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A Fast Parallel Algorithm for Selected Inversion of Structured Sparse

Matrices with Application to 2D Electronic Structure Calculations

Lin Lin ∗ Chao Yang † Jianfeng Lu ‡ Lexing Ying § Weinan E ¶

Abstract

We present an efficient parallel algorithm and its implementation for computing the diagonal of
H−1 where H is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard
second order finite difference scheme. This type of calculation can be used to obtain an accurate
approximation to the diagonal of a Fermi-Dirac function of H through a recently developed pole-
expansion technique. [29]. The diagonal elements are needed in electronic structure calculations for
quantum mechanical systems. [10, 23, 25]. We show how elimination tree is used to organize the
parallel computation and how synchronization overhead is reduced by passing data level by level
along this tree using the technique of local buffers and relative indices. We analyze the performance
of our implementation by examining its load balance and communication overhead. We show that
our implementation exhibits an excellent weak scaling on a large-scale high performance distributed
parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac
function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion
technique that uses our algorithm to compute the diagonal of (H − ziI)−1 for a small number of
poles zi is much faster, especially when the quantum dot contains many electrons.

1 Introduction

Electronic structure calculation based on density functional theory [10, 23, 25] has been popular in the
field of chemistry and material science in recent years. In the framework of density functional theory,
the electron density is represented as the diagonal of Fermi-Dirac function fβ,µ(t) = 2/(1 + eβ(t−µ))
evaluated at a Kohn-Sham Hamiltonian H, where the parameter β is proportional to the reciprocal
of the temperature, µ is the chemical potential, and the number 2 comes from spin. The standard
algorithm for evaluating the diagonal of fβ,µ(H) involves computing the invariant subspace associated
with k smallest eigenvalues of H. These eigenvalues are known as the occupied states. The complexity
of this approach is proportional to k3. When the value of k, which is proportional to the number of
electrons in the system, becomes large, this approach becomes prohibitively expensive. A lot of attention
has been attracted in the quest for algorithms with better scaling. One type of such algorithms is Fermi
operator expansion.
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The Fermi operator expansion technique expands Fermi-Dirac function using polynomials [16,17] or
rational functions[4]. A review article can be found in [18]. From the viewpoint of efficiency, a major
concern is the representation cost of Fermi-Dirac function as a function of β∆E, where ∆E is the spectral
width of the Hamiltonian matrix. The cost of polynomial based Fermi operator expansion scheme
proposed by Goedecker et al. is proportional to β∆E. When β∆E is large, rational approximation
becomes preferable. Various schemes have been proposed to reduce the representation cost [7, 38, 44],
among which [7] achieves the best scaling as (β∆E)1/3.

Recently a pole expansion technique [27,29] has been developed to further reduce the representation
cost to log(β∆E). This technique allows the computation of electronic structure of metallic system
at room temperature with fine discretization using only a small number of poles. The pole-expansion
entails expressing electron density as a linear combination of the diagonal of (H − ziI)−1 as

ρ = diag [fβ,µ(H)] ≈
P∑
i=1

Im
(

diag
ωi

H − (µ+ zi)I

)
. (1)

Here Im (H) stands for the imaginary part of H. The parameters zi and ωi are the complex shift and
weight associated to the i-th pole respectively. zi and ωi can be chosen such that the total number of
poles P is minimized for a given accuracy requirement.

In this paper, we consider a Kohn-Sham Hamiltonian

H = − 1
2m

∆ + Vext(r) + VH(r) + Vxc(r) (2)

defined on a two dimensional space. Here ∆ is the Laplacian operator, Vext is the external potential,
VH is the Hartree potential, Vxc is a 2D exchange-correlation potential. For simplicity the domain is
assumed to be rectangular and the boundary condition is zero Dirichlet boundary condition. Such a
Hamiltonian can be used to describe, for example, the electronic properties of 2D quantum dots [41]. All
the discussions can can also be generalized to quasi-2D systems [39], where the Hamiltonian is defined
on a three dimensional space but with a third direction much smaller than the other two directions.
We also assume here that all potentials are local, i.e. the potentials are functions of position r only.
But the algorithm can also be generalized to Hamiltonians with non-local potentials. In the case of
local potential, after H is discretized by a finite difference scheme, the sparsity structure of the matrix
Hamiltonian A is completely determined by that associated with the discretized Laplacian operator.

Generally speaking, pole expansion requires the computation of the diagonal of A−1, where A is
a (real or complex) sparse symmetric matrix of extremely large dimension. Direct extraction of the
diagonal of from the full matrix A−1 is impractical. Sequential algorithm for computing the diagonal of
A−1 for a sparse symmetric matrix A derived from discretization of the Hamiltonian on a rectangular
2D grid has been proposed in [28]. It has been shown that the complexity of these algorithms is O(n3/2)
where n is the dimension of the matrix. In this paper we describe an efficient parallel implementation
of a diagonal extraction algorithm that can be used to compute the diagonal of A−1 for discretized 2D
Kohn-Sham Hamiltonian on a large-scale distributed parallel computer with thousands of processors.
We also remark that the similar type of computation also appears in other contexts. One such example
is electronic transport, where the diagonals of retarded Green’s function and less-than Green’s function
are to be calculated. Fast algorithms have also been recently developed for this purpose [26,40].

The paper is organized as follows. We start in section 2 with main ideas of our algorithm, and explain
why it is possible to extract the diagonal of A−1 without computing entire A−1. The algorithmic and
implementation details of a parallel procedure we developed for computing the diagonal of A−1 is
presented in section 3. The performance of such a procedure is demonstrated and analyzed in section 4.

2



In particular, we show that our parallel implementation can be used to solve problems defined on a
65, 535 × 65, 535 grid with more than four billions of degrees of freedom on 4,096 processor in less
than 25 minutes. We show an application of the algorithm to an electronic structure calculation for
a quantum dot and compare its performance with a standard approach implemented in the software
package Octopus [6].

Standard linear algebra notation is used for vectors and matrices throughout the paper. We use Ai,j
to denote the (i, j)-th element of A. When describing the algorithms and their implementations, we
often use letters in typewriter fonts such as A, L and D etc. to denote matrices stored in an appropriate
format using an appropriate data structure. The letters I, J and K often serve the dual purposes of being
an integer index as well as representing a set that contains a number of integers as its members. Their
meaning should be clear from the context. Occasionally, we use a MATLAB [34] script to describe a
simple algorithm. In particular, we use the MATLAB-style notation A(i:j,k:l) to denote a submatrix
of A that consists of rows i through j and columns k through l.

2 An Algorithm for Computing the Diagonal of A−1

The algorithm consists of two major steps. In the first step, we simply compute a sparse block LDLT

factorization of A. We assume here that A is nonsingular and all pivots produced in the LDLT factor-
ization are sufficiently large so that no row or column permutation is needed during the factorization.
In the second step, L and D are used to retrieve the diagonal elements of A−1 with a computational
complexity comparable to that of the sparse block LDLT factorization and no additional storage re-
quirement. The main idea used here is very general. It dates back to [13], and is shared in other recently
developed algorithms [26,28,40].

2.1 An Algorithm for Computing the Inverse of a Dense Matrix

Before we describe the algorithm for computing the diagonal ofA−1 using the L andD matrices produced
from an LDLT factorization of A, it will be helpful to first review the major operations involved in the
LDLT factorization. Let

A =
(
α aT

a Â

)
, (3)

with α 6= 0. The first step of an LDLT factorization produces a decomposition of A that can be
expressed by

A =
(

1
` I

)(
α

Â− aaT /α

)(
1 `T

I

)
,

where ` = a/α and S = Â− aaT /α is known as a Schur complement. The same type of decomposition
can be applied recursively to the Schur complement S until its dimension becomes 1. The product of
lower triangular matrices produced from the recursive procedure, which all have the form I

1
`(i) I

 ,

where `(1) = ` = a/α, yields the final L factor. The (1, 1) entry of each Schur complement together
with α become the diagonal entries of the D matrix.
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The key observation made in [26] and [28] is that A−1 can be expressed by

A−1 =
(
α−1 + `TS−1` −`TS−1

−S−1` S−1

)
. (4)

This expression suggests that once α and ` are known, the task of computing A−1 can be reduced to
that of computing S−1.

Because a sequence of Schur complements are produced recursively in the LDLT factorization of,
the computation of A−1 can be organized in a recursive fashion also. Clearly, the reciprocal of the
last entry of D is the (n, n)-th entry of A−1. Starting from this entry, which is also the 1 × 1 Schur
complement produced in the (n− 1)-th step of the LDLT factorization procedure, we can construct the
inverse of the 2 × 2 Schur complement produced at the (n − 2)-th step of the factorization procedure,
using the recipe given by (4). This 2× 2 matrix is the trailing 2× 2 block of A−1. As we proceed from
the lower right corner of L and D towards their upper left corner, more and more elements of A−1 are
recovered. The complete procedure can be easily described by a MATLAB script shown in Algorithm 1.

Algorithm 1 A MATLAB script for computing the inverse of a dense matrix A given its LDLT

factorization.
Ainv(n,n) = 1/D(n,n);
for j = n-1:-1:1

Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);
Ainv(j,j+1:n) = Ainv(j+1:n,j)’;
Ainv(j,j) = 1/D(j,j) - L(j+1:n,j)’*Ainv(j+1:n,j);

end;

For clarity purpose, we use a separate array Ainv in Algorithm 1 to store the computed A−1. In
practice, A−1 can be computed in place. That is, we can overwrite the array used to store L with the
lower triangular part of A−1 incrementally.

2.2 Computing Diagonal of the Inverse for Sparse Matrices

It is not difficult to observe that the complexity of Algorithm 1 is O(n3) because a matrix vector
multiplication involving a j × j dense matrix is performed at the jth iteration of this procedure, and
n− 1 iterations are required to fully recover A−1. Therefore, when A is dense, this procedure does not
offer any advantage over the standard way of computing A−1, which simply solves the matrix equation
AX = I, where I is the n × n identity matrix. Furthermore, no computation cost can be saved if we
just want to extract the diagonal elements of A−1. All elements of A−1 are needed and computed.

However, when A is sparse, a tremendous amount of saving can be achieved if we are only interested
in the diagonal of A−1. If the vector ` in (4) is sparse, computing `TS−1` does not require all elements
of S−1 to be obtained in advance. Only those elements that appear in the rows and columns that
correspond to the nonzero rows of ` are required.

Therefore, to extract the diagonal of A−1, we can simply modify the procedure shown in Algorithm 1
so that at each iteration we only compute selected elements of A−1 that will be needed by subsequent
iterations of this procedure. We will call the second step of the diagonal extraction computation selected
inversion. It turns out that the elements that need to be computed is completely determined by the
nonzero structure of the lower triangular factor L. To be more specific, at the jth step of the selected
inversion process, we compute A−1

i,j for all i such that Li,j 6= 0.
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To see why this type of selected inversion is sufficient, we only need to examine the nonzero structure
of the kth column of L for all k < j since such a nonzero structure tells us which rows and columns
of the trailing sub-block of A−1 are needed to complete the calculation of the (k, k) entry of A−1. In
particular, we would like to find out which elements in the jth column of A−1 are required for computing
A−1
i,k for any k < j and i ≥ j.

Clearly, when Lj,k = 0, the jth column of A−1 is not needed for computing the kth column of A−1.
Therefore, we only need to examine columns k of L such that Lj,k 6= 0. A perhaps not so obvious
but critical observation is that for these columns, Li,k 6= 0 and Lj,k 6= 0 implies Li,j 6= 0 for all i > j.
Hence computing the kth column of A−1 will not require more matrix elements from the jth column of
A−1 than those that have already been computed (in previous iterations,) i.e., elements A−1

i,j such that
Li,j 6= 0 for i ≥ j.

These observations are well known in the sparse matrix factorization literature [12, 14]. They can
be made more precise by using the notion of elimination tree [30]. In such a tree, each node or vertex
of the tree corresponds to a column (or row) of A. Assuming A can be factored as A = LDLT , a node
p is the parent of a node j if and only if

p = min{i > j|Li,j 6= 0}.

L =



a
b

• c
d

• e
f

• • g
• • • • h

• • • i
• • • • • j


(a) The L factor.

j

i

h

g

c

a

f

e

b

d

(b) The elimina-
tion tree.

Figure 1: The lower triangular factor L of a sparse 10× 10 matrix A and the corresponding elimination
tree.

If Lj,k 6= 0 and k < j, then the node k is a descendant of j in the elimination tree. An example of
the elimination tree of a matrix A and its L factor are shown in Figure 2.2. Such a tree can be used
to clearly describe the dependency among different columns in a sparse LDLT factorization of A. In
particular, it is not too difficult to show that constructing the j column of L requires contributions from
all descendants of j, if the descendant corresponds to a nonzero matrix element in the jth row of L.

Similarly, we may also use the elimination tree to describe which selected elements within the trailing
sub-block A−1 are required in order to obtain (j, j)-th element of A−1. In particular, it is not difficult to
show that the selected elements must belong to rows and columns of A−1 that are among the ancestors
of j.

5



2.3 Block Algorithm

The selected inversion procedure described in Algorithm 1 and its sparse version can be modified to
allow a block of rows and columns to be modified simultaneously. A block algorithm can be described
in terms a block factorization of A:

A =
(
A11 BT

21

B21 A22

)
=
(

I
L21 I

)(
A11

A22 −B21A
−1
11 B

T
21

)(
I LT21

I

)
, (5)

where L21 = B21A
−1
11 and S = A22−B21A

−1
11 B

T
21 is the Schur complement. In particular, a block version

of (4) can be expressed by

A−1 =
(
A−1

11 + LT21S
−1L21 −LT21S

−1

−S−1L21 S−1

)
.

Two advantages of using a block algorithm are:

1. It allows us to use level 3 BLAS (Basic Linear Algebra Subroutine) to develop an efficient imple-
mentation by exploit memory hierarchy in modern microprocessors;

2. It reduces indirect addressing overhead in sparse matrix computation.

If A is sparse, blocks are defined in terms of what is called supernodes. A supernode is a set of nodes
whose corresponding columns (of its L factor) share the same nonzero lower diagonal structure. The
definition of a supernode can be relaxed to include nodes whose corresponding columns of L are nearly
identical. In this paper, we will use the relaxed definition of supernodes, which is more natural for a
block row-based LDLT factorization algorithm we choose to implement.

3 Computing the Diagonal of the Inverse of a 2D Kohn-Sham Hamil-
tonian

In this section, we present the algorithmic and implementation details of a parallel procedure we have
developed for computing the diagonal of A−1 for a discretized 2D Kohn-Sham Hamiltonian defined on
a rectangular domain with a Dirichlet boundary condition. We assume that a standard 5-point stencil
is used to discretize the Laplacian operator. However, many of the techniques we describe here can be
easily extended to other higher order stencils for both 2D and 3D Hamiltonians.

We will begin with some standard notations in section 3.1.1. A description of a sequential recursive
implementation of a block row-based LDLT factorization follows in section 3.1.2. We introduce a
sequential selected inversion algorithm in section 3.1.3. These two sections serves as the building blocks
for our parallel factorization algorithm. Implementation details are given in section 3.1.4. In particular,
we will show how the elimination tree is used to organize the computation in an efficient manner in the
factorization. We will also discuss how sparse matrix updates are managed through the use of relative
indices. We will show that the elimination tree can also be used to guide the selected inversion process.

Our basic strategy for parallelization of the block row-based LDLT factorization and the selected
inversion procedures is to divide the computational work among different branches of the elimination
tree, which also serves as a parallel task tree. We will describe how this division of work is defined
in section 3.2.1 and discuss how data is distributed among different processors to achieve a good load
balance in section 3.2.2. One of the key factors that affect the scalability of parallel computation is the
synchronization cost. We will describe a technique for reducing the synchronization cost in section 3.2.3.
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A unique feature of our implementation is that the symbolic analysis of the nonzero structure of L is
extremely efficient and performed in parallel. We will briefly describe the major components of this
procedure in section 3.2.4.

We remark that synchronization bottleneck is a particularly prominent problem in the parallel
block LDLT factorization and selected inversion algorithm. In other words, we may easily arrive at
a sequential algorithm if the synchronization process is not carefully designed. Therefore many of the
efforts are spent for this purpose in section 3.1.4 and 3.2.3, including recursive implementation, level-
by-level updating scheme and relative indices. We recommend readers who are not interested in these
technical details to skip section 3.1.4 and 3.2.3, and only read the rest parts to obtain the main idea of
the parallel algorithm.

3.1 Sequential Algorithm

Before we present the sequential algorithms for performing an LDLT factorization of the discretized
2D Hamiltonian and the selected inversion process, we need to introduce a number of notation and
terminologies commonly used in the sparse matrix literature.

3.1.1 Nested Dissection and Elimination Tree

We use the technique of nested dissection [15] to reorder and partition the sparse 2D Hamiltonian
matrix A into blocks of submatrices as shown in Figure 3(b). Because there is a one to one mapping
between each row or column of the matrix and a grid point of the computational domain on which the
Hamiltonian is defined, such a partition of the matrix corresponds to a recursive partition of the 2D
grid into a number of subdomains with a predefined minimal size. In the example shown in Figure 2(a),
this minimal size is 3 × 3. Each subdomain is separated from other subdomains by separators that
are defined in a hierarchical or recursive fashion. The largest separator is defined to be a set of grid
points that divides the entire 2D grid into two subgrids of approximately equal sizes. Smaller separators
can be constructed recursively within each subgrid. These separators are represented as oval boxes in
Figure 2(a). For the sake of convenience, we will call a set of row or columns indices associated with
either a minimal subdomain or a separator a supernode. We will use uppercase typewriter typeface
letters such as I to denote such a supernode. We should note that this definition of supernode is
different from the conventional definition of supernodes used in the sparse matrix literature [37], where
the columns of L corresponding to a supernode are required to take exactly the same lower diagonal
sparsity pattern. Our definition is more relaxed to include nodes whose corresponding columns of L are
nearly identical in order to take full advantage of BLAS3. If the supernodes are numbered in a way as
shown in Figure 2(b), the corresponding matrix exhibit a sparsity pattern shown in Figure 3(b).

The hierarchical relationship among different separators can be organized in a tree structure shown
in Figure 3(a). The largest separator (supernode 31) that divides the entire grid in half form the root
the tree. The separators that divide each subgrid produced from the first division are the children of
the root. The minimal subdomains that are connected by the lowest-level separators form the leaves
of the tree. It turns out that this separator tree is identical to the elimination tree associated with the
block LDLT factorization of the reordered and portioned matrix A shown in Figure 3(b). Each node
of the tree corresponds to a supernode. The ordering of supernodes follows a postorder traversal of the
tree, i.e., a node is traversed only after all its children have been traversed.

The standard matrix-matrix multiplication is denoted by ∗. We also denote a restricted multiplication
by ⊗. The meaning of restricted multiplication will become clear in section 3.1.4.
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(b) The ordering of the supernodes.

Figure 2: The nested dissection of a 15 × 15 grid and the ordering of the supernodes associated with
this partition.

3.1.2 Block LDLT Factorization

There are a number of ways to implement the block LDLT factorization (5) of a sparse matrix A. They
differ by the order in which rows and columns of a Schur complement are updated. The review papers
[22,36,37,43] contain thorough discussions on the left-looking, right-looking and multifrontal algorithms
in which Schur complements are updated column by column. The factorization phase in the recently
developed hierarchical Schur complement algorithm [28] can be regarded as an efficient right-looking
implementation on a 2D rectangular grid. The LDLT factorization we choose to implement follows
a row-based approach presented in [9]. This approach is also known as the bordering algorithm in
[31, 37]. If we ignore the sparsity structure of A and L for the moment and assume that A and L have
been partitioned into nblocks block rows and columns indexed by J, a block row-based factorization
algorithm can be succinctly described by the pseudocode shown in Algorithm 2. Note that in the
pseudocode, the L matrix is constructed one block row at a time by solving a set of triangular systems
(steps 1 and 2 of the algorithm) at each iteration. The index J should be interpreted as both a block
row or column index and a set of rows and columns within the block indexed by J. This dual-purpose
notation will be used throughout this paper.

Algorithm 2 A row-based LDLT factorization of a symmetric matrix A.
for J = 1 to nblocks do

Solve Y*L(1:J-1,1:J-1)T = A(J,1:J-1) for Y;
Solve L(J,1:J-1)*D(1:J-1,1:J-1) = Y for L(J,1:J-1);
L(J,J) ← identity matrix;
D(J,J) ← A(J,J) - L(J,1:J-1)*YT ;

end for

When A is sparse, we should exploit the sparsity structure of L in order to minimize the number of
operations. It is well known in the sparse matrix literature that, at each iteration J, the sparsity pattern
of Y and L(J,1:J-1) is completely determined by the nonzero structure of the descendants of node J in
the elimination tree. To be specific, Y(I) (or L(I,J)) is nonzero if and only if node I is a descendent of
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(a) The separator (or elimination) tree in postorder (b) The reordered and partitioned matrix A

Figure 3: The separator tree associated with the nested dissection of the 15×15 grid shown in Figure 2(a)
can also be viewed as the supernode elimination tree associated with the LDLT factorization of the 2D
Laplacian defined on that grid.

J in the elimination tree. Furthermore, the way in which Y(I) is computed can be expressed in terms
of a traversal of the sub-tree rooted at I [30]. As a result, step 1 of the factorization procedure given in
Algorithm 2 can be carried out efficiently by following the pseudocode given in Algorithm 3.

Algorithm 3 A triangular solve algorithm guided by an elimination tree.
Y ← A(1:J-1,J);
for I ∈ {Descendants of J} do

for K ∈ {Descendants of I} do
Y(I)← Y(I)− L(I, K) ∗ Y(K);

end for
end for

As we can see from Algorithm 3, Y(I) can be computed only if Y(K) have been calculated for all K
that are descendants of I. Hence, to compute Y(I), the descendants of node I must be traversed in a
proper order. The postorder [8] of the nodes in the elimination tree shown in Figure 2.2 satisfies this
ordering requirement. Moreover, such an order allows us to implement the pseudocode in Algorithm 3
in a recursive fashion, as we will show in section 3.1.4.

3.1.3 Block Selected Inversion

The dependency among different supernodes exhibited by the elimination tree can also be exploited to
perform the selected inversion procedure (in Algorithm 1) efficiently for a sparse matrix. A pseudocode
for computing selected blocks of A−1 required for extracting the diagonal of A−1 is shown in Algorithm 4.
As we can see from this pseudocode that Ainv(J,K) is calculated if and only if L(J,K) is a non-zero
block. Such a calculation makes use of previously calculated blocks Ainv(J,I), where both J and I are

9



ancestors of the supernode K. However, unlike the LDLT factorization procedure in which descendants
of a supernode must be traversed in a proper order, ancestors of the supernode K can be accessed in
any order. This feature makes the implementation of the selected inversion process somewhat easier as
we will see in section 3.1.4.

Algorithm 4 A selected inversion algorithm for a sparse symmetric matrix A given its block LDLT

factorization A = LDLT .
for K = nblocks to 1 step -1 do

for J ∈ {ancestors of K} do
Ainv(J,K) ← 0;
for I ∈ {ancestors of K} do

Ainv(J, K)← Ainv(J, K)− Ainv(J, I) ∗ L(I, K);
end for
Ainv(K, J)← Ainv(J, K)T ;

end for
Ainv(K, K) ← D(K,K)T ;
for J ∈ {ancestors of K} do

Ainv(K, K)← Ainv(K, K)− L(J, K)T ∗ Ainv(J, K);
end for

end for

3.1.4 Implementation Details of the Sequential Algorithm

We now discuss several implementation details that are key to achieving high performance in the LDLT

factorization and selected inversion computation.
We will first show that the row-based LDLT factorization we presented in section 3.1.2 can be

implemented by using recursion. The use of recursion simplifies the coding effort significantly without
sacrificing any performance, as we will see in section 4. In our recursive implementation, two recursive
subroutines are created to handle the inner and outer loops of the pseudocode shown in Algorithm 3
respectively. To compute the Jth block row of L, we first call the recursive subroutine SeqAssemble
to obtain Y such that Y*L(1:J-1,1:J-1)T = A(J,1:J-1). To distinguish sequential algorithms from
the parallel algorithms to be introduced later, we use the prefix Seq in subroutine names associated
with sequential algorithms and the prefix Par in those that are associated with parallel algorithms.
Algorithm 5 shows how SeqAssemble is used in the main LDLT factorization program that computes
one block row of L and D at a time. To illustrate the recursive nature of our algorithm, all pseudocodes
described in the next few sections are written in the form of subroutines. The matrix inputs to these
subroutines are usually clear from the context. Therefore, we do not list them explicitly to save space. In
our implementation, all matrices and work arrays are passed in by reference (or by address) according to
the FORTRAN convention so that the stack overhead associated with recursion is relatively small. We list
supernode indices as the input arguments to some of the subroutines to illustrate the path of recursion
along the elimination tree.

The pseudocode given in the left column of Algorithm 6 shows that, at the Jth iteration, the
SeqAssemble subroutine traverses down the subtree rooted at J in postorder until the first argument
I becomes a leaf node at which Y(I) is simply A(I,J). Once all descendants of the node I have been
traversed, indicating that Y(K) is available for all descendants K of I, we use a second subroutine
SeqSum (shown in the right box in Algorithm 6) to perform the summation required in the inner loop
of the triangular solve shown in Algorithm 3. For each descendent I of J, the SeqSum subroutine

10



Algorithm 5 The major steps of a recursive implementation of the block row-based LDLT factorization
algorithm for a symmetric matrix A.

subroutine SeqBlockLDLT
for J = 1 to nblocks do

Y ← A(J,1:J-1);
Update Y by calling SeqAssemble(J,J);
D(J,J) ← Y(J);
Update L(J,1:J) and D(J,J) by calling SeqInv(J);

end for
return L, D;
end subroutine

traverses the subtree rooted at I again to collect the matrices Y(K) that have already been computed.
It accumulates the product of Y(K) and L(I,K) in a hierarchical fashion in a workspace denoted by
Buffer in Algorithm 6. The reason why we use a workspace to accumulate all contributions from the
descendants of I instead of applying updates to Y(I) directly will become clear later in this section.

Algorithm 6 Recursive implementation of the triangular solve shown in Algorithm 3.
subroutine SeqAssemble(I,J)
if (I is a leaf node) return;
for K = {children of I} do

Update Y by calling SeqAssemble(K,J) recursively;
end for
Buffer = 0;
Update Buffer by calling SeqSum(Buffer,I,I,J);
Y(I)← Y(I)− transpose(Buffer);
return Y;
end subroutine

subroutine SeqInv(J)
D(J, J)← D(J, J)−1;
for I ∈ {descendants of J} do

L(J,I) ← Y(I)*D(J,J);
end for
return L, D;
end subroutine

subroutine SeqSum(Buffer,K,I,J)
if (K is not a leaf node) then

for C = {children of K} do
[RelI,RelJ] =
GetRelIndex(C,K,I,J);
Update part of Buffer by calling
SeqSum(Buffer(RelI,RelJ),C,I,J)
recursively;

end for
end if
if ( K 6= I ) then

Buffer = Buffer + L(I, K)⊗ Y(K);
end if
return Buffer;
end subroutine

To complete the computation of the Jth block row of L and D, we need to invert the diagonal block
D(J,J), and multiply D(J, J)−1 with Y(I) for all descendants I of J as shown in the SeqInv subroutine
in Algorithm 6.

Up to this point, we have treated the matrix blocks L(J,I) as if they are dense matrices. For the
2D Hamiltonian we consider in this paper, a large number of the off-diagonal matrix blocks in L are
quite sparse. For example, in Figure 4, which shows the sparsity pattern of the L factor associated with
a 2D Hamiltonian defined on a 7× 7 grid as well as the block structure obtained from a 2-level nested
dissection reordering, the L(7,1) block has dimension 7× 9, but contains only 6 nonzero entries at its
upper right corner. In order to carry out the summation process in the SeqSum subroutine efficiently,
we must take advantage of these sparsity structures, which can be predetermined by a symbolic analysis
procedure to be discussed in section 3.2.4. In particular, we should not store the zero rows and columns
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in L(I,K) and Y(K), and we should exclude these rows and columns when these two matrices are
multiplied. As a result, the product of the nonzero rows and columns of these matrices will have a
smaller dimension, and it needs to be placed at a proper location in the destination workspace. We will
call the multiplication of the nonzero rows and columns of L(I,K) and Y(K) a restricted matrix-matrix
multiplication, denoted by ⊗.

To implement such a restricted matrix-matrix multiplication, we need to keep track of the size
and the starting location of nonzero row and column indices of L(J,I) for all J and I. To reduce the
bookkeeping overhead, we treat some of the zero entries in L(J,I) as nonzeros and store them explicitly.
For example, in Figure 4, the nonzero entries appear within the 3 × 3 submatrix at the upper right
corner of the L(7,1) block. Even though the lower triangular part of this 3×3 submatrix is completely
zero, we store the entire submatrix and record its starting location within L(7,1).

Figure 4: Sparsity pattern of the L factor associated with a Hamiltonian discretized on a 7× 7 grid.

Once the positions and sizes of the non-zero submatrices within L(I,K) and Y(K) are known, the
size of the product of these submatrices and its location within Y(I) can be determined for all ancestors
I of K. For example, it is easy to see from Figure 4 that the product of the nonzero submatrices of
L(7,1) and Y(1) is a 3 × 3 matrix, and it should be accumulated at the upper left corner of Y(1)
with the starting row and column positions of (1, 1). We call such type of row and column position
indices absolute indices. Using these absolute indices, we can in fact perform the summation in the inner
loop of Algorithm 3 by adding the product of the nonzero submatrices of L(I,K) and Y(K) directly to
the destination location in Y(I). However, such a strategy creates a synchronization bottleneck in the
parallel LDLT factorization algorithm to be discussed in section 3.2. To overcome this problem, we
developed a hierarchical scheme for accumulating the product of L(I,K) and Y(K) as the descendants
of node I are traversed by the SeqSum subroutine in Algorithm 6. We sketch the basic ideas of this
scheme here and will explain how it helps to eliminate the synchronization bottleneck in a parallel
LDLT factorization in the next section.

As illustrated in Algorithm 6, a work array Buffer, which has the same size as the number of
nonzero rows and columns in Y(I), is created when node I is traversed by the SeqAssemble subroutine.
This array is used to accumulate all L(I,K)*Y(K) contributions from the descendants of I. Because the
multiplication of the nonzero submatrices of L(I,K) and Y(K) often produces a matrix with a much
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smaller dimension (than that of the Buffer array), a subblock of Buffer is passed down from a parent
to its child recursively as descendants of I are traversed by the SeqSum subroutine. The reason that
it is sufficient to pass a subblock of the Buffer array from a parent to its child (instead of passing a
subblock of Buffer directly from node I to its descendants) is that the set of nonzero rows and columns
associated with L(I,R)*Y(R) is a subset of the nonzero rows and columns that are associated with
L(I,K)*Y(K) if R is a child of K. Hence, when the product of the nonzero rows and columns of L(I,R)
and Y(R) is accumulated in the Buffer array, we only need to know the relative position of this product
in the subblock of the Buffer array owned by its parent K. The row and column indices that define such
a position are called relative indices. The use of relative indices is not new. Similar ideas date back to
[46], and they are also used in both left-looking and multifront algorithms [11,32,37].

Restricted matrix-matrix multiplication must also be used to achieve high performance in the se-
lected inversion process. During the calculation of Ainv(J,K), selected rows and columns of Ainv(J,I)
must be extracted before the submatrix associated with these rows and columns. These rows and
columns are placed in a Buffer array in Algorithm 7. The Buffer array is then multiplied with the
corresponding nonzero columns of L(I,K). However, because the ancestors of the node K in Algorithm 4
do not have to be visited in a hierarchical order, the use of relative indices is not necessary. Absolute
indices, which are obtained by the GetAbsIndex function in Algorithm 7, can be used to retrieve the
desire submatrix block from Ainv(J,I) in a sequential algorithm. This kind of restricted retrieval of
Ainv(J,I) will become more complicated when the selected inversion of A is carried out in parallel. In
that case, both absolute and relative indices need to be used.

Algorithm 7 Selected inversion of A with restricted matrix-matrix multiplication given its block LDLT

factorization.
subroutine SeqSelInverse
for K = nblocks to 1 step -1 do

for J ∈ {ancestors of K} do
Ainv(J,K) ← 0;
for I ∈ {ancestors of K} do

[IA,JA] ← GetAbsIndex(L,K,I,J);
Buffer ← selected rows and columns of Ainv(J,I) starting at (IA, JA)
Ainv(J, K)← Ainv(J, K)− Buffer⊗ L(I, K);

end for
Ainv(K,J) ← transpose(Ainv(J,K));

end for
Ainv(K,K) ← D(K, K)−1;
for J ∈ {ancestors of K} do

Ainv(K, K)← Ainv(K, K)− L(J, K)T ⊗ Ainv(J, K);
end for

end for
return Ainv;
end subroutine

It should be noted that we use A, L, D, Ainv, Y as separate variables in Algorithms 5 and 7 only
for clarity. In our implementation, A, L, D, Y share the same storage space allocated in advance.
Moreover, L is incrementally overwritten by Ainv. Therefore, the memory requirement of our imple-
mentation is roughly what is needed to store L in a block compressed column format plus a few extra
arrays of limited size that are used as workspace (such as Buffer).
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3.2 Parallelization

The sequential algorithm described above is very efficient for problems that can be stored on a single
processor. For example, we have used the algorithm to compute the diagonal of a discretized Kohn-
Sham Hamiltonian defined on a 2047× 2047 grid. The entire computation, which involves more than 4
million degrees, took less than 2 minutes on an AMD Opteron processor.

For larger problems that we would like to solve in electronic structure calculation, the limited
amount of memory available on a single processor makes it difficult to store the L and D factors in-
core. Furthermore, because the complexity of the computation is O(n3/2) [28], the CPU time require
to complete a calculation on a single processor will eventually become excessively long.

Thus, it is desirable to modify the sequential algorithm so that the LDLT factorization and selected
inversion process can be performed in parallel on multiple processors. The parallel algorithm we describe
below focuses on distributed memory machines that do not share a common pool of memory.

3.2.1 Task Parallelism

The elimination tree associated with the LDLT factorization of the reordered A (using nested dissection)
provides natural guidance for parallelizing the factorization calculation. It can thus be viewed also as a
parallel task tree. We divide the computational work among different branches of the tree. A branch of
the tree is defined to be a path from the root to a node K at a given level ` as well as the entire subtree
rooted at K. The choice of ` depends on the number of processors available. Our parallel algorithm
requires the number of processors p to be a power of two, and ` is set to log2(p) + 1.

In terms of tree node to processor mapping, each node at level ` or below is assigned to a unique
processor. Above level `, each node is shared by multiple processors. The amount of sharing is hier-
archical, and depends on the level at which the node resides. To be specific, a level-k node is shared
by 2`−k processors. We will use procmap(J) in the following discussion to denote the set of processors
assigned to node J. Each processor is labeled by an integer processor identification (id) number between
0 and p− 1. This processor id is known to each processor as mypid.

Because each processor works on a particular branch of the tree, the recursive procedure shown in
Algorithm 6 must be modified so that the SeqAssemble and SeqSum subroutines do not traverse the
entire tree on each processor. In terms of parallelism, it will be convenient to think of the subtree rooted
at a level-` node as an aggregated leaf node. Figure 5(a) shows how different nodes in an elimination
tree are mapped to four processors used in a parallel calculation. The subtree rooted at the 3rd level
nodes are enclosed by dashed line boxes to indicate that they are aggregated leaf nodes of the parallel
task tree which is enclosed by the solid line box.

The main structures of the parallel block LDLT factorization and selected inversion procedures are
shown in Algorithm 8. Both parallel procedures make use of the sequential algorithms presented earlier
to perform necessary calculations that are limited to an aggregated leaf node. In the case of LDLT

factorization, each processor first uses Algorithm 5 to factor a diagonal block of A associated with an
aggregate leaf node J. This computation is completely independent from similar calculations performed
simultaneously by other processors. As each processor moves from an aggregated leaf node towards the
root, which is indicated by the while loop in the left column of Algorithm 8, it uses the subroutine
ParAssemble (which is the parallel analog to SeqAssemble) to solve Y*L(1:J-1,1:J-1)=A(J,1:J-1)
for Y in parallel. As we can see from the left column of Algorithm 9, the execution of ParAssemble by
each processor is recursive also. Each processor simply uses mypid and procmap to select an appropriate
branch to move down the parallel task tree. For each node I along that branch, processors that belong to
procmap(I) all contribute to the parallel computation of Y(I), which requires communications among
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tributed among different processors.

Figure 5: Task parallelism expressed in terms of parallel task tree and correponding matrix to processor
mapping.

these processors. Eventually, each processor will reach a leaf node I. When that happens, ParAssemble
will call SeqAssemble to traverse into the subtree rooted at I in postorder to compute Y(K) for all
K that are descendants of I, just like how it is done in the sequential algorithm. No inter-processor
communication is needed in SeqAssemble.

Once all descendants of I along a particular branch of the parallel task tree have been traversed,
including those that are within the aggregated leaf, we use a new subroutine ParSum in Algorithm 9
to add up the L(I,K)*Y(K) contributions from all descendants K of I. The ParSum subroutine also
moves down a branch of the parallel task tree on each processor until it reaches an aggregated leaf node
where the SeqSum subroutine is called to sum up L(I,K)*Y(K) for all K that are in the aggregated leaf.
As the ParSum recursion backtracks towards node I, it merges contributions from different branches
of the parallel task tree in a hierarchical fashion. Communication is required in the merging process
which must be implemented with care to minimizing the synchronization cost. We will discuss the
implementation detail in section 3.2.3.

The parallelization of the selected inversion process can also be described in terms of operations
performed on different branches of the parallel task tree simultaneously by different processors. As
illustrated in the subroutine ParSelInverse in Algorithm 10, each processor moves from the root of
the task tree down towards to an aggregated leaf node along a particular branch identified by mybranch.
At each node K, it first computes Ainv(J,K) for ancestors J of K that satisfy L(J, K) 6= 0. This calculation
is followed by the computation of the diagonal block Ainv(K,K). These two operations are accomplished
by the subroutine ParExtract shown in the left column of Algorithm 10. Before moving one step further
along mybranch, all processors belonging to procmap(K) performs some additional data redistribution by
calling the subroutine ParRestrict as in the right column of Algorithm 10, so that selected components
of Ainv(J,K) that will be needed in the calculation of Ainv(J,I) for all descendents I of K are placed at
appropriate locations in the Buffer arrays created for each child of K. This step is essential for reducing
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synchronization overhead and will be disucssed in detail in section 3.2.3. After ParRestrict is called,
no communication is required between the processors assigned to different children of K. Finally, when
each processor reaches an aggregated leaf node K, it calls the sequential selected inversion subroutine
SeqSelInverse (Algorithm 7) to compute Ainv(J,I) for all descendents I of K. No inter-processor
communication is required from this point on.

Algorithm 8 Parallel algorithm from extracting selected elements of the inverse of a symmetric matrix
A.

subroutine ParBlockLDLT
Set J to the aggregated leaf node such that
procmap(J) = mypid;
Call sequential algorithm for the LDLT factor-
ization of the subtree with root node J;
J = parent(J);
while (J 6= parent(root)) do

Update Y by calling ParAssemble(Y,J,J);
D(J,J) = Y(J);
Update L(J,1:J) and D(J,J) by calling
ParInv(D(J,J));
J = parent(J);

end while
return L, D;
end subroutine

subroutine ParSelInverse
K ← root;
while (K is not an aggregated leaf node) do

Update Ainv(K,K:nblocks) by calling
ParExtract(K);
Update Buffer by calling ParRestrict(K);
K ← child(K) along mybranch;

end while
Call Sequential algorithm to obtain Ainv at the
leaf node;
return Ainv;
end subroutine

3.2.2 Data Distribution

Although it is not mentioned explicitly, one can see from Figure 5(b) that the L and D factors in the
parallel algorithms we presented in Algorithm 9 and Algorithm 10 are distributed among different
processors.

Because the computation required to obtain L(I,J) and D(J,J) for any J in an aggregated leaf node
can be performed independently by the processor to which J is assigned, it is clear how these blocks
should be distributed. Again, we do not store the entire submatrix, but only the nonzero subblock
within this submatrix as well as the starting location of the nonzero subblock.

When J is an ancestor of an aggregated leaf node, computing L(I,J) and D(J,J) requires the
participation of all processors that are assigned to to this node, i.e. procmap(J). As a result, it is
natural to divide the nonzero subblock in L(I,J) and D(J,J) into smaller submatrices, and distribute
them among all processors that belong to procmap(J). Distributing these smaller submatrices among
different processors is also necessary for overcoming the memory limitation imposed by a single processor.
For example, for a 2D Hamiltonian defined on a 16, 383×16, 383 grid, the dimension of D(J,J) is 16, 383
for the root node J. This matrix is completely dense, hence contains 16, 3832 matrix elements. If each
element is stored in double precision, the total amount of memory required to store D(J,J) alone is
roughly 2.1 gigabytes (GB). As we will see in section 4, the distribution scheme we use in our parallel
algorithm leads to only a mild increase of memory usage per processor as we increase the problem size
and the number of processors in proportion.

One of the key factors that affect the performance of parallel computing is load balance. In order to
achieve that, we use a 2D block cyclic mapping consistent with that used by ScaLAPACK to distribute
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Algorithm 9 Parallel recursive implementation of the triangular solve shown in Algorithm 3.
subroutine ParAssemble(I,J)
if (mypid ∈ procmap(I)) then

if (I is not an aggregated leaf node) then
for K ∈ {children of I} do

Update Y in parallel by calling
ParAssemble(K,J) recursively;

end for
Update Buffer in parallel by calling
ParSum(Buffer,I,I,J);

else
Update Y by calling SeqAssemble(I, J);
Update Buffer by calling
SeqSum(Buffer,I,I,J);

end if
Y(I) ← Y(I) - transpose(Buffer);

end if
return Y;
end subroutine

subroutine ParInv(J)
D(J, J)← D(J, J)−1;
for I ∈ {Descendants of J} do

L(J,I) ← Y(I) * D(J,J);
end for
return L, D;
end subroutine

subroutine ParSum(Buffer,K,I,J)
if (mypid ∈ procmap(K)) then

if (K is not an aggregated leaf node) then
allocate CBuffer{C} for each child C of K;
for C ∈ {children of K} do

Update CBuffer{C} by calling
ParSum(CBuffer{C},C,I,J) recursively.

end for
for C ∈ {Children of K} do

[IR,JR] ← GetRelIndex(C,K,I,J);
Merge CBuffer{C} into Buffer(IR,JR) us-
ing PDGEMR2D;

end for
else

for C ∈ {children of K} do
[IR,JR] ← GetRelIndex(C,K,I,J);
Update sequential part of Buffer by call-
ing SeqSum(Buffer(IR,JR),C,I,J) recur-
sively;

end for
end if
if (K 6= I) then

Buffer = Buffer + L(I, K) ⊗ Y(K);
end if

end if
return Buffer;
end subroutine

Algorithm 10 Parallel implementation of selected inversion of A given its block LDLT factorization.
subroutine ParExtract(K)
for J ∈ {ancestors of K} do

Ainv(J,K) ← 0;
for I ∈ {ancestors of K} do

Ainv(J, K)← Ainv(J, K)− Buffer(J, I)⊗ L(I, K);
end for
Ainv(K,J) ← Ainv(J,K)T ;

end for
Ainv(K,K) ← D(K,K);
for J ∈ {ancestors of K} do

Ainv(K, K) ∈ Ainv(K, K)− L(J, K)T ⊗ Ainv(J, K);
end for
return Ainv;
end subroutine

subroutine ParRestrict(K)
if (K is the root) then

Buffer ← D(K,K);
end if
for C ∈ {children of K} do

for all I,J ∈ {ancestors of K} do
if L(J, C) 6= 0 and L(I, C) 6= 0) then

[IR,JR] ∈ GetRelIndex(C,K,I,J);
Restrict Buffer(J,I) to a submatrix start-
ing at (IR, JR).

end if
end for

end for
return Buffer;
end subroutine
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the nonzero blocks of L(I,J) and D(J,J) for any J that is an ancestor of an aggregated leaf node.
For example, if the dense submatrix D(7,7) is distributed among four processors arranged as a 2 × 2
processor grid labeled by P0,0, P0,1, P1,0 and P1,1, and if D(7,7) is partitioned into many mb×nb blocks
(assuming mb and nb divide the number of rows and columns of D(7,7) respectively), then the (i, j)-th
block of D(7,7) is stored on processor Pi mod 2, j mod 2.

The use of 2D block cyclic distribution is key to achieving scalable performance in ScaLAPACK [5].
The purpose of dividing D(J,J) into many mb × nb blocks is to make the BLAS operations required
in the summation and inversion processes more efficient by taking advantage of the memory hierarchy
of modern processors. However, we should mention that there is a trade-off between the efficiency of
BLAS operation and load balance of the computation. Although choosing a larger mb or nb value may
improve the performance of BLAS operations on some processors, it may cause load imbalance and
degrade the overall performance of the computation.

3.2.3 Implementation Details of the Parallel Algorithm

We left out a number of details in section 3.2.1 in order to simplify the description of our parallel
algorithm. One such detail is how the restricted matrix-matrix multiplication L(I,K)⊗ Y(K) is carried
out in parallel, and how this product is accumulated in Y(I).

Because the nonzero subblocks of Y(I,K) and Y(K) are distributed among the same set of processors
(within a processor group), the multiplication of these subblocks can be easily carried out by calling
the ScaLAPACK subroutine pdgemm.

However, since Y(I) (where products of Y(I,K) and Y(K) are to be accumulated for all descendants
of I) is distributed among a larger number of processors, we need to redistribute Y(I,K)*Y(K) among
these processors before it can be added to Y(I). We use the ScaLAPACK utility subroutine PDGEMR2D to
accomplish this redistribution task. When PDGEMR2D is called to redistribute data from a processor group
A to a larger processor group B that contains all processors in A, all processors in B are blocked, meaning
that no processor in B can proceed with its own computational work until the data redistribution
initiated by processors in A is completed.

This blocking feature of PDGEMR2D, while necessary in ensuring data redistribution is done in a
coherent fashion, creates a potential synchronization bottleneck. To be specific, when the L(I,K)*Y(K)
contributions from several branches of the parallel task tree are redistributed and accumulated at Y(I),
only one branch can proceed at a time while others must wait. Hence, this direct updating scheme
makes the inner loop of triangular solve in Algorithm 3 a more or less sequential process.

To reduce the synchronization cost, we make use of the Buffer array already discussed in sec-
tion 3.1.4 to hold the distributed product of L(I,K) and Y(K) and pass it one level up at a time from
a group of processors assigned to a child node K to a larger group of processors assigned to its parent,
say R, so that a sufficient amount of parallelism is maintained at levels close to the aggregated leafs of
the parallel task tree. The recursive nature of the ParSum and SeqSum subroutines makes the imple-
mentation of such an indirect level-by-level updating scheme quite natural. The redistributed product
L(I,K)*Y(K) is added to the work array used to hold L(I,R)*Y(R) before the sum is redistributed and
passed one level further towards the root of the parallel task tree.

Again, because the nonzero rows and columns in L(I,K) and Y(K) are a subset of the nonzero rows
and columns in L(I,R) and Y(R) if R is a child of K, we only need to know the relative indices of the
nonzero subblock of L(I,K)*Y(K) within that of L(I,R)*Y(R) when L(I,K)*Y(K) is redistributed in a
work array that can be added directly to the Buffer array that holds the distributed nonzero subblock
of L(I,R)*Y(R).

A similar synchronization issue arises in the selected inversion process when the selected non-zero
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rows and columns in Ainv(J,I) (Algorithm 10) are extracted from a large number of processors in
procmap(I) and redistributed among a subset of processors in procmap(K). If K is several levels away
from I, a direct extraction and redistribution process will block all processors in procmap(I) that are
not in procmap(K), thereby making the computation of Ainv(J,K) a sequential process for all descents
(K) of I that are at the same level.

The strategy we use to overcome this synchronization bottleneck is to place selected nonzero elements
of Ainv(J,I) that would be needed for subsequent calculations in a Buffer array. Selected subblocks
of the Buffer array will be passed further to the descendents of I as each processor moves down the
parallel task tree. The task of extracting necessary data and placing it in Buffer is performed by
the subroutine ParRestrict shown in Algorithm 10. At a particular node I, the ParRestrict call
is made simultaneously by all processors in procmap(I), and the Buffer array is distributed among
processors assigned to each child of I so that the multiplication of the nonzero subblocks of Ainv(J,I)
and L(J,K) can be carried out in parallel (by pdgemm). Because this distributed Buffer array contains
all information that would be needed by descendents of K, no more direct reference to Ainv(J,I) is
required for any ancestor I of K from this point on. As a result, no communication is performed between
processors that are assigned to different children of I once ParRestrict is called at node I.

As each processor moves down the parallel task tree within the while loop of the subroutine
ParSelInverse in Algorithm 9, the amount of data extracted from the Buffer array by the ParRestrict
subroutine becomes smaller and smaller. The newly extracted data is distributed among a smaller
number of processors also. Each call to ParRestrict(I) requires a synchronization of all processors
in procmap(I), hence incurs some synchronization overhead. This overhead becomes smaller as each
processor gets closer to an aggregated leaf node because each ParRestrict call is then performed within
a small group of processors. When an aggregated leaf node is reached, all selected nonzero rows and
columns of Ainv(J,I) required in subsequent computation are available in the Buffer array allocated
on each processor. As a result, no communication is required among different processors from this point
on.

Since the desired data in the Buffer array is passed level by level from a parent to its children, we
only need to know the relative positions of the subblocks needed by a child within the Buffer array
owned by its parent. Hence, relative indices which are obtained by the subroutine GetRelIndex in
Algorithm 10, are used for data extraction in ParRestrict. As we mentioned earlier, the use of relative
indices is not necessary when each process reaches a leaf node at which the sequential selected inversion
subroutine SeqSelInverse is called.

3.2.4 Parallel Symbolic Analysis

An efficient implementation of the parallel diagonal extraction algorithm we presented in section 3.1
relies heavily on a number of nonzero structure properties of the L factor that must be determined in
advance. In particular, we need to identify all nonzero blocks of L, where blocks are defined in terms
of “relaxed” supernodes introduced in section 3.1.1. Within each nonzero block, we need to identify
the location and size of the nonzero subblock that contains nonzero rows and columns of L(I,J) only.
The process of determining these structure properties of L is often referred to as symbolic analysis or
factorization.

The symbolic analysis of L is usually done by examining the adjacency graph associated with the
original sparse matrix A and the corresponding elimination tree. In particular, a nonzero fill in L can
be viewed as the formation of a new edge after some vertex of the adjacency graph is removed [14, 42]
(as a result of performing one step of elimination).

To give a flavor of how symbolic analysis is performed in our implementation. Let us look at
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the nonzero structure of the L(31,24) block which has a dimension of 15 × 9. (The dimension can
be determined from the sizes of supernodes 31 and 24 respectively.) It is clear from Figure 6(a) that
supernode 24 is adjacent to the last three nodes (marked in blue) of supernode 31. By treating all nodes
within supernode 24 as a single entity, we do not consider the order in which these nodes are eliminated
in the factorization process. As a result, all nine nodes within supernode 24 are viewed as being adjacent
to the last three nodes of supernode 31 when supernode 24 is being eliminated. Consequently, we can
deduce that the last three rows of L(31,24) forms a nonzero block with a dimension of 3 × 9. This
can be clearly seen from Figure 6(b) in which the supernode partition and the nonzero structure of
L(23:31,23:31) are shown.

(a) The adjacency relationships
among supernodes 24, 25 and 31 on
the 2D grid. The supernode index
follows that in Figure 2(b).

(b) The nonzero structure of
L(23:31,23:31)

Figure 6: The nonzero structure of the L(31,24) block in (b) as well as the absolute and relative
positions of the nonzero contribution L(31, 24)⊗ Y(24) in the work space created for L(31, 25)⊗ Y(25)
and Y(31) can be determined by examing the geometry relationship among supernodes 24, 25 and 31.

The nonzero block in L(31,24) is used to update Y(31) in the inner loop of Algorithm 3 when the
loop (or supernode) index K becomes 24. Because Y(24) has the same nonzero structure as L(31, 24)T ,
the product of L(31,24) and Y(24), which has a dimension of 15× 15, contains a 3× 3 nonzero block
starting from the 12th row and column. The absolute indices (12, 12) can be easily determined from
the position of the first node (within supernode 31) that is adjacent to supernode 24, as we can clearly
see in Figure 6(a). (We assume the nodes with supernode 31 are numbered in an ascending order from
the top to the bottom.)

However, for reasons that we have explained earlier, the product of L(31,24) and Y(24) is not added
directly to the work space allocated for Y(31). Instead, it is accumulated in a buffer array allocated for
its parent supernode 25, which is also used to hold the product of L(31,25) and Y(25). The dimension
of this buffer is 7×7 because supernode 25 becomes adjacent to the last 7 nodes (shown as nodes enclosed
by small red square boxes) within supernode 31 after both supernode 23 and 24 are eliminated. The
relative position of L(31, 24)⊗ Y(24) in the buffer space allocated for L(31, 25)⊗ Y(25) is (4, 4). The
relative row and column index 4 can be calculated from the difference between the absolute positions
of the nonzero blocks L(31, 25)⊗ Y(25) and L(31, 24)⊗ Y(24) within Y(31), i.e., 4 = (12− 9) + 1.

In many direct sparse matrix solvers, the symbolic analysis of A is often performed on a single
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processor. However, for the size of the problem we would like to work with, a sequential symbolic
analysis will be too slow and too memory consuming. Parallel symbolic factorization based on a parallel
generation of the elimination tree is discussed in [48]. The explict use of grid geometry allows us to
simplify the parallelization of symbolic factorization. In our implementation, each processor analyzes a
portion of the grid domain to which it is assigned as well as at most four separators it borders with.

4 Performance

In this section, we report the performance of our implementation of the algorithm developed to compute
the diagonal of A−1 for a discretized 2D Kohn-Sham Hamiltonian H with zero complex shift. We analyze
the performance statistics by examining several aspects of the implementation that affect the efficiency
of the computation and communication. Our performance analysis is carried out on the Franklin
system maintained at National Energy Research Scientific Computing (NERSC) Center. Franklin is a
distributed-memory parallel system with 9,660 compute nodes. Each compute node consists of a 2.3
GHz single socket quad-core AMD Opteron processor (Budapest) with a theoretical peak performance
of 9.2 gigaflops per second (Gflops) per core. Each compute node has 8 gigabyte (GB) of memory (2
GB per core). Each compute node is connected to a dedicated SeaStar2 router through Hypertransport
with a 3D torus topology that ensures high performance, low-latency communication for MPI. The
floating point calculation is done in 64-bit double precision. We use 32-bit integers to keep index and
size information.

Our objective for developing a parallel algorithm and its implementation to compute the diagonal of
A−1 is to enable us and other researchers to study the electronic structure of large quantum mechanical
systems when a vast amount of computational resource is available. Therefore, our parallelization is
aimed at achieving a good weak scaling. Weak scaling refers to a performance model similar to that
used by Gustafson [21]. In such a model, performance is measured by how quickly the wall clock time
increases as both the problem size and the number of processors involved in the computation increase.
Because the complexity of the factorization and selected inversion procedures is O(n3/2) or O(m3),
where n is the matrix dimension and m is the number of grids in one dimension. We will simply call
m the grid size in the following. Clearly n = m2. We also expect that, in an ideal scenario, the wall-
clock time should increase by a factor of two when the grid size doubles and the number of processor
quadruples.

In addition to using MPI Wtime() calls to measure the wall clock time consumed by different com-
ponents of our code, we also use the Integrated Performance Monitoring (IPM) tool [47], the CrayPat
performance analysis tool [24] as well as PAPI [35] to measure various performance characteristics of our
implementation.

4.1 Single Processor Performance

In this section, we first report the performance of the computation used to obtained the diagonal of A−1

when it is executed on a single processor. The single processor performance is measured in terms of the
CPU time and the floating point operations performed per second (flops). Table 1 lists the performance
characteristic of single processor calculations for Hamiltonians defined on square grids with different
sizes. We choose the grid size m to be m = 2` − 1 for some integer ` > 1 so that a perfectly balanced
elimination tree is produced from a nested dissection of the computational domain.

The largest problem we can solve on a single processor contains 2, 047 × 2, 047 grid points. The
dimension of the corresponding matrix is over 4 million. The memory requirement for solving problems
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grid size matrix dimension symbolic factorization inversion total Gflops
127 16,129 0.01 0.04 0.03 0.08 1.29
255 65,025 0.05 0.21 0.17 0.43 2.57
511 261,121 0.22 1.18 1.03 2.43 3.89
1023 1,046,529 0.93 7.29 6.76 15.0 5.12
2047 4,190,209 4.21 48.8 47.3 100.3 6.15

Table 1: Single processor performance

defined on a larger grid (with ` > 11) exceeds what is available on a single node of the Franklin system.
Thus they can only be solved in parallel using multiple processors.

We can clearly see from Table 1 that the symbolic analysis of the LDLT factorization takes a small
fraction of the total time, especially when the problem is sufficiently large. The selected inversion
calculation (after a block LDLT factorization has been performed) takes slightly less time to complete
than that required by the factorization. The total CPU time listed in the 6th column of the table
confirms the O(n3/2) complexity presented in [28].

We also observe that a high flops rate is achieved for larger problems. In particular, when the grid
size reaches 2, 047, we achieve 67% (6.16/9.2) of peak performance of the machine. This is due to the
fact that as the problem size increases, the overall computation is dominated by computation performed
on the dense matrix blocks associated with large supernodes. Therefore the performance approaches
that of dense matrix-matrix multiplications.

4.2 Parallel Scalability

In this section, we report the performance of our implementation when it is executed on multiple
processors. Although our primary interest is in the weak scaling of the parallel computation with
respect to an increasing problem size and an increasing number of processors, we will first show how
well the computation performs on a problem of fixed size with respect to the number of processors.
In Table 2, we report the wall clock time (in seconds) used to compute the diagonal of A−1 defined
a 2, 047 × 2, 047 grid. In the third column of the table, we report also the speedup factor defined as
τ = t1/tnp , where tnp is the wall clock time recorded for an np-processor run.

np wall clock time speedup factor Gflops
1 100.1 1.0 6.2
2 52.2 1.9 11.8
4 30.2 3.3 20.2
8 16.8 6.0 33.5
16 9.5 10.5 55.9
32 5.7 17.6 90.0
64 3.3 30.3 156.2
128 2.3 42.3 226.4
256 1.8 55.6 281.7
512 1.7 58.9 294.2

Table 2: The scalability of parallel computation used to obtainA−1 forA of a fixed size (n = 2047×2047.)
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Figure 7: Log-log plot of total wall clock time and total Gflops with respect to number of processors,
compared with ideal scaling. The grid size is fixed to be 2047× 2047.

Figure 7 compares the performance of our algorithm, called PDiagAinv, with ideal scaling in terms
of total wall clock time and total Gflops. As we can clearly see from Table 2 and Figure 7, for problem of
this fixed size, deviation from the ideal speedup begins to show up when the computation is performed
in parallel on 4 processors. The performance barely improves in a 512-processor run compared to the
256-processor run. Beyond that point, communication overhead starts to dominate. We will discuss the
sources of communication overhead in the next few subsections.

In terms of weak scaling, PDiagAinv performs quite well with up to 4,096 processors for problems
defined on a 65, 535×65, 535 grid (with corresponding matrix dimension around 4.3 billion). In Table 3,
we report the wall clock time recorded for several runs on problems defined on square grids of different
sizes. To measure weak scaling, we start with a problem defined on a 1, 023 × 1, 023 grid, which is
solved on a single processor. When we double the grid size, we increase the number of processors by
a factor of 4. In an ideal scenario in which communication overhead is small, we should expect to
see a factor of two increase in wall clock time every time we double the grid size and quadruple the
number of processors used in the computation. Such prediction is based on the O(m3) complexity of
the computation. In practice, the presence of communication overhead will lead to a larger amount of
increase in total wall clock time. Hence, if we use t(m,np) to denote the total wall clock time used in
a np-processor calculation for a problem defined on a square grid with grid size m, we expect the weak
scaling ratio defined by τ(m,np) = t(m/2, np/4)/t(m,np), which we show in the last column of Table 3,
to be larger than two. However, as we can see from this table, deviation of τ(m,np) from the ideal ratio
of two is quite modest even when the number of processors used in the computation reaches 4, 096.

A closer examination of the performance associated with different components of our implementation
reveals that our parallel symbolic analysis takes a nearly constant amount of time that is a tiny fraction
of the overall wall clock time for all configurations of problem size and number of processors. This
highly scalable performance is primarily due to the fact that most of the symbolic analysis performed
by each processor is carried out within an aggregated leaf node that is completely independent from
other leaf nodes.

Table 3 shows that the performance of our block LDLT factorization deviates slightly from the ideal
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scaling, while the selected inversion process achieves nearly ideal scaling up to 4, 096 processors. The
scaling of flops and wall clock time can be better viewed in Figure 8, in which the code performance
is compared to ideal performance using log-log plot. From Table 3, we can also see that that the
selected inversion time is significantly less than that associated with factorization when the problem
size becomes sufficiently large. This is not because the selected inversion process performs fewer floating
point operations. On the contrary, our direct measurements of flops by PAPI indicates that the total
number of floating point operations performed in selected inversion is slightly more than that performed
in the factorization. However, the flop rate associated with the selected inversion process is much higher
because selected inversion does not need to traverse the elimination tree in postorder and it does not
call ScaLAPACK subroutines pdgetrf and pdgetri that are used in the factorization to invert the
diagonal blocks of D. The efficiency of these calculations are typically lower than the simple dense
matrix-matrix multiplications used exclusively in the selected inversion process.

grid size np symbolic factorization inversion total weak scaling
time time time time ratio

1,023 1 0.92 7.29 6.77 14.99 –
2,047 4 1.77 14.44 13.82 30.04 2.00
4,095 16 1.82 34.26 25.39 61.82 2.05
8,191 64 1.91 86.35 47.07 135.34 2.18
16,383 256 1.98 207.51 89.91 299.41 2.21
32,767 1024 2.08 474.94 174.57 651.59 2.17
65,535 4096 2.40 1109.09 348.13 1459.62 2.24

Table 3: The scalability of parallel computation used to obtain A−1 for A for increasing system sizes.
The largest grid size is 65, 535× 65, 535 and corresponding matrix size is approximately 4.3 billion.
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Figure 8: Log-log plot of total wall clock time and total Gflops with respect to number of processors,
compared with ideal scaling. The grid size starts from 1023× 1023, and is proportional to the number
of processors.
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4.3 Load Balance

To have a better understanding of the parallel performance of our code, let us now examine how well
the computational load is balanced among different processors. Although we try to maintain a good
load balance by distributing the nonzero elements in L(I,J) and D(J,J) as evenly as possible among
processors in procmap(J), such a data distribution strategy alone is not enough to achieve perfect load
balance as we will see below.

One way to measure load balance is to examine the flops performed by each processor. We collected
such statistics by using PAPI [35]. Figure 9 shows the overall flop counts measured on each processor
for a 16-processor run used to compute the diagonal of A−1 defined on a 4, 095× 4, 095 grid. There is
clearly some variation in operation counts among the 16 processors. Such variation contributes to idle
time that shows up in the communication profile of the run, which we will report in the next subsection.
Using the flop count given in Figure 9, we can divide these 16 processors into four groups. Processors
within each group perform roughly the same number of flops. The presence of these four groups can be
explained by examining the relative positions of each aggregated supernode with respect to ancestors of
these supernodes on the computational grid. In Figure 2(b), each one of the four inner supernodes, i.e.,
supernodes 5, 11, 17, 23, borders with four separators. Hence, the four processors assigned to these
supernodes perform the largest number of operations. Supernodes 4, 12, 16, 25 each only border
with three separators. They perform fewer number of flops, hence form another group. Supernodes
2, 8, 20, 26 also each border with three separators. However, because they do not border with the
largest separator 31, the number of operations performed by the processors assigned to these supernodes
is slightly less than those that assigned to supernodes 4, 12, 16, 25. Hence these processors form
the third group of processors in the bar chart shown in Figure 9. Finally, supernodes 1,9,19,27 each
interact with only two lower level separators, the processors assigned to these supernodes perform the
least number of flops. We should note that the load balance pattern exhibited by Figure 9 will become
more complicated when number of processors increases.

Figure 9: The number of flops performed on each processor for computing the diagonal of A−1 defined
on a 4, 095× 4, 095 grid.
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4.4 Communication Overhead

A comprehensive measurement of the communication cost can be collected using the IPM tool. Table 4
shows the overall communication cost increases moderately as we double the problem size and quadruple
the number of processors at the same time.

grid size np communication (%)
1,023 1 0
2,047 4 2.46
4,095 16 11.14
8,191 64 20.41
16,383 256 28.43
32,767 1024 34.46
65,535 4096 40.80

Table 4: Communication cost as a percentage of the total wall clock time.

As we discussed earlier, the communication cost can be attributed to the following three factors:

1. Idle wait time. This is the amount of time a processor spends waiting for other processors to
complete their work before proceeding beyond a synchronization point.

2. Communication volume. This is the amount of data transfered among different processors.

3. Communication latency. This factor pertains to the startup cost for sending a single message.
The latency cost is proportional to the total number of messages communicated among different
processors.

The communication profile provided by IPM shows that MPI Barrier calls is the largest contributor
to the communication overhead. An example of such a profile obtained from a 16-processor run on
a 4, 095 × 4, 095 grid is shown in Figure 10. In this particular case, MPI Barrier, which is used to
synchronize all processors, represents more than 50% of all communication cost. The amount of idle
time the code spent in this MPI function is roughly 6.3% of the overall wall clock time.

The MPI Barrier function is used in several places in our code. In particular, it is used in the
ParSum subroutine to ensure that all contributions from the children of a supernode I are available
before these contributions are accumulated and redistributed among procmap(I). The barrier function
is also used in the selected inversion process to ensure relative indices are properly computed by each
processor before selected rows and columns of the matrix block associated with a higher level node are
redistributed to its descendants. The idle wait time resulting from these barrier function calls results
from the variation of computational loads discussed in section 4.3. Using the call graph provided by
CrayPat, we examined the total amount of wall clock time spent in these MPI Barrier calls. For the
16-processor run (on the 4, 095 × 4, 095 grid), this measured time is roughly 2.6 seconds, or 56% of
all idle time spent in MPI Barrier calls. The rest of the MPI Barrier calls are made in ScaLAPACK
matrix-matrix multiplication routine pdgemm, dense matrix factorization and inversion routines pdgetrf
and pdgetri respectively.

Figure 11 shows that the percentage of wall clock time spent in MPI Barrier increases moderately
as more processors are used solve larger problems. Such increase is due primarily to the increase in
the length of the critical path in both the elimination tree and in the dense linear algebra calculations
performed on each separator.

26



[name] [time] [calls] <%mpi> <%wall>
MPI_Barrier 67.7351 960 52.21 6.32
MPI_Recv 30.4719 55599 23.49 2.84
MPI_Reduce 16.6104 18260 12.80 1.55
MPI_Send 7.86273 25865 6.06 0.73
MPI_Bcast 5.86476 100408 4.52 0.55
MPI_Allreduce 0.842473 320 0.65 0.08
MPI_Isend 0.261145 29734 0.20 0.02
MPI_Testall 0.0563367 33515 0.04 0.01
MPI_Sendrecv 0.0225533 1808 0.02 0.00
MPI_Allgather 0.00237397 16 0.00 0.00
MPI_Comm_rank 8.93647e-05 656 0.00 0.00
MPI_Comm_size 1.33585e-05 32 0.00 0.00

Figure 10: Communication profile for a 16-processor run on a 4, 095× 4, 095 grid.

Figure 11: The percentage of time spent in MPI Barrier as a function of the number of processors used
and the size of the grid.
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In addition to the idle wait time spent in MPI Barrier, the communication overhead is also affected
by the volume of data transfered among different processors and how frequent these transfer occurs. It
is not difficult to show that the total volume of communication should be proportional to the number
of nonzeros in L and independent from the number of processors used. Although we do not have a
direct way to measure communication volume, Figure 10 shows that the total amount of wall clock
time spent in MPI data transfer functions MPI Send, MPI Recv, MPI ISend, MPI Reduce, MPI Bcast
and MPI Allreduce etc. is less than 5% of the overall wall clock time for a 16-processor run on a
4, 095 × 4, 095 grid. Some of the time spent in MPI Recv and collective communication functions such
as MPI Reduce and MPI Bcast corresponds to idle wait time that are not accounted for in MPI Barrier.
Thus, the actual amount of time spent in data transfer is much less than 5% of the total wall clock
time. This observation provides an indirect measurement of the relatively low communication volume
produced in our calculation.

In terms of the latency cost, we can see from Figure 10 that the total number of MPI related function
calls made by all processors is roughly 258,000 (obtained by adding up the call numbers in the third
column). Therefore, the total number of messages sent and received per processor is roughly 16,125.
The latency for sending one message on Franklin is roughly 8 microsecond. Hence, the total latency
cost for this particular run is estimated to be roughly 0.13 seconds, a tiny fraction of the overall wall
clock time. Therefore, latency does not contribute much to communication overhead.

4.5 Memory Consumption

In addition to maintaining good load balance among different processors, the data-to-processor mapping
scheme discussed in section 3.2.2 also ensures that the memory usage per core only increases logarith-
mically with respect to matrix dimension in the context of weak scaling. This estimation is based on
the observation that when the grid size by a factor of two, the dimension of the extra blocks associated
to L and D to are proportional to the grid size, and the total amount of extra memory requirement is
proportional to the square of the grid size. Since the number of processors is increased by a factor of
four, the extra memory requirement stays fixed regardless of the current grid size. This logarithmic
dependence is clear from Figure 12, where average memory cost per core with respect to number of
processors is shown. The x-axis is plotted in logarithmic scale.

5 Application to electronic structure calculation of 2D rectangular
quantum dots

In this section, we show how the algorithm and implementation we described in section 3 can be used to
speed up electronic structure calculations for 2D rectangular quantum dots. We consider a 2D electron
quantum dot confined in a rectangular domain, a model investigated in [41]. This model is also provided
in the test suite of the Octopus software [6] which we use for comparison. In this model, the Kohn-Sham
Hamiltonian has the form

H = − 1
2m

∆ + Vext(r) + VH(r) + Vxc(r), (6)

where VH is the Hartree potential, Vxc is a 2D exchange-correlation potential given in [3] and Vext is an
external potential that describes an infinite hard-wall confinement in the xy plane, i.e.,

Vext(x, y) =

{
0, 0 ≤ x ≤ L, 0 ≤ y ≤ L;
∞, elsewhere.

(7)
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Figure 12: The average memory usage per processor as a function of the number of processors used and
the size of the grid. The memory cost per core depends on the matrix dimension logarithmically.

To simplify our experiment, we do not consider spin-polarization. The Laplacian operator ∆ is dis-
cretized using a five-point stencil. A room temperature of 300K is used in our calculation. The area of
the quantum dot is L2. In a two-electron dot, setting L = 1.66Å and discretizing the 2D domain with
31×31 grid points yields an total energy error that is less than 0.002Ha. When the number of electrons
becomes larger, we increase the area of the dot in proportion so that the average electron density is
fixed. A typical density profile with 32 electrons is shown in Figure 13. In this case, the quantum dot
behaves like a metallic system with a tiny energy gap around 0.08eV.

In Octopus, the electron density associated with the minimum total energy of the quantum dot is
obtained by using the self-consistent field (SCF) iteration to solve the Kohn-Sham equations [33]. In the
kth SCF iteration, Octopus uses a conjugate gradient (CG) like algorithm to compute the ne/2 + next

smallest eigenvalues of H where ne is the number of electrons in the quantum dot and next is the number
of extra states for finite temperature calculation. The extra number depend on the system size. For
example, in the case of 32 electrons 4 extra states are necessary for the electronic structure calculation
at 300K. The corresponding eigenvectors are used to obtain a new approximation to the electron density
ρ(k) = diag [fβ,µ(H(ρ(k−1)))], where fβ,µ is the Fermi-Dirac distribution defined in section 1.

On the other hand, pole expansion (1) allows the calculation of electron density at room temperature
with a small number of poles. The numerical results in [29] shows that in most cases, at most 80 poles
are sufficient to achieve a relative accuracy in the order of 10−7 in L1 norm. Pole expansion also requires
an explicit knowledge of chemical potential µ. The chemical potential is chosen such that the condition

Tr[ρ] = ne (8)

is satisfied using Newton-Raphson iteration. In order to use (1), we need to compute the diagonal of the
inverse of a number of complex symmetric (non-Hermitian) matrices H − (zi + µ)I (i = 1, 2, ..., P ). In
addition to using the parallel algorithm presented in section 3 to evaluate each term in (1), an extra level
of coarse grained parallelism can be achieved by assigning each pole to a different group of processors.

29



x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 13: A contour plot of the density profile of a quantum dot with 32 electrons.

In Table 5, we compare the efficiency of the pole expansion technique for the quantum dot density
calculation performed with the standard eigenvalue calculation based approach implemented in Octopus
using the averaged time spent in each SCF iteration. The maximum number of CG iterations for
computing each eigenvalue in Octopus is set to the default value 25. We label the pole expansion based
approach that uses the algorithm and implementation discussed in section 3 as PCDiagAinv, where the
letter C stands for complex. The factor 80 in the last column of Table 5 comes from 80 poles. When a
massive number of processors are available, this pole number factor will easily result in a factor of 80
reduction in wall clock time for the PCDiagAinv calculation, whereas such a perfect reduction in wall
clock time cannot be easily obtained in Octopus.

We observe that for quantum dots that contain a few electrons the standard density evaluation
approach implemented in Octopus is faster than the pole expansion approach. However, when the
number of electrons becomes sufficiently large, the advantage of the pole expansion approach using the
algorithms presented in section 3 to compute diag [H − (zi + µ)I]−1 becomes quite evident. This is
because when the number of electrons in the quantum dot is large, the computation cost associated with
the eigenvalue calculation in Octopus is dominated by the computation performed to maintain mutual
orthogonality among different eigenvectors. The complexity of this computation alone is O(n3), whereas
the overall complexity of the pole-based approach is O(n3/2). The crossover point in our experiment
appears to be 512 electrons. For a quantum dot that contains 2048 electrons, PCDiagAinv is eight times
faster than Octopus.

6 Concluding Remarks

We have presented an efficient algorithm and its implementation for computing the diagonal of the
inverse of a discretized 2D Kohn-Sham Hamiltonian H. Such a computation allows us to evaluate
fβ,µ(H) through a recently developed pole-expansion techniques [27,29], where fβ,µ is the Fermi-Dirac
distribution function.

Our algorithm consists of two major steps. In the first step, we perform a block LDLT factorization
of the discretized Hamiltonian. Although this type of computation has been investigated extensively
in the direct sparse matrix computation community, our algorithm and implementation are different
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ne(#Electrons) Grid #proc Octopus time(s) PCDiagAinv time(s)
2 31 1 < 0.01 0.01× 80
8 63 1 0.03 0.06× 80
32 127 1 0.78 0.03× 80

128 255
1 26.32 1.72× 80
4 10.79 0.59× 80

512 511
1 1091.04 9.76× 80
4 529.30 3.16× 80
16 131.96 1.16× 80

2048 1023
1 out of memory 60.08× 80
4 out of memory 19.04× 80
16 7167.98 5.60× 80
64 1819.39 2.84× 80

Table 5: Averaged time spent on each SCF iteration for Octopus and PCDiagAinv with systems of vari-
ous sizes. The time for PCDiagAinv in the last column assumes using 80 poles. The time corresponding
to 2048 electron system using Octopus with 1 and 4 processors is not recorded, since the memory cost
exceeds the constraint of 2GB per core on Franklin machine.

from those used in most of the existing software packages [1,2,19,20,37,45]. We use a block row-based
factorization algorithm that is a block extension of the algorithm presented in [9]. The block row-
based algorithm is implemented via recursion. We use the elimination tree associated with the LDLT

factorization to divide the computational load and distribute the data allocated to hold the L and D
factors. We also use the techniques of local buffer and relative indices to ensure the synchronization
cost associated with the parallel update of L and D is minimized. In the second step a block selected
inversion algorithm is proposed to compute selected elements of A−1. Besides the techniques in block
LDLT algorithm, level-by-level restriction is utilized to overcome synchronization bottleneck and to
achieve high performance.

We have demonstrated that our implementation of the LDLT factorization and selected inversion
calculation is very efficient. We have used our code to solve problems defined on a 65, 535 × 65, 535
grid with more than four billions degrees of freedom on 4096 processors. The code exhibits satisfactory
weak scaling property.

When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a
Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that
uses our algorithm to compute the diagonal of (H − ziI)−1 for a small number of poles zi’s is much
faster, especially when the quantum dot contains many electrons.

One of the key components that enable us to achieve high performance in our implementation is the
parallel symbolic analysis procedure that makes explicit use of the grid and stencil geometry as well as
the nested dissection partition and ordering technique. This type of analysis can be easily extended to
regular 3D grids and so is our algorithm and implementation for selected inversion calculation.

To compute the diagonal of A−1 for problems that are defined on irregular grids (e.g., problems
that are discretized by finite elements or some other techniques), a more general approach based on a
general left-looking algorithm [37], a block fan-out algorithm [43] or a multifrontal algorithm is more
appropriate. In particular, a sequential algorithm based on the general left-looking LDLT factorization
has been developed in [?diagex]. In terms of parallel implementation, these approaches would also
require a more general parallel symbolic analysis similar to that developed in [48]. This is an area of
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research we are currently pursuing.
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