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Abstract

The phase flow method was originally introduced in [28] which can
efficiently compute the autonomous ordinary differential equations. In
[13], it was generalized to solve the Hamiltonian system where the
Hamiltonian contains discontinuous functions, for example discontin-
uous potential or wave speed. However, both these works require the
flow map constructed on an invariant manifold. This could lead to an
expensive computational cost when the invariant domain is big or even
unbounded.

In this paper, following the idea of [13], we propose a hybrid phase-
flow method for solving the Liouville equation in the bounded domain
where the flow map sits in the variant manifold of the traditional phase
flow map. Moreover, with the help of some proper boundary condi-
tions, this hybrid phase flow method could help reduce the numerical
difficulty when the invariant manifold of the phase flow given by the
Liouville equation is big or unbounded. Analysis of the numerical
stability and convergence is given for the Liouville equation with the
inflow boundary condition. We also verify the accuracy and efficiency
of this algorithm by several examples related to the semiclassical limit
of the Schrödinger equation.

Key words: phase-flow method, Liouville equation, high frequency
waves, particle method, Hamiltonian system

1 Introduction

In recent years the computation of the high frequency waves has received lots
of attention due to its importance in seismology, electromagnetic waves and
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quantum mechanics. A series of efficient numerical methods for computing
the high frequency waves has been developed with the helpful tools of WKB
analysis [15, 1, 4], the level set framework [11, 9, 2] and Gaussian beam
methods [19, 21, 24, 14] etc. Some nice reviews are given in [3, 22] and
related references. In most of these methods, one needs to deal with the
following Liouville equation

ft +∇ξH · ∇xf −∇xH · ∇ξf = 0, t > 0, x, ξ ∈ Rd, (1)

which serves as the semiclassical limit of the linear high frequency waves
([3, 7, 18]). Here f(t,x, ξ) ≥ 0 is the probability density function at time
t, position x and velocity ξ, and the Hamiltonian function H = H(x, ξ) :
R2d → R is a function of x and ξ only. We consider equation (1) within the
following bounded domain

M =
{
(x, ξ) ∈ R2d | x ∈ X, Hmin ≤ H(x, ξ) ≤ Hmax

}
, (2)

where X ⊂ Rd is bounded and closed in the configuration space.
The particle method for the Liouville equation (1) is based on solving

the following time-reversal Hamiltonian system (3)-(4),

dx

dt
= −∇ξH, (3)

dξ

dt
= ∇xH. (4)

In [28], Ying and Candés proposed the novel phase flow method which
computed (3)-(4) for multiple initial conditions efficiently and successfully.
This method was later generalized to solve (3)-(4) in heterogeneous media
in [13]. The key idea of the phase flow method is to construct the flow
map ht : R2d → R2d by making use of its group property and numerical
interpolation efficiently on an invariant manifold M , where ht is defined by
ht(x0, ξ0) = (x(t), ξ(t)) and the manifold M is invariant if ht(M) ⊂ M .

However, the restriction of M being invariant may not hold here since
the Liouville equation (1) is considered in a bounded domain which may
not satisfy ht(M) ⊂ M . On the other hand, even though we consider (1) in
the whole space, the restriction of M being invariant could cause expensive
computational cost when the size of M is large or even unbounded. One may
encounter such cases in many common Hamiltonian systems. For example,
if we consider the Hamiltonian in classic mechanics H = 1

2 |ξ|
2 + V (x) and

the potential V (x) = 0, the invariant domain for the phase flow of (3)-(4)
is {(x, ξ)|x ∈ Rd, ξ ∈ Ξ} which is certainly unbounded.

Following the idea of [13], we develop a hybrid phase flow method in this
paper to solve the Liouville equation (1) in a bounded domain where the
new flow map sits on the variant manifold of the traditional phase flow map.
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This also offers an option to reduce the numerical difficulty in the traditional
phase flow method when the invariant manifold yielded by the Liouville
equation is big or unbounded by using some proper boundary conditions.

We consider the following inflow boundary condition for (1),

f(x, ξ, t)|x∈∂X,ξ·n>0 = g(x, ξ, t), (5)

where n denotes the normal direction of the boundary ∂X, and the initial
condition is

f(x0, ξ0, 0) = f0(x0, ξ0). (6)

We consider (3)-(4) with the initial conditions

x(0) = x0, ξ(0) = ξ0, (7)

and define the phase flow solution hT (x0, ξ0) by the following rules (for
T > 0):

1. x(t;x0, ξ0) ∈ X̊, ∀t ∈ [0, T ]. This means the particle stays inside the
configuration space domain X, then the phase flow solution are given
by

hT (x0, ξ0) = (x(T ;x0, ξ0), ξ(T ;x0, ξ0)). (8)

2. ∃t ∈ [0, T ], x(t;x0, ξ0) ∈ ∂X. In this case the particle trajectory
would collide with the boundary ∂X, then the phase flow solution are
given by

hT (x0, ξ0) = (x(t′;x0, ξ0), ξ(t
′;x0, ξ0)), (9)

where the t′ = t′(x0, ξ0) is the first arrival time

t′ = inf{t ∈ [0, T ]
∣∣x(t;x0, ξ0) ∈ ∂X}. (10)

Then the solution f(T,x, ξ) of (1) is given by the method of character-
istics,

f(x, ξ, T ) =

{
f0(hT (x, ξ)), the particle moves inside X,

g(hT (x, ξ), T − t′(x, ξ)), the particle coincides with boundary ∂X.
(11)

Remark 1.1 Sometimes, we are interested in reflection boundary condition

f(x, ξ, t)|x∈∂X,ξ·n>0 = f(x,−ξ, t), (12)

then f(T,x, ξ) is recovered as

f(x, ξ, T ) = f0(hT (x, ξ)). (13)

Here hT can be constructed using the traditional idea of hybrid phase-flow
method[13], considering the boundary condition as the interface with full
reflection.
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We organize the paper as follows. In Section 2, we introduce the hybrid
phase-flow method which solves the Liouville equation in a bounded do-
main. The analysis of the numerical stability and convergency is discussed
in Section 3. Combined with the algorithm developed in [13], this hybrid
phase flow method could have lots of applications in computing the high
frequency waves which we will discuss in Section 4. In Section 5, we make
some conclusive remarks.

2 The hybrid phase flow method

In this section we systematically introduce how to construct ht on the
bounded domain M at time t = T efficiently. We select a small time step
τ > 0 and an integer constant K ≥ 1 such that B = (T/τ)1/K is an integer
power of 2. The general procedure is described as follows:

1. Discretization. Start with a uniform or quasi-uniform grid Mh on M .

2. Initialization. Compute an approximation of hτ .

(a) For each (x0, ξ0) ∈ Mh, hτ (x0, ξ0) is computed by numerical
Hamiltonian solver Θτ on bounded domain, which is described in
details in subsection 2.1.

(b) The value of hτ at any other point is given via either a local
interpolation I (for regular particles) or numerical Hamiltonian
solver Θτ (for special particles).

3. Loop. Construct hBk+1τ from hBkτ , loop for b = 1, · · · , B − 1:

(a) For each (x0, ξ0) ∈ Mh

h(b+1)·Bkτ (x0, ξ0) = hBkτ (hb·Bkτ (x0, ξ0)) (14)

(b) For other points, use the local interpolation I (for regular parti-
cles) or the numerical Hamiltonian solver Θτ (for special parti-
cles).

The detailed implementation of this algorithm is given in Section 2.2.

2.1 A numerical Hamiltonian solver for bounded domain

In this subsection, following the idea of [10] we design the numerical Hamil-
tonian solver

Θ∆t : M ⊂ R2d → M ⊂ R2d

(xn, ξn) → (xn+1, ξn+1)
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for the Hamiltonian system (3)-(4) on the bounded domain M given by (2).
For convenience, we denote Γ∆t(x, ξ) : R2d → R2d as the one-step standard
sympletic numerical solvers given in [6, 16], for example, the Verlet scheme.

1. Estimate the updated position and velocity of particle (x∗, ξ∗) =
Γ∆t(x

n, ξn).

2. If x∗ ∈ X̊, i.e., the particle moves inside the bounded domainX during
[tn, tn+1], we set (xn+1, ξn+1) = (x∗, ξ∗).

3. Otherwise,

(a) Approximate the first arrival time ∆t⋆ = d(xn)
d(x∗)+d(xn)∆t, where

d(x) is the distance to the boundary ∂X.

(b) Estimate the first arrival position and velocity (x⋆, ξ⋆) = Γ∆t⋆(x, ξ).

(c) Set (xn+1, ξn+1) = (x⋆, ξ⋆).

Remark 2.1 As it will be proved in Section 3, the numerical Hamiltonian
solver Θτ converges at second order. Its numerical accuracy can be improved
by choosing higher order sympletic numerical solvers and approximating the
first arrival time more accurate.

2.2 The detailed implementation

We describe the hybrid phase flow method for the bounded domain in details
here. The key issue of it is to identify different types of particles. First we
introduce several symbols for convenience.

Symbol 1 N
(k)
i = (x

(k)
i , ξ

(k)
i ) ∈ M is the position and velocity of the parti-

cle after k iterations, which initially starts at N
(0)
i = (x

(0)
i , ξ

(0)
i ). Note that

the initial mesh Mh = {N (0)
i , ∀i}.

Symbol 2 Denote Gj as the mesh cells, and N (Gj) = {N (0)
j1

, · · · , N (0)
jl

}
be the set of all the vertices (mesh points) of Gj. Define G(x, ξ) = j, if
(x, ξ) ∈ Gj.

Symbol 3 Denote S(N (0)
i ) as the current status of the particle initially

starting at N
(0)
i ,

S(N (0)
i ) =

{
0, if particle has coincided with the boundary ∂X,
1, otherwise.

Symbol 4 Define I1 as the evolutional interpolation function, and

(y∗,η∗) = I1
(
(x1, ξ1), · · · , (xl, ξl), (y1,η1), · · · , (yl,ηl); (x∗, ξ∗)

)
, (15)

where I1 interpolates at points (xi, ξi) ∈ M , the values (yi,ηi) ∈ M(i =
1, · · · , l). For (x∗, ξ∗) ∈ M , I1 gives its value (y∗,η∗) ∈ M .
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Symbol 5 Define I2 as the first arrival interpolation function, and

(t∗,y∗,η∗) = I2
(
(x1, ξ1), · · · , (xl, ξl), (t1,y1,η1), · · · , (tl,yl,ηl); (x∗, ξ∗)

)
,

(16)
where I2 interpolates through points (xi, ξi) ∈ M , the values ti, yi and ηi

denote the first arrival time, position and velocity, respectively, in which
(yi,ηi) ∈ M and yi ∈ ∂X. For (x∗, ξ∗) ∈ M , I2 gives its value (t∗,y∗,η∗)
with (y∗,η∗) ∈ M and y∗ ∈ ∂X.

Symbol 6 Let t′ = t′(x, ξ) : M → [0,+∞) ∪ {−1} be the first arrival time
when the particle initially at (x, ξ) collides with the boundary ∂X. If the
particle never collides with the boundary ∂X, it will be set to be −1.

Now we give the detailed implementation of the algorithm:

1. Discretization. Assume we start with a uniform or quasi-uniform mesh

Mh = {N (0)
i | i = 1, · · · , I}, then Gj and N (Gj) (j = 1, · · · , J) are well

defined. The stopping time is t = T . The small time τ and number of
iterations K ≥ 1 is selected to be satisfied B = (T/τ)1/K is an integer
power of 2.

2. Initialization. Set k = 1. For i = 1, · · · , I

N
(1)
i = Θτ (N

(0)
i ). (17)

Since the numerical Hamiltonian solver Θτ can automatically check
whether the particle trajectory collides with the boundary during [0, τ ],
we can set

S(N (0)
i ) = 0, t′(N

(0)
i ) = ∆t⋆, (18)

for the particles that collide with the boundary, or

S(N (0)
i ) = 1, t′(N

(0)
i ) = −1, (19)

for the particles that stay inside the domain X.

3. Loop at the kth iteration. For i = 1, · · · , I

N
(k+1)
i = N

(k)
i . (20)

Loop the below part for b = 1, · · · , B − 1.

• For those particles satisfying S(N (0)
i ) = 1, there is j = G(N (k+1)

i )

such that N
(k+1)
i ∈ Gj . We check the status value of all the

vertices N
(0)
m ∈ N (Gj), m ∈ {j1, j2, · · · , jl} to update N

(k+1)
i .
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(a) If S(N (0)
m ) = 0, ∀m ∈ {j1, j2, · · · , jl}, N

(k+1)
i is called the

boundary colliding particle, and we compute the first arrival

time t′(N
(0)
i ) and the value of N

(k+1)
i by local interpolation:(

t′(N
(0)
i ), N

(k+1)
i

)
= I2

(
N

(0)
j1 , · · · , N (0)

jl ,
(
t′(N

(0)
j1 ), N

(k)
j1

)
,

· · · ,
(
t′(N

(0)
jl ), N

(k)
jl

)
;N

(k+1)
i

)
. (21)

The particle status value is updated as

S(N (0)
i ) = 0. (22)

(b) If S(N (0)
m ) = 1, ∀m ∈ {j1, j2, · · · , jl}, N

(k+1)
i is called the

standard evolutional particle, and we define the new value of

N
(k+1)
i by the local interpolation:

N
(k+1)
i = I1

(
N

(0)
j1 , · · · , N (0)

jl , N
(k)
j1 , · · · , N (k)

jl ;N
(k+1)
i

)
.

(23)
The last two types of particles are named regular particles.

(c) Otherwise if S(N (0)
m ) = 0 for only some m ∈ {j1, j2, · · · , jl},

N
(k+1)
i is called the special particle, and we decide the new

value of N
(k+1)
i by the numerical Hamiltonian solver Θτ : up-

date the value of N
(k+1)
i for Bk times by

N
(k+1)
i = Θτ (N

(k+1)
i ). (24)

If the particle collides with the boundary at some step k′, the
first arrival time is

t′(N
(0)
i ) = (b ·Bk + k′ − 1)τ +∆t⋆. (25)

The particle status value is updated as

S(N (0)
i ) = 0. (26)

• For particle satisfies S(N (0)
i ) = 0, which means the particle has

already collided with the boundary, its value doesn’t change since
then.

4. If k + 1 = K, stop. Otherwise we let k = k + 1 and go to step 3.

By the above procedure, we obtain the position and velocity N
(K)
i of the

particle at time T = BKτ , which initially starts at N
(0)
i (i = 1, · · · , I). For

these particles colliding with the boundary, we also have an approximation

of the first arrival time t′(N
(0)
i ).
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Remark 2.2 Combined with the idea of [13], this algorithm could be easily
generalized to the interface problem where the Hamiltonian contains discon-
tinuous functions. We also study this case in the numerical examples later.

Remark 2.3 As discussed in [13], the number of special particles is es-
timated as O(N2d−1) on a 2d-dimensional phase space lattice Mh with N
particles in each direction. We also numerically verify this in Section 4.
So the total computational complexity for the Hybrid phase-flow method is
O(N2d−1L+N2dL1/s) with L = BK .

3 Stability and convergence

In this section we analyze the stability and convergence for this hybrid phase
flow method. For the sake of simplicity and clarity, we investigate the 1D
problem in classical mechanics where the Hamiltonian H : R2 → R is given
by

H(x, ξ) =
1

2
ξ2 + V (x),

in which the potential V (x) ∈ C∞(X). The bounded and closed domain
X ⊂ R is taken as X = [−1, 1] without loss of generality. Then the right
hand side of the Hamiltonian system (3)-(4)

F (x, ξ) = (−ξ, V ′(x))T

is smooth and has Lipschitz constant L on X.

3.1 Analysis of the algorithm stability

We first study the stability of the phase flow solution ht under some reason-
able assumptions that all the particles lie in the domain

D =
{
(x, ξ) ∈ R2

∣∣∣ ∣∣H(x, ξ)− V (±1)
∣∣ > ϵ0

}
where ϵ0 > 0 is a small parameter. This removes the physical unstable cases
where the particles have zero velocity at the boundaries x = ±1 but will
travel inside the domain M under small perturbations.

Theorem 3.1 The phase flow solution ht defined in Section 1 is stable on
D ∩M , with the estimate

∥ht(x1, ξ1)− ht(x2, ξ2)∥ ≤ L1e
L2t ∥(x1, ξ1)− (x2, ξ2)∥ ,

where L1 and L2 are constants.
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Proof:(I) If x(t′;xi, ξi) ∈ X̊, ∀t′ ∈ [0, t], i = 1, 2, which means both the
particles always stay inside X, it is easy to have

∥ht(x1, ξ1)− ht(x2, ξ2)∥ ≤ eLt ∥(x1, ξ1)− (x2, ξ2)∥ , (27)

by using Gronwall’s inequality.

(II) If ∃t′ ∈ [0, t], x(t′;xi, ξi) ∈ ∂X, i = 1, 2, which means at least one
particle trajectory collides with the boundary ∂X. We can assume that
there exists ta ∈ [0, t) satisfies:

i. x(ta;x1, ξ1) ∈ ∂X,

ii. x(t′;x1, ξ1) ∈ X̊, ∀t′ ∈ [0, ta),

iii. x(t′;x2, ξ2) ∈ X̊, ∀t′ ∈ [0, ta],

without loss of of generality. By (I) and the closeness of X, we have

∥hta(x1, ξ1)− hta(x2, ξ2)∥ ≤ eLta ∥(x1, ξ1)− (x2, ξ2)∥ . (28)

Let

tb = t− ta,

(x3, ξ3) = hta(x1, ξ1),

(x4, ξ4) = hta(x2, ξ2),

then we have

∥ht(x1, ξ1)− ht(x2, ξ2)∥ = ∥htb(hta(x1, ξ1))− htb(hta(x2, ξ2))∥
= ∥htb(x3, ξ3)− htb(x4, ξ4)∥
= ∥(x3, ξ3)− htb(x4, ξ4)∥ . (29)

The last equality is due to x3 ∈ ∂X. Without loss of generality we assume
x3 = 1, then the velocity ξ3 >

√
2ϵ0 since (x3, ξ3) ∈ D. We will prove the

conclusion by discussing the following two cases.
Case 1. x(t′;x4, ξ4) ∈ X̊, ∀t′ ∈ [0, tb]. We define a new phase flow solution

ĥt(x0, ξ0) = (x̂(t;x0, ξ0), ξ̂(t;x0, ξ0)),

by extending the potential V in (3)-(4) to the semi-unbounded domain

V̂ (x) =


V (1) + 1

2V
′(1)ζ, x ∈ [1 + ζ,∞),

− 1
2ζV

′(1)(x− 1)2 + V ′(1)(x− 1) + V (1), x ∈ (1, 1 + ζ),

V (x), x ∈ [−1, 1],
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where ζ = min(12ϵ0,
ϵ0

|V ′(1)|). It is easy to verify that V̂ ∈ C1([−1,∞)) and F̂

also has Lipschitz constant L′ = max(L, |V
′(1)|
ζ ) on [−1,∞). Then we have∥∥∥ĥt(x3, ξ3)− ĥt(x4, ξ4)

∥∥∥ ≤ eL
′tb ∥(x3, ξ3)− (x4, ξ4)∥ . (30)

Since ξ3 >
√
2ϵ0 and

∣∣1
2V

′(1)ζ
∣∣ < 1

2ϵ0, the velocity ξ̂(t′;x3, ξ3) > 0, ∀t′ ∈
[0, tb], this induces x̂(tb;x3, ξ3) > x3 > x̂(tb;x4, ξ4) = x(tb;x4, ξ4) and

|x3 − x(tb;x4, ξ4)| < |x̂(tb;x3, ξ3)− x̂(tb;x4, ξ4)| , (31)

|x3 − x̂(tb;x3, ξ3)| < |x̂(tb;x3, ξ3)− x̂(tb;x4, ξ4)| .

On the other hand, we have

|ξ3 − ξ(tb;x4, ξ4)| ≤
∣∣∣ξ̂(tb;x3, ξ3)− ξ̂(tb;x4, ξ4)

∣∣∣+ ∣∣∣ξ3 − ξ̂(tb;x3, ξ3)
∣∣∣

≤
∣∣∣ξ̂(tb;x3, ξ3)− ξ̂(tb;x4, ξ4)

∣∣∣+ L′′ |x3 − x̂(tb;x3, ξ3)| (32)

<
∣∣∣ξ̂(tb;x3, ξ3)− ξ̂(tb;x4, ξ4)

∣∣∣+ L′′ |x̂(tb;x3, ξ3)− x̂(tb;x4, ξ4)| .

(33)

The inequality (32) holds based on the observation that

ξ(x) =

√
ξ23 + 2(V (x3)− V̂ (x))

has the Lipschitz constant L′′ = max(L,
|V̂ ′(x)|
2ϵ0

) on [−1,+∞).
Taking (28)-(31) and (33) we have

∥ht(x1, ξ1)− ht(x2, ξ2)∥ = ∥(x3, ξ3)− htb(x4, ξ4)∥

≤ (L′′ + 1)
∥∥∥ĥt(x3, ξ3)− ĥt(x4, ξ4)

∥∥∥
≤ L1e

L2tb ∥(x3, ξ3)− (x4, ξ4)∥
≤ L1e

L2t ∥(x1, ξ1)− (x2, ξ2)∥ . (34)

where L1 = L′′ + 1 and L2 = L′ are constants.
Case 2. ∃t′ ∈ [0, tb], x(t

′;x4, ξ4) ∈ ∂X. Let tc ≤ tb be the first arrival time,
it is easy to derive

∥hT (x1, ξ1)− hT (x2, ξ2)∥ = ∥(x3, ξ3)− htb(x4, ξ4)∥
= ∥(x3, ξ3)− htc(x4, ξ4)∥
≤ L1e

L2tc ∥(x3, ξ3)− (x4, ξ4)∥
≤ L1e

L2t ∥(x1, ξ1)− (x2, ξ2)∥ . (35)

Summarizing all the cases (27), (34) and (35), we prove the theorem. �
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3.2 Convergence Analysis of the Algorithm

In this subsection we prove the convergence of the hybrid phase flow method.

Theorem 3.2 The numerical Hamiltonian solver Θτ described in Section
2.1 converges with a second order accuracy on D ∩M .

Proof: Since the one-step standard symplectic numerical solver Γ∆ con-
verges at second order when the particle stays inside the configuration space
domain X, we only need to consider the situation when the particle is very
near the boundary, i.e. for small enough ∆t

∥Θ∆t(x0, ξ0)− h∆t(x0, ξ0)∥ ≤ Ca∆t2, (36)

where the particle trajectory collides with the boundary ∂X in this short
time ∆t, and Ca is a positive constant.

Let ∆t∗ and ∆t⋆ be the exact arrival time and the estimated arrival
time respectively, and (x1, ξ1) = h∆t∗(x0, ξ0) be the position and velocity
when the particle collide with the boundary ∂X. And we rewrite sympletic
numerical solver Γ∆t as

Γ∆t(x, ξ) = (xΓ(∆t;x, ξ), ξΓ(∆t;x, ξ)).

Since V (x) ∈ C∞(X), one could write the sympletic numerical solver as

xΓ(∆t;x, ξ) = x+ v11(x, ξ)∆t+ v21(x, ξ)∆t2 +O(∆t3),

ξΓ(∆t;x, ξ) = ξ + v12(x, ξ)∆t+ v22(x, ξ)∆t2 +O(∆t3),

where
∥(vi1, vi2)∥ ≤ Ci, i = 1, 2.

By the approximation formula

∆t⋆ =
x1 − x0

xΓ(∆t;x0, ξ0)− x0
∆t

=
x1 − x0

v11 + v21∆t
+O(∆t2),

thus

xΓ(∆t⋆;x0, ξ0)− x1 = x0 + v11∆t⋆ + v21∆t⋆2 − x1 +O(∆t⋆3)

=
v21∆t(x0 − x1)

v11 + v21∆t
+ v21∆t⋆2 +O(∆t⋆3).

Furthermore

|x0 − x1| ≤ |x0 − xΓ(∆t;x0, ξ0)|
≤ |v11|∆t+ |v21|∆t2,
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this implies that
|xΓ(∆t⋆;x0, ξ0)− x1| ≤ D1∆t2,

for ∆t > 0 small enough.
Since the numerical solver Γ∆ is sympletic preserving, we have

V (xΓ(∆t⋆;x0, ξ0)) +
1

2
ξ2Γ(∆t⋆;x0, ξ0) = V (x1) +

1

2
ξ21 ,

which gives

|ξΓ(∆t⋆;x0, ξ0)− ξ1| ≤ 2 |V (xΓ(∆t⋆;x0, ξ0))− V (x1)|
|ξΓ(∆t⋆;x0, ξ0) + ξ1|

≤ 2D2 |xΓ(∆t⋆;x0, ξ0)− x1|
2
√
ϵ0

≤ D1D2√
ϵ0

∆t2 = D3∆t2.

The inequality is based on that V (x) is Lipschitz continuous on X and
(x0, ξ0) ∈ D ∩M . Taking

Ca = D1 +D3,

proves (36).
For any fixed time T , we choose the time step ∆t and the iteration time

N such that N∆t = T . If the particle initially at (x0, ξ0) does not collide
with the boundary ∂X, then

∥ΘN∆t(x0, ξ0)− hT (x0, ξ0)∥ = ∥ΓN∆t(x0, ξ0)− hT (x0, ξ0)∥ ≤ Cb∆t2,

where Cb is a constant independent of T . For the particle initially at (x0, ξ0)
collides with the boundary ∂X, we denote T1 as the boundary colliding time.
We choose t1 ≥ 0 and an integer N1 such that

T1 = N1∆t+ t1, and 0 ≤ t1 < ∆t.

Then we have

∥ΘN∆t(x0, ξ0)− hT (x0, ξ0)∥ = ∥Θt′(ΓN1∆t(x0, ξ0))− ht′(hN1∆t(x0, ξ0))∥
≤ ∥Θt′(hN1∆t(x0, ξ0))− ht′(hN1∆t(x0, ξ0))∥+

∥Θt′(ΓN1∆t(x0, ξ0))−Θt′(hN1∆t(x0, ξ0))∥
≤ Ca∆t2 + L1e

L2t′ ∥ΓN1∆t(x0, ξ0)− hN1∆t(x0, ξ0))∥
≤ Ca∆t2 + L1e

L2t′Cb∆t2

Taking

C0 = max
(
Cb, Ca + L1e

L2t′Cb

)
,

we prove the theorem.�
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The idea of the proofs for the next lemma and theorem mostly follows
those in [28] except with more careful discussions on the cases of boundary
colliding particles and special particles.

Lemma 3.3 For any multi-index γ with |γ| = s ≥ 2, one has

|∂γht(x0, ξ0)| ≤ C1
s e

(2s−1)LT · t, ∀(x0, ξ0) ∈ Ma,

|∂γht(x0, ξ0)| ≤ C2
s , ∀(x0, ξ0) ∈ Mb.

where Cℓ
s, ℓ = 1, 2 are constants and the sets Ma = Ma(t) and Mb = Mb(t)

are defined by

Ma =
{
(x0, ξ0) ∈ D ∩M

∣∣x(t′;x0, ξ0) ∈ X̊, ∀t′ ∈ [0, t]
}
,

Mb =
{
(x0, ξ0) ∈ D ∩M

∣∣∃t′ ∈ (0, t), s.t. x(t′;x0, ξ0) ∈ ∂X
}
.

Proof: Lemma 2.3 in [28] gives

|∂γht(x0, ξ0)| ≤ C1
s e

(2s−1)LT t, ∀(x0, ξ0) ∈ Ma.

For (x0, ξ0) ∈ Mb, one could easily see that there exists l > 0, for any
(x′0, ξ

′
0) ∈ D ∩M which satisfies∥∥(x′0, ξ′0)− (x0, ξ0)

∥∥ < l,

(x′0, ξ
′
0) ∈ Mb holds.

Moreover, if we choose l < 2
L1

e−L2T , then by the stability estimate∥∥ht(x′0, ξ′0)− ht(x0, ξ0)
∥∥ < 2,

this implies x(t;x0, ξ0) = x(t;x′0, ξ
′
0) because the boundaries are either x = 1

or x = −1. Therefore

∂γx(t;x0, ξ0) = 0, ∀(x0, ξ0) ∈ Mb.

By taking the derivatives of the energy conservation equation

1

2
ξ2(t;x0, ξ0) + V (x(t;x0, ξ0)) =

1

2
ξ20 + V (x0)

one has

1

2
∂γ

(
ξ2(t;x0, ξ0)

)
=


1, s = 2, γ = (0, 2)

V (s)(x0), γ = (s, 0)
0, otherwise.

Here we will only prove the case of s = 2, while the other situations can
be proved similarly by direct calculations.
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For γ = (0, 2), (1, 1) and (2, 0), we have

ξξ0ξ0 =
1

ξ
−

ξ0ξξ0
ξ2

=
ξ2 − ξ20

ξ3
=

2(V (x0)− V (x))

ξ3
,

ξξ0x0 = −ξ0ξx0

ξ2
= −ξ0V

′(x0)

ξ3
,

ξx0x0 =
V ′′(x0)

ξ
− V ′(x0)ξx0

ξ2
=

ξ2V ′′(x0)− V ′2(x0)

ξ3
.

Since V (x) ∈ C∞(X), then we have E(k) ≤
∣∣V (k)(x)

∣∣ ≤ E(k) where E(k) and

E(k) are constants. Hence

|ξξ0ξ0 | ≤ 4E(0)

(2ϵ0)3/2
= C(0,2),

|ξξ0x0 | ≤

√
2(Hmax − E(0))E

(1)

(2ϵ0)3/2
= C(1,1),

|ξξ0x0 | ≤
2(Hmax − E(0))E

(2) + (E(1))2

(2ϵ0)3/2
= C(2,0).

Letting C2
2 = C(0,2) + C(1,1) + C(2,0) yields

|∂γht(x0, ξ0)| ≤ C2
2 , ∀(x0, ξ0) ∈ Mb,

which proves the theorem. �

Theorem 3.4 Assume the accurate orders of the local interpolation schemes
I1 and I2 are α ≥ 1 for functions sufficiently smooth, and the L∞ norm of
the linear interpolation on continuous functions is h-independent.We define
the numerical error at time t as

ϵt = max
(x,ξ)∈D∩M

∥∥∥ht(x, ξ)− h̃t(x, ξ)
∥∥∥ ,

where ht is the exact solution and h̃t is the numerical solution given in
Section 2. Then it satisfies

ϵT ≤ C(∆t2 + h),

where C > 0 is constant.

Proof: We write y = (x, ξ) as a short notation for particles. For the grid
point y, one has ∥∥∥h∆t(y)− h̃∆t(y)

∥∥∥ ≤ C0∆t2.
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If y is not on grids, we define Ij (resp. Ĩj) j = 1, 2 as the interpolation

operators constructed from h∆t (resp. h̃∆t) for the boundary colliding and
standard evolutional particles, then h̃∆t(y) = Ĩj(y) and

∥∥∥h∆t(y)− h̃∆t(y)
∥∥∥ ≤


∥∥∥I1(y)− Ĩ1(y)

∥∥∥+ ∥I1(y)− h∆t(y)∥ , for boundary colliding particles,∥∥∥I2(y)− Ĩ2(y)
∥∥∥+ ∥I2(y)− h∆t(y)∥ , for standard evolutional particles,

∥Θ∆t(y)− h∆t(y)∥ , for special partiles.

Denote N1 and N2 to be the h-independent norms of the interpolation op-
erators I1 and I2, then∥∥∥I1(y)− Ĩ1(y)

∥∥∥ ≤ N1 max
y∈{grid points}

∥∥∥h∆t(y)− h̃∆t(y)
∥∥∥ ≤ C0N1∆t2,∥∥∥I2(y)− Ĩ2(y)

∥∥∥ ≤ N2 max
y∈{grid points}

∥∥∥h∆t(y)− h̃∆t(y)
∥∥∥ ≤ C0N2∆t2.

Since I1 and I2 are smooth interpolations, they have Lipschitz constants
LI1 and LI2 . As y is not a grid point, we can find a grid point y1 such that

∥y − y1∥ ≤ h,

then

∥I1(y)− h∆t(y)∥ ≤ ∥I1(y)− I1(y1)∥+ ∥I1(y1)− h∆t(y1)∥+ ∥h∆t(y1)− h∆t(y)∥
≤ LI1 ∥y − y1∥+ C1h

α max
|γ|=α

sup
y0∈Mb

∥∂γh∆t(y0)∥+ L1e
L2∆t ∥y − y1∥

≤ C2h+ C3h
α,

and

∥I2(y)− h∆t(y)∥ ≤ ∥I2(y)− I2(y1)∥+ ∥I2(y1)− h∆t(y1)∥+ ∥h∆t(y1)− h∆t(y)∥
≤ LI2 ∥y − y1∥+ C4h

α max
|γ|=α

sup
y0∈Mb

∥∂γh∆t(y0)∥+ L1e
L2∆t ∥y − y1∥

≤ C5h+ C6h
α∆t.

Therefore the error term ϵ∆t satisfies

ϵ∆t ≤ C7∆t2 + C8h+ C9h
α + C10h

α∆t.

For a grid point y, we can further derive∥∥∥h2∆t(y)− h̃2∆t(y)
∥∥∥ ≤

∥∥∥h∆t(h∆t(y))− h∆t(h̃∆t(y))
∥∥∥+

∥∥∥h∆t(h̃∆t(y))− h̃∆t(h̃∆t(y))
∥∥∥

≤ L1e
L2∆tϵ∆t + ϵ∆t = L3

e2L2∆t − 1

eL2∆t − 1
ϵ∆t,

and

ϵB∆t =
∥∥∥hB∆t(y)− h̃B∆t(y)

∥∥∥ ≤ LB
3

eL2B∆t − 1

eL2∆t − 1
ϵ∆t,
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where
L3 = max (L1, 1).

If y is not on grids, similarly we have

ϵB∆t ≤ (N1 +N2)L
B
3 · e

L2B∆t − 1

eL2∆t − 1
ϵ∆t + ϵ∆t + C10h

αB∆t

≤ (N1 +N2 + 1)LB
3 · e

L2B∆t − 1

eL2∆t − 1
ϵ∆t + C10h

αB∆t

= N · e
L2B∆t − 1

eL2∆t − 1
ϵ∆t + C10h

αB∆t,

and the recurrence relation is

ϵBK∆t ≤ N · eL2BK∆t − 1

eL2BK−1∆t − 1
ϵBK−1∆t + C10h

αBK∆t

≤ NK eL2BK∆t − 1

eL2∆t − 1
ϵ∆t + C10h

α
K∑
k=0

Nk eL2BK∆t − 1

eL2BK−k∆t − 1
BK−k∆t

≤ NK eL2T − 1

L2
ϵ∆t + C10h

α e
LT − 1

L

K∑
k=0

Nk.

Hence we have
ϵT ≤ C(∆t2 + h).�

Remark 3.5 Sometimes the coefficients of the linear h terms in the error
estimate are much smaller than those of the higher order h terms, which
makes the algorithm possess higher order convergence rate than linear, as
observed in Example 2 of Section 4.1.

4 Numerical examples and Applications

In this section we mainly study the examples appearing in classical mechan-
ics where

H =
1

2
|ξ|2 + V (x). (37)

In the following examples, we compare the l1 errors at time t = T for ht
and f . The ratio of averaged number of special particles per iteration(NSP)
over the number of total particles(NTP) are also presented in order to study
the complexity of the algorithm. We use a second order symplectic solver
Γ∆t presented in [6, 16]. For the interpolation operator I1, I2, we use the
second order Lagrange polynomial interpolation [20].
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4.1 Numerical examples

Example 1. Consider the 1D Liouville equation

ft + ξfx − Vxfξ = 0,

on the computational domain

M =

{
(x, ξ) ∈ [0, 1]× [−0.8, 0.8]

∣∣∣ 0.02 ≤ H = V (x) +
1

2
ξ2 ≤ 0.18

}
.

The potential V (x) is given by

V (x) =

{
−0.4(x− 0.5)(x+ 0.5), 0 ≤ x < 0.5,

0, 0.5 ≤ x ≤ 1.

The initial data is
f(x, ξ, 0) = 0,

and the boundary conditions are

f(1, ξ, t) =

{
−25(ξ + 0.2)(ξ + 0.6) sin(2πt) −0.6 ≤ ξ ≤ −0.2,

0 otherwise,

f(0, ξ, t)|ξ>0 = f(0,−ξ, t).

This is a mixed boundary value problems, with inflow boundary condition
at x = 1 and reflection boundary condition condition at x = 0.

The solution at time T = 3 is given in Figure 1. The exact solution is
computed by solving the Hamiltonian system analytically. We present the
l1 error in Table 1, where the numerical solutions converges at about first
order. In Table 2, the ratio of NSP over NTP with different mesh are shown.
One could observe that the ratio is reduced linearly with the mesh size.

Table 1: the l1 errors for different mesh sizes for Example 1

mesh 50× 50 100× 100 200× 200 400× 400

hT (x, ξ) 2.46× 10−3 1.26× 10−3 6.33× 10−4 3.18× 10−4

f(x, ξ, T ) 3.11× 10−3 1.69× 10−3 9.18× 10−4 4.79× 10−4

Example 2. Consider the 1D Liouville equation on the computational
domain

M =

{
(x, ξ) ∈ [−1, 1]× [−0.8, 0.8]

∣∣∣ 0.02 ≤ H = V (x) +
1

2
ξ2 ≤ 0.18

}
,

17



Table 2: NSP versus NTP in Example 1

mesh 50× 50 100× 100 200× 200 400× 400

NSP 147 299 602 1212
NTP 1372 5364 21454 85826
ratio 10.71% 5.57% 2.81% 1.41%
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Figure 1: Example 1, phase space solution f(x, ξ, t) at time t = 3. From left
to right are the numerical solutions using 100 × 100 mesh, 400 × 400 mesh
and the exact solution.

and the potential is given by (Figure 2)

V (x) =

{
0.1(4x2 − 1)3, −0.5 ≤ x ≤ 0.5,

0, otherwise.

The initial data is
f(x, ξ, 0) = 0, (38)

and the boundary conditions are

f(1, ξ, t) =

{
−25(ξ + 0.2)(ξ + 0.6) sin(2πt) −0.6 ≤ ξ ≤ −0.2,

0 otherwise,
(39)

f(−1, ξ, t) =

{
−25(ξ − 0.2)(ξ − 0.6) sin(2πt) 0.2 ≤ ξ ≤ 0.6,

0 otherwise.
(40)

This is an inflow boundary condition problem. The solution at time T = 2.5
is given in Figure 3. The ‘exact’ solution is obtained by numerically solving
the Hamiltonian system on a very fine mesh with a very small time step.
We present the l1 error and its convergence rate in Table 3. The numerical
error is much small than in Example 1. The convergence rate is approaching
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to the second order, which is better than the error estimate given in Section
3.2. This is explained in Remark 3.5. In Table 4, the ratios of NSP over
NTP with different meshes are also shown.

Table 3: the l1 errors for different mesh sizes for Example 2

mesh 50× 50 100× 100 200× 200 400× 400

hT (x, ξ) 9.82× 10−4 3.01× 10−4 8.66× 10−5 2.39× 10−5

convergence rate −−− 1.7060 1.7973 1.8574
f(x, ξ, T ) 1.83× 10−3 5.53× 10−4 1.55× 10−4 4.23× 10−5

convergence rate −−− 1.7265 1.8350 1.8667

Table 4: NSP versus NTP in Example 2

mesh 50× 50 100× 100 200× 200 400× 400

NSP 174 360 711 1440
NTP 1152 4532 18064 72292
ratio 15.10% 7.94% 3.94% 1.99%

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

x

Figure 2: Example 2, potential V (x).

4.2 Applications

In this subsection we study the applications in fast computation multivalued
solutions to quasilinear PDEs. These problems arise in the semiclassical
limit of the linear Schrödinger equation, in which the initial condition for
(1) and (37) often takes the following form

f(x, ξ, 0) = ρ0(x)δ(ξ − u0(x)), (41)
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Figure 3: Example 2, phase space solution f(x, ξ, t) at time t = 2.5. From
left to right are the numerical solutions using 100 × 100 mesh, 400 × 400
mesh and the exact solution.

see for example [5, 17]. In most cases, we are interested in computing the
multivalued physical observables, which can be constructed from the mo-
ments of f :

ρ(x, t) =

∫
f(x, ξ, t)dξ,

ρ(x, t)u(x, t) =

∫
ξf(x, ξ, t)dξ.

The initial data (41) is singular, which potentially destroys the numerical
accuracy. In [9], a decomposition technique was introduced to solve the mul-
tivalued physical observables for smooth potentials. This idea was extended
for discontinuous potentials in [12]. See also [25, 26] for the discussions of
the related delta function integrals. Below we will apply this new devel-
oped hybrid phase-flow method for fast computing the Liouville equation
and constructing the multivalued physical observables.

Example 3. Consider the 1D Liouville equation on the computational
domain

M =

{
(x, ξ) ∈ [−2, 2]× [−1.6, 1.6]

∣∣∣ 0 ≤ H = V (x) +
1

2
ξ2 ≤ 0.65

}
,

with the discontinuous potential given by

V (x) =

{
0.2, x < 0,
0, x > 0.

The initial data is

f(x, ξ, 0) =

{
δ(ξ − 0.9 + 0.9

4 (x+ 2)2), −2 ≤ x ≤ 0,
δ(ξ + 0.9− 0.9

4 (x− 2)2), 0 < x ≤ 2,
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and the Dirichlet boundary conditions are

f(2, ξ, t) = δ(ξ + 0.9),

f(−2, ξ, t) = δ(ξ − 0.9).

This example was first proposed in [12], and the analytical velocity and
density functions could be found in its Appendix. We output the numerical
solutions of the density ρ(x, t) and velocity u(x, t) with different meshes
against the exact solution at time T = 1.8 in Figure 4. In Table 5-6, we give
the l1 errors of the numerical solutions and the ratios of NSP over NTP.
The convergence rate is nearly first order, which agrees with the discussion
for interface problem in [13]. This is more accurate than the results in [12],
where only halfth order was obtained [27].

Table 5: the l1 errors for different mesh sizes for Example 3

mesh 100× 100 200× 200 400× 400 800× 800

ρ(x, t) 5.01× 10−1 2.90× 10−1 1.63× 10−1 7.77× 10−2

u(x, t) 4.82× 10−2 2.54× 10−2 1.44× 10−2 5.60× 10−3

Table 6: NSP versus NTP in Example 3

mesh 100× 100 200× 200 400× 400 800× 800

NSP 327 671 1394 2858
NTP 6600 26000 104800 417600
ratio 4.95% 2.58% 1.33% 0.68%

Example 4. Consider the 2D Liouville equation

ft + ξfx + ηfy − Vxfξ − Vyfη = 0,

on the computational domain

M =

{
(x, y, ξ, η) ∈ [−0.15, 0.21]2 × [0.2, 0.5]2

∣∣∣ 0.1 ≤ V (x, y) +
1

2
(ξ2 + η2) ≤ 0.26

}
,

with the discontinuous potential given by

V (x, y) =

{
0, x+ y > 0.11,
0.1, x+ y < 0.11.
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Figure 4: Example 3, density ρ(x, t) (UP) and velocity u(x, t) (DOWN) at
time t = 1.8. The blue dotted lines are exact solutions and the red dashdot
lines are numerical solutions. From left to right are the numerical solution
using 100× 100, 200× 200 and 400× 400 mesh.

The initial data is taken as

f(x, y, ξ, η, 0) =

{
δ(ξ − 0.2828)δ(η − 0.2828), −0.1 < x+ y < 0.1, −0.1 < x− y < 0.1,

0, otherwise.

and the boundary conditions are

f(x, y, ξ, η, t)
∣∣
(x,y)∈∂M, (ξ,η)·n⃗<0

= 0,

∂f

∂n⃗
(x, y, ξ, η, t)

∣∣
(x,y)∈∂M, (ξ,η)·n⃗>0

= 0.

At time T = 0.1886, the exact density is

ρ(x, y, 0.1886) =


2
3 , 0.11 < x+ y < 0.255, −0.1 < x− y < 0.1,
1, 0.0067 < x+ y < 0.11, −0.1 < x− y < 0.1,
0, otherwise.

We output the numerical solutions of the density ρ(x, y, t) with different
meshes against the exact density in Figure 5. In Table 7-8, we give the
l1 errors of the numerical solutions and the ratios of NSP over NTP, from
which we can draw the same conclusion as in the end of the last example.
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Table 7: the l1 errors for different mesh sizes for Example 4

mesh 262 × 262 522 × 522 1042 × 1042

ρ(x, y, t) 5.36× 10−3 2.49× 10−3 1.25× 10−3

Table 8: NSP versus NTP in Example 4

mesh 262 × 262 522 × 522 1042 × 1042

NSP 53972 453690 3263199
NTP 226305 3680948 58532127
ratio 23.85% 12.33% 5.58%

5 Conclusion

In this paper, we propose a hybrid phase-flow method for solving the Liou-
ville equation in the bounded domain where the flow map sits in the variant
manifold of the traditional phase flow map. This hybrid phase flow method
could help reduce the numerical difficulty when the invariant manifold of
the phase flow given by the Liouville equation is big or unbounded. The sta-
bility and convergence of this algorithm is analyzed and several numerical
examples and applications are presented to verify the accuracy and efficiency
of this method.
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