this can be done using the power method, i.e., by monitoring the convergence behavior
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of compatible relaxation. Let Es = Is−M−1
s As, and let ρ(·) denote the spectral radius

of a matrix. Then

‖Es‖2As
:= sup

x

〈AsEsx, Esx〉
〈Asx, x〉

= ρ(A−1
s ET

s AsEs)
= ρ((Is −M−T

s As)(I −M−1
s As)).

Thus, if Ms = MT
s , then ‖Es‖As

= ρ(Es). In this setting, a straightforward approach
for estimating %s is given by applying the power method to Es. If Ms is nonsymmetric,
then %s can be estimated by applying the power method to the symmetrized smoother.

For an estimate of %s to be useful, it is clear from Theorem 2.4 that we must
also have “good” constants ω and ∆. In particular, ω must be uniformly bounded
away from two, which is always possible by using appropriate weighting factors in the
relaxation method. In the classical setting, this requirement is equivalent to satisfying
a smoothing property; in general, it means that the smoother must effectively damp
large eigenvectors of A. Note that this does not preclude the smoother from also
damping small eigenvectors. The constant ∆ must also be uniformly bounded and
as close to 1 as possible. It is equal to 1 when M is symmetric. In the case where
M is nonsymmetric, and for additional discussion on these two constants in general,
see [14, 6].

3. Practical CR-based Coarse-Grid Selection. In this section, we present
an AMG coarsening algorithm based on compatible relaxation. Most existing AMG
coarsening algorithms utilize a concept called strength of connection to produce effec-
tive coarse grids. In classical AMG, variable ui is said to strongly depend on variable
uj if the corresponding matrix coefficient aij is “large” in the sense that, for some
threshold 0 < θs ≤ 1,

(3.1) − aij ≥ θs max
k 6=i
{−aik}.

It is well known that there are potential problems with this definition of strength
of connection. To see this, consider the stencil for a quadrilateral finite element
discretization of the Laplacian on a 2D structured mesh that is highly stretched in
the x direction:  −1 −4 −1

2 8 2
−1 −4 −1

 .

The problem is strongly anisotropic in the y direction, yet this strong anisotropy is
not reflected in the size of the off-diagonal entries. Although it is possible to define
better metrics than (3.1) (for example, see [7]), one of our main goals in this paper
is to design a coarsening algorithm that does not use strength of connection at all.
This is one of the unique features of our algorithm that distinguishes it from nearly
all other methods.

For the presented algorithm, we restrict ourselves to the classical AMG setting
where the coarse-grid variables are a subset of the fine-grid variables. Here, R and
S are defined as in (2.10), inducing a partition of the fine grid, G = {1, ..., n}, into
C-points, C, and F -points, F := G \ C. In this setting, it is useful to write A (and
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other matrices as well) in the block form

(3.2) A =
[

Aff Afc

Acf Acc

]
,

where Aff = ST AS, Afc = ST ART , Acf = RAS, and Acc = RART . The basic CR
coarsening algorithm is given in Algorithm 3.1.

Algorithm 3.1: CR-based coarsening (θcr, θcs, ν)

3.1a Initialize C = ∅
3.1b Run CR(ν) −→ %cr, es

3.1c While %cr > θcr

3.1d Compute candidate set measures {γi : i /∈ C}
3.1e U = {i /∈ C : γi > θcs}
3.1f C = C ∪ {independent set of U}
3.1g Run CR(ν) −→ %cr, es

3.1h End While

The algorithm has three main parameters: 0 < θcr, θcs < 1 and ν. The threshold
θcr dictates the CR convergence factor to achieve, and the threshold θcs is used to
determine the so-called candidate set U of potential coarse-grid points. The parameter
ν specifies the CR iterate used to define the candidate set measures γi. The while
loop gives rise to a sequence of C-point sets: ∅ = C0 ⊂ C1 ⊂ ... ⊂ Cm, where the final
set Cm defines the coarse grid Gc and the convergence of CR for this set is below the
prescribed tolerance θcr. We refer to each iteration of the while loop as a stage. To
design a specific coarse-grid selection algorithm from Algorithm 3.1, there are many
choices to make. We describe the details of our algorithm next.

Running CR (steps 3.1b and 3.1g). We run CR on the homogeneous equa-
tions Ases = 0 because the error for this equation is known. Hence, the CR iteration
is given by its error propagator, as in either (2.9) or (2.11). Let e(k)

s be the CR iterate
at the k-th iteration, where e(0)

s is the initial guess (discussed below). Define

(3.3) %(1)
cr = 1, %(k)

cr =
‖e(k)

s ‖2
‖e(k−1)

s ‖2
, k > 1.

Then the CR iteration is stopped when at least one of two criteria are met:
1. At least ν iterations have been done and %

(k)
cr has “converged”.

2. The CR iteration is converging rapidly.
In criteria 1, we consider %

(k)
cr 6= 0 to have converged when

(3.4)
|%(k)

cr − %
(k−1)
cr |

%
(k)
cr

< 0.1.

The reason we check for convergence is to prevent the coarsening process from ter-
minating prematurely. This is particularly important in light of the well-known fact
that estimates such as %

(k)
cr generally start out small and converge upward toward
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the asymptotic value. With (3.4), we usually see 2 or 3 iterations, which is quite
reasonable. In criteria 2, rapid convergence is defined as

(3.5) %(k)
cr < (0.1) θcr.

If either criteria is met, we set %cr = %
(k)
cr . If criteria 1 is met, we set es = e(ν)

s . If
criteria 2 is met, the while loop terminates and es is not needed. Note that if %

(k)
cr = 0,

then criteria 2 is satisfied and (3.4) is not needed.

Computing candidate set measures (step 3.1d). In our current algorithm,
the initial guess e(0)

s in steps 3.1b and 3.1g is the constant vector. In general, the
initial guess should be a nonzero vector representative of a near null-space component,
restricted to the F -points. This is discussed in more detail below. Define ēs such that
(ēs)i = (es)i/(e(0)

s )i. Then

(3.6) γi =
|(ēs)i|
‖ēs‖∞

, i /∈ C.

Since we take e(0)
s = 1, we can use es instead of ēs in (3.6).

On the first stage, we use θcs = (0.3)ν and, on all subsequent stages, θcs is a
fixed parameter. This helps with boundaries, as does the use of ν in the algorithm
(see Section 4.1). Another approach for dealing with boundaries was studied in [6].
There, θcs is set to 1−%cr. The idea is that when CR is converging slowly, we want to
have a liberal set of points in the candidate set. On the other hand, in later stages of
the algorithm when CR is converging faster, this choice of thresholding ensures that
points are added to the coarse grid more sparingly.

Since the goal of the coarse-grid correction step is to compensate for deficiencies
in the smoother, it makes intuitive sense to choose a coarse grid in regions where
the smoothing process is inefficient. In other words, the columns of interpolation
should be chosen so that they form a basis over the regions where the error is not
quickly damped by relaxation. The candidate set measure γi in (3.6) implements this
idea, but the initial guess is important. In particular, it is clear that if we choose an
initial guess for which relaxation is always effective, we get no information about the
coarse grid. Instead, the initial guess should be a representative of a component that
interpolation must handle (e.g., the constant vector in our case), while accounting for
coarse-grid points that may already have been chosen.

To further motivate our choice of initial guess, consider the two-grid error prop-
agator ETG in (2.4) and recall that the interpolation operator P has the form given
in (2.10). At any stage of the algorithm, we know the dimensions of P , but not the
coefficients of W . However, RT has the same form as P (with W = 0), and we can
assume that P is chosen so that it is better than RT in the sense that

‖ETG‖A ≤
∥∥(I −RT (RART )−1RA)(I −M−1A)

∥∥
A

.

Using the fact that (I −Q1)(I −Q2) = (I −Q1) for any two projection operators Q1

and Q2 onto the same space, this implies

‖ETG‖A ≤
∥∥(I −RT (RART )−1RA)

∥∥
A

∥∥(I −RT R)(I −M−1A)
∥∥

A

=
∥∥SST (I −M−1A)

∥∥
A

.

The idea is to consider iteration SST (I − M−1A) instead of ETG for forming the
candidate set. This iteration does relaxation followed by a perfect coarse-grid correc-
tion at the C-points. Hence, a natural choice for an initial guess is a smooth vector
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restricted to the F -points, i.e., e(0)
s = ST e where e is the smooth vector (e = 1 in

our case). This is essentially habituated CR in (2.11). To take advantage of the fact
that we are already doing CR in our algorithm, we just extend this idea to use that
CR method.

Choosing an independent set (step 3.1f). The independent set algorithm
is designed to distribute C-points in as uniform a fashion as possible. Define the
neighborhood of points i ∈ U as

(3.7) Ni = {j 6= i : aij 6= 0}.

Assign to each variable i ∈ U a weight ωi given by the number of its neighbors that
are not in C plus its candidate measure, that is ωi = |Ni \ C| + γi. Then one step of
the independent set algorithm is as follows:

1. Add to C the point i ∈ U with maximal weight ωi.
2. Remove from U the point i and the points j ∈ Ni ∩ U .
3. For each j ∈ Ni removed in step 2, set ωk = ωk + 1, where k ∈ Nj ∩ U .

This process is repeated until U is empty. In contrast to the independent set algo-
rithms used in traditional approaches, this algorithm does not use strength of con-
nection. Instead, an independent set is formed using the full graph of the matrix A,
truncated by eliminating rows and columns corresponding to points not in U . As a
result, our approach generally yields more aggressive coarsening than traditional ap-
proaches, especially on increasingly coarser grids, where the stencils of the Galerkin
operators tend to grow. Of course, if these stencils grow too large, then it may take
many coarsening stages to obtain a grid for which CR is fast to converge. In such
cases, the independent set algorithm can be based on the graph of the matrix where
relatively small entries have been eliminated. We do not pursue this idea in this paper.

4. Numerical Results. In this section, we study the effectiveness of our CR-
based coarsening algorithm (Algorithm 3.1) through a series of numerical experi-
ments. In Section 4.1, we examine the grids chosen by the algorithm for several
two-dimensional (2D) model problems for which suitable coarse grids are known, and
in Section 4.2, we evaluate the performance of a CR-based multigrid method on both
2D and 3D problems.

Consider the general 2D diffusion equation for u(x, y) given by

(4.1)
−∇ ·K∇u + (d)u = f (x, y) ∈ Ω,
boundary conditions (x, y) ∈ Γ,

where K is a tensor of the form

(4.2) K =
[

a c
c b

]
,

 a = cos2(θ) + ε sin2(θ)
b = ε cos2(θ) + sin2(θ)
c = (1− ε) cos(θ) sin(θ)

.

The parameter 0 < ε ≤ 1 specifies the strength of anisotropy in the problem, while
parameter θ specifies the direction of anistropy. Based on (4.1) and (4.2), we define
the following 2D test problems.

2D-Lap (2D Laplacian)
Ω = [0, 1]× [0, 1]; ε = 1, d = 0; boundary conditions (BC’s) = Dirichlet in x
(i.e., at x = 0 and x = 1) and Neumann in y (we call this “mixed”).
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2D-ALap (2D Anisotropic Laplacian)
Ω = [0, 1]× [0, 1]; ε = 0.01, θ = 0, d = 0; BC’s = mixed.

2D-RLap (2D Rotated Anisotropic Laplacian)
Ω = [0, 1]× [0, 1]; ε = 0.01, θ = π/3, d = 0; BC’s = mixed.

2D-4Reg (2D Four Region Domain)
Ω = [0, 1]× [0, 1]; BC’s = Dirichlet;

ε = 1, d = 104 (x, y) ∈ [0, 1/2]× [0, 1/2],
ε = 1, d = 0 (x, y) ∈ (1/2, 1]× [0, 1/2],
ε = 0.01, θ = 0, d = 0 (x, y) ∈ [0, 1/2]× (1/2, 1],
ε = 0.01, θ = π/2, d = 0 (x, y) ∈ (1/2, 1]× (1/2, 1].

We use a finite element discretization with bilinear basis functions on meshes com-
posed of either triangles (denoted by ‘T’) or quadrilaterals (denoted by ‘Q’). For
example, the notation 2D-ALap-Q indicates the 2D anisotropic Laplacian problem
discretized with quadrilateral elements.

Unless otherwise indicated, we use a set of default parameters in our coarsening
algorithm. The CR relaxation method is based on pointwise lexicographical Gauss-
Seidel (GS) and the primary CR iteration in (2.9). The CR convergence threshold
is set to θcr = 0.7, and the candidate set threshold is set to θcs = 0.5 (on all stages
except the first stage, as discussed earlier). We set ν = 2 so that the second CR
iterate is used to define the candidate set measures.

4.1. Grids Chosen for a Set of Model Problems. We first consider problem
2D-4Reg-Q. Figure 4.1 illustrates the coarsening stages and the final coarse grid chosen
by our algorithm. Initially, C = ∅, F = Ω, and %cr = 0.96. Because %cr > 0.7, we enter
the while loop in step 3.1c and proceed with the first coarsening stage. Figure 4.1(a)
contains a plot of the values of the candidate measures γi. The candidate measures are
large in three regions of the domain, signaling that coarsening is needed there. The
algorithm also correctly detects that coarsening is not needed in the bottom left region
of the domain where pointwise Gauss-Seidel is effective. Notice that the candidate
measures along the boundaries are generally smaller and, if we set ν > 2, then these
smaller values would extend even further into the domain. To compensate for this
(as well as to maintain good efficiency), we set ν to a relatively small number. In
addition, recall that since this is the first stage of the algorithm, θcs = (0.3)2 = 0.09.
The first C-point set chosen in step 3.1f is depicted by dotted squares in Figure 4.1(b).
For the updated sets C and F , we obtain %cr = 0.91, which leads to a second stage.

The candidate measures γi at stage two of the algorithm are plotted in Fig-
ure 4.1(b). Since θcs = 0.5 for this stage, the algorithm signals that further coarsening
is needed only in the top two regions of the domain. In addition, the indicated candi-
date set points are accurate, because they represent points that are neither handled
well by pointwise Gauss-Seidel nor interpolated well from the current set of C-points.
The result of the second stage is the coarse grid depicted in Figure 4.1(c). The new
CR convergence factor is %cr = 0.49, so there are no additional stages in the algo-
rithm. Notice that we have semi-coarsening in x in the top-left region where the
problem is anisotropic in x, semi-coarsening in y in the top-right where the problem
is anisotropic in y, full-coarsening in the bottom-right where the problem is isotropic,
and no coarsening in the bottom-left where the mass term dominates.
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nu = 2, theta = 0.70, relax = 2: CR rate = 0.49

Fig. 4.1. Candidate measures γi computed at step 3.1d during stage one (a) and two (b) for
problem 2D-4Reg-Q. Each square depicts the value of γi at grid point i according to the color bar.
Dotted squares indicate points currently in C (C-points). The final coarse grid is given by the larger
red circles in (c).

Figure 4.2 illustrates the grids chosen by our algorithm for several model problems.
In most cases, the default algorithm generates the expected coarse grid. For the
isotropic problems, either full-coarsening (2D-Lap-Q) or red-black coarsening (2D-
Lap-T) is done. (Note that 2D-lap-Q has a 9-pt stencil and 2D-Lap-T has a 5-pt
stencil.) For the grid-aligned anisotropic problems, a suitable semi-coarsening (2D-
ALap-Q) or red-black coarsening (2D-ALap-T) results. For the rotated anisotropic
problem 2D-RLap-T, an appropriate semi-coarsening by diagonals is done. (Note
that the stencil here is the standard 5-pt stencil plus additional corner couplings to
the northeast and southwest.) However, for problem 2D-RLap-Q, a less desirable
full-coarsening grid results.

A better coarse grid for problem 2D-RLap-Q can be generated by simply reduc-
ing the CR convergence threshold to θcr = 0.5. This produces another stage, and
the resulting grid mixes semi-coarsening in x with semi-coarsening in y. (Either di-
rection is fine for this problem.) The reason a single direction is not achieved is that
lexicographical ordering of Gauss-Seidel imprints a bias onto the candidate measures.
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nu = 2, theta = 0.70, relax = 2: CR rate = 0.00
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nu = 2, theta = 0.70, relax = 2: CR rate = 0.19
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nu = 2, theta = 0.70, relax = 2: CR rate = 0.33

(d)

Problem Grid %cr(0) %cr(1) %cr(2) Notes
2D-Lap-Q (a) 0.98 0.51
2D-Lap-T (b) 0.99 0.00
2D-ALap-Q (c) 0.97 0.95 0.19

(a) 0.75 0.51 line ω-Jacobi (ω = 0.66)
2D-ALap-T (b) 0.98 0.00
2D-RLap-Q (a) 0.98 0.57

(c) 0.99 0.79 0.19 ω-Jacobi (ω = 0.75), θcs = 0.75
2D-RLap-T (d) 0.98 0.33

Fig. 4.2. Coarse grids computed by Algorithm 3.1 for a variety of model problems. Each row
of the table indicates the problem, the grid that was generated, the CR convergence factor initially
%cr(0) and at subsequent stages, along with notes describing changes from the default algorithm.
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Grid / Problem 2D-Lap-Q 2D-Lap-T 2D-ALap-Q 2D-ALap-T
33× 33 .22/.51 .47/.00 .46/.19 .47/.00
65× 65 .24/.52 .49/.00 .48/.19 .49/.00

129× 129 .24/.52 .49/.00 .49/.19 .49/.00
257× 257 .25/.52 .50/.00 .49/.19 .50/.00

Grid / Problem 2D-RLap-Q 2D-RLap-T 2D-4Reg-Q
33× 33 .22/.57 .31/.33 .26/.49
65× 65 .24/.58 .32/.32 .28/.51

129× 129 .24/.58 .33/.34 -
257× 257 .25/.58 .33/.33 -

Table 4.1
Computed values of the coarsening ratios δ = |G|/|Gc| and CR convergence factors %cr for

various grid sizes.

To remedy this, a method such as symmetric Gauss-Seidel or weighted Jacobi can be
used. However, with any smoother change, it may be necessary to modify the values
of θcr or θcs. In Figure 4.2, we provide an example that uses weighted Jacobi with
the optimal 2D smoothing parameter.

One unique aspect of our CR-based coarsening algorithm is that it complements
the smoother used in the multigrid method. To see this, consider problem 2D-ALap-
Q. From Figure 4.2, we see that with pointwise Gauss-Seidel, our algorithm semi-
coarsens in x, as it should. However, if we simply change the smoother to line Jacobi
(with optimal 1D weighting and lines in y), then the algorithm does full-coarsening.
Using this combination of smoother and coarse grid is one of the oldest approaches
for dealing with anisotropy. We are aware of no other AMG coarsening algorithms
that are able to do this.

The results obtained by our method presented thus far have only been for a fixed
problem size. The results reported in Table 4.1 indicate that our algorithm exhibits
the same promising performance independently of problem size. Notice that both
the values of the coarsening ratio δ and the CR-convergence factor %cr appear to be
mesh-independent for all the problems considered so far.

4.2. Performance of a CR-based Multigrid Method. Choosing appropri-
ate coarse grids is only one of the necessary components of an effective AMG setup
scheme. Equally important is the definition of the sequence of interpolation operators,
which is often intimately tied to the coarsening process. For example, the interpola-
tion scheme used in the classical AMG algorithm [5, 3, 18] requires that each pair of
strongly connected F -points, as defined by (3.1), must share a common interpolatory
point. This property is explicitly enforced in the classical AMG coarsening algorithm.
Our algorithm does not generate grids with this property, so classical AMG interpo-
lation does not work well in combination with it. As mentioned earlier, our algorithm
tends to coarsen more aggressively than other methods. Also, it may require signifi-
cantly more stages on coarser grids if there is too much stencil growth. In this section,
we describe an interpolation scheme that helps to mitigate these issues. We also apply
our CR-based AMG algorithm to a number of 2D and 3D problems, and compare its
performance to the BoomerAMG solver in the hypre library [16, 13].

One approach that has worked well for ameliorating stencil growth in the Galerkin
12



coarse-grid operator Ac = PT AP is to reduce the number of nonzeroes in the inter-
polation matrix P [20, 19]. To do this, we need a method for choosing a small but
effective set of interpolatory points Ci for each point i on the fine grid. Most meth-
ods determine Ci using a strength-of-connection notion such as (3.1). Although our
approach may also be interpreted in this way, it is more closely related to the idea of
interpolation truncation [21, 19].

Recall from the theory in Section 2 that bounding η and K? independently of pa-
rameters implies uniform two-grid convergence. Our CR-based coarsening algorithm
ensures that K? is bounded, implying a good coarse grid. For interpolation P , it is
easy to show that the ideal interpolation operator P? in (2.8) yields the minimum
value of η = 1. In the classical AMG setting that we are considering in this paper, the
operators R, S, and P are as in (2.10). For ideal interpolation, W = W? := −A−1

ff Afc,
where Aff and Afc are as in (3.2). Of course, P? is not a practical choice for interpo-
lation because W? is typically not sparse. Instead, we construct a local approximation
to W?, then use it to define an effective interpolatory set Ci. We then use the inter-
polation formula in [19] to build the coefficients of P .

To approximate W?, consider applying an iterative method to the linear system
AffW = −Afc using an initial guess of zero. If Wa is our approximation, then the
error (W? −Wa) satisfies

(4.3) (W? −Wa) = EfW?,

where Ef is the error propagator for the method and W? is the initial error. Ulti-
mately, the intention is for the iterative method to be related to compatible relaxation,
but in general it can be any number of methods. For example, if we use ` steps of
the primary CR method in (2.9), then Ef = (I −M−1

ff Aff )`. If we use conjugate
gradient or a Chebyshev iteration, then Ef is some polynomial in Aff . Regardless
of the method, we can bound the size of the ij coefficient of the error using (4.3)
as follows, where ei and ej are standard canonical Euclidian basis vectors and κ(·)
denotes condition number:

| [W? −Wa]ij | = | 〈(W? −Wa) ei, ej〉 |
≤ ‖W? −Wa‖ ‖ei‖ ‖ej‖
= ‖EfA−1

ff Afc‖

= ‖(A−1/2
ff )(A1/2

ff EfA
−1/2
ff )(A−1/2

ff )(Afc)‖

≤ ‖Ef‖Aff
‖A−1

ff ‖ ‖A‖

= ‖Ef‖Aff
κ(Aff )

‖A‖
‖Aff‖

.

If we use ` steps of the primary CR method in (2.9) to approximate W?, then we have

(4.4) | [W? −Wa]ij | ≤ %s
` κ(Aff )

‖A‖
‖Aff‖

,

where %s is given in (2.12) and measures the convergence factor for CR. If %s is small
and Mff is well-conditioned, it is easy to show that Aff is well conditioned (see [8]
for details). Hence, (4.4) shows that we can compute a fairly accurate approximation
to W? with only a few iterations of the CR method.

The bound in (4.4) also implies an exponential decay result similar to the one
proven by Demko et al. in [11] (see also Section A.2.4 in [22]). To see this, notice

13



that for any ij such that [Wa]ij = 0, we have [W? −Wa]ij = [W?]ij , so that (4.4)
yields a bound for | [W?]ij |. Also notice that the nonzero structure of Wa grows
with the number of iterations ` as dictated by the specific iterative method used. In
particular, define the distance function d(i, j) as the largest ` such that [W (k)

a ]ij = 0
for all 0 ≤ k ≤ `, where W

(k)
a is the k-th iterate of the method. Then (4.4) implies

(4.5) | [W?]ij | . %s
d(i,j).

If we have ‖Ef‖Aff
≤ %` for some % < 1, then the same basic result holds (replacing

%s with %) regardless of the iterative method used to generate Wa. For example, using
either CG or a Chebyshev polynomial method, we can set % = 2(

√
κ − 1)/(

√
κ + 1)

where κ = κ(Aff ). Also, since Ef is a polynomial in Aff for both of these methods,
then d(i, j) is the usual graph distance function. With Afc = I, this latter result is
essentially the one derived in [11, 22].

The decay result in (4.5) provides some confidence that, if CR is fast to converge,
then a local and sparse P with good approximation properties can be defined. Using
` iterations of the primary CR method, Wa is given by

(4.6) Wa = −

(
`−1∑
k=0

(I −M−1
ff Aff )kM−1

ff

)
Afc.

So far in this paper, we have used lexicographical Gauss-Seidel for our CR method.
Since this does not produce a local operator in (4.6), we instead use ` steps of the
weighted Jacobi CR method (with initial guess W

(0)
a = 0)

(4.7) W (k)
a = W (k−1)

a + ωD−1
ff (Afc −AffW (k−1)

a ), k = 1, . . . , `.

We choose the weight ω based on a Gershgorin bound on the largest eigenvalue of
D−1

ff Aff so that

(4.8) ω−1 = max
i

∑
j

| [D−1
ff Aff ]ij |.

For some prescribed parameter maxp, set all but the largest maxp entries in each row
of Wa to zero. With this new truncated Wa and a second parameter 0 ≤ θa ≤ 1, we
define the set of interpolation points for each point i ∈ F by

(4.9) Ci = {j ∈ C : | [Wa]f(i),c(j) | > θa max
k
| [Wa]f(i),k |},

where f(i) denotes the row of Wa associated with point i ∈ F and c(j) denotes the
column of Wa associated with point j ∈ C.

Given this set of interpolatory points, we can define the coefficients of W in any
number of ways. For the experiments in this paper, we use the extended+i method
described in [19]. Specifically, we define the weights wij of W by

(4.10) wij = −

(
aij +

∑
k∈Ni\Ci

(
akj∑

l∈Ci∪{i} akl

)
aik

)
(
aii +

∑
k∈Ni\Ci

(
aki∑

l∈Ci∪{i} akl

)
aik

) , i ∈ F , j ∈ Ci,

where Ni is the set of neighbors of point i defined in (3.7). In keeping with our
attempts to avoid defining strength of connection, we treat all neighbor points in
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(M2) (M3)

Fig. 4.3. Two-dimensional unstructured meshes.

(4.10) as simply interpolatory points (in Ci) or non-interpolatory points. Alternative
approaches for defining the interpolation weights can be found in [6], including an
energy-minimization method (see also [8]) and an approach based on truncating and
scaling the approximation Wa above.

For our numerical experiments, we augment the 2D test problems defined earlier
with the following 2D and 3D problems based again on (4.1) and (4.2).

2D-M2-Lap (2D M2 Laplacian)
Ω = [0, 1]× [0, 1]; Mesh M2 in Figure 4.3; ε = 1, d = 0; BC’s = Dirichlet;

2D-M3-Lap (2D M3 Laplacian)
Ω = [0, 1]× [0, 1]; Mesh M3 in Figure 4.3; ε = 1, d = 0; BC’s = Dirichlet;

2D-M2-RLap (2D M2 Rotated Anisotropic Laplacian)
Ω = [0, 1] × [0, 1]; Mesh M2 in Figure 4.3; ε = 0.01, θ = π/3, d = 0; BC’s =
Dirichlet;

2D-M3-RLap (2D M3 Rotated Anisotropic Laplacian)
Ω = [0, 1] × [0, 1]; Mesh M3 in Figure 4.3; ε = 0.01, θ = π/3, d = 0; BC’s =
Dirichlet;

3D-Lap (3D Laplacian)
Ω = [0, 1]× [0, 1]× [0, 1]; BC’s = Dirichlet; K = 1.

3D-ALap (3D Anisotropic Laplacian)
Ω = [0, 1]× [0, 1]× [0, 1]; BC’s = Dirichlet; K = diag(1, 0.1, 0.01).

Similarly to 2D, for 3D, we use a finite element discretization with bilinear basis
functions on meshes composed of either hexahedra (denoted by ‘H’) or tetrahedra
(denoted by ‘T’). For example, the notation 3D-ALap-H indicates the 3D anisotropic
Laplacian problem discretized with hexahedral elements.
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We now compare the CR-based AMG method described above (CR-AMG) to
the BoomerAMG solver in the hypre library [16, 13]. The purpose of this section
is to demonstrate that a competitive CR-based AMG algorithm is feasible, and to
illustrate the strengths and weaknesses of the current CR-AMG method. We solved
homogeneous versions of the above problems to get accurate estimates of asymptotic
convergence factors. We attempted to adjust the parameters in the two codes so that
they differ only in the interpolation approach used.

For CR-AMG, we did at most 40 V(1,1)-cycles and stopped earlier if the norm
of the error was less than 10−16. We used: forward Gauss-Seidel smoothing on the
down cycle; backward GS on the up cycle; maxp = 4 for 2D problems; maxp = 6 for
3D problems; θa = .25 in (4.9); 200 iterations of GS on the coarsest grid.

For BoomerAMG, we used version 2.4.0b of the hypre library. We did at most
40 V(1,1)-cycles and stopped earlier if the norm of the residual was less than 10−16.
We used: C-F Gauss-Seidel smoothing on the down cyle; F -C GS on the up cycle;
HMIS coarsening [20] with a strength threshold θs = 0.3; extended+i interpolation
[19]; pmax = 4 for 2D problems; pmax = 6 for 3D problems; interpolation truncation
with factor 0.3; Gaussian elimination on the coarsest grid.

Table 4.2 reports asymptotic convergence factor estimates, number of multigrid
levels, grid complexities, and operator complexities for a variety of test problems and
sizes. Grid complexity is defined as the total number of grid points on all levels,
divided by the number of grid points on the finest grid. Operator complexity is the
total number of nonzeroes in the coefficient matrices on all levels, divided by the
number of nonzeroes in A on the finest grid.

In general, CR-AMG uses fewer MG levels and has lower complexities than
BoomerAMG, but this sometimes has a detrimental effect on convergence. This
is particularly apparent for the rotated anisotropic Laplacian problems (the ‘RLap’
problems). The reason is in part because, with the default parameter settings, our
CR coarsening algorithm tends to coarsen more aggressively than the algorithm in
BoomerAMG. In addition, the CR method detects the fact that the condition number
of the coarser-grid operators improves, and stops coarsening when it gets below the
θcr threshold. Figure 4.4 illustrates both the smaller number of levels and the more
aggressive coarsening for the 2D-M2-RLap problem.

For the isotropic problems (the ‘Lap’ problems), CR-AMG and BoomerAMG
are comparable. However, for the anistropic problem 2D-ALap-Q, CR-AMG per-
forms much better than BoomerAMG. This may be a consequence of the strength-of-
connection measure in (3.1) not effectively identifying strong connections on coarser
grids. Note that our choice of θs ensures that strong connections are identified cor-
rectly on the finest grid. For the 3D problems, CR-AMG is again comparable with
BoomerAMG, except for problem 3D-ALap-T where CR-AMG achieves similar con-
vergence factors with much smaller operator complexities and fewer grid levels.

An additional cost is incurred for setting up the current CR-AMG algorithm
compared to BoomerAMG. The CR coarsening algorithm requires a few relaxations
(2 or 3) for each stage. The number of stages is affected by the stencil size, so it
is important to maintain small stencils on all levels. In CR-AMG, we achieve this
primarily through the maxp parameter. The number of stages for the results in
Table 4.2 range from 0 to 2 for the 2D problems and from 0 to 4 for the 3D problems.
Approaches for reducing the number of stages and/or reducing the cost of each stage
is an area of current research. Another additional cost in the current CR-AMG set
up algorithm is our approach for choosing the interpolatory set Ci. For the results
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Problem Size Asym CF Num Levels Grid Comp Oper Comp
2D-Lap-Q 4225 .07 / .09 5 / 6 1.3 / 1.3 1.3 / 1.3

16641 .08 / .11 6 / 7 1.3 / 1.3 1.3 / 1.3
66049 .07 / .12 7 / 8 1.3 / 1.3 1.3 / 1.3

2D-Lap-T 4225 .08 / .05 6 / 7 1.6 / 1.7 2.2 / 2.2
16641 .10 / .05 6 / 7 1.7 / 1.7 2.2 / 2.2
66049 .14 / .07 7 / 8 1.7 / 1.7 2.2 / 2.2

2D-ALap-Q 4225 .11 / .75 5 / 8 1.8 / 1.9 1.8 / 2.0
16641 .12 / .75 5 / 9 1.8 / 1.9 1.8 / 2.1
66049 .14 / .75 6 /10 1.8 / 1.9 1.9 / 2.2

2D-ALap-T 4225 .08 / .09 4 / 8 1.7 / 1.9 2.1 / 2.7
16641 .08 / .09 5 / 9 1.7 / 1.9 2.2 / 2.8
66049 .19 / .09 6 /10 1.7 / 1.9 2.2 / 2.9

2D-RLap-Q 4225 .60 / .38 4 / 7 1.3 / 1.7 1.4 / 2.1
16641 .75 / .39 5 / 8 1.3 / 1.7 1.4 / 2.2
66049 .81 / .40 6 /10 1.3 / 1.7 1.4 / 2.2

2D-RLap-T 4225 .84 / .31 5 / 7 1.4 / 1.8 1.8 / 2.9
16641 .88 / .35 6 / 8 1.4 / 1.8 1.8 / 3.0
66049 .89 / .35 7 / 9 1.4 / 1.8 1.8 / 3.1

2D-4Reg 1089 .18 / .26 3 / 6 1.4 / 1.6 1.4 / 2.0
4225 .67 / .63 4 / 8 1.4 / 1.7 1.5 / 2.1

2D-M2-Lap 798 .05 / .07 2 / 5 1.2 / 1.3 1.4 / 1.7
3109 .12 / .11 4 / 6 1.3 / 1.4 1.6 / 1.9
12273 .22 / .16 4 / 7 1.4 / 1.4 1.7 / 2.0

2D-M3-Lap 232 .03 / .08 2 / 4 1.2 / 1.2 1.3 / 1.4
896 .06 / .13 3 / 5 1.3 / 1.4 1.6 / 1.7
3523 .12 / .18 4 / 6 1.4 / 1.4 1.7 / 2.0

2D-M2-RLap 798 .58 / .39 2 / 6 1.2 / 1.6 1.4 / 2.1
3109 .81 / .48 4 / 7 1.3 / 1.7 1.5 / 2.4
12273 .95 / .57 4 / 8 1.4 / 1.8 1.6 / 2.6

2D-M3-RLap 232 .40 / .22 2 / 4 1.2 / 1.4 1.2 / 1.8
896 .60 / .34 3 / 6 1.3 / 1.6 1.4 / 2.1
3523 .80 / .44 3 / 7 1.3 / 1.7 1.5 / 2.3

3D-Lap-H 4913 .03 / .09 3 / 5 1.2 / 1.2 1.6 / 1.8
35937 .03 / .23 4 / 7 1.2 / 1.3 1.7 / 2.1

3D-Lap-T 4913 .03 / .05 3 / 5 1.4 / 1.4 2.5 / 2.6
35937 .03 / .05 4 / 6 1.5 / 1.5 2.7 / 2.9
274625 .03 / .05 5 / 8 1.5 / 1.5 2.8 / 3.0

3D-ALap-H 4913 .40 / .25 2 / 6 1.2 / 1.5 1.5 / 1.8
35937 .41 / .25 4 / 8 1.5 / 1.6 1.6 / 2.1

3D-ALap-T 4913 .04 / .11 3 / 7 1.5 / 1.6 2.2 / 2.8
35937 .06 / .13 4 / 9 1.6 / 1.7 2.4 / 3.3
274625 .17 / .13 5 /10 1.6 / 1.8 2.5 / 3.7

Table 4.2
Results for CR-AMG / BoomerAMG.
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(a) (b)

Fig. 4.4. Grid hierarchies produced by CR-AMG (a) and BoomerAMG (b) for the rotated
anisotropic problem 2D-M2-RLap. Larger squares depict grid points on coarser-level grids.

in the table, the number of iterations ` used in (4.7) was between 3 and 10. This is
another area where a cheaper approach is desirable.

5. Improving the Predictive Properties of CR. In the CR-based coarsening
algorithm above, the choice of stopping criteria θcr is based on empirical results.
Considering the results in Table 4.1, it is obvious that although fast convergence of CR
implies a coarse grid of good quality, exactly what is meant by “fast” convergence in
this setting depends on the problem at hand. For these tests, our algorithm produces
grids that are known to be effective in multigrid algorithms. However, the convergence
factors of CR reported in this table vary significantly for each of the test problems
considered. Our aim in this section is to develop new forms of CR that better predict
MG convergence factors, and in turn give more accurate measurements of the quality
of the coarse grid. To do this, we use a relationship between Theorem 2.1 and a
sharp result in [15] to motivate more general choices of the coarse-grid variables,
prescribed by the operator R. We then prove that our resulting CR methods serve
also as measures of coarse-grid quality. In addition, by way of some simple examples,
we demonstrate the potential of these methods to better predict two-grid multigrid
convergence factors. The iteration we consider here is similar to one of the analysis
tools discussed in [12].

For any SPD matrix X and any full-rank matrix B, denote the X-orthogonal
projection onto range(B) by

(5.1) πX(B) = B(BT XB)−1BT X.

If B = P , we drop the parentheses so that πX := πX(P ). Let M̃ and ETG be given
by (2.3) and (2.4), respectively. Then the following result, established in [15], gives
the precise convergence factor of the two-grid method.

Theorem 5.1.

‖ETG‖2A = 1− 1
K]

; K] = sup
e

∥∥(I − π
M̃

)e
∥∥2

M̃

‖e‖2A
.(5.2)
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Recall Theorem 2.1, and note that the only difference between the expressions for
K in (2.5) and K] in (5.2) is the form of the projection. In particular, we see that
K = K] (i.e., the two estimates are the same), if

R = (PT M̃P )−1PT M̃.(5.3)

Since compatible relaxation is based entirely on the choice of R, this suggests the
possibility of defining more predictive CR methods by using a “better” R. However,
the choice of R in (5.3) is rather complicated and impractical. To find a simpler
form for R, note that the multigrid operator ETG is invariant to post-scaling of in-
terpolation. That is, we can replace P by PX for any nonsingular matrix X, and
ETG is unchanged. In particular, we can equivalently use the interpolation operator
P̄ = P (RP )−1 in the theory, since RP̄ = Ic as required. Now, if we compare the
numerator for K in (2.5) to the numerator for K] in (5.2), it is clear that

R = PT M̃,(5.4)

which is much simpler than in (5.3). It also makes more intuitive sense that the
coarse-grid variables are best defined as the transpose of interpolation (times the
smoother).

Note that this “best” R is a function of P , conflicting with the fact that we want
to use R (through CR) to build P . However, (5.4) and the accompanying theory
suggest that maybe we can choose any R that resembles the transpose of an effective
interpolation operator. One context where this idea fits somewhat naturally is in an
adaptive AMG setting [9, 10], where intermediate interpolation operators are formed
as part of the adaptive cycle. For the purposes of this paper, we just assume we have
a means of finding such an R, and consider how we might use it in a CR method.

Recall the primary and habituated CR methods in (2.9) and (2.11). Because
we are considering more complex forms of R and (hence) S, the primary method
may not be easy to compute, depending on the difficulty of inverting ST MS. Since
the habituated method is generally the most computable form of CR, we consider
that variant below. Here, however, the theory requires S to be normalized, and this
complicates things somewhat.

Define %h similarly to %s in (2.12) to be the As-norm of the habituated CR method
in (2.11), where As = ST AS and S is assumed to be normalized. Replacing S by its
normalized form S(ST S)−1/2 and recalling the notation in (5.1), we have

%h =
∥∥(ST S)−1ST (I −M−1A)S

∥∥
As

(5.5)

= sup
vs

∥∥π(S)(I −M−1A)Svs

∥∥
A

‖Svs‖A
(5.6)

= sup
vs

∥∥(I − π(RT ))(I −M−1A)Svs

∥∥
A

‖Svs‖A
.(5.7)

The idea is to define the CR method as in the numerator of either (5.6) or (5.7), where
we approximate the action of (ST S)−1 and (RRT )−1 with simple operators Cs and
Cr, respectively. In particular, we are interested in the case where these operators
result by applying a simple iterative method to the appropriate set of equations (e.g.,
(RT R)ur = fr) with zero initial guess. That is, consider two habituated CR methods
based on the following iteration matrices:

SCsS
T (I −M−1A);(5.8)

(I −RT CrR)(I −M−1A).(5.9)
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A result analogous to Theorem 2.4 (see [14]) shows that %h can be used to estimate
the quality of the set of coarse-grid variables and to predict the convergence factor of
the two-grid method. We now prove that a similar statement holds for the methods
in (5.8) and (5.9) by showing that %h is bounded by the norm of these operators.

Before we state the theorem, a few comments are in order. The desired result is
trivial to prove for (5.8) because the method produces iterates in range(S) as does
the original habituated method in (2.11). The method in (5.9) is more difficult to
deal with because it produces iterates that have components in both range(S) and
range(RT ). In particular, if v = Svs + RT vr, then

(I −RT CrR)v = RT (I − Cr(RRT ))vr + Svs.

The difficulty is to bound the first term. Note that the size of this term is related to
how accurately Cr approximates (RRT )−1, reflected below by µr.

Theorem 5.2. Assume that

µs :=
∥∥I − Cs(ST S)

∥∥
As

< 1,

µr :=
∥∥I − Cr(RRT )

∥∥
Ar

< 1,

where As = ST AS and Ar = RART (e.g., assume that Cs and Cr result from con-
vergent iterations), and let

%hs =
∥∥SCsS

T (I −M−1A)
∥∥

A
,

%hr =
∥∥(I −RT CrR)(I −M−1A)

∥∥
A

.

Then

%h ≤ (1− µs)−1%hs
,(5.10)

%h ≤ %hr
+ µr

(
2γm

1− γ2

)
,(5.11)

where γm, γ ∈ [0, 1) measure angles between spaces as follows:〈
ASvs, M−T RT vr

〉2 ≤ γ2
m 〈ASvs, Svs〉

〈
AM−T RT vr, M−T RT vr

〉
,(5.12) 〈

ASvs, RT vr

〉2 ≤ γ2 〈ASvs, Svs〉
〈
ART vr, RT vr

〉
,(5.13)

for all vs,vr.
Proof. We first prove (5.10). From the triangle inequality, we have that

‖π(S)v‖A ≤
∥∥SCsS

T v
∥∥

A
+
∥∥(π(S)− SCsS

T )v
∥∥

A

=
∥∥SCsS

T v
∥∥

A
+
∥∥(I − Cs(ST S))(ST S)−1ST v

∥∥
As

≤
∥∥SCsS

T v
∥∥

A
+ µs ‖π(S)v‖A .

Collecting terms and letting v = (I −M−1A)Svs, we arrive at∥∥π(S)(I −M−1A)Svs

∥∥
A
≤ (1− µs)−1%hs ‖Svs‖A .

The result follows from (5.6).
We now prove (5.11). Similar to above, the triangle inequality yields∥∥(I − π(RT ))v

∥∥
A
≤
∥∥(I −RT CrR)v

∥∥
A

+ µr

∥∥π(RT )v
∥∥

A
.
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Letting v = (I −M−1A)Svs and using the fact that π(S)S = S, from (5.7) we get

%h ≤ %hr
+ µr

∥∥π(RT )(I −M−1A)π(S)
∥∥

A
.

It remains to bound
∥∥π(RT )(I −M−1A)π(S)

∥∥
A
. We use the following facts for any

matrix B:

‖B‖A =
∥∥∥A1/2BA−1/2

∥∥∥ ; ‖B‖ = sup
v,w

| 〈Bv, w〉 |
‖v‖ ‖w‖

; ‖B‖ =
∥∥BT

∥∥ .

This, together with (5.12) and the fact that π(RT )π(S) = 0, implies∥∥π(RT )(I −M−1A)π(S)
∥∥

A
=
∥∥∥A1/2π(RT )M−1Aπ(S)A−1/2

∥∥∥
= sup

v,w

|
〈
Aπ(S)A−1/2v, M−T π(RT )A1/2w

〉
|

‖v‖ ‖w‖

≤ γm

∥∥∥A1/2π(S)A−1/2
∥∥∥∥∥∥A1/2M−T π(RT )A1/2

∥∥∥
≤ γm ‖π(S)‖A

∥∥π(RT )M−1A
∥∥

A

≤ γm ‖π(S)‖A
∥∥π(RT )

∥∥
A

∥∥M−1A
∥∥

A
.

But (5.13) holds if and only if

‖π(S)‖A =
∥∥π(RT )

∥∥
A
≤
√

1
1− γ2

.

Using this, together with the fact that
∥∥M−1A

∥∥
A

< 2 for a convergent smoother,
proves the result.

To obtain a CR iteration whose convergence factor gives a better prediction of
the performance of the resulting two-grid algorithm, Livne and Brandt suggest using
a CR iteration in which the coarse-grid variables are defined as “averages” of the fine-
grid variables (see [17]). The approach they propose is analogous to the habituated
form of CR given by iteration (5.9) with a special choice of R. Next, using simple
examples, we demonstrate the potential of such an approach.

Assume that P has the form given by (2.10) and define

R =
[

WT
r Ic

]
, S =

[
If

−WT
r

]
,

so that RS = 0. Recall πX(B) in (5.1), and define

(5.14) EX(B) = (I − πX(B))(I −M−1A).

In the following numerical experiments, we consider the CR iteration in (5.9) and an-
alyze its ability to predict two-grid MG convergence factors. Specifically, we measure
the A-norm of the CR operator,

∥∥E(RT )
∥∥

A
, and compare it to the A-norm of the

two-grid MG operator, ‖EA(P )‖A. We also estimate the spectral radius of these two
error propagators by computing

(5.15) %(EX(B)) =
‖e(ν)‖A
‖e(ν−1)‖A

,
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where e(ν) is the ν-th iterate of the corresponding method with random initial guess.
To demonstrate the potential of this CR method, we assume that a good interpolation
operator P is known. Then, guided by the result in (5.4), we let RT = P .

We consider two test problems from Section 4: 2D-Lap-Q (Laplacian) and 2D-
ALap-Q (anisotropic Laplacian). We use the standard interpolation operators for
these problems, so RT has the following stencils:

1
4

 1 2 1
2 4 2
1 2 1

 , 1
2

 0
1 2 1

0

 .

(problem 2D-Lap-Q) (problem 2D-ALap-Q).

We use Gauss-Seidel as the smoother.
Before presenting the results of our numerical experiments, we state an identity

for the A-norm of the difference of πX(B) and πA(B). In our setting where RT = P ,
the result implies that if

∥∥π(RT )
∥∥

A
is close to one, then the A-orthogonal projection

πA(P ) should be well approximated by the corresponding L2-orthogonal projection
π(RT ), indicating that the MG operator EA(P ) should be well approximated by the
CR operator E(RT ).

Theorem 5.3. (see [6] for details) Define πX(B) as in (5.1). Then

‖πX(B)− πA(B)‖2A = ‖πX(B)‖2A − 1.

Table 5.1 compares A-norms of the CR and two-grid MG operators for our two
test problems. Since the error propagation matrices EX(B) are nonsymmetric, we
compute the A-norm estimates as follows:

‖EX(B)‖A = λmax(A−1EX(B)T AEX(B))1/2.

Note that
∥∥π(RT )

∥∥
A
≈ 1.1 for all grid sizes for both problems. Thus, the above

theorem suggests that ‖EA(P )‖A is well approximated by
∥∥E(RT )

∥∥
A
, and the results

in the table confirm this.
Table 5.2 compares spectral radius estimates for the CR and two-grid MG opera-

tors. Here, we include results using a small number of iterations m of diagonally-scaled
CG to approximate the action of (RRT )−1. The results in the table indicate that the
spectral radius estimates of the CR operator E(RT ) closely approximate those of the
MG operator EA(P ). We also see that a small m is more than sufficient. This is
because RRT is well conditioned, having a condition number of about 4 for problem
2D-Lap-Q and about 2 for 2D-ALap-Q, for all three problems sizes. However, we see
that the spectral radius estimates do not provide accurate estimates of the A-norms
in Table 5.1. Of course, since the operators are nonsymmetric, theory only guarantees
that the A-norm is an upper bound for the spectral radius.

To avoid this nonsymmetry problem, a better approach in practice might be to
estimate the spectral radius of the CR operator

(I −M−T A)(I −RT CrR)(I −M−1A).

Here we get 0.1713 with Cr = (RRT )−1 for problem 2D-Lap-Q on a 32 × 32 grid,
while the A-norm of the symmetric two-grid MG method is 0.1707 (the square of
‖EA(P )‖A = .4131 in Table 5.1). In addition, with Cr determined by m steps of GS,
the spectral radius estimate for CR is 0.186 for m = 1 and 0.173 for m = 3. By
comparison, the CR method used in Section 4 gives a prediction of 0.5.
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Problem Grid
∥∥E(RT )

∥∥
A

‖EA(P )‖A
2D-Lap-Q 16× 16 .39 .39

32× 32 .42 .41
64× 64 .43 .43

2D-ALap-Q 16× 16 .58 .57
32× 32 .61 .60
64× 64 .61 .61

Table 5.1
A-norms of the CR and two-grid MG operators for two problems.

%(E(RT ))
Problem ν m = 1 m = 2 m = 5 %(EA(P ))
2D-Lap-Q 3 .26 .26 .26 .23

10 .26 .26 .27 .25
15 .27 .28 .28 .27

2D-ALap-Q 3 .44 .45 .45 .43
10 .46 .47 .48 .44
15 .47 .48 .48 .47

Table 5.2
Estimates of the spectral radii of the CR and two-grid MG operators for two problems on a

32 × 32 grid. For %(E(RT )), m diagonally-scaled CG iterations are used to approximate the action
of (RRT )−1. For %(EA(P )), a direct method is used to compute (RART )−1.

6. Conclusions and Future Research. We introduced a coarsening algorithm
for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR),
studied its behavior on a number of model problems, presented the performance results
of an AMG method that utilizes the coarsening approach, and demonstrated the
potential of a more predictive variant of CR that provides a sharper metric of coarse-
grid quality. Two unique aspects of the method are that it does not use strength of
connection and it naturally complements the smoother used in the AMG solver.

We are exploring several research avenues with respect to CR. We would like
to reduce the sensitivity of the algorithm to the parameters θcr and θcs. The most
important of these is θcr, which can be reduced to improve the quality of the coarse
grid. However, doing this sometimes results in too many coarse-grid points, and it
usually increases the number of stages required. This latter effect is also an issue
for parallel computing, our main topic of current research. The independent set
algorithms needed in parallel tend to produce even more aggressively coarsened grids
than those illustrated in this paper. Another issue in parallel is that we cannot
use lexicographical Gauss-Seidel to generate the candidate set, because it does not
parallelize well. Finally, we are also investigating the use of CR for problems that come
from systems of PDEs. Here, the candidate set measure in (3.6) must be modified.
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