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AN EXTENSION OF THE NEMHAUSER-TROTTER THEOREM TO
GENERALIZED VERTEX COVER WITH APPLICATIONS*
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Abstract. The Nemhauser—Trotter theorem provides an algorithm which is frequently used as
a subroutine in approximation algorithms for the classical VERTEX COVER problem. In this paper
we present an extension of this theorem so it fits a more general variant of VERTEX COVER, namely,
the GENERALIZED VERTEX COVER problem, where edges are allowed not to be covered at a certain
predetermined penalty. We show that many applications of the original Nemhauser—Trotter theorem
can be applied using our extension to GENERALIZED VERTEX COVER. These applications include a
(2—2/d)-approximation algorithm for graphs of bounded degree d, a polynomial-time approximation
scheme (PTAS) for planar graphs, a (2 — 1glgn/21gn)-approximation algorithm for general graphs,
and a 2k kernel for the parameterized GENERALIZED VERTEX COVER problem.
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1. Introduction. Given a graph G = (V, E) with vertex weights, the classical
VERTEX COVER problem asks to find a minimum weight subset of vertices S C V
that covers all edges in G, i.e., a subset S with SNe # () for all e € E. The VERTEX
COVER problem is one of the most well studied problems in theoretical computer
science and discrete mathematics in general, dating back to Konig’s classical early
1930s result [20] and probably even prior to that. In 1972, Karp listed the decision
version of VERTEX COVER in his famous list of initial 21 NP-complete problems [18].

One of the most well known results about VERTEX COVER is the half-integrality
of the LP-relaxation of the standard integer programming formulation of VERTEX
COVER (see, e.g., [22]). This result directly implies a 2-approximation algorithm for
vertex cover (as observed by Hochbaum [14]). In 1975, only three years after the
publication of Karp’s famous NP-complete list, Nemhauser and Trotter published
their seminal paper [23] in which they present a reduction that reduces the problem
of finding a vertex cover in an arbitrary graph G to that of finding a vertex cover in
a subgraph of G whose total weight is not much more than the weight of any of its
vertex covers. This reduction is based on the half-integrality of VERTEX COVER, and
it adds additional structure to the VERTEX COVER problem in general. Indeed, after
applying the Nemhauser—Trotter reduction, one can use the total weight of the graph
as a yardstick for analyzing approximate solutions rather than use the weight of the
optimal solution of which there is rarely any knowledge. Below is a precise statement
of the Nemhauser—Trotter theorem:
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THEOREM 1 (Nemhauser and Trotter [23]). Let (G,w) be an instance of VER-
TEX COVER, with G = (V,E) and w : V — QZ°. Then there is a polynomial-time
algorithm that partitions the vertices of G into three subsets, V1, Vo, and Vi/,, such
that

(i) if Sy, is an a-approzimate solution for (G[Vis,],w), then Vi U Sy, is an a-

approximate solution for (G,w) for all a > 1, and

(ii) the w-weight of any vertex cover in G[Viy,] is at least % Evevlﬂ w(v).

The first condition of the theorem implies that we can restrict our attention to
G[Viy,], ignoring vertices of Vi and Vp in G. The second condition of the theorem
implies that finding a vertex cover of G[Vi.,] that is properly contained in Vi, is
guaranteed to give a vertex cover of G whose weight is strictly less than twice the
optimum.

It is important to note that the vertex sets Vy, Vis,, and Vi correspond to the
values given to the variables by some half-integral optimal solution z* to the LP-
relaxation of vertex cover. Namely, V; = {u : 2z} = i} for every i € {0,1/2,1}.
It is not hard to verify that property (ii) of Theorem 1 follows directly from the
half-integrality of the optimal solution x*. Moreover, property (i) holds for every
LP-based approximation algorithm since the optimal fraction solution of G[Vi/,] is
(1/2,...,1/2). Nemhauser and Trotter [23] proved that taking V; into the solution is a
local optimization step, namely, that even a non-LP-based approximation algorithm
may be used to augment V.

The Nemhauser-Trotter theorem is an essential part of Hochbaum’s (2 — 2)-
approximation algorithm for graphs of bounded degree d [15] and of the (2 —
lzgllgg:)—approximation algorithm for general graphs given in [3]. In fact, many
known approximation algorithms for VERTEX COVER and its special cases use the
Nemhauser—Trotter theorem as a subroutine. Two other good examples are the
polynomial-time approximation schemes (PTASs) of Lipton and Tarjan [21] and
Baker [1] for VERTEX COVER in planar graphs,’ where one finds an optimal solu-
tion in a large fraction of the graph and adds all remaining vertices to get a solution
for the entire graph. We mention also Chen, Kanj, and Jia [8] who observed that
the Nemhauser—Trotter theorem gives a 2k kernel for the parameterized variant of
VERTEX COVER in the parameterized complexity setting when the parameter taken
is the total weight of the required vertex cover (see also [9]).

In this paper we focus on a natural generalization of VERTEX COVER, which can
be thought of as the prize-collecting version of the problem. In this variant, each edge
in the given graph is allowed to be left uncovered at a certain predetermined penalty.
Thus, the input now consists of a graph with vertex and edge weights, and the goal
is to minimize the total weight of vertices selected to a solution plus the total weight
of edges not covered by the solution. Observe that this is in fact a generalization of
VERTEX COVER, since we return to the original problem by setting all edge weights
to co. We call this generalization of VERTEX COVER the GENERALIZED VERTEX
COVER problem.

GENERALIZED VERTEX COVER:

Instance: A graph G = (V, E) and a weight function w : VU E —
Q=°.

Solution: A subset S of V.

Measure: cost(S) = }_,cqw(v) + 3 ccp ons—p W(e)-

1Baker’s algorithm [1] originally did not use the Nemhauser—Trotter theorem, but adding it as a
preprocessing step makes the analysis somewhat simpler.
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The first to consider GENERALIZED VERTEX COVER was Hochbaum [16], who
provided a 2-approximation algorithm and also pointed out that GENERALIZED VER-
TEX COVER is polynomial-time solvable in bipartite graphs. The time complexity of
this algorithm was later improved in [4], where a d-approximation algorithm for GEN-
ERALIZED VERTEX COVER in d-hypergraphs was given as well. Hassin and Levin [12]
studied a problem that extends GENERALIZED VERTEX COVER to one in which one
pays a penalty for not covering an edge and a smaller penalty for covering an edge only
by one of its endpoints. They presented a 2-approximation algorithm for this prob-
lem. We further note that other prize-collecting covering problems were also studied
extensively in the literature. This includes the paper by Hassin and Tamir [13] who
considered the prize-collecting variant of the FACILITY LOCATION ON THE REAL LINE
problem, and the work of Goemans and Williamson [11] who presented approximation
algorithms for the prize-collecting versions for TRIANGLE INEQUALITY TRAVELING
SALESMAN and STEINER TREE. See also [7, 17] for other prize-collecting facility
location problems.

Due to the importance that the Nemhauser—Trotter theorem plays in designing
approximation algorithms for VERTEX COVER and its special cases, a natural question
to ask is whether a similar theorem can be found for GENERALIZED VERTEX COVER.
Observe that the theorem does not carry on immediately to the more general case
due to the different way that the edges now come into play; in fact, this poses a
difficulty even in stating the theorem for the more general case. The main result of
this paper overcomes these difficulties and gives an affirmative answer to the question
above by proving a slightly different variant of the Nemhauser—Trotter theorem, which
is essentially the same for most algorithmic applications. The following is a precise
statement of our result.

THEOREM 2. Let (G, w) be an instance of GENERALIZED VERTEX COVER, with
G=(V,E)andw:VUE — Q2°. Then there is a polynomial-time algorithm that
partitions the vertices of G into three subsets, V1, Vo, and Vi, and constructs another
weight function w : V UE — Q2° such that

(i) if Sy, is an a-approzimate solution for (G[Vis,],w), then Vi U Sy, is an -
approzimate solution for (G,w) for all a > 1, and

(ii) the w-cost of any subset S C Vi, is at least %Z'Uevl/2 w(v).

Observe the difference in the second condition of the theorem which is necessary
since any subset of vertices is a potential solution in GENERALIZED VERTEX COVER.
This is what makes the proof of the theorem in the generalized case more challenging.
Another challenge is that as the edges in GENERALIZED VERTEX COVER play a
different role, we are not guaranteed the combinatorial structure provided by the
original theorem. For instance, in the original theorem the subset V{ in the partition
had to be an independent set, as otherwise any vertex cover had to include at least one
vertex from Vj. In our case we can never require such a condition; we must assume
that there can be an edge between any pair of vertices in V. Furthermore, in the
original theorem, it is clear that Vi must separate Vp from Vi, in G. Again, in our
case this is not necessarily so, which makes the reduction more difficult since we insist
that the resulting subgraph be induced, i.e., obtained only by deleting vertices, a fact
that allows carrying on hereditary properties of G through the reduction.

With the help of Theorem 2, we can show that many algorithms for VERTEX
COVER which use the Nemhauser—Trotter theorem as a subroutine can be modified so
that they apply also for the more general case. In particular, we obtain the following
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new results for GENERALIZED VERTEX COVER as almost immediate corollaries of
Theorem 2:

1. a (2 — 2/d)-approximation algorithm for graphs of bounded degree d,

2. a PTAS for planar graphs,

3. a (2 —1glgn/21gn)-approximation algorithm for general graphs,

4. a 2k kernel for the parameterized version of GENERALIZED VERTEX COVER.

The reader should not be misled into thinking our results imply that VERTEX
COVER and GENERALIZED VERTEX COVER are in fact the same in any graph class.
To see that this is not so, note that while VERTEX COVER is polynomial-time solvable
in complete graphs, GENERALIZED VERTEX COVER in complete graphs is essentially
as hard to approximate as VERTEX COVER in any general graph (and thus it cannot
be approximated within 10v/5 — 21 a 1.36, unless P=NP [10]). This can be seen
by the following reduction from VERTEX COVER in general graphs to GENERALIZED
VERTEX COVER in complete graphs: Given a graph G, transform G into a complete
graph G’ by adding all necessary edges, and assign a weight to these edges such that
their total weight is substantially smaller than the weight of any vertex in the graph.
All original edges are assigned a weight of oo, and the vertex weights remain the
same. It is not difficult to see that any a-approximate vertex cover for G is also an
(o + €)-approximate generalized vertex cover of G’ for any € > 0 as small as we want
and vice versa.

Our work is also related to the recent work of Kénemann, Parekh, and Segev [19],
who presented a reduction from partial covering to prize-collecting covering, or in
our context, from PARTIAL VERTEX COVER to GENERALIZED VERTEX COVER.
The PARTIAL VERTEX COVER problem is another natural generalization of VER-
TEX COVER, where now the goal is to find a minimum weight subset of vertices
that covers a prespecified number of edges in the graph. Koénemann, Parekh, and
Segev [19] showed how to transform a specific class of a-approximation algorithms for
GENERALIZED VERTEX COVER into (3a + €)-approximation algorithms for PARTIAL
VERTEX COVER. The algorithm in our Theorem 2 can be used in conjunction with
an algorithm from this specific class that works under the assumption that the cost
of any generalized vertex cover is at least half of the total weight of the vertices,
and so Theorem 2 combined with the work of Kénemann, Parekh, and Segev gives
a more refined reduction from PARTIAL VERTEX COVER to GENERALIZED VERTEX
COVER.

The rest of the paper is devoted to proving Theorem 2 along with all of its
applications mentioned above. In the next section, we discuss some preliminaries
necessary for our proof, and in particular, we review the local-ratio method which
plays an important part in many of our results. In section 3 we provide all details
of the proof of Theorem 2, and in section 4 we discuss all applications mentioned
above.

2. Preliminaries. In this section we discuss notation and previous work that is
necessary for presenting our results. In particular, we introduce terminology that is
used for proving Theorem 2 and briefly review the local-ratio technique which we use
throughout the paper.

We consider throughout the paper graphs that have weights assigned to their
vertices and edges. Let G = (V| E) be a graph given along with a weight function
w:VUE — Q2° For any edge {u,v} € E, we write w(u,v) as a shorthand for
w({u,v}). For a subset of vertices S C V, we let w(S) = >, cgw(v), and for a pair
of subsets 51,52 C V, we use w(S1, S2) for the weight of edges with one endpoint in
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S1 and one endpoint in Sy (edges whose endpoints are in S; N Sy are counted only

once); namely,
w(S1, S2) = Z Z w(u,v) — Z w(u,v) .

uES] vESy {u,v}gSlﬂS2

Note that w(S, S) stands for the total weight of edges in G[S]. Observe that the cost
of a subset S C V in G is

cost(S) = w(S) +w(V\S,V\S).

Let opt(G,w) denote the cost of the optimal generalized vertex cover in (G, w). For
an o > 0, we say that S is a-approzimate if cost(S) < a - opt(G,w). Also, we call
any subset S C V feasible if it has cost less than oo.

The local-ratio technique [3] is central in our proof of Theorem 2 and is also used
in its applications. The technique in most part is based on the local-ratio lemma,
which in our terms can be stated as follows.

LEMMA 1 (local-ratio [3]). Let (G,wi) and (G,ws) be two instances of GEN-
ERALIZED VERTEX COVER, with G = (V,E) a graph and wy,ws : VUE — Q=°
two weight functions. If S C'V is an a-approzimate solution both in (G,w1) and in
(G,ws), then S is also an a-approzimate solution in (G, w; + wa).

A typical local-ratio algorithm is recursive. In each recursive step, it defines a
weight function w; in such a way that we = w — w; still assigns nonnegative weights
to all elements, and at least one element with nonzero weight with respect to w gets
zero weight with respect to wo. The algorithm then recursively solves the instance of
the problem with ws as the given weight function and fixes the returned solution, so
it is a good approximate solution with respect to both w; and ws. By the local-ratio
lemma, this solution is guaranteed to be a good approximation with respect to w as
well. The following definition hints on how to select a good weight function.

DEFINITION 1 (a-effectiveness [2]). A weight function wy is said to be a-effective
in G if the following holds: If a subset of vertices is feasible, then it is also «-
approrimate with respect to ws.

Below we give a variation of the local-ratio lemma which uses the notion of a-
effectiveness and is the variation that will actually be used in the paper. Its proof is
immediate from the local-ratio lemma and the definition of a-effectiveness and is left
to the reader.

LEMMA 2. Let (G,w) be an instance of GENERALIZED VERTEX COVER, and let
we be a weight function which is a-effective in G. If S is a B-approrimate solution
for (G,w — we), then S is a max{«, 8}-approximate solution for (G,w).

3. The main proof. In this section we present the central result of this paper,
namely, the proof of Theorem 2. Our proof consists of two main steps: In the first,
similar to the proof of the original Nemhauser—Trotter theorem, we obtain an initial
partition of the vertices of our graph G into three classes according to an optimal
solution for an appropriate bipartite graph constructed from G. However, unlike the
original proof, in our case we can have edges between all classes and inside each
class. We show that the only really problematic edges are those that are between
two particular classes. These edges are taken care of in the second step by several
applications of the local-ratio lemma, at the end of which we obtain our desired
partition of the vertices of G and the desired weight function w. Before describing
both steps in actual detail, we start with the following lemma which will later be used
in our proof but is also of independent interest.
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LEMMA 3. GENERALIZED VERTEX COVER is polynomial-time solvable in bipar-
tite graphs.

Proof. Let B = (V,V', F) be a bipartite graph, and let w : VUV’ U F — Q=°
be a weight function. Construct a flow-network N from B by adding to B a source s
and a destination ¢, with s connected to all vertices in V' and vertices in V'’ connected
to t. Define the capacities of the edges in N by the following:

e ¢(s,v) =w(v) for all v € V|

o c(u,v) = w(u,v) for all {u,v} € F, and

o ¢(v,t) =w(v) for allv € V.

Observe that there is a one-to-one correspondence between edges in B and s, t-
paths in N and that the edges on an s,t-path in N correspond to the three ways
of covering the corresponding edge in B: either adding one of its endpoints to the
generalized vertex cover or not covering this edge at all. Specifically, given a subset
U C VUV’ the corresponding s, t-cut is (S, T'), where S = {s}U(V\U)U(V'NU) and
T = {t}U(VUV’)\ S, and conversely, given an s, t-cut (S, T), the corresponding cover
isU=(SNV)U(TNV) (see Figure 1). Hence, there is a one-to-one correspondence
between generalized vertex covers in B and s, t-cuts in V. Moreover, by our selection
of capacities, each generalized vertex cover corresponds to an s, t-cut whose capacity is
equal to the cost of the cover. Since one can compute minimum s, t-cuts by standard
flow techniques, the lemma is proven. d

F1a. 1. A bipartite graph and the corresponding network: The dotted line represents an s, t-cut;
the thick edges that cross the s,t-cut correspond to the cover {vl, vg,v&}.

3.1. Step I. Given an instance (G, w) for GENERALIZED VERTEX COVER, with
G = (V,E) and w : VUE — Q2° we construct a bipartite graph B = (V, V', F)
along with a weight function wg : VUV’/UF — Q2° for B, as follows: The set V'
contains a duplicate vertex for each vertex in V and is defined by V' = {v'|v € V'}.
The set F' of edges in B includes the pair of edges {u,v'} and {u/,v} for each edge
{u,v} € E. We define wg by wg(v),wp(v') = w(v) for all v,v' € VUV’ and by
wp (U, v),ws(u,v') = w(u,v) for all {u,v'},{v/,v} € F. Here, and throughout the
remainder of this section, we denote by S’ the set of duplicates of some subset S C V.
That is, S’ = {v' |v € S}.

We next compute an optimal solution Sj in B using the algorithm implied by
Lemma 3. According to the computed solution S, we partition V into the following
three subsets:

Ur={v|v,v" €S}, Up={v|v,v' €Sp}, and Uyp=V\ (U1 UUy).
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We first show that we may assume that Sj does not include any vertices of U{/Q,
namely, that Sp N Ul’/2 = 0.

Cram 1. costp(Uy UU] UUy,) < costp(Sh).

Proof. By a simple manipulation of the cost of S§ in (B, wg), we get

costp(Sp) = wp(Sg) +wp(Uy Uy, \ S5, Uy U 1'/2 \ S%)
> wp(SE) + wp(Uo, Ug) +wp(Uo, Ulj, \ Sp) +wp(Ug, Uy, \ Sp).

Thus, since wp(Uo, Ui, \ Sg) +wp(Up, Uy, \ Si) = wi(Uo, Uy),), we have
costp(Sg) > wi(SE) + we (U, Uy) + wp(U, Ull/z) = costp(U; UU U U1/2),

and the claim is proven. O

Next, using the simple observation given by Claim 1, we show that we are on the
right direction with our initial partition of the vertices of G, since there is an optimal
solution which includes all vertices of U; and no vertex of Uj.

CramM 2. There is an optimal solution S for (G,w), with Uy C S and
UpNS =0.

Proof. Let S be any subset of vertices in G, and let S, = U, NS for z € {1,1/2,0}.
Also, let T =V \Sand T, = U, \ S, for z € {1,1/2,0}. To prove the claim, we
argue that the solution Uy U Sy, does not have greater cost than S. The claim then
immediately follows by taking S to be optimal.

For this, consider the difference between the cost of S and the cost of Uy U Syy,.
The only advantage the former has over the latter is that it does not pay for any
vertex in 77 nor for any edge between Sy and Uy U T1/,—all elements which are paid
for by U1 US1/,. However, S has to pay for all vertices in Sp and all edges between 11
and T', while U; U Sy/, does not. (See depiction in Figure 2a.) Since this is the only
difference between the two solutions, we have

costg(S) — costg (U U Syy,) = w(So) + w(T1,T) — w(T1) — w(So, Up UTy,).

Now, let us construct a solution Sg for the bipartite graph B = B(G) described
above, defined by Sg = (V' \Tp)US], and let us compare this solution to S5. Claim 2
implies that there is no loss of generality in assuming that S = Uy U Uy, U U, e,
that S% does not include any vertices of U; Jo Now Sp does not pay for any vertex
in 77, while S% does, nor does it pay for any edges between Sy and U} U Ul’/27 all
of which are paid for by S%. On the other hand, Sj does not pay for any vertex

S Ui U S1/2 SB SE
El \ N N
PR N ! ’
Ul *\ U1 k U1 \ U1 U1 [J1
Uiz = Ui/ A Uij2 \\ U{/2 Uij2 U{/z
B 4 -
¥ T« ’ ’
Uo vo |23, Uo 33 Uo U}
S T S T S|T s’ T S|T s’ T

(a) (b)

FIG. 2. Depiction of differences between (a) S and U1 U Si/; and (b) between Sp and Sg; the
dotted lines correspond to edges that are not covered by one cover but are covered by the other.
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in Sp nor for any edge between 7] and Ty. (See depiction in Figure 2b.) Noting
that this is the exact difference between their costs and that all weights are positive,
we get

costp(Sp) — costp(SE) = wr(S) +wp(T1, To) — wp(T) — wp(Se, Uy U U ),)
w(So) + w(Ty, To) — w(T1) — w(So,Uo U Uyy,)
w(So) +w(Ty,T) —w(Ty, Ty UTy,)
—w(T1) — w(So, U U Tyy) — w(So, Siy,)
= costg(S) — costg(Ur U Sy,)

—w(T1, Ty UTy,) —w(So, Siys,)
< costg(S) — costg (U U Siy,).

As S% is optimal in B, we know that costg(Sp) — costg(S5) > 0. Hence, cost(S) —
cost(Uy U Sij,) > 0, and so the claim is proven. a

Claim 2 implies that we can safely restrict ourselves to solutions for (G, w) which
include all vertices of U; and no vertex of Uy. Therefore, all edges which have at
least one endpoint in U; are redundant to us in this sense. Also, edges with both
endpoints in Uy are redundant, since we can safely leave these uncovered. The same
is not true for edges between Uy and Uy, as these still might need to be covered.
We take care of these edges in the second step of our algorithm, but for now consider
the graph H obtained by deleting all edges between vertices of Uy in the induced
subgraph G[UyUU.,] of G. Define a weight function wy for H which equals w on all
edges of H and all vertices of Ui/, and assigns oo to all vertices in Up. In the following
we argue that a good approximation for (H,wpy) gives a good approximation for
(G, w).

CramM 3. If S is a-approximate for (H,wg), then Uy U S is a-approzimate for
(G,w).

Proof. Let S}; denote an optimal solution in (H,wy), and assume without loss
of generality that costy(S};) < oco. Then costy(S) < a - costy(S}) < co. Now,
according to Claim 2, there is an optimal solution for (G, w) which includes all vertices
of U; and no vertex of Uy, so let S* be such a solution, with S’{‘/2 = SN Uy, and

= Uy \ 57),. Hence,

1/2
costg(U; U S) = w(Ul) w(Uo, Ug) + costg (S)
w(Ur) +w(Uo, Up) + o - cost g (SF)
§ a - (w(Ur) + w(Uo, Uo) + costp (S1),))
= a - (w(Ur) +w(Uo, Uo) +wr (S),) + wa(Up UTY,, U UTY),))
= a- (w(Ui) +w(Uo, Uo) +w(S7),) + w(lUo UTY,,Ug UTY),))

= « - costg(S™),

and the claim is proven. O

Furthermore, we show that the total weight of elements in H with finite weight
is at most twice the cost of any solution of (H,wg).

Cram 4. wy(Uip) +wp (Uo, Uspy) < 2 costy (S) for every S C Uy U Uyy,.

Proof. If S ¢ Uy, then costy(S) = oo, and the claim is trivial. Assume,
therefore, that S C Uy, and denote T = U/, \ S. Consider the solution Sp =
Uy UU; USUS for the bipartite graph B constructed above. The cost of this
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solution is

costp(Sp) =wp(Uy UUT) +wp(SUS") +wp(Ug UT,USUT")
=2-w(U;)+2-w(S)+w(Uo,Up) + w(T,T)+ 2 - w(U,T)
=2-w(Uy) 4+ 2-costy(S) +w(Uy, Up) — w(T,T).

Now let us compare this solution to S}, the optimal solution of B. Recall that we
can assume that U, € S and S;NUY )= (). The cost of S3; equals the total weight
of its vertices plus the total weight of all edges between Uy and Uj U U] /,- We have

costp(Sp) =2 - w(Ur) +w(Uy,) +w(Uo, Uo) + w(Uy, Uys).

The claim can now be easily proven by combining the two equalities above with the
fact that costp(Sy) < costp(Sg). O

3.2. Step II. Note that while the instance (H,wpg) is close to what we aimed
to achieve, it is not quite there. One reason is that H is not an induced subgraph
of G; it contains vertices of Uy without the edges between them. Another reason is
that the Uy vertices have wy-weight equal to oo, and therefore, any feasible solution
for (H,wpy) will not satisfy the second condition of Theorem 2. We cannot simply
discard these Up vertices, since some of them might be connected to vertices in Uy,.
For this reason, we apply the local-ratio lemma to eliminate edges between Uy and
Ui/, This is done by applying the following procedure that iteratively subtracts
l-effective weight functions from wyg, in order to obtain the weight function w
promised by Theorem 2.

While there is an edge eg = {u,v} in H with u € Uy, v € Uy, and
wp(eo), wr(v) > 0, do:
a. Let £ = min{wg (eg), wr (v)}.
b. Define the weight function w, for H by:
— w:(v),we(ep) = €, and
— we(x),we(e) =0 for all z # v and e # ¢g.
C. WHg = WH — We.

The above procedure terminates in polynomial time, since at each iteration, either
a vertex or an edge gets its wy-weight reduced to zero. The weight function w is
defined to be wy at the end of the procedure. We define the partition of the vertices
in G which is promised in Theorem 2 using w as follows:

V1=U1U{U€U1/2|@(’U)=0}, Vo = Uy, and V1/2=V\(V1U‘/b).

To complete the proof, we argue that a good approximation for (G[Vi/,],w) gives
a good approximation for (H,wp) and that w(Vi/,) is at most twice the cost of any
solution for (G[Vi),], w).

Cram 5. If S is a-approvimate for (G[Vis,],w), then S U {v|w(v) = 0} is
a-approzimate for (H,wg).

Proof. We prove the claim by using induction on the number of steps applied in
this procedure. According to Lemma 2, it suffices to show that any weight function
w, subtracted in the procedure above is 1-effective. But this is immediate since any
solution with cost less than oco in (H,w.) has cost exactly e: It pays either for not
covering the edge eg or for its endpoint in Ui/, but never for both. Finally, since
G[Vi),] is obtained by removing vertices from H with either 0 or co w-weights, an
a-approximation for (G[Vi),], w) implies an a-approximation for (H,w), and the claim
follows. d
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Cram 6. w(Viy,) <2- costav ] (S) for every S C Vi,.
Proof. By Claim 4, we have

wH(U1/2) + wg (U, U1/2) < 2-costy(9S)

for any S C Up U Uyp,. Since at each iteration in the procedure above we subtract
exactly 2 from each side of this inequality and at the end of which G[Vi/,] includes
all positive weighted vertices of H, we get that

’LTI(V1/2) < IT)(U1/2) + {D(UO, U1/2) <2- COStGWl/Q](S),

and the claim is proven. O

The partition Vi, Vo, and Vi,, along with the weight function w, satisfies both
conditions of Theorem 2. Combining Claim 5 with Claim 3 proves the first condition,
while the second condition follows directly from Claim 6.

4. Applications. As mentioned in section 1, the Nemhauser—Trotter theorem
has several applications in designing approximation algorithms for VERTEX COVER.
In the following we show that several of these extend to GENERALIZED VERTEX
COVER using Theorem 2. The section is divided into four parts, with each part giving
a different corollary of Theorem 2. We start with a (2 — %)—approximation algorithm
for graphs of bounded degree d and then continue to show a PTAS for planar graphs
and a (2 — lzgf%)—approximation algorithm for general graphs. Finally, we show that
Theorem 2 gives a linear kernel for parameterized GENERALIZED VERTEX COVER.

4.1. Bounded degree graphs. Our first application for Theorem 2 is a (2— 2)-
approximation algorithm for GENERALIZED VERTEX COVER in graphs of bounded
degree d. This is an analogous result to an algorithm of Hochbaum [15] that applies
the original Nemhauser—Trotter theorem to obtain the same approximation ratio for
VERTEX COVER in graphs of bounded degree d. In her algorithm, Hochbaum uses a
classical graph-theoretic result by Brooks [6] which states that any graph of bounded
degree d which is not complete nor an odd cycle can be properly colored in d colors.
(That is, its vertex set can be partitioned into d classes, with no edges between any
pair of vertices in the same class.) Together with the Nemhauser—Trotter theorem,
this is basically all that is necessary for Hochbaum’s algorithm. Indeed, in our case
it is also all that is necessary, due to the following lemma.

LEMMA 4. GENERALIZED VERTEX COVER is polynomial-time solvable in cycles.

Proof. We first show how to solve the problem in paths using dynamic pro-
gramming. Let G be a path vq,...,v,, and let G; denote the path vy, ...,v; for all
1€ {1,...,n}. We compute two tables, IT and IT', where I1() is the cost of the optimal
generalized vertex cover of G; that contains v;, and II'(7) is the cost of the optimal
generalized vertex cover of G; that does not contain v;. We have II(1) = w(v;) and
IT'(1) = 0, and we may compute 1I(7) for ¢ > 1 using the following recurrence:

(i) = min{I1(i — 1) + w(v;), ' (i — 1) + w(v;)}
H/(Z) e mln{H(z — 1), H/(i — 1) + w(vi_l,vi)}.

The cost of the optimal solution for the path G is min{II(n),II'(n)}. Also, note that
the computation of II(i) can be easily modified to output a corresponding optimal
generalized vertex cover.

Next, we solve the problem in cycles using a reduction to the problem in paths.
Given a weighted cycle G on the vertices vy,...,v,, we define G; to be the path
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Vo, V1, - - -, Un, Where w(vg) = oo and w(vp,v1) = w(vy,v,), and Gy to be the path
V1, .-y Uny Unt1, Where w(vn41) = 00 and w(vy,, vny1) = w(vy,vy,). It is not hard to
verify that opt(G) = min{opt(G1), opt(G2)}. O

COROLLARY 3. d-GENERALIZED VERTEX COVER can be approximated within a
factor of 2 — % for any d > 1.

Proof. Given an instance (G, w) of GENERALIZED VERTEX COVER, with G having
no degree greater than d, apply Theorem 2 to obtain Vi, Vo, Vij,, and w. If G[Vi),]
is a cycle, then an optimal generalized vertex cover in (G[Vi/,],w) can be found in
polynomial time by Lemma 4. If G[Vi/,] is the complete graph, then G[V1/,] contains
O(d?) = O(1) vertices, and we can trivially compute in polynomial time an optimal
generalized vertex cover.

Assume, therefore, that G[V1/,] is neither complete nor a cycle, and let th denote
the optimal solution for (G[Vi/,], w). By Theorem 2, we know that costgy, ] (S /2) >
- w(Viy,). Since G[Vis,] has degree bounded by d, and it is neither an odd cycle nor
a complete graph, we can color it using d colors [6]. Now, let Si/, be the subset of
Vi, excluding the heaviest color class with respect to w. We have

d

> m ’ E(SVz) =

] $ COStGv ) (S1/2),

* 1 ” d
COStg[V1/2](S1/2) > 5 . U}(‘/l/2) m

and therefore, V1 U S1, is (2 — 2)-approximate. n|

4.2. Planar graphs. We next use the technique of Baker [1] together with The-
orem 2 to obtain a PTAS for GENERALIZED VERTEX COVER in planar graphs. The
main idea is to first use the algorithm of Theorem 2 and then to break the planar
subgraph G[V1/,] into a set of k-outerplanar graphs by removing a set of vertices from
G whose weight is at most w(Vi/,)/k. Since k-outerplanar graphs have treewidth de-
pending only on k, we can compute an optimal solution for each graph in the set of
remaining k-outerplanar graphs. (See [24] for the definition of treewidth.) Further-
more, since w(V/,) is at most twice the cost of the optimum solution in (G[Vi,],w)
by Theorem 2, this removed set of vertices together with optimal solutions of the
k-outerplanar graphs constitutes a (1 + %)—approximate generalized vertex cover.

We begin with a formal definition of tree decompositions and treewidth.

DEFINITION 2 (tree decomposition [24]). A tree decomposition of a graph G =
(V,E) is a pair (T,X), where X C 2V is a family of subsets of V and T a tree over
X satisfying the following conditions:

L. Uxex GIX] =G, and

2. X, ={X € X|v e X} is connected in T for eachv € V.
The width of T is maxxecx | X| — 1. The treewidth of G is the minimum width over
all tree decompositions of G.

We solve GENERALIZED VERTEX COVER in graphs with bounded treewidth using
a standard bottom-up dynamic programming approach.

LEMMA 5. GENERALIZED VERTEX COVER can be solved in 2°() . n time in
graphs of treewidth at most w.

Proof. We start with some notation. Let R be an arbitrary root of T, and let
T(X) denote the subtree of 7 whose root is X. (In this notation 7(R) = T.) Also,
let Gx be the subgraph of G that is induced by the vertex set UYeT(X) Y.

Now, for any X € X and any S C X, let II(X, S) denote the cost of an optimal
generalized vertex cover S* in (Gx,w) such that S* N X = 5. We compute II(X,.S)
in a bottom-up fashion. First, if X is a leaf in 7, then II(X,S) can be computed
directly. Otherwise, let Xy be an internal node of 7, and let X1, Xo,..., X4 be its



298 REUVEN BAR-YEHUDA, DANNY HERMELIN, AND DROR RAWITZ
children. Since II(Xo, Sp) is obtained by some vertex set S* C [y c7(x)Y such that
So = Xo N S*, we can compute II( Xy, Sp) using the following recurrence:

d
II(Xo, So) = min costaxo](So) + Z(H(Xi: 5N Xi) = costarxonx) (So N Xi)) | -
5:80CSCULy X i=1

The idea is that we add the cost of S* in Gx,, for any « = 1,...,d, to the cost of S*
in G[X], and then we subtract the weights that were counted more than once. For
example, when d = 1, we add II(X7,5 N X1) to the cost of Sy in G[Xy] and subtract
the cost of Sp N X7 in G[Xo N X1].

Note that the computation of II can be easily modified to computing a corre-
sponding generalized vertex cover. Since one may assume without loss of generality
that 7 is binary, the running time for computing an entry II( Xy, Sp) is 2°(*). Hence,
the total running time is 2°(*) .n. O

COROLLARY 4. GENERALIZED VERTEX COVER in planar graphs has a PTAS.

Proof. Given a planar embedding of a planar graph, the vertices on the exterior
face are said to be at level 0. After the removal of level 1 vertices, the vertices of the
resulting exterior face are said to be in level 1. Level ¢ vertices are the vertices that
are contained in exterior face after the removal of vertices from level 0,...,i —1. We
denote the set of level i vertices by L;. In these terms, a k-outerplanar graph has a
planar embedding with k layers.

Let G be a planar graph, and let G[Vi/,] be the planar subgraph obtained by
Theorem 2. By the theorem, a PTAS on (G[Vi/,], w) would imply a PTAS on (G, w).
Let k be some positive integer, and let G;, i € {0,...,k}, be the graph obtained by
removing layers i 4 (k + 1)7, for j = 0,1,..., from G[Vi/,]. Since G; is k-outerplanar
for every ¢ € {0,...,k}, its tree width is 3k — 1 [5], and therefore, we can compute an
optimal generalized vertex cover U} in G; in polynomial time using Lemma 5. Letting
U, =U0;U Uj Li+(k+1)ja we have

ZcostG(Ui) = Z costa, (UF) + Zw(Ll)
< Z opt(G[Viy,), @) + 20pt(G[Vays), @)

= (k+2) - opt(G[Vip,], w).

Hence, the solution with minimum weight among the U;’s is (1 + %)-approximate.
Finally, picking k = 2, we obtain a (1 + ¢)-approximation for every e. d

P

4.3. General graphs. We now show that the (2 — lfllgg:: )-approximation algo-
rithm of [3] can be extended to GENERALIZED VERTEX COVER, due to Theorem 2.
The central component in the algorithm of [3] is given in the following lemma.

LEMMA 6 (see [3]). There is a polynomial-time algorithm that, given a graph
G = (V,E), a weight function w :V — Q2°, and an integer k such that

1. |[V]| > (2k — 1)*, and
2. G does not contain an odd cycle of length at most 2k — 1,
computes a vertez cover C' of G with w(C) < (1 — 5 )w(V).

Another component we use is due to the local-ratio technique: We can remove
odd cycles in a given instance (G, w) of GENERALIZED VERTEX COVER at a relatively
small cost to our approximation guarantee. We have the following lemma.

LEMMA 7. Let (G,w) be an instance of GENERALIZED VERTEX COVER, and let

C be an odd cycle in G of size 2t — 1, where t < k. Then the weight function w,
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which assigns € to all vertices and edges in C' and 0 to all other vertices and edges is
(2 — +)-effective.

Proof. First, observe that no solution for (G, we) may weigh more than (2t —1) -,
since we (V') = (2t—1)-e. Furthermore, since the weights are uniform, paying a penalty
for an edge is never better than taking one of its endpoints, and so an optimal solution
for (G, w.) must have a cost of at least ¢ - €. It follows that any solution for (G, w,)
is (2 — 1/t)-approximate, and since t < k, we get that any solution is (2 — 1/k)-
approximate, and the lemma follows. O

COROLLARY 5. GENERALIZED VERTEX COVER can be approximated within a
factor of 2 — 1511%,

Proof. Let k be the smallest integer for which (2k — 1)* > |V|. Note that k can
be computed in polynomial time. We first remove odd cycles of length at most 2k — 1
from the input graph. This is done as follows: As long as there is an odd cycle C' in G
having positive weights on all its vertices and edges, we construct a weight function w,
as in Lemma 7, which is (2 — 1/k)-effective according to the lemma. We then continue
searching in (G, w—w,). Lemma 2 ensures that a (2 —1/k)-approximate solution with
respect to (G, w — w) will also be (2 —1/k)-approximate with respect to (G, w — w.).
Let w’ denote the weight function that we obtain when no odd cycles having positive
weights on all their vertices and edges are left. Also, let G’ be the graph obtained by
removing all zero w’-weight vertices from G, along with all edges incident to them,
and all zero w’-weight edges. Clearly, if U is a (2 — 1/k)-approximate solution for
(G',w'), then U U Vy is (2 — 1/k)-approximate for (G,w’), where Vy is the set of all
zero w’-weight vertices in G.

We next use Theorem 2 on (G’,w’) to obtain a partition of the vertices of G’
into three subsets, V{, V{, and Vl’/z, and to obtain the weight function w. According
to Theorem 2, an a-approximation for (G[Vl’/z],@) implies an a-approximation on
(G',w'). Since G [‘/1’/2] satisfies the conditions of Lemma 6, we can find a vertex cover
C for G[Vl’/z] such that w(C) < (1 — 1/2k) - w(V). Due to the second condition in

Theorem 2, the subset C is a (2 — 1/k)-approximate solution for (G [Vf/Q], w). O

4.4. Fixed-parameter tractability. The Nemhauser—Trotter theorem has ap-
plications outside the world of approximation algorithms, most notably in the world
of parameterized complexity. Chen, Kanj, and Jia [8] observed that this theorem gives
a 2k kernel for unweighted parameterized VERTEX COVER when the parameter is the
number of vertices of the required vertex cover. We next note that, using Theorem 2,
this straightforwardly extends to GENERALIZED VERTEX COVER parameterized by
the cost of the optimal solution.

Parameterized complexity deals with parameterized problems, whose instances
are given together with a numeric parameter k that encodes various structural prop-
erties of the input, e.g., solution size, maximum degree, and so forth. This allows a
refined definition of tractable problems, where a tractable problem is now one with
an algorithm running in f(k)poly(n) time, where n is the instance size and f is
any computable function. FPT is the class of all parameterized problems with an
f(k)poly(n) algorithm. A kernelization algorithm, or simply a kernel, is a commonly
used technique for showing that a parameterized problem is in FPT. Formally, a ker-
nel is a polynomial-time algorithm that transforms an instance (I, k) to an instance
(I', k"), with |[I'| + ¥ < f(k) for some computable function f, such that (I,k) is a
“yes”-instance if and only if (I, k') is a “yes”-instance. It is easy to see that Theorem 2
gives exactly this when the parameter is taken as the cost of the solution.
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COROLLARY 6. GENERALIZED VERTEX COVER parameterized by the cost k of
the optimal solution has a 2k kernel.
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