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Hilbert space-valued jump-diffusion models are employed for various
markets and derivatives. Examples include swaptions, which depend on
continuous forward curves, and basket options on stocks. Usually, no an-
alytical pricing formulas are available for such products. Numerical meth-
ods, on the other hand, suffer from exponentially increasing computational
effort with increasing dimension of the problem, the “curse of dimen-
sion.” In this paper, we present an efficient approach using partial integro-
differential equations. The key to this method is a dimension reduction
technique based on a Karhunen–Loève expansion, which is also known as
proper orthogonal decomposition. Using the eigenvectors of a covariance
operator, the differential equation is projected to a low-dimensional prob-
lem. Convergence results for the projection are given, and the numerical
aspects of the implementation are discussed. An approximate solution is
computed using a sparse grid combination technique and discontinuous
Galerkin discretization. The main goal of this article is to combine the
different analytical and numerical techniques needed, presenting a compu-
tationally feasible method for pricing European options. Numerical exper-
iments show the effectiveness of the algorithm.

1 Introduction

Pricing with partial differential equations The pricing of options written on a
single asset by means of partial differential equations (PDEs) is a well-studied prob-
lem. Efficient numerical solutions have been proposed not only for the classical Black–
Scholes setting but also for Lévy-driven processes (cf., e.g., [24, 12, 13] and the refer-
ences therein). Due to the jump part, an additional nonlocal term occurs when using
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Lévy models. Thus, partial integro-differential equations (PIDEs) have to be solved
instead of plain PDEs.

The pricing problem becomes much more involved when the derivative (e.g., a bas-
ket option) depends on more than one asset. PIDE methods have recently been ex-
tended to such multidimensional settings [28, 36]. The main problem here is the expo-
nentially increasing computational effort for high-dimensional problems. While this
curse of dimension can be reduced effectively by applying sparse grid discretizations,
numerically feasible dimensions n are still moderate, usually n ≤ 10. On the other
hand, real world products often imply much higher dimensional equations. In fact,
derivatives (e.g., swaptions) may even depend on a continuum of “assets” and thus be
infinite dimensional. This makes dimension reduction techniques an interesting tool.
To motivate the subsequently presented techniques, consider the following example,
which naturally arises in energy markets.

Motivating example: electricity swaptions Since the liberalization of many Eu-
ropean electricity markets during the 1990s, producers, consumers, and speculators
have traded in electricity on energy exchanges. The Scandinavian Nordpool, the Euro-
pean Energy Exchange (EEX) in Germany, and the Amsterdam Power Exchange (APX)
are the largest European trading centers for electricity. Traded products include spot,
forward, and futures contracts and options on these. The most liquidly traded un-
derlyings are contracts of futures type. These are agreements traded at time t for a
constant delivery of 1 MW of electricity over a certain future period of time [T1, T2],
while in return a fixed rate F(t; T1, T2) is paid during this delivery period. These prod-
ucts are also called electricity swaps. The relation of spot and forward prices is not
clearly defined for electricity due to its nonstorability [3, 4, 6]. This difficulty can be
avoided by directly modeling the forward curve under a risk neutral measure [1, 20],
similar to the Heath–Jarrow–Morton approach for bond markets. For every maturity
u ∈ [T1, T2], let

(1) S(t, u) := lim
v→u

F(t; u, v)

be the corresponding value of the forward curve at time t ≤ u. In practice, the forward
curve is constructed from a discrete set of available market prices [5]. Several authors
propose exponential additive forward curve models of diffusion or jump-diffusion
type [7, 20], i.e.,

X(t, u) =
∫ t

0
γ(s, u)ds +

nW

∑
k=1

∫ t

0
σk(s, u)dWk(s) +

nJ

∑
k=1

∫ t

0

∫
R

ηk(s, u)y M̃k(dy, ds),

S(t, u) = S(0, u) exp (X(t, u)) ,

(2)

where Wk are scalar Brownian motions and M̃k are compensated random jump mea-
sures, all of them independent. Assuming a constant interest rate r ≥ 0, a European
call option on the swap F(T; T1, T2) with strike rate K and maturity T ≤ T1 has the
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discounted price

V(t) = e−rTE
[
(T2 − T1) (F(T; T1, T2)− K)+

∣∣∣Ft

]
= e−rT(T2 − T1)E

[(∫ T2

T1

w(u; T1, T2)S(T, u)du− K
)+ ∣∣∣Ft

]
,

(3)

at time t ≤ T, where

(4) w(u; T1, T2) = e−ru/ ∫ T2

T1

e−rsds

is a deterministic, nonnegative discounting factor. In general, there is no explicit rep-
resentation for the probability density of the integral term inside the conditional ex-
pectation. This makes pricing more difficult than in the one-dimensional standard
setting. One possible valuation method is to use log-normal approximation formulas
[9]. These are fast but sometimes give poor results in the presence of jumps. Numeri-
cal Monte Carlo simulations, on the other hand, are precise but rather time consuming
since they converge slowly. In the present work, we will discuss an efficient numeri-
cal approximation method which is based on solving Hilbert space-valued PIDEs and
dimension reduction techniques.

Outline of the article Both basket options and options depending on forward
curves can be viewed as special cases of Hilbert space-valued problems. The main goal
of this article is to present an efficient method for pricing European options on such
derivatives. In Section 2, we state the general model and hypotheses for our approach.
The corresponding Hilbert space-valued PIDE for pricing European options is derived
in Section 2.3. This PIDE can be approximated with finite-dimensional equations. To
this end, we apply Karhunen–Loève approximation, which is closely related to proper
orthogonal decomposition and factor analysis. In Section 3, the dimension reduction
method is described. We show how to construct an optimal set of approximating basis
functions by solving an eigenvector problem. This basis set is then used to transform
the PIDE, and the main results of this work are presented. After proving existence
and uniqueness, convergence results and error bounds are given for the solutions of
the approximating problems. In Section 4, we discuss how to perform the dimension
reduction numerically, using a Galerkin approach and the sparse grid combination
technique. Finally, we apply the pricing method to test problems (a basket option and
an electricity swaption) and demonstrate the efficiency of the method with numerical
experiments in Section 5.

2 Hilbert space-valued jumpdiffusion

We now state the Hilbert space-valued model used throughout this article. For a
definition of stochastic processes and integration in Hilbert spaces with respect to
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Brownian motion, see, e.g., [14, 22]. An overview of Poisson random measures in
Hilbert spaces can be found in [18], and the Lévy case is treated in [25]. Infinite-
dimensional stochastic analysis and its applications to interest-rate theory and Heath–
Jarrow–Morton models are presented in [10].

2.1 Exponential additive model

Let D ⊂ Rm and let µD be a measure on D. Then

(5) H := L2(D, µD)

is a separable Hilbert space. For every h ∈ H, we denote the corresponding norm by

(6) ‖h‖H :=
√∫

D

[
h(u)

]2
µD(u).

For electricity swaptions, we choose D = [T1, T2], and µD = λD is the Lebesgue mea-
sure. Then H can be interpreted as the space of forward curves on the delivery period
D. For basket options, we choose D to be a finite (though possibly large) index set
with n entries, each index corresponding to one asset. The measure µD is then simply
the counting measure, and the norm ‖·‖H is the Euclidean norm on Rn.

Consider the H-valued exponential-additive stochastic model

X(t) =
∫ t

0
γ(s) ds +

∫ t

0
σ(s) dW(s) +

∫ t

0

∫
H
[η(s)](ξ) M̃(dξ, ds),

S(t) = S(0) exp (X(t))
(7)

for t ∈ [0, T], with initial value S(0) ∈ H. Subsequently, we will write f (t, u) :=
[ f (t)](u) for every f : [0, T] → H, u ∈ D, and similarly g(t, h) := [g(t)](h) for every
g : [0, T] → L(H, H), h ∈ H. The exponential function in the model is defined point-
wise, i.e., S(t, u) = S(0, u) exp (X(t, u)) for a.e. u ∈ D. The diffusion part is driven by
an H-valued Wiener process W whose covariance is described by a symmetric, non-
negative definite trace class operator Q. The driving process M̃ for the jump part is
the compensated random measure of an H-valued compound Poisson process

(8) J(t) =
N(t)

∑
i=1

Yi,

which is independent of W. Here, N denotes a Poisson process with intensity λ and
Yi ∼ PY (i = 1, 2, . . .) are iid on H. The corresponding Lévy measure is denoted
by ν = λPY. Further, denote by L(H, H) the space of all bounded linear operators
on H and let γ : [0, T] → H, σ : [0, T] → L(H, H), and η : [0, T] → L(H, H) be
deterministic functions. In particular, this model generalizes the electricity swaption
model (2) driven by a sum of scalar processes.

The following hypothesis is assumed to hold throughout this article. For an intro-
duction to time-dependent Bochner spaces, such as L2(0, T; H), see [16, Chap. 5.9].
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Assumption 2.1. Suppose that the second exponential moment of the jump distribution Y
exists:

(9) E[e2‖Y‖H ] =
∫

H
e2‖ξ‖H PY(dξ) < ∞.

Assume further that ‖η(t)‖L(H,H) ≤ 1 for a.e. t ∈ [0, T],

(10) γ ∈ L2(0, T; H), and σ ∈ L2(0, T; L(H, H)).

Under Assumption 2.1,
(
X(t)

)
t≥0 is an additive process with finite activity and finite

expectation. This simplifies notation, since no truncation of large jumps is needed in
the characteristic function.

Theorem 2.2. The process
(
X(t)

)
t≥0 is square-integrable:

(11) sup
0≤t≤T

E
[
‖X(t)‖2

H
]
< ∞.

Proof. The definition of the process
(
X(t)

)
t≥0 yields

(12)

E
[
‖X(t)‖2

H
]
≤ 3E

[∥∥∥∫ t

0
γ(s) ds

∥∥∥2

H
+
∥∥∥∫ t

0
σ(s) dW(s)

∥∥∥2

H
+
∥∥∥∫ t

0

∫
H

η(s, ξ) M̃(dξ, ds)
∥∥∥2

H

]
We now apply three different results to the three integrals on the right-hand side. For
the first one, we use the basic properties of Bochner integrals and Jensen’s inequality
to obtain

(13)
∥∥∥∫ t

0
γ(s) ds

∥∥∥2

H
≤
∫ t

0
‖γ(s)‖2

H ds ≤ ‖γ‖2
L2(0,T;H) .

By the definition of the integral with respect to H-valued Gaussian processes and the
results from [14, eqs. (4.8) and (4.10)], we have

(14) E
∥∥∥∫ t

0
σ(s) dW(s)

∥∥∥2

H
≤ (Tr Q) E

∫ t

0
‖σ(s)‖2

L(H,H) ds = (Tr Q) ‖σ‖2
L2(0,T;L(H,H)) ,

where Tr Q denotes the trace of the covariance operator of W. Finally, from Young’s
inequality and [17, Prop. 3.3] we get

E
[∥∥∥∫ t

0

∫
H

η(s, ξ) M̃(dξ, ds)
∥∥∥2

H

]
≤ C

∫ t

0

∫
H
‖η(s, ξ)‖2

H ν(dξ)ds

≤ CλT
∫

H
‖y‖2

H PY(dy).
(15)

Combining the above estimates and employing Assumption 2.1 yields (11), since the
right-hand side in each estimate is independent of t.

5



Theorem 2.3. The characteristic function of X(t) is given by

(16) E
[
ei〈X(t),h〉H

]
= exp

[
i
〈∫ t

0
γ(s)ds, h

〉
H
− 1

2

〈[ ∫ t

0
σ(s)Qσ∗(s)ds

]
(h), h

〉
H

+
∫ t

0

∫
H

(
ei〈η(s,ξ),h〉H − 1− i 〈η(s, ξ), h〉H

)
ν(dξ)ds

]
for every h ∈ H, where σ∗(s) is the adjoint operator of σ(s).

Proof. The drift γ is deterministic, and so the first term on the right-hand side of
(16) is trivial. Since we have finite second moments by Theorem 2.2, we may apply
[22, Thm. 4] to obtain the characteristic function of the diffusion and jump parts. It
remains to verify the expression for the covariance operator of the diffusion. Applying
[14, Prop. 4.13] yields
(17)

E
[〈∫ t

0
σ(s)dW(s), h1

〉
H

〈∫ t

0
σ(s)dW(s), h2

〉
H

]
=

〈[ ∫ t

0
σ(s)Qσ∗(s) ds

]
(h1), h2

〉
H

for every h1, h2 ∈ H. The integral on the right-hand side is a Bochner integral with
values in L(H, H).

2.2 Equivalent exponential Lévy model

As already stated, the main goal of this article is pricing European options depending
on S(T) = S0 exp

(
X(T)

)
. Since by definition the payoff of such an option depends

only on the value of X at time t = T, the characteristic function of X(T) completely
determines the price of the product. Therefore, it is possible to construct a (time ho-
mogeneous) Lévy process

(
XL(t)

)
t≥0 which produces the same terminal distribution

and thus the same price (cf. [31, Chap. 11]). We denote the Borel sets on H by B(H)
and the indicator function of a set B ∈ B(H) by χB. The Lévy–Khinchin triplet of the
Lévy process is given by

AL(h1, h2) =
1
T

〈[ ∫ T

0
σ(s)Qσ∗(s) ds

]
(h1), h2

〉
H

,(18)

γL =
1
T

∫ T

0
γ(t)dt,(19)

νL(B) =
1

λT

∫ T

0

∫
H

χB
(
η(t, ξ)

)
ν(dξ) dt for B ∈ B(H),(20)

where AL : H × H → R is a bilinear covariance operator, γL ∈ H, and νL is a finite
activity Lévy measure on H. Note that the resulting characteristic function of XL at
time t = T is identical to (16).

Let I = {1, 2, . . . , dim H}, if H has finite dimension, or I = N otherwise. In order to
obtain an explicit Lévy representation for X(T), define

(21) QL :

H → H,

h 7→ 1
T

[ ∫ T
0 σ(s)Qσ∗(s) ds

]
(h).
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This is a symmetric nonnegative definite operator with finite trace, since, by construc-
tion, and by the proof of Theorem 2.2, we have

∑
l∈I
〈QL pl , pl〉H = ∑

l∈I

1
T

E
[〈∫ t

0
σ(s)dW(s), pl

〉
H

〈∫ t

0
σ(s)dW(s), pl

〉
H

]
=

1
T

E
∥∥∥∫ t

0
σ(s)dW(s)

∥∥∥2

H
≤ (Tr Q) ‖σ‖2

L2(0,T;L(H,H))

(22)

for every orthonormal basis (pl)l∈I of H. Consequently, the operator QL is compact
by [14, Prop. C.3] and, in particular, a trace class operator. By [15, Thm. 1.2.1], there
is a unique Gaussian probability measure with mean 0 and covariance operator QL.
Moreover, there is a corresponding QL-Wiener process by [14, Prop. 4.2], which we
denote by WL.

In addition, we introduce the H-valued compound Poisson process

(23) JL(t) =
N(t)

∑
i=1

YL,i,

where YL,i∼PYL are iid random variables with values in H, and

(24) PYL(YL,i ∈ B) =

{
1

λT

∫ T
0

∫
H χB

(
ηt(y)

)
ν(dy) dt if λ > 0,

χB(0) if λ = 0,

for every Borel set B ∈ B(H). The random measure corresponding to JL is denoted by
ML and its compensated version by M̃L. Combined, we obtain the Lévy process

(25) XL(t) = γL t + WL(t) +
∫ t

0

∫
H

ζM̃L(dζ, ds),

with the same distribution as X at t = T. The last two summands are H-martingales.
We will use this model subsequently in place of (7), since it is completely equivalent
with respect to European option pricing.

Due to the existence of second moments (Theorem 2.2), the bounded linear covari-
ance operator

(26) CX :

{
H → H′ ∼= H,
h 7→ E

[
〈XL(T)− E[XL(T)], h〉H 〈XL(T)− E[XL(T)], ·〉H

]
is well defined, and E[XL(T)] = γL T. For notational convenience, define the centered
process

(27) ZL(t) := XL(t)− E[XL(t)] = XL(t)− γL t, t ∈ [0, T].

The following theorem gives a summary of the properties of CX.

Theorem 2.4. The operator CX defined in (26) is a symmetric and nonnegative definite trace
class operator (and thus compact).

7



Proof. Since CX is a covariance operator, it is symmetric and nonnegative definite by
definition. It remains to prove that the trace of CX is finite. To this end, let (pl)l∈I , be
an arbitrary orthonormal base of H. Then, by dominated convergence,

Tr CX = ∑
l∈I
〈CX pl , pl〉H = ∑

l∈I
E
[
〈ZL(T), pl〉2H

]
= E

[
∑
l∈I
〈ZL(T), pl〉2H

]
= E

[
‖ZL(T)‖2

H

]
< ∞

(28)

holds. We use [14, Prop. C.3] again to conclude that CX is compact and thus a trace
class operator.

We denote the eigenspace of CX corresponding to eigenvalue 0 by E0(CX). Its or-
thogonal complement E0(CX)

⊥ is the linear span of all eigenvectors corresponding to
positive eigenvalues. This is the subspace of H to which the centered process ZL is
restricted almost surely, since

(29) E
[
〈ZL(t), h〉2H

]
= 0 for every h ∈ E0(CX)and a.e. t ≥ 0.

Finally, in analogy to the requirement of a nonvanishing volatility in one-dimensional
jump-diffusion models, an assumption on the QL-Wiener process WL is needed.

Assumption 2.5. Assume that the restriction of QL to the subspace E0(CX)
⊥ ⊂ H is positive

definite, i.e.,

(30) 〈QLh, h〉H > 0 for every h ∈ E0(CX)
⊥\{0}.

This means that ZL has a nonvanishing Brownian component for all directions in
H, which are not almost surely orthogonal to the trajectory of the process. This is
necessary for the coercivity property (Gårding’s inequality) of the PIDE which we are
going to derive in the next section.

2.3 Hilbert space-valued PIDE

We consider a European option depending on the value of S at time t = T. Since S(T)
is a deterministic function of X(T), and X(T) is distributed like XL(T) = γL T +ZL(T),
we may equivalently price a European option whose payoff G is a function of ZL.
Hence, if z ∈ H is the value of ZL at time t, the value V of the option at time t ≤ T,
discounted to time 0, is described by

(31) V(t, z) := e−rTE
[
G(z + ZL(T − t))

]
.

Note that V is a martingale under the risk neutral measure. In this section, an Itô
formula for Hilbert space-valued random variables and the martingale property of V
are employed to derive a PIDE for V.
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First, let us recall the definition of derivatives on Hilbert spaces. We denote by
DzV(t, z) ∈ L(H, R) and D2

zV(t, z) ∈ L(H, H) continuous linear operators such that

(32) V(t, z + ζ) = V(t, z) + [DzV(t, z)](ζ) +
1
2
〈
[D2

zV(t, z)](ζ), ζ
〉

H + o(‖ζ‖2
H)

for every ζ ∈ H. It is often convenient to identify D2
zV(t, z) with a bilinear form on

H × H, setting

(33) [D2
zV(t, z)](ζ1, ζ2) :=

〈
[D2

zV(t, z)](ζ1), ζ2
〉

H .

The partial derivative with respect to time is denoted with ∂tV(t, z). We assume the
following regularity condition for V, which is, in particular, a prerequisite for Itô’s
formula. However, note that this hypothesis is not necessary for the convergence
results in Section 3.4.

Assumption 2.6. Suppose that V ∈ C1,2((0, T)× H, R) ∩ C([0, T]× H, R); i.e., V is con-
tinuously differentiable with respect to t and twice continuously differentiable with respect to
z. Moreover, assume that the operator norms

∥∥D2
zV(t, z)

∥∥, ‖DzV(t, z)‖, and ‖∂tV(t, z)‖ are
bounded.

As a direct consequence of this assumption, V satisfies the Lipschitz condition

(34) |V(t, z)−V(t, z + ζ)| ≤ KV ‖ζ‖H for every ζ ∈ H

with constant KV := sup(s,y)∈[0,T]×H ‖DzV(s, y)‖. We are now able to calculate the
stochastic dynamics of V using Itô’s formula.

Theorem 2.7. The discounted price V given by (31) satisfies

dV(t, ZL(t)) =

∂tV(t, ZL(t−)) dt +
1
2

Tr
([

D2
zV(t, ZL(t−))

]
QL

)
dt

+
∫

H

{
V(t, ZL(t−) + ζ)−V(t, ZL(t−))−

[
DzV(t, ZL(t−))

]
(ζ)
}

νL(dζ) dt

+ DzV(t, ZL(t−)) dWL(t) +
∫

H

[
V(t, ZL(t−) + ζ)−V(t, ZL(t−))

]
M̃L(dζ, dt).

(35)

Proof. By Itô’s formula [22, Thm. 3], we obtain

V(t, ZL(t)) =

V(0, ZL(0)) +
∫ t

0
∂tV(s, ZL(s−))ds

+
1
2

〈〈 ∫ ·
0

D2
zV(s, ZL(s−)) dWL(s) ; WL(·)

〉〉
t

+
∫ t

0
DzV(s, ZL(s−)) dZL(s)

+ ∑
0≤s≤t

[
V(s, ZL(s−) + ∆ZL(s))−V(s, ZL(s−))− [DzV(s, ZL(s−))](∆ZL(s))

]
,

(36)
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where 〈〈X ; Y〉〉 denotes the predictable quadratic covariation of 〈X, Y〉H.
We first calculate the covariation. From [14, Cor. 4.14], we know that

(37) E
〈∫ t2

t1

D2
zV(s, ZL(s−))dWL(s), WL(t2)−WL(t1)

〉
H

=
∫ t2

t1

Tr
([

D2
zV(s, ZL(s−))

]
QL

)
ds

for every 0 ≤ t1 ≤ t2. Consequently, by independence of the increments of WL, we get

(38)
〈〈 ∫ ·

0
D2

zV(s, ZL(s−)) dWL(s) ; WL(·)
〉〉

t
=
∫ t

0
Tr
([

D2
zV(s, ZL(s−))

]
QL

)
ds.

For the next term in (36), we use the dynamics of ZL to obtain∫ t

0
DzV(s, ZL(s−))dZL(s)

=
∫ t

0
DzV(s, ZL(s−))d

[
WL(s) +

∫ s

0

∫
H

ζM̃L(dζ, ds2)
]

=
∫ t

0
DzV(s, ZL(s−)) dWL(s)

+
∫ t

0
DzV(s, ZL(s−)) d

[
∑

0≤s2≤s
∆ZL(s2)−

∫ s

0

∫
H

ζ νL(dζ) ds2

]
.

(39)

A theorem for interchanging linear operators and Bochner integrals [16, App. E, Thm. 8]
yields
(40)∫ t

0
DzV(s, ZL(s−)) d

[ ∫ s

0

∫
H

ζ νL(dζ) ds2

]
=
∫ t

0

∫
H

[
DzV(s, ZL(s−))

]
(ζ) νL(dζ) ds.

Plugging (38), (39), and (40) into the Itô dynamics (36) finishes the proof.

In order to get a slightly more explicit form of the trace expression in (35), let (pl)l∈I
be an arbitrary orthonormal basis of H. By definition of the trace, this yields

(41) Tr
([

D2
zV(t, ZL(t−))

]
QL

)
= ∑

l∈I

[
D2

zV(t, ZL(t−))
](

QL pl , pl
)
.

Theorem 2.8. The discounted price V of a European option with payoff G(ZL(T)) at maturity
T satisfies the PIDE

−∂tV(t, z) =
1
2 ∑

l∈I

[
D2

zV(t, z)
]
(QL pl , pl)

+
∫

H

{
V(t, z + ζ)−V(t, z)−

[
DzV(t, z)

]
(ζ)
}

νL(dζ),
(42)
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with terminal condition

(43) V(T, z) = e−rTG(z),

for a.e. t ∈ (0, T), z ∈ E0(CX)
⊥.

Proof. We employ Theorem 2.7. The penultimate term in (35),

(44)
∫ t

0
DzV(s, ZL(s−)) dWL(s),

is a martingale by [14, Thm. 4.12]. In order to show that the integral with respect to
the compensated Poisson measure is a martingale too, we apply [29, Thm. 3.11]. The
prerequisite for this theorem is a strong integrability condition, which is satisfied due
to [29, Thm. 3.12], since

(45)
∫ t

0

∫
H

E
∣∣∣V(s, ZL(s−) + ζ)−V(s, ZL(s−))

∣∣∣ νL(dζ)ds ≤ t
∫

H
KV ‖ζ‖H νL(dζ) < ∞.

The remaining integral terms in (35) are continuous in t and of finite variation.
Consequently, the martingale property of V, together with the fact that continuous
martingales of finite variation are almost surely constant [27, Th. 27], yields the PIDE.

3 Dimension reduction for the PIDE

The main goal of this section is to introduce a low-dimensional approximation of the
H-valued process XL. To this end, the Karhunen–Loève expansion of XL(T) is used,
which is in fact identical to proper orthogonal decomposition (POD). It is also closely re-
lated to principal component analysis (which is commonly used for data analysis) and
factor analysis (which uses additional error terms in the decomposition). All of these
methods are based on the construction of a small set of orthogonal basis elements
which can be used to approximate XL in some L2-norm. For an overview of POD
methods in the context of deterministic differential equations, see [21]. An intro-
duction to Karhunen–Loève expansions of stochastic processes can be found in [23,
Chap. 37]. Numerical aspects of the method and most of the theory needed here are
presented in [32]. After deriving the low-dimensional approximating PIDE, we will
show existence and uniqueness of a solution. Finally, we study convergence of the
calculated option prices and give error estimates.

3.1 Karhunen–Loève approximation for jump-diffusion

While principal component analysis and factor analysis are usually applied to analyze
empirical data, we apply the Karhunen–Loève method directly to our model. The di-
mension reduction takes place in the state space of the previously H-valued process.
Let us now give a mathematically precise formulation of what is meant by “approxi-
mating XL(T).”

11



Definition 3.1. A sequence of orthonormal elements pl ∈ H = L2(D), l ∈ I, is called a POD
basis for XL(T), if it solves the minimization problem

(46) min
〈pi ,pj〉H

=δij

E
[∥∥∥XL(T)−

(
E[XL(T)] +

d

∑
l=1

pl 〈ZL(T), pl〉H
)∥∥∥2

H

]
for every d ∈ I.

In other words, a POD basis is a set of deterministic orthonormal functions such
that we expect the projection of the random vector ZL(T) = XL(T)− E[XL(T)] ∈ H
onto the first d elements of this basis to be a good approximation.

Remark 3.2. Since we are interested in pricing European options, we include only the value
of XL at time t = T in definition 3.1. However, we could approximate the whole trajectory of
X as well by using the difference to its projection in the space L2(0, T; H). This may be useful
for pricing path-dependent derivatives, which we will study separately in future work.

Approximation with a POD basis is equivalent to using the partial sum of the first
d elements of a Karhunen–Loève expansion, which itself is closely connected to the
eigenvector problem of the covariance operator CX defined in (26). The following
theorem shows that the eigenvectors of CX are indeed the POD basis we are looking
for.

Theorem 3.3. A sequence of orthonormal eigenvectors (pl)l∈I of the operator CX, ordered by
the size of the corresponding eigenvalues µ1 ≥ µ2 ≥ ... ≥ 0, solves the maximization problem

(47) max
〈pi ,pj〉H

=δij

d

∑
l=1
〈CX pl , pl〉H

for every d ∈ I. The maximum value is

(48)
d

∑
l=1
〈CX pl , pl〉H =

d

∑
l=1

µl .

Moreover, the eigenvectors are a POD basis in the sense of definition 3.1, and the expectation
of the projection error is

(49) E
[∥∥∥ZL(T)−

d

∑
l=1

pl 〈ZL(T), pl〉H
∥∥∥2

H

]
=

dim H

∑
l=d+1

µl .

Proof. This is an application of [32, Thm. 2.7 and Prop. 2.8].
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3.2 Projection on d-dimensional subspace

Subsequently, let (pl)l∈I and (µl)l∈I denote the orthonormal basis and eigenvalues
from Theorem 3.3. Further, let

(50) Ud := span{p1, p2, . . . , pd} ⊂ H

be the d-dimensional subspace spanned by the eigenvectors corresponding to the
largest eigenvalues. We will assume that d ≤ dim(E0(CX)

⊥), i.e., µ1 ≥ . . . ≥ µd > 0,
as there is no need to include eigenvectors of the covariance operator corresponding
to eigenvalue 0. Indeed, one may project the PIDE to E0(CX)

⊥ without any error, since
the projection of ZL on E0(CX) is almost surely 0. Define the projection operator

(51) Pd :

{
H → Ud

∼= Rd,
z 7→ x := ∑d

l=1 〈z, pl〉H pl .

We identify Ud with Rd via the isometry

(52) ι :

{(
Ud, ‖·‖H

)
→
(
Rd, ‖·‖

)
,

x 7→ (〈x, pl〉H)
d
l=1 .

In particular, we identify Pdz with the sequence (〈z, pl〉H)
d
l=1.

We introduce the finite-dimensional approximation

(53) Vd(t, x) := e−rTE
[
G(x + PdZL(T − t))

]
for x ∈ Ud

∼= Rd. We do not assume a finite-dimensional analogue of the regularity
assumption (Assumption 2.6), which is hard to verify in practice. Instead, we impose
a simple condition on the payoff function.

Assumption 3.4. Suppose that the payoff function G is Lipschitz continuous on H with
Lipschitz constant KG.

Remark 3.5. Assumption 3.4 is not necessarily satisfied for payoffs depending on the expo-
nential of ZL(T), e.g., a plain call option depending on S(T). However, this can be remedied
easily. In the specific case of a call, we can apply a put-call parity. More generally, every payoff
can be truncated to a bounded domain (e.g., by multiplying with a smooth cutoff function).
A payoff function has finite expectation; hence the error introduced by truncation is arbitrar-
ily small. Since we have to localize the computational domain for any numerical calculation
anyway (compare Section 4.2), Assumption 3.4 is no substantial restriction.

The following theorem shows that Assumption 3.4 is actually enough to recover
regularity of Vd.

Theorem 3.6. The finite-dimensional approximation Vd : [0, T] ×Ud → R defined in (53)
satisfies Vd ∈ C1,2((0, T) × Ud, R) ∩ C([0, T] × Ud, R). Moreover, the partial derivatives
∂xi Vd(t, x), ∂xi ∂xj Vd(t, x), and ∂tVd(t, x) are functions of at most linear growth in ‖x‖ for
i, j = 1, . . . , d.
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Proof. The first step of the proof is to show the existence of a smooth density for the
random variable PdZL(t) for a.e. t ≥ 0. To achieve this, a fast decay condition for its
characteristic function

(54) µ̂t(x) := E
(

ei〈x,PdZL(t)〉
)
∈ C

is needed. We have

(55) E
[
〈PdWL(t), x1〉Ud

〈PdWL(t), x2〉Ud

]
=

d

∑
k,l=1
〈x1, pk〉Ud

〈x2, pl〉Ud
E
[
〈WL(t), pk〉H 〈WL(t), pl〉H

]
= 〈QLx1, x2〉H

for every x1, x2 ∈ Ud. Thus, the covariance operator for the diffusion part of PdZL is
given by PdQLPd. The same arguments as in the proof of Theorem 2.3 yield

(56) µ̂t(x) = exp
(
− 1

2
t
〈
PdQLx, x

〉
Ud

+
∫ t

0

∫
H

(
ei〈Pdζ,x〉Ud − 1− i 〈Pdζ, x〉Ud

)
νL(dζ)ds

)
for every x ∈ Ud. Using Assumptions 2.1 and 2.5, this implies

|µ̂t(x)| ≤ exp
(
− 1

2
t 〈PdQLx, x〉H

+
∫ t

0

∫
H

∣∣ei〈Pdζ,x〉H − 1− i 〈Pdζ, x〉H
∣∣ νL(dζ)ds

)
≤ exp

[
t
(
−1

2
C1 ‖x‖2 + C2 ‖x‖+ C3

)]
,

(57)

with positive constants C1, C2, and C3 depending on d. In particular, we have

(58) lim
‖x‖→∞

‖x‖n µ̂t(x) = 0 for every n ∈N.

Similarly, we obtain

(59) |∂α
xµ̂t(x)| ≤ pα(t, ‖x‖) |µ̂t(x)| and |∂α

x ∂tµ̂t(x)| ≤ qα(t, ‖x‖) |µ̂t(x)|

for every multiindex α ∈ Nd
0, where pα and qα are polynomials. Consequently, for

every t ∈ (0, T), µ̂t and ∂tµ̂t are elements of the Schwartz space

(60) S(Rd) =
{

f ∈ C∞(Rd) : lim
‖x‖→∞

‖x‖n ∂α f (x) = 0 for every α ∈Nd
0, n ∈N0

}
.

From [31, Prop. 28.1], we know that PdZL(t) has a density gt ∈ C∞(Rd), given by

(61) gt(y) := (2π)−d
∫

Rd
e−i〈y,x〉µ̂t(x) dx.
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Moreover, by the properties of µ̂t and [35, Thm. V.2.8], we obtain gt ∈ S(Rd) and
∂tgt ∈ S(Rd). Finally, note that Vd can be written as a convolution of the payoff and
the density:

(62) Vd(t, x) = e−rT
∫

Rd
G(x + y)gT−t(y)dy = e−rT

∫
Rd

G(y)gT−t(y− x)dy.

Due to Assumption 3.4, we have |G(y)| ≤ |G(0)| + KG ‖y‖. Hence, for x ∈ Ud, t ∈
(0, T), we may compute

∂α
xVd(t, x) = −e−rT

∫
Rd

G(x + y) ∂α
xgT−t(y) dy(63)

and

∂tVd(t, x) = −e−rT
∫

Rd
G(x + y) ∂tgT−t(y) dy(64)

for every α ∈Nd
0. This proves continuity of the derivatives. In addition, we obtain

|∂α
xVd(t, x)| ≤ e−rT

∫
Rd
|G(y + x)| |∂α

xgT−t(y)| dy

≤
∫

Rd
(|G(0)|+ KG ‖x‖+ KG ‖y‖) |∂α

xgT−t(y)| dy
(65)

for every α ∈Nd
0. Similarly,

|∂tVd(t, x)| = e−rT
∣∣∣∣∫

Rd
G(y)∂tgT−t(y− x)dy

∣∣∣∣
≤
∫

Rd
(|G(0)|+ KG ‖x‖+ KG ‖y‖) |∂tgT−t(y)| dy.

(66)

Thus, the growth condition is shown.
It remains to prove that Vd is also continuous for t → T. This is, however, a direct

consequence of the fact that

(67) lim
t→0

E
[
‖ZL(t)‖H

]
= 0,

and thus

|Vd(t, x)−Vd(T, x)| ≤ e−rTE
[
|G(x + PdZL(T − t))− G(x)|

]
≤ C E

[
‖ZL(T − t)‖H

]
→ 0 for t→ T.

(68)

Theorem 3.7. The function Vd defined in (53) is a classical solution of the finite-dimensional
PIDE

−∂tVd(t, x) =
1
2

d

∑
l=1

[
D2

xVd(t, x)
]
(PdQL pl ,Pd pl)

+
∫

H

{
Vd(t, x + Pdζ)−Vd(t, x)−

[
DxVd(t, x)

]
(Pdζ)

}
νL(dζ),

(69)
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with terminal condition

(70) Vd(T, x) = V(T, x) = e−rTG(x),

for t ∈ (0, T), x ∈ Ud.

Proof. The stochastic dynamics of PdZL(t) are given by

(71) d(PdZL(t)) = d(PdWL(t)) +
∫

H
Pdζ M̃L(dζ, ds).

The process PdWL(t) = ∑d
i=1 〈WL(t), pl〉H pl is a d-dimensional Wiener process with

correlation operator PdQLPd. The integral with respect to M̃L can easily be rewritten
as an integral over Ud, since the integrand depends only on the projection Pdζ ∈ Ud.

We apply the finite-dimensional version of Itô’s formula (cf., e.g., [11, Thm. 8.18]) to
Vd(t,PdZL(t)). In contrast to the Hilbert space-valued case, bounded derivatives are
not needed here. The properties of Vd shown in Theorem 3.6 are sufficient. By the
same arguments as in the proof of Theorem 2.7, we obtain the following:

dVd(t,PdZL(t)) =

∂tVd dt +
1
2

Tr
([

D2
xVd
]
PdQLPd

)
dt

+
∫

H

{
Vd(t,PdZL(t−) + Pdζ)−Vd(t,PdZL(t−))−

[
DxVd

]
(Pdζ)

}
νL(dζ) dt

+ DxVd d
(
PdWL(t)

)
+
∫

H

[
Vd(t,PdZL(t−) + Pdζ)−Vd(t,PdZL(t−))

]
M̃L(dζ, dt).

(72)

Proceeding exactly as in the proof of Theorem 2.8, we obtain (69).

The PIDE in Theorem 3.7 is of course nothing more than a projected version of the
PIDE (42) for V. The derivatives DxVd(t, x) ∈ L(Rd, R) and D2

xVd(t, x) ∈ L(Rd, Rd)
can be interpreted as a vector and a matrix, respectively. In particular, we have

d

∑
l=1

[
D2

xVd(t, x)
]
(PdQL pl ,Pd pl) =

d

∑
l=1

d

∑
i,j=1

∂xi ∂xj Vd(t, x)
〈
PdQL pl , pj

〉
H 〈Pd pl , pi〉H

=
d

∑
i,j=1

〈
QL pi, pj

〉
H ∂xi ∂xj Vd(t, x).

(73)

To simplify notation, we define coefficients

(74) aij :=
1
2
〈

QL pi, pj
〉

H .

The PIDE can thus be written as

−∂tVd(t, x) =
d

∑
i,j=1

aij ∂xi ∂xj Vd(t, x)

+
∫

H

{
Vd(t, x + Pdζ)−Vd(t, x)−

d

∑
i=1
〈ζ, pi〉H ∂xi Vd(t, x)

}
νL(dζ).

(75)
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Moreover, we have the following ellipticity property.

Theorem 3.8. The matrix (aij)
d
i,j=1 is symmetric positive definite.

Proof. This is a direct consequence of Assumption 2.5, since

(76)
d

∑
i,j=1

yi aij yj =
1
2

〈
QL

d

∑
i=1

yi pi,
d

∑
i=1

yi pi

〉
H

for every y ∈ Rd, and ‖∑d
i=1 yi pi‖H = ‖y‖ due to the isometry (52).

3.3 Variational formulation and uniqueness

We have already shown that the approximation Vd(t, x) is a classical solution of the
finite-dimensional PIDE (75). In this section, we introduce the corresponding varia-
tional formulation in appropriate Hilbert spaces and show uniqueness of the weak
solution. Since the payoff is not necessarily bounded, and thus not an element of
L2(Rd), we use weighted Sobolev spaces instead. Let ρθ be the weight function with
exponential decay defined by

(77) ρθ :

{
Rd → R,

x 7→ e−θ
√

1+‖x‖2
,

with a parameter θ > 0. We define the scalar products

〈ψ, ϕ〉L2,θ :=
∫

Rd
ψ(x)ϕ(x)ρθ(x) dx(78)

and
〈ψ, ϕ〉Hk,θ := ∑

α∈Nd
0 ,|α|≤k

〈∂αψ, ∂α ϕ〉L2,θ(79)

for functions ψ, ϕ : Rd → R. The corresponding Hilbert spaces are denoted by L2,θ(Rd)
and Hk,θ(Rd) (cf., e.g., [2, Chap. 3.1]). In particular, we consider the Gelfand triplet

(80) H1,θ(Rd) ↪→ L2,θ(Rd) ↪→
(
H1,θ(Rd)

)′.
Finally, we define the bilinear form

a(ψ, ϕ) :=
∫

Rd

d

∑
i,j=1

aij ∂xi ψ(x) ∂xj ϕ(x) ρθ(x) dx +
∫

Rd

d

∑
i=1

bi(x) ∂xi ψ(x) ϕ(x) ρθ(x) dx

−
∫

H

∫
Rd

[
ψ(x + Pdζ)− ψ(x)−

d

∑
i=1
〈ζ, pi〉H ∂xi ψ(x)

]
ϕ(x) ρθ(x) dx νL(dζ)

(81)

17



for ψ, ϕ ∈ H1,θ(Rd), where

(82) bi(x) := −
θ ∑d

j=1 aijxj√
1 + ‖x‖2

for i = 1, . . . , d.

The coefficients bi(x) satisfy

(83)
∣∣bi(x)

∣∣ ≤ θ d max
j=1,...,d

∣∣aij
∣∣

and are therefore bounded on Rd.
We can now state a variational form of (75).

Theorem 3.9. The function Vd defined in (53) satisfies

(84) − 〈∂tVd(t, ·), ϕ〉L2,θ + a(Vd(t, ·), ϕ) = 0

for every ϕ ∈ H1,θ(Rd) and a.e. t ∈ (0, T), with terminal condition

(85) Vd(T, x) = G(x).

Proof. We first note that Vd(t, ·) ∈ H2,θ(Rd) and ∂tVd(t, ·) ∈ L2,θ(Rd) hold for every
t ∈ (0, T) due to Theorem 3.6. Starting with (75), partial integration yields

− 〈∂tVd(t, x), ϕ〉L2,θ

= −
d

∑
i,j=1

aij

∫
Rd

∂xi Vd(t, x) ∂xj(ϕρθ)(x) dx

+
∫

H

∫
Rd

[
Vd(t, x + Pdζ)−Vd(t, x)−

d

∑
i=1
〈ζ, pi〉H ∂xi Vd(t, x)

]
ϕ(x)ρθ(x) dx νL(dζ).

(86)

Using the product rule, we obtain

(87)
d

∑
j=1

aij∂xj(ϕρθ)(x) =
d

∑
j=1

aij∂xj ϕ(x) ρθ(x) + ϕ(x)
−θ ∑d

j=1 aijxj√
1 + ‖x‖2

ρθ(x).

Theorem 3.10. The bilinear form a defined in (81) is continuous and satisfies Gårding’s in-
equality. More precisely, there are constants C > 0, c1 ≥ 0, and c2 > 0 (possibly depending
on d) such that

|a(ψ, ϕ)| ≤ C ‖ψ‖H1,θ ‖ϕ‖H1,θ(88)
and

a(ψ, ψ) + c1 ‖ψ‖2
L2,θ ≥ c2 ‖ψ‖2

H1,θ(89)

hold for every ψ, ϕ ∈ H1,θ(Rd).
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Proof. First, we show continuity. From the definition of a, we obtain

|a(ψ, ϕ)|

≤
d

∑
i,j=1

∣∣aij
∣∣ ∫

Rd

∣∣∂xi ψ(x)
∣∣∣∣∂xj ϕ(x)

∣∣ρθ(x) dx +
d

∑
i=1

∫
Rd

∣∣bi(x)
∣∣∣∣∂xi ψ(x)

∣∣∣∣ϕ(x)
∣∣ρθ(x) dx

+
∫

H

∫
Rd

∣∣ψ(x + Pdζ)
∣∣∣∣ϕ(x)

∣∣ρθ(x) dx νL(dζ) +
∫

H

∫
Rd

∣∣ψ(x)
∣∣∣∣ϕ(x)

∣∣ρθ(x) dx νL(dζ)

+
d

∑
i=1

∫
H

∫
Rd

∣∣〈ζ, pi〉H
∣∣∣∣∂xi ψ(x)

∣∣∣∣ϕ(x)
∣∣ρθ(x) dx νL(dζ).

(90)

The Cauchy–Schwarz inequality yields

|a(ψ, ϕ)| ≤ max
i,j=1,...,d

∣∣aij
∣∣ d

∑
i,j=1

∥∥∂xi ψ
∥∥

L2,θ

∥∥∂xj ϕ
∥∥

L2,θ

+ max
i=1,...,d

∥∥bi
∥∥

L∞

d

∑
i=1

∥∥∂xi ψ
∥∥

L2,θ

∥∥ϕ
∥∥

L2,θ + 2
∫

H

∥∥ψ
∥∥

L2,θ

∥∥ϕ
∥∥

L2,θ νL(dζ)

+
∫

H

d

∑
i=1

∣∣〈ζ, pi〉H
∣∣∥∥∂xi ψ

∥∥
L2,θ

∥∥ϕ
∥∥

L2,θ νL(dζ).

(91)

Due to

(92)
∫

H
νL(dζ) < ∞ and

∫
H
‖ζ‖H νL(dζ) < ∞,

this proves (88).
For the proof of Gårding’s inequality, we start with the ellipticity property from

Theorem 3.8. For every ζ ∈ Rd,

(93)
d

∑
i,j=1

aij ζi ζ j ≥ c
d

∑
i=1

ζ2
i

holds, with a constant c > 0. Hence

c
∫

Rd

d

∑
i=1

∣∣∂xi ψ(x)
∣∣2 ρθ(x) dx ≤

∫
Rd

d

∑
i,j=1

aij ∂xi ψ(x)∂xj ψ(x) ρθ(x) dx

= a(ψ, ψ)−
∫

Rd

d

∑
i=1

bi(x) ∂xi ψ(x)ψ(x) ρθ(x) dx

+
∫

H

∫
Rd

[
ψ(x + Pdζ)− ψ(x)−

d

∑
i=1
〈ζ, pi〉H ∂xi ψ(x)

]
ψ(x) ρθ(x) dx νL(dζ).

(94)
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The same calculations as in the proof of continuity above yield

c
d

∑
i=1

∥∥∂xi ψ
∥∥2

L2,θ ≤ a(ψ, ψ) + C1

d

∑
i=1

∥∥∂xi ψ
∥∥

L2,θ

∥∥ψ
∥∥

L2,θ + C2
∥∥ψ
∥∥2

L2,θ

≤ a(ψ, ψ) + C1

( ε

2

d

∑
i=1

∥∥∂xi ψ
∥∥2

L2,θ +
d
2ε

∥∥ψ
∥∥2

L2,θ

)
+ C2

∥∥ψ
∥∥2

L2,θ ,

(95)

where we have used Young’s inequality in the last estimate. Choosing ε so small that

(96) C1
ε

2
≤ 1

2
c

and setting

(97) c1 =
C1d
2ε

+ C2 and c2 =
1
2

c

yields (89).

With the following two theorems, we show that Vd is indeed the unique solution
of the PIDE. We start with a lemma requiring stronger regularity hypotheses for G.
Afterwards, we give a result for arbitrary Lipschitz continuous payoffs.

Lemma 3.11. Suppose that G ∈ H2,θ(Rd) has bounded first and second derivatives. Then Vd
is the unique solution of (84), with terminal condition (85), in the spaceW(0, T) defined by

(98) W(0, T) :=
{

f : Rd → R : f ∈ L2(0, T; H1,θ), ∂t f ∈ L2(0, T; (H1,θ(Rd))′
)}

.

Proof. The bilinear form a is continuous and satisfies Gårding’s inequality by Theo-
rem 3.10. Therefore, the PIDE has a unique solution in the space W(0, T) by [37,
Thm. 26.1]. On the other hand, we know from Theorem 3.7 that Vd satisfies (84). It
remains to prove that Vd ∈ W(0, T).

Using the same notation as in the proof of Theorem 3.6, we have

(99) Vd(t, x) = e−rT
∫

Rd
G(x + y)gT−t(y)dy,

where gT−t ∈ S(Rd) is the density of PdZL(T − t). Consequently,

(100)
∫

Rd
V2

d (t, x)ρθ(x) dx ≤
∫

Rd

( ∫
Rd
(C1 + C2 ‖x‖+ C3 ‖y‖)gT−t(y) dy

)2
ρθ(x) dx.

Since ∫
Rd
‖x‖i ρθ(x) dx < ∞ (i ∈ {1, 2}),

∫
Rd

gT−t(y) dy = 1,(101)

and ∫
Rd
‖y‖ gT−t(y) dy = E

[
‖PdZL(T − t)‖

]
< ∞(102)
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hold for every t ∈ (0, T), this implies Vd ∈ L2(0, T; L2,θ(Rd)
)
. Moreover, we have

(103) ∂α
xVd(t, x) = e−rT

∫
Rd

∂αG(x + y) gT−t(y) dy

for every α ∈ Nd
0, |α| ∈ {1, 2}. Due to the boundedness of the derivatives of G, the

following holds:

(104)
∫

Rd

(
∂α

xVd(t, x)
)2

ρθ(x) dx ≤ C
∫

Rd

( ∫
Rd

gT−t(y) dy
)2

ρθ(x) dx = C
∫

Rd
ρθ(x) dx.

Consequently, Vd ∈ L2(0, T; H2,θ(Rd)
)
. Since Vd satisfies the PIDE (75), its time deriva-

tive ∂tVd can be expressed in terms of its first and second spatial derivatives. Thus, we
also have ∂tVd ∈ L2(0, T; L2,θ(Rd)

)
, and the proof is finished.

Theorem 3.12. Let G satisfy Assumption 3.4. Then Vd is an element of the space W(0, T)
defined in Lemma 3.11 and the unique solution of (84) with terminal condition (85).

Proof. The key of the proof is to approximate G with a sequence of smooth functions to
which Lemma 3.11 can be applied. To this end, let (ψn)n∈N ⊂ C∞

0 (Rd) be a sequence
of standard mollifiers with compact support. Define the convolution

(105) Gn(x) :=
∫

Rd
G(x− y)ψn(y)dy ∈ C∞(Rd), x ∈ Rd.

Since G is by assumption Lipschitz, and thus uniformly continuous, the following
uniform approximation property holds by [16, Thm. C.6]:

(106) ∀ε > 0 ∃N ∈N : |Gn(x)− G(x)| ≤ ε for every n ≥ N, x ∈ Rd.

Moreover, for every ξ ∈ Rd and every multiindex α ∈Nd
0, we have

|∂αGn(x + ξ)− ∂αGn(x)| ≤
∫

Rd
|G(x + ξ − y)− G(x− y)| |∂αψn(y)| dy

≤ KG ‖ξ‖
∫

Rd
|∂αψn(y)| dy.

(107)

Thus, in particular, the first and second derivatives of Gn are bounded for every n ∈N.
Now let

(108) Vn
d (t, x) := e−rTE

[
Gn(x + PdZL(T − t))

]
be the price function associated with payoff Gn. By Lemma 3.11, Vn

d ∈ W(0, T) is
the unique solution of (75) with terminal condition Vn

d (T, x) = Gn(x). Moreover,
the PIDE with terminal value G(x) also has a unique solution, which we denote by
Ṽd ∈ W(0, T). From [37, Thm. 26.1], we obtain

(109)
∥∥∥Vn

d − Ṽd

∥∥∥
L2(0,T;L2,θ)

≤ C ‖Gn − G‖L2,θ → 0 for n→ ∞.

21



On the other hand, by the proof of Lemma 3.11, we have Vd ∈ L2(0, T; L2,θ) for
every payoff G satisfying Assumption 3.4. Thus, using the notation from the proof of
Theorem 3.6, we get

‖Vn
d −Vd‖2

L2(0,T;L2,θ)

= e−rT
∫ T

0

∫
Rd

( ∫
Rd

(
G(x + y)− Gn(x + y)

)
gT−t(y)dy

)2
ρθ(x) dx dt

≤ e−rT
∫ T

0

∫
Rd

( ∫
Rd
|G(x + y)− Gn(x + y)| gT−t(y)dy

)2
ρθ(x) dx dt

→ 0 for n→ ∞.

(110)

Combining (109) and (110), we obtain Vd = Ṽd.

3.4 Convergence of finite-dimensional approximation

We are interested in the convergence of the finite-dimensional approximation Vd to
the true price function V. The fair price of the option is given by V(0, 0), since we
assume the Lévy process ZL starts in 0. In particular, we are looking for a pointwise
convergence result.

Theorem 3.13. Let µ1 ≥ µ2 ≥ ... ≥ 0 be the eigenvalues of the covariance operator CX defined
in (26). Then there exists a constant C > 0 such that

(111) |Vd(0, 0)−V(0, 0)| ≤ C

√√√√dim H

∑
l=d+1

µl .

Proof. By definition of V and Vd, we have

|Vd(0, 0)−V(0, 0)| = e−rT ∣∣E[G(ZL(T))− G(PdZL(T))
]∣∣

≤ e−rTE
[
KG ‖ZL(T)−PdZL(T)‖H

]
.

(112)

Since ‖·‖L1 ≤ C ‖·‖L2 for finite measure spaces, we may apply Theorem 3.3 to obtain

(113) |Vd(0, 0)−V(0, 0)| ≤ C
√

E
[
‖ZL(T)−PdZL(T)‖2

H
]
= C

√√√√dim H

∑
l=d+1

µl .

Depending on the properties of the covariance operator CX, bounds for the decay of
the eigenvalues µl can be found. To this end, we define the kernel

(114) K :

{
D× D → R,
(u, v) 7→ E

[
ZL(T, u)ZL(T, v)

]
,
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where as before D ⊂ Rm and H = L2(D, µD). Then K is indeed the kernel of the
covariance operator CX, since by Fubini’s theorem∫

D

∫
D

K(u, v)h1(u) µD(du) h2(v) µD(dv) = E
[
〈ZL(T), h1〉H 〈ZL(T), h2〉H

]
= 〈CXh1, h2〉H

(115)

for every h1, h2 ∈ H. Consequently,

(116) CXh1(·) =
∫

D
K(·, v)h1(v) µD(dv).

Moreover, K is an element of L2(D× D), since

∫
D

∫
D

K2(u, v) µD(du) µD(du) ≤
∫

D

∫
D

E
[
ZL(T, u)2]E[ZL(T, v)2] µD(du) µD(du)

= E
[
‖XL(T)− γL T‖2

H
]2

< ∞

(117)

by Theorem 2.2. We now give a result for the eigenvalue decay, depending on the
properties of K.

Theorem 3.14. Let D ⊂ Rm be a bounded Borel set and µD be the Lebesgue measure. If the
kernel K is piecewise Hk ⊗ L2 on D×D for a k ∈N, then there exists a constant C such that

(118) µl ≤ C l−
k
m for every l ∈ I.

Moreover, if the kernel K is piecewise analytic, then there are constants C1, C2 such that

(119) µl ≤ C1e−C2l
1
m for every l ∈ I.

Proof. These results are shown in [32, Props. 2.18 and 2.21].

Remark 3.15. A precise definition of “piecewise Hk ⊗ L2” as used in the hypothesis of The-
orem 3.14 is given in [34, Def. 3.1]. The hypothesis of Theorem 3.14 is fulfilled for the jump-
diffusion model if the drift γ, the volatility σ, the Brownian covariance operator Q, and the
jump-dampening factors η satisfy corresponding piecewise smoothness criteria.

4 Numerical methods

In this section, methods for the numerical solution of the European option pricing
problem are described. In particular, the computation of a suitable basis for the dimen-
sion reduction described in the previous section is addressed. Moreover, we give a give
a short overview of the techniques needed to solve the resulting finite-dimensional
PIDE.
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4.1 Computation of the POD basis

As we have seen in Section 3.1, the construction of a POD basis for X(T) can be
reduced to the eigenvalue problem

(120) CX pl = µl pl , l ∈ I,

with the covariance operator CX : H → H
′ ∼= H = L2(D, µD) defined in (26). In

general, the eigenvectors pl are not known analytically. However, it is possible to com-
pute good approximations numerically. For finite index sets D (basket options), the
solution of the symmetric eigenvalue problem can be performed by standard methods
(e.g., QR-algorithm). For all subsequent results, we will therefore assume the more
complicated setting that D ⊂ Rm is a bounded Borel set and µD is the Lebesgue mea-
sure. This holds, e.g., for electricity swaptions (with m = 1). In this case, some further
approximation is needed to obtain a finite-dimensional problem eventually. To this
end, we employ a finite element discretization and solve a projected eigenvalue prob-
lem. Convergence results for this technique can be shown under certain regularity
conditions on the covariance kernel K defined in (114). The general theory of Galerkin
approximations of Karhunen–Loève expansions is discussed in [32].

Let U∆x ⊂ H = L2(D, µD) be a finite element subspace with discretization parameter
∆x. For l = 1, . . . , dim U∆x, the Galerkin approximations (µ∆x

l , p∆x
l ) ⊂ R×Uh of the

eigenpairs (µl , pl) ⊂ R× H are, by definition, solutions of the following problem:

∀ϕ ∈ U∆x :
〈
CX p∆x

l , ϕ
〉

H
=
∫

D

( ∫
D

K(u, v)p∆x
l (v) µD(dv)

)
ϕ(u) µD(du)

!
= µ∆x

l

〈
p∆x

l , ϕ
〉

H
.

(121)

This is equivalent to the eigenvalue problem

(122) P∆xCXP∆x p∆x
l = µ∆x

l p∆x
l ,

where P∆x : H → U∆x is the projection operator onto the finite element subspace. The
operator P∆xCXP∆x is self-adjoint and compact due to the properties of the projection
and Theorem 2.4. The following theorem gives an error bound for the approximation
of ZL(T) obtained with this Galerkin method.

Theorem 4.1. Let the covariance kernel K defined in (114) be a piecewise smooth function.
Further, let U∆x ⊂ H be a finite element space of piecewise polynomials of degree q ∈ N,
where ∆x denotes the mesh width of the regular triangulation. Finally, let µl be the true
eigenvalues of the covariance operator CX, and let p∆x

l be orthonormal solutions of the projected
eigenvalue problem (122). Then there exists a constant C such that

(123) E
[∥∥∥ZL(T)−

d

∑
l=1

〈
ZL(T), p∆x

l
〉

H p∆x
l

∥∥∥2

H

]
≤ C∆x2q+1 +

dim H

∑
l=d+1

µl

holds for every d ≤ dim U∆x.
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Proof. The estimate is taken from [32, Prop. 3.3]. The necessary assumption [32,
Ass. 3.1] is satisfied due to the piecewise smoothness of the kernel and [34, Thm. 1.5]

Note that all the results from Sections 3.2 and 3.3 are still valid when we use (p∆x
l )d

l=1
instead of (pl)

d
l=1 if we replace Assumption 2.5 with the following hypothesis:

(124) 〈QLh, h〉H > 0 for every h ∈ span{p∆x
l , l = 1, . . . , d}\{0}.

In this case, we denote the unique solution of the corresponding finite-dimensional
PIDE (projected to span{p∆x

l , l = 1, . . . , d}) by V∆x
d .

Corollary 4.2. Let the hypotheses of Theorem 4.1 and (124) hold. Then there exists a constant
C > 0 such that

(125)
∣∣∣V∆x

d (0, 0)−V(0, 0)
∣∣∣ ≤ C

√√√√(∆x)2q+1 +
dim H

∑
l=d+1

µl .

Proof. The estimate follows from Theorem 4.1 by exactly the same arguments as in the
proof of Theorem 3.13.

4.2 Numerical PIDE solution

In this subsection, we give an overview of the numerical methods for solving the
finite-dimensional PIDE (75). We will not go into details about convergence results
for PIDE solvers but refer to recent literature instead. Finite difference methods for
integro-differential equations are analyzed, e.g., in [12, 30], finite elements and wavelet
compression techniques are described in [24, 36, 28].

Localization We consider the PIDE (75) whose spatial domain is the whole of Rd.
The first step towards a numerical solution is therefore the localization to a bounded
domain. To this end, we restrict the spatial part of the equation to a d-dimensional
cuboid

(126) ΩR := [−R1, R1]× [−R2, R2]× . . .× [−Rd, Rd].

This simple domain can be described by a single vector R = (R1, . . . , Rd) ∈ Rd. The
probabilistic interpretation of this truncation is that we price a barrier option whose
value is set to 0 if the process ZL leaves ΩR at any time before maturity. Under poly-
nomial growth conditions for the payoff function G, one can show that the truncation
error decreases exponentially with ‖R‖ (cf., e.g., [36, Thm. 3.3.2]). The error is of
course higher if the solution is evaluated closer to the boundary of ΩR.

Analysis of the dependence of the localization error on the truncation parameter in
one-dimensional problems shows that good results are achieved for R1 greater than a
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certain multiple of the standard deviation of the jump-diffusion process at time T (cf.,
e.g., [11, Fig. 12.1]). By construction of the POD basis (pl)

d
l=1, we have

(127) 〈CX pl , pl〉H = µl for l = 1, . . . , d.

Hence, the eigenvalues µl describe the variance in direction of the POD vectors. This
suggests an adaptive truncation strategy, setting

(128) Rl = C
√

µl , l = 1, . . . , d,

with a constant C > 0. This heuristic choice accounts for the decreasing variance
in the coordinate directions (compare Theorem 3.14). It results in smaller domains
ΩR (compared to cubic domains) and allows for more accurate discretization results
using the same number of grid points. We introduce artificial homogeneous Dirichlet
boundary conditions and set

(129) Vh
d (t, x) = 0 for every t ∈ [0, T], x ∈ ∂ΩR,

where ∂ΩR is the boundary of the domain.

Discretization We will solve the PIDE using a vertical method of lines; i.e., we first
discretize the spatial operators and apply some time stepping for ordinary differential
equations afterwards. Since we have already derived the variational formulation of the
PIDE in Theorem 3.9, we can directly apply a finite element method to approximate the
spatial derivatives in (84). Usually, finite elements have several advantages compared
to finite differences. In particular, they allow for an easy discretization of geometrically
complex domains, adaptive refinement, and higher-order approximations. Moreover,
the theory of weak solutions allows for lower regularity assumptions than the classical
differential operator.

However, in the specific setting of option pricing, these arguments are only partly
valid. First, we may choose the shape of our computational domain arbitrarily due
to localization. As described in the previous paragraph, we truncate the domain to a
d-dimensional cuboid. Second, we have already proven that Vd is a smooth classical
solution to (75). Moreover, despite the simple shape of the domain, a significant over-
head is needed to compute and store the geometric information about finite elements.

Hence, we apply finite differences for the numerical experiments in Section 5. We
define a regular but anisotropic grid Gα on ΩR. The grid is described by a multiindex
α = (α1, . . . , αd) ∈ Nd, and the mesh size in each coordinate is given by hi := 2Ri/2αi ,
i = 1, . . . , d. The grid contains the points

(130) x(β) :=
(
− Ri + βihi

)d
i=1 ∈ Rd, β ∈ {0, 1, . . . , 2α1} × · · · × {0, 1, . . . , 2αd}.

The corresponding discretized subspace is denoted by Uh
d ⊂ Ud ⊂ H. The partial

derivatives are approximated by central differences as follows:

∂xi Vd(t, x(β)) ≈ 1
2hi

[
Vd
(
t, x(β + ei)

)
−Vd

(
t, x(β− ei)

)]
,(131)
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where ei is the ith canonical unit vector. For the second derivatives, we have
(132)

∂xj ∂xi Vd(t, x(β)) ≈


1

4hihj

[
Vd
(
t, x(β + ei + ej)

)
−Vd

(
t, x(β + ei − ej)

)
−Vd

(
t, x(β− ei + ej)

)
+ Vd

(
t, x(β− ei − ej)

)]
, i 6= j,

1
h2

i

[
Vd
(
t, x(β + ei)

)
− 2Vd

(
t, x(β)

)
+ Vd

(
t, x(β− ei)

)]
, i = j.

The discretization of the nonlocal integral term will be addressed separately in the
next paragraph.

After applying the finite difference scheme for a sparse grid approximation in space,
the resulting system of ordinary differential equations is solved with an appropriate
time stepping scheme. Since the differential part of the PIDE is of parabolic type, we
choose a discontinuous Galerkin method of order 1 for this purpose. Details on the
topic (in particular error estimates) can be found in [33, Chap. 12]. Defining a partition
0 = t0 < · · · < tnT = T of [0, T], we calculate a solution in the space

(133) Sh
d := {v ∈ L2(0, T; Uh

d ); vχ[tm−1,tm) ∈ Π1(tm−1, tm; Uh
d ), m = 1, . . . , nT},

where Π1(tm−1, tm; Uh
d ) is the space of polynomials of degree at most 1 having values

in Uh
d . This method yields a stable algorithm, allowing for large time steps even in the

presence of convection terms.

Nonlocal integral terms One of the main difficulties when solving the PIDE is
the nonlocal nature of the integral term. In contrast to differential operators, this term
involves the solution on the whole of Rd. Since we have already introduced artificial
zero boundary conditions, the solution can easily be continued with 0 outside the
truncated domain ΩR. However, numerical quadrature formulas will in general lead
to full matrices. This is contradictory to the essential use of sparse matrices even for
problems on relatively low-dimensional spaces. An efficient way to reduce the number
of nonzero matrix entries is by using wavelet compression schemes. These make use of
the fast decline of entries corresponding to wavelet basis functions with larger distance
of their supports. Entries close to 0 are then discarded (cf. the references given at the
beginning of this section).

Wavelets are the method of choice if the jump distributions in the additive model (7)
cover large parts of the domain. However, the examples we are going to examine in
Section 5 are of type (2), i.e., Hilbert space-valued jump-diffusions with scalar driving
processes. Here, at every time t ∈ [0, T], jumps are restricted to one-dimensional
subspaces, spanned by ηk(t) ∈ H. If the number of driving jump processes is low, a
different approach is feasible, too. Instead of wavelet compression, direct numerical
quadrature (Gauß or Newton–Cotes method) can be applied. We will now have a
closer look at this specific case.

Let 0 = t0 < t1 < . . . < tNT = T, NT ∈ N, be the time discretization grid. It is
not necessary to compute the Lévy measure νL defined in (18) explicitly. Instead, we
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define measures

νL(tk, tl ; B) :=
1

tl − tk

∫ tl

tk

∫
H

χB
(
η(s, ξ)

)
ν(dξ) ds,(134)

νL(t; B) :=
∫

H
χB
(
η(t, ξ)

)
ν(dξ)(135)

for any B ⊂ B(H), 0 ≤ k < l ≤ nT and t ≥ 0. For each time step [tk, tk+1] in the
method of lines, we use integrals with respect to νL(tk, tk+1; ·), i.e., the equivalent Lévy
measure for the current time interval. We are looking for an approximation of the
integral

∫
H

[
Vd(t, x + Pdζ)−Vd(t, x)−

d

∑
i=1
〈ζ, pi〉H ∂xi Vd(t, x)

]
νL(tk, tk+1; dζ)

=
∫

H
Vd(t, x + Pdζ)νL(tk, tk+1; dζ)− λVd(t, x)

−
d

∑
i=1

∂xi Vd(t, x)
∫

H
〈ζ, pi〉H νL(tk, tk+1; dζ).

(136)

To reduce the computational effort for the method of lines, the time steps ∆t are chosen
rather large. In order to nevertheless achieve sufficient accuracy for the approximation
of the above integrals, additional substeps of each interval [tk, tk+1] are introduced. Let
ns ∈N be the number of substeps for each major time step. Then we have∫

H
Vd(t, x + Pdζ)νL(tk, tk+1; dζ)

≈ 1
ns

ns

∑
j=1

∫
H

Vd(t, x + Pdζ) νL
(
tk + j

tk+1 − tk

ns
; dζ
)

=
λ

ns

ns

∑
j=1

∫
H

Vd

(
t, x + Pd

[
η
(
tk + j

tk+1 − tk

ns
, y
)])

PY(dy)

(137)

for 0 ≤ k < nT. Similarly, we obtain

(138)
∫

H
〈ζ, pi〉H νL(tk, tk+1; dζ) ≈ λ

1
ns

ns

∑
j=1

∫
H

〈
η
(
tk + j

tk+1 − tk

ns
, y
)
, pi

〉
H

PY(dy).

The integrals with respect to PY can then be approximated with quadrature for-
mulas. This requires interpolation of the function at quadrature points, which are
not necessarily identical to grid points. Since we have assumed that jumps occur only
along a relatively small subspace of ΩR, only a small number of grid points is involved,
and the corresponding matrices remain sparse. The idea is illustrated in Figure 1 for a
single jump process, where PY is defined on R and the jumps are given by η(t)y ∈ H.

28



Fig. 1: Grid points (on full grid) involved in the numerical quadrature of jump term
integrals in the time interval [t1, t2].

Sparse grids Besides the nonlocality of the integral term, the exponentially increas-
ing computational complexity with increasing dimension d is the major numerical
problem when solving the PIDE. This curse of dimension can be broken by using sparse
grids. A comprehensive overview of this topic can be found in [8]. Figure 2 shows a
sparse grid in two-dimensional space.

In particular, we make use of the combination technique [26]. Thus, we use a stan-
dard PIDE solver on a series of full, regular, but anisotropic grids. Instead of using all
grids Gα with ‖α‖∞ ≤ M ∈N, only grids satisfying

(139) M ≤ ‖α‖1 ≤ M + d− 1

for some M ∈N are employed. Denote the approximation of Vd on the grid Gα by Ṽα
d .

An approximation ṼM
d , corresponding to a sparse grid solution, can then be obtained

by linear combination as follows:

(140) ṼM
d (x) :=

d

∑
k=1

(−1)k+1
(

d− 1
k− 1

)
∑

‖α‖1=M+d−k
Ṽα

d .

Since artificial zero boundary conditions are applied, grid points on the boundary ∂ΩR
do not have to be included.

Because of the anisotropic truncation of the domain introduced in (128), an equal
number of refinements in every coordinate would result in finer mesh widths for
coordinates which are in fact the least important ones. This mismatch can be remedied
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Fig. 2: Construction of sparse tensor product (left) and sparse grid without boundary
points (right) in R2.

by introducing additional constraints on the multiindex of grids used. In order to
achieve similar mesh widths, we demand

(141) αi ≤ M + ln
( Ri

R1

)
/ ln(2), i = 1, . . . , d,

which is equivalent to 2αi ≤ 2M Ri
R1

. Since this yields a set of grids different from the
one obtained by condition (139) alone, the corresponding coefficients in (140) have to
be modified. For a detailed presentation of how to choose coefficients in anisotropic
sparse grids, see [19].

5 Numerical experiments

In this section, we will examine the performance of the presented option pricing
method. To this end, both the dimension reduction and the PIDE solver have been
implemented in C++. The program was applied to test problems which are described
in detail below.

5.1 Test problems

Basket option The first test problem we consider is a basket option on 6 assets.
We use a jump-diffusion model similar to [38]. The corresponding Hilbert space is
H = (R6, 〈·, ·〉2), where 〈·, ·〉2 denotes the Euclidean scalar product. The 6-dimensional
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price process S = (S1, . . . , S6) satisfies the dynamics

(142)
dSi(t)
Si(t)

= rdt + σidWi(t) + η0
i d[N0(t)− λ0t] + η1

i d[Ni(t)− λit], i = 1, . . . , 6,

where r = 0.05 is the constant risk-free interest rate. The scalar-valued Brownian
motions Wi are supposed to be correlated with correlation matrix

(143) (ρij)
6
i,j=1 =



1 0.8 0.6 0.4 0.2 0
0.8 1 0.8 0.6 0.4 0.2
0.6 0.8 1 0.8 0.6 0.4
0.4 0.6 0.8 1 0.8 0.6
0.2 0.4 0.6 0.8 1 0.8
0 0.2 0.4 0.6 0.8 1

 .

We set the volatilities to σi = 0.2, i = 1, . . . , 6. The processes N0 and Ni are independent
Poisson processes with intensities λ0 = λi = 1, describing jumps common for all assets
and independent jumps for individual assets, respectively. The discounted value of
every asset is thus a martingale under the risk neutral measure. The relative jump
heights are set to η0

i = −0.2 and η1
i = −0.05. We can write the value of each asset as

the exponential of a Lévy process as follows:

Si(t) = Si(0) exp
{
(r− 1

2
σ2

i − η0
i λ0 − η1

i λ1)t + σiW(t)

+ ln
(
1 + η0

i (t)
)

N0(t) + ln
(
1 + η1

i (t)
)

Ni(t)
}

, i = 1, . . . , 6.
(144)

We choose the initial value Si(0) = 100
6 , i = 1, . . . , 6, and strike

(145) K = 100 · erT = E
[ 6

∑
i=1

Si(T)
]
.

The discounted price of the basket option with maturity T = 1.0 at time t ≤ T is

(146) V(t) = e−rTE
[( 6

∑
i=1

Si(T)− K
)+∣∣∣Ft

]
.

Electricity swaption The second problem is an instance of the example described
in Section 1, an option on an electricity swap. We use the exponential additive model
given in (2). The corresponding Hilbert space is H = L2([T1, T2], λ), where D = [T1, T2]
is the delivery period of the swap and λ is the Lebesgue measure. For the diffusive
part of the model, we use two factors, similar to as in [20]. The volatilities are given
by

(147) σ1(s, u) ≡ 0.15, σ2(s, u) = 0.3 e−1.4(u−s).
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Moreover, we assume additional normally distributed jumps, which yields a Merton
model. For the jumps, we use a compound Poisson process with intensity λ1 = 12 and
jump distribution Y ∼ N (0.1, 0.1). The additional factor for dampening the jumps is

(148) η1(s, u) = 0.5− 0.5
u− T1

T2 − T1
.

Since an electricity swap requires no payment before the delivery period starts, it is
a martingale under the risk neutral measure. Thus, we need the following drift term
(compare [11, Chap. 8.4.1]):

(149) γ(s, u) = −1
2

2

∑
i=1

σ2
i (s, u)− λ1

∫
R
(eη1(s,u)y − 1− η1(s, u)y)PY(dy).

The risk-free interest rate is assumed to be constant at r = 0.05. We consider a monthly
swap maturing in one year, i.e., T = T1 = 1, T2 = T1 + 30/365. The initial forward
curve at time t = 0 is S0(u) ≡ 50, u ∈ [T1, T2], and the strike is K = 50. It remains
to specify the discretization of the delivery period [T1, T2]. As we have a continuous
forward curve model, we may use an arbitrary number of discretization points. On
energy markets, monthly swaps on electricity are usually based on daily prices. Thus
we will use exactly n = 30 components. We will futher assume that there are 8 delivery
hours per day. Setting ui = T1 + (i− 1) T2−T1

30 for i = 1, . . . , 30, we obtain

(150) V(t) = e−rT · 8 · 30 · E
[(

30

∑
i=1

w(ui; T1, T2)S(T, ui)− K

)+ ∣∣∣Ft

]

for the discounted price of the swaption, without making any discretization error.

5.2 Results

Since no analytical solutions are available, a large number of Monte Carlo (MC) sim-
ulations were performed for each test problem to obtain a precise solution. All errors
were computed using these MC reference values. In order to make use of the easily
parallelized methods (MC simulation as well as the sparse grid combination tech-
nique), the experiments were run on a Linux workstation with 6 Opteron processors
at 2.7 GHz.

Results for basket option We first examine the number of POD components needed
to obtain a sufficiently good approximation. The eigenvalues µi of the covariance op-
erator CX defined in (26) are given in Table 1. They exhibit a strong decay, which is
not uncommon (also for real market data). The corresponding explained variability,
defined by ∑i

j=1 µj / ∑6
j=1 µj, is also shown in the table.

The computed POD components are displayed in Figure 3. They resemble those
known from fixed income markets. In particular, the first three basis vectors represent
the typical shift, tilt, and bend. Further components feature higher frequencies.
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i µi µi/µ1 Expl. var.
1 0.4490 1.0000 0.8096

2 0.0623 0.1389 0.9221

3 0.0177 0.0395 0.9541

4 0.0106 0.0237 0.9732

5 0.0079 0.0177 0.9875

6 0.0069 0.0154 1.0000

Table 1: Basket option – Eigenvalues and explained variability.

We now examine the errors of the PIDE method. The “exact” reference solution
used here is the result from 107 MC simulations with a standard deviation of 0.0063
(estimated from 100 MC series). It turns out that due to the stable discontinuous
Galerkin method, the mesh size for the time variable has little influence on the PIDE
results. Thus we do all computations with fixed, equidistant time steps of size ∆t = 1

10 .
The spatial grid, on the other hand, has considerable impact on the accuracy. Figure 4

displays the (signed) relative error for different dimensions d of the projected problem.
The number N := 2M is the maximal number of discretization points in one coordinate
and is always taken to be a power of 2. Two effects can be observed here. For each fixed
value of N, the method converges to a certain limit when the dimension of the problem
is increased. These limits, in turn, converge to the exact solution with increasingly fine
meshes. Thus, we might accidentally get a very precise result for a low-dimensional
computation on a coarse grid if the two errors (from dimension and mesh) happen to
cancel each other. In practice, both the dimension and the number of grid points have
to be chosen large enough in order to guarantee a precise result. In our case, d = 4 and
N = 28 are sufficient to obtain relative errors below 1%. Approximating the basket
value with a log-normal distribution (Lévy approximation), on the other hand, yields
a relative error of 3.1%.

Finally, we have a look at the computational time needed for the PIDE method. To
this end, we fix N = 29 and plot the error for various dimensions. Figure 5 displays the
results; both y-axes (for time and error) have a logarithmic scale. The error decreases
approximately exponentially with increasing dimension. The computational time, on
the other hand, increases exponentially. Note that the solution of the problem without
dimension reduction takes approximately 2 minutes, even though we use the sparse
grid combination technique. However, the increase of the projected problem dimen-
sion d by one increases the computational effort by only a factor of 4 to 5, despite the
fact that we use up to 29 = 512 grid points in each coordinate. A reasonably precise
solution (in practice within the bounds of the model error) can be computed within
a few seconds. While this is slightly faster than the MC method, it is not an extreme
gain. The computational effort might be greatly reduced by using more sophisticated
grids, featuring more grid points around the origin and fewer close to the boundary
of the domain, which we will not consider here.
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Fig. 3: Basket – The first four POD basis components.
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Fig. 4: Basket – Relative error of PIDE method with different meshes.
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Fig. 5: Basket – Relative error and computational time of PIDE method with at most
N = 29 grid points per coordinate.

Results for electricity swaption In the test case for electricity swaptions, two
POD basis components are already sufficient to explain almost 100% of the volatility,
and the sum of the remaining eigenvalues satisfies ∑∞

i=3 µi ≈ 0. This is of course due
to the strong correlation between the price changes for different maturities u ∈ [T1, T2],
which makes the dimension reduction technique a particularly well suited method for
this type of derivative. The forward curve defined on the delivery interval does not
change its shape arbitrarily. The two POD components accurately describe the possible
shape changes in our (rather simple) test setting. We are thus able to compute accurate
prices by solving a two-dimensional PIDE.

Figure 6 displays the relative error and time of the PIDE method for different mesh
widths. As was to be expected, the computational effort increases exponentially in the
number of grid refinements (and thus linear in the total number of grid points). The
relative error decreases exponentially. However, in contrast to the basket option, a very
accurate solution can be computed for the electricity swaption within a fraction of a
second. This is made possible by the very efficient dimension reduction from n = 30
to d = 2.

A comparison of the PIDE method, MC simulation, and the log-normal approxima-
tion is displayed in Figure 7. The log-normal approximation yields a relative error of
3.5%, which is by far the largest of all the methods. MC simulation yields very good
results for 106 runs and above. However, with n = 30 it takes considerably longer than
in the case of the 6-dimensional basket. The standard deviation after 106 simulations
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Fig. 6: Swaption – Relative error and computational time of PIDE method for dimen-
sion d = 2.

is 0.4667 (estimated from 100 MC series). The PIDE solver is indeed the fastest and
most accurate method for this second test problem.

6 Conclusion

In this article, numerical pricing of European options in Hilbert space-valued jump-
diffusion models is discussed. We have presented a feasible approach employing PI-
DEs and a dimension reduction method based on Karhunen–Loève expansion. The
PIDE can be projected to an approximating low-dimensional equation by solving an
eigenvalue problem. Existence, uniqueness, and convergence of the approximating
solutions have been shown based on the variational formulation of the PIDE. The nu-
merical solution of the problem is based on a sparse grid combination method for
spatial discretization and a discontinuous Galerkin time stepping method.

Numerical experiments have been performed for two applications: an electricity
swaption and a basket option. The swaption can be priced very efficiently with the
presented algorithm, which gives more accurate results in less time than MC simula-
tion. For the basket option, the PIDE method yields comparable performance to MC
simulation, depending on the correlation of the assets. Using PIDEs, however, should
have considerable advantages when pricing path-dependent options or options driven
by infinite activity Lévy models, both topics for future research. In addition, future
work will be concerned with adaptive and graded grids, further improving the per-
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formance of the method.
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