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Abstract. We present numerical simulations of radially symmetric finite time blowup for the aggregation
equation ut = ∇ · (u∇K ∗ u), where the kernel K(x) = |x|. The dynamics of the blowup exhibits self-similar
behavior in which zero mass concentrates at the core at the blowup time. Computations are performed in Rn

for n between 2 and 10 using a method based on characteristics. In all cases studied, the self-similarity exhibits
second kind (anomalous) scaling.
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1. Introduction. In this paper, we consider the self-similar blowup of radially symmetric
solutions to the aggregation equation

ut = ∇ · (u∇K ∗ u) in [0, T ) × Rn, (1.1)

subject to initial condition u(0, x) = u0(x) on some time interval of existence [0, T ). Here K ∗u
is the convolution of u with a radially symmetric kernel potential K. This equation arises in a
number of continuum models for interacting particles via pairwise potentials. It appears in the
description of self-assembly of nanoparticles by Holm and Putkaradze [32, 33] as an alternative
to the Debye-Huckel or Keller-Segel model. It is also used as a popular model for aggregation
in animal behavior, the schools or swarms formed by fish and birds, where everyone senses the
presence of other individuals [12, 19, 20, 44, 49, 48]. In these applications the most common
potential in the literature is K(x) = 1− e−|x|, which behaves like |x| near the origin. These are
examples of Lipschitz continuous potentials for which the lack of higher regularity at x = 0 is
known to be responsible for the finite time blowup.

The basic properties of the equation (1.1), with a ‘pointy’ potential as described above,
are addressed recently in a series of papers. Bodnar and Velazquez [12] study the problem of
existence and uniqueness, along with blowup and steady states in one dimension for different
potentials with smooth initial data. The local existence and uniqueness of this equation in
higher dimensions is proved by Laurent [38]. An alternative local existence and finite time
blowup proof is given by Bertozzi and Laurent in [8]. The blowup problem is revisited in [7]
and the review article [9] with a more general class of potentials, for which it is determined that
an Osgood condition on the regularity of the potential at the origin is necessary and sufficient
for finite time blowup. Moreover, it is shown that there is no mass-concentrating, smooth
self-similar finite time blowup solution in odd dimension larger than one, for the homogeneous,
radially symmetric kernel K(x) = |x|. This fact is the primary motivation for the study here -
namely that the mostly common multidimensional models in the literature are known to produce
finite time singularities and in some higher dimensions, no smooth similarity solutions exist that
concentrate mass. The paper [7] has a simple example in one dimension of a mass-conserving
similarity solution. In higher dimensions they show some interesting similarity solutions that
concentrate mass, but all of these involve collapsing delta-rings and thus cannot result from
smooth initial data. By performing numerical calculations with a high degree of spatial and
temporal precision, we are able to resolve the dynamics of blowup for this problem in multiple
space dimensions. Our assumption of radial symmetry allows us to obtain a degree of precision
that would be much more difficult in the case of solutions lacking symmetry.
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Finite time blowup phenomena appear in many equations for physical models, including
semilinear heat equations [29, 28], nonlinear Schrdinger equations [30, 42, 27], gravitational
collapse [14] and pinchoff in surface diffusion [5]. For a general review article, see [26]. Near the
blowup time, it often happens that, because of the absence of any external scales, the solution
collapses to the singularity in a self-similar way. Probably the most extensively studied one is
the semilinear heat equation

ut = ∆u+ f(u), f(u) = up or f(u) = eu. (1.2)

However, it has been well-known since the 1970s that there is no exact self-similar solution of
the form (for f(u) = up)

u(x, t) = (T − t)−1/(p−1)U(x/(T − t)1/2). (1.3)

A refined analysis or center manifold theory close to the blowup time gives the following asymp-
totic behavior with a logarithm correction [25, 28, 29, 43]

u(x, t) ∼
(

β

T − t

)β (
1 +

p− 1
4p

η2

)
, where η =

x√
[(T − t)| ln(T − t)|

, β =
1

p− 1
. (1.4)

In contrast, quasilinear problems [47, 17]

ut = (|ux|σux)x + eu or ut = (uσux)x + up, σ > 0 (1.5)

or higher order parabolic equations [16]

ut = (−1)m+1D2m
x u+ |u|p−1u, or ut = (−1)m+1D2m

x u+ eu (1.6)

do possess exact self-similar blowup solutions, where D2m
x is the 2m-th derivative with respect

to x.
For those solutions with nontrivial blowup profiles, it is possible that the profiles match the

exact analytical ones only near the core of the blowup point (or set), with deviation (though
very small in magnitude) away from the core, sometimes called quasi self-similar solutions. This
is observed in the collapse of the cubic Nonlinear Schrodinger Equation, either for the Townes
profile [24, 42, 45] or for the ring profile [27].

In finite blowup problems for density distributions, the dynamics could concentrate a finite
amount of mass or zero mass in the core, even for different types of blowup solutions of the same
equation which conserves the total mass. One example is the Keller-Segel system of equations,
which model overdamped gravitational interaction of a cloud of particles and chemotaxis in
bacteria [37]

∂tρ = ∆ρ−∇ · (ρ∇c),
−∆c = ρ, (1.7)

where ρ is the density of the cloud or the bacteria and c represents the gravitational potential
or the density of the chemo-attractant. In spatial dimension greater than two, there are at
least two types of blowup solutions. One is exactly self-similar, concentrating zero mass, and
the other is like a Burgers shock, with finite mass in a ring converging to the origin [13].

For all of the similarity solutions considered above, the similarity variables and exponents
characterizing the dynamics, especially those related to the spatial spread, can be determined
a priori, either from a dimensional analysis of the problem or the basic invariant scales of
the equation, called self-similar solutions of the first kind or complete similarity solutions.
While, other problems exist in which self-similar scaling exponents cannot be determined from
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dimensional analysis; these are the so-called similarity solutions of the second kind or incomplete
similarity solutions [4]. Among the first few problems studied are the nonlinear filtration by
Barenblatt [3], Vázquez and collaborators [36, 2] and Peletier [46], and the focusing problem
of the porous medium equation [35, 1]. In physics, those exponents are said to be anomalous.
Sometimes renormalization group theory originated from quantum field theory is applied to the
above mentioned problems to find self-similar solutions of the second kind [31].

The goal of this paper is to show numerical evidence that the aggregation equation (1.1) has
a family of radially symmetric, smooth self-similar blowup solutions. Those solutions appear
to be exactly self-similar, concentrating zero mass in the core and of the second kind. The
rest of the paper is organized as follows. The equation for the blowup profiles is derived in
Section Two, together with numerical observations of the profiles and anomalous exponents in
different space dimensions. In Section Three we present the numerical methods used to simulate
the blowup dynamics and a numerical Renormalization Group method to find the exponents
iteratively. Additional numerical results about the postprocessing of the data from the blowup
dynamics and the blowup in different Lp norms are given in section Four. We end this paper
with some further directions and open questions in Section Five.

2. Self-similar solutions of the blowup dynamics.

2.1. General theory for the self-similar blowup profiles. We introduce the following
similarity variables y and τ

y = x(T − t)−β , τ = − ln(T − t), (2.1)

and define a new function U(y, τ) such that

U(y, τ) = (T − t)αu(y(T − t)β , T − e−τ ), (2.2)

where T is the blowup time, α and β are exponents characterizing the singularity when the
blowup time is approached. We call the blowup dynamics self-similar if the transformed function
U converges to some steady state as t → T−, or equivalently τ → ∞ for some appropriate
constants α and β. When (2.2) is substituted into the original evolution equation for u, a
routine calculation gives

(T − t)−α−1 (∂τU + αU + βy · ∇U)

= (T − t)(n−2)β−2α∇y ·
(
U(y, τ)∇y

∫
Rn

K
(
(y − z)(T − t)β

)
U(z, τ)dz

)
. (2.3)

Therefore, a self-similar solution exists only if we can take the factor (T − t)β out of the kernel
K. Thus K must be homogeneous, i.e., K(λx) = λdK(x) for some constant d and any λ. If
the function u is concentrated on a small region in space, say the origin, then the kernel K can
often be approximated by the leading nonconstant part (K is determined up to a constant),
which is homogeneous. For this reason, in the rest of this paper, we will concentrate on the
case with

K(x) = |x|, (2.4)

which is an approximation to the popular kernel K(x) = 1−e−|x| and is shown to lead to finite
time blowup [8, 7]. Given this, then the matching of the exponents of (T − t) in equation (2.3)
gives

α = (n− 1)β + 1 (2.5)

and the equation for U is

∂τU = ∇ · (U∇K ∗ U) − αU − βy · ∇U. (2.6)
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Any exact self-similar profile U , if it exists, must satisfy the steady equation of (2.6), i.e.,

∇ · (U∇K ∗ U) − αU − βy · ∇U = 0, ∇U |y=0 = 0, lim
|y|→∞

U(y) = 0, (2.7)

where U has no explicit dependence on τ . To completely characterize the self-similar blowup dy-
namics, we need one extra condition to find the exponent β. Very often this kind of information
can be readily available from a dimensional analysis or scale invariance of the underlying equa-
tion, like the parabolic scaling β = 1/2 for semilinear heat equation and Nonlinear Schrdinger
equation, or β = 1/(2m) for higher order parabolic equations as those in (1.6). Here, if the
similarity solution concentrates mass in the core of the blowup, then α = nβ from mass con-
servation, and consequently β = 1. However, numerical simulation of the blowup dynamics
shows that no mass is concentrated. In fact, it is proved analytically in [7] that there is no such
radially symmetric, self-similar solution in odd dimension larger than one, that concentrates
mass. The argument is straightforward so we review it here. Taking α = n, β = 1 in (2.7), we
can integrate the equation in radial coordinate r = |y|,

−nU − rUr =
1

rn−1
∂r[rn−1U∂r(K ∗ U)].

Multiplying both sides with rn−1 and integrating once again, we get

−rnU = rn−1U∂r(K ∗ U)

Assuming U is nonzero, we divide by yn−1U and integrate up again to get the final result,

−1
2
r2 + C = K ∗ U. (2.8)

Now we recognize that in odd dimension n larger than one, for the special case of K = |x|,
applying repeated Laplacians to the right hand side of (2.8) gives ∆(n−1)K ∗U = cnU , whereas
the left hand side gives ∆(n−1)(y2 +C) = 0. Hence we do not have a nontrivial exact similarity
solution of first kind (conserving mass) in odd space dimension larger than one. A more rigorous
analysis and derivation of this is discussed in Lagrangian coordinates in [7]. In particular, that
paper considers more general measure-valued similarity solutions due to the fact that there are
easily constructed examples that concentrate mass in finite time in general space dimension,
starting for initial data of the form of a delta-ring (support of the solution concentrated on
the boundary of a sphere). However, here we consider solutions with U , a bounded function of
space. Thus it is reasonable to look for similarity solutions of the second kind, for which α and
β satisfy equation (2.5), which comes from the dimensional analysis of the dynamics, but may
violate conservation of mass.

The nonlocal nature of the kernel K ∗ U presents a much more difficult problem, both
analytically and numerically, compared to local problems as those from nonlinear diffusion
equations and nonlinear Schrodinger equations. The usual techniques to tackle the equation
for the self-similar profiles, like phase plane analysis and shooting methods, do not work here.
Smooth self-similar blowup solutions in one dimension are considered by Bodnar and Velazquez
[12] for different kernel potentials K. The technique used there is to introduce an auxiliary
function

ψ(x, t) =
∫ x

−∞
u(z, t)dz. (2.9)

Moreover, for the special kernel K = |x| considered here, the transformation (2.9) turns the
equation (1.1) in one dimension into ψt = ψx(2ψ − c) with c = ψ(∞, t) =

∫ ∞
−∞ u0(z)dz, which

is a constant. Another change of variable ϕ = c − 2ψ gives exactly the well-known inviscid
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Burgers equation ϕt + ϕϕx = 0. For general initial condition, the finite time blowup of u is
equivalent to the onset of shock of ϕ, with mass concentration and thus α = β = 1 as considered
in [7]. However, for positive, even initial condition ( the analogue for radially symmetric case in
higher dimension), the blowup exhibits a different scaling. Let the self-similar blowup solution
of ϕ be

ϕ(x, t) = (T − t)β−αf(x(T − t)−β), (2.10)

Here the exponents are chosen such that u = −ϕx/2 has the same form as (2.2). Similarly, we
have α = 1 and the equation for the profile

ff ′ + βyf ′ − (β − 1)f = 0. (2.11)

Because of the L∞-contraction of the solutions to Burgers equation, β must be equal to or
greater than one. If β = 1, the only nontrivial solution is f(y) = −y, corresponding to the
previous case. Otherwise if β > 1, we are looking for a power series expansion of f near the
origin, i.e.,

f(y) = a1y + a3y
3 + a5y

5 + · · · (2.12)

The system of equations the coefficients must satisfy is

a2
1 + a1 = 0 O(y)

4a1a3 + (2β + 1)a3 = 0 O(y3)
6a1a5 + 3a2

3 + (4β + 1)a5 = 0 O(y5)
... (2.13)

If a1 = 0, we have the trivial solution f ≡ 0. Therefore a1 must be −1. For generic odd
initial data, a3 is nonzero, giving the exponent β = 3/2 and the coefficients of higher order
terms are determined uniquely by a3. Otherwise, β is decided from the next first nonvanishing
term in the series.

Actually, we can directly integrate the equation (2.11) to get an implicit algebraic equation
for f . Multiplying both sides of the differential equation (2.11) by f(y)−(2β−1)/(β−1) and taking
the integration once, we get

f(y)−
1

β−1

(
1 +

y

f(y)

)
= c1, (2.14)

for some finite constant c1. Since above equation holds in the limit when y → 0, f(y) must be
−y + o(y) such that 1 + y/f(y) vanishes at the origin. Applying the condition that the limit
exist once more, we can find the next higher order term of f(y) must be of the form

f(y) = −y + c1(−y)
β

β−1 + o
(
(−y)

β
β−1

)
. (2.15)

Therefore, the exponent β is determined by the second non-vanishing term of the profile, which
is ultimately determined by the initial condition. For generic even initial condition u0, f(y) is
odd and the next non-vanishing term is cubic, giving β/(β−1) = 3, or β = 3/2. This anomalous
exponent is consistent with the lower bound from numerical simulation in next section.

However, this special trick and these special solutions do not seem to carry over to higher
dimensions. Unlike the nonlinear filtration problem, the exponents cannot be derived using
perturbation [2] or renormalization group methods [31] from known solutions in special cases
or for some “unperturbed” problems. For this reason, high resolution numerical simulations
are an important tool for uncovering the detailed dynamics of the blowup in higher dimensions.
We summarize our results from such simulations in the next subsection.
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2.2. Numerical observations of the blowup dynamics. Here we use the same U to
denote the blowup profile at different times and its final steady state, and later even the radially
symmetric profile, when no confusion would arise. Moreover, it is easy to check that if U(y) is
a solution of above equation (2.7), so is

Uλ(y) = λn−1U(λy), λ > 0 (2.16)

and we have a family of profiles. Without loss of generality, any blowup profile shown below is
normalized according to above scaling such that U(0) = 1.
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Fig. 2.1. Similarity solution profiles show in the similarity variables U and r = |y| as defined in (2.1-2.2),
in different space dimensions, obtained by numerical integration of the PDE. All profiles are rescaled so that
U(0) = 1 according to (2.16).

Details of the numerical methods are presented later in this manuscript. The overall results
show exact self-similar scaling in all dimensions studied. The normalized profiles (U(0) = 1)
obtained from our simulations of the PDE, in different spatial dimensions, are shown in Figure
2.1. Near the origin, the profiles are not ordered according to the dimension. But far away
from the origin, due to different algebraic decay rate in different dimensions, these profiles are
ordered. The algebraic tails (appearing as straight lines in the right log-log plot) will extend
to infinity at the blowup time. The plot on the right shows a drop-off due to the the matching
of the numerical solution on to an integral order solution in the far field. Once we have the
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profiles, we can numerically check the validity of equation (2.7), which is shown in Figure 2.2
for dimension three. We observe that the part αU +βy · ∇U coming from the spatial-temporal
scaling converges faster to a limit than the part associated with the kernel ∇ · (U∇K ∗ U).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r

 

 

u(0,t)=1.23e+05 scaling
u(0,t)=1.23e+05 kernel
u(0,t)=1.95e+47 scaling
u(0,t)=1.95e+47 kernel

Fig. 2.2. Comparison of the two contributions ∇·(U∇K∗U)(kernel) and αU +βy ·∇U(scaling) in equation
(2.7) for different u(0, t) in dimension three. The term αU + βy · ∇U (dash-dots) at smaller value of u(0, t) is
almost indistinguishable from both terms at larger value of u(0, t).

Both the exponents α and β can be estimated from the simulation data (Figure 2.3, see
section Four for dat fitting) . For radially symmetric solutions considered here, the computa-
tion can be extended to fractional dimension, giving more insight into the dependence of the
parameters on the spatial dimension. In particular, the parameter β appears to increase with
dimension.

We can have a closer look at the detailed blowup scenario in Figure 2.4 and 2.5 for the
rescaled profile U and the original function u. Even though the results are presented only
in dimension three, it is generic for all dimensions. In Figure 2.4, the rescaled profiles U(r, τ)
converges to the steady state quickly near the origin and the dynamics just adjusts the algebraic
decay of the tails. In Figure 2.5, the original variable u is plotted at different stage during the
blowup. Since the blowup takes place in such a short time, away form the core u barely
changes. Near the blowup point, the solution fills an envelope when approaching the blowup
time. Moreover, the algebraic decay of u and U are intimately related through the self-similar
relation (2.2). In fact any fixed |x| > 0, u(x, t) = (T − t)−αU(x(T − t)−β , τ) approaches a
constant as t → T−. This gives the rate of algebraic decay for the steady profile U , U(y) ∼
|y|−α/β = |y|−(n−1+1/β), making the part αU + βy · ∇U in the equation (2.7) vanish at leading
order.

3. Numerical methods. The computation of blowup solutions is usually quite challeng-
ing, due to the small scale of the blowup set, which cannot be resolved quite well by conventional
numerical schemes. One of the most popular schemes is the Moving Mesh Method [18, 15, 34],
using an equipartition principle to give a separate equation for the mesh, to concentrate the
computation on those regions where high resolution is desired. Another one is dynamic rescal-
ing used in Nonlinear Schrodinger Equations ([42] and [27]). However, most of these schemes
require a knowledge of those exponents characterizing the blowup to capture the dynamics
accurately. Therefore they tend to work more successfully for self-similar solutions of the first
kind.
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Fig. 2.3. The exponents β and α characterizing the blowup in different spatial dimensions. The relation
(2.5) is perfectly satisfied in the direct simulation while it is used exactly in the numerical renormalization.

Here we take advantage of the fact that our problem is a first order conservation law and
thus we can use the method of characteristics to solve two coupled ODEs, one for the radial
position r and the other for the solution u. In radial coordinates, the original equation can be
written as

ut =
∂u

∂r

∂

∂r
K ∗ u+ u∆rK ∗ u, (3.1)

where ∆r = ∂rr + n−1
r ∂r. The system of ODEs along the characteristics is thus

dr

dt
= − ∂

∂r
K ∗ u, du

dt
= u∆rK ∗ u. (3.2)

The method of characteristics is used in many of the analytical arguments to prove the existence
and other important properties of the aggregation equation (1), see [12] and [6]. This method
provides a natural adaptive grid scheme to concentrate spatial resolution near the blowup
point or set, and was employed to investigate gravitational collapse by Brenner and Witelski
[14]. Moreover, for nonnegative initial data, we have the monotonicity condition ∂

∂rK ∗ u ≥
0,∆rK ∗ u > 0, i.e., the points always move towards to the origin and the magnitude is always
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u(0,t)=1.95e47

u(0,t)=1.56e38

Fig. 2.4. The convergence of the normalized profiles in dimension three. (a) Near the origin, all the
profiles are indistinguishable. (b) Far away from the origin, the blowup dynamics adjusts the algebraic decay
of the tail.

increasing along the path. Thus our scheme preserves the positivity of the solution. The
numerical results indicate that this simple scheme resolves the profiles quite well, both near the
core and far away from it. If the self-similarity were of the first kind, then the characteristics
would exactly preserve the spatial resolution going into the blowup. Since it is a second-kind
similarity solution with anomalous scaling (i.e., the characteristics do not scale in time as the
similarity variable) we lose resolution over time, but at a relatively slow rate compared with
the dynamics of blowup.

The system (3.2) is solved using the conventional fourth order Runge-Kutta method, with
the size of the time step ∆t adapted according to the following two criteria: (a) The relative
increase of the solution at all points is bounded by a threshold at each time step. (b) The nodes
cannot cross each other during each time step. Finally, we need to compute the convolution of
the kernel. We first give a general formulation for any dimension greater than two and then a
special one in odd dimensions three and higher, to reduce computational effort by one order of
magnitude.

3.1. General Dimension. Instead of calculating K ∗ u once and taking the numerical
derivatives to solve (3.2), we find ∂

∂rK ∗ u and ∆rK ∗ u directly by computing the derivatives
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Fig. 2.5. The convergence of the original function u in dimension three. (a) Away from the blowup point,
the solution barely changes because the blowup happens in such a short time scale. (b) Close to the blowup
point, the solution fills an envelope which becomes infinity at the origin.

of the kernel, i.e.,

∂

∂r
K ∗ u = cn

∫ ∞

0

u(r′)r′n−1

∫ π

0

r − r′ cos θ√
r2 + r′2 − 2rr′ cos θ

sinn−2 θdθdr′,

∆rK ∗ u = (n− 1)cn
∫ ∞

0

u(r′)r′n−1

∫ π

0

1√
r2 + r′2 − 2rr′ cos θ

sinn−2 θdθdr′, (3.3)

where cn is the volume of the unit sphere in Rn−1. The computation can still be expensive,
because at each point we have to perform a double integration. The expense can be reduced
by observing the homogeneity of the kernel, which gives the following formulation

∫ π

0

r − r′ cos θ√
r2 + r′2 − 2rr′ cos θ

sinn−2 θdθ =


∫ π

0
(1−ρ cos θ) sinn−2 θ√

1+ρ2−2ρ cos θ
dθ, if r′ ≤ r∫ π

0
(ρ−cos θ) sinn−2 θ√

1+ρ2−2ρ cos θ
dθ, if r′ ≥ r

,

∫ π

0

sinn−2 θ√
r2 + r′2 − 2rr′ cos θ

dθ =
1

max(r, r′)

∫ π

0

sinn−2 θ√
1 + ρ2 − 2ρ cos θ

dθ, (3.4)
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where ρ = min(r, r′)/max(r, r′). In this way, the integrations of the kernel with respect to the
angular variable have only to be calculated once at the very beginning as functions of ρ ∈ [0, 1],
i.e., we only need to perform numerical integrations once for the auxiliary functions

I1(ρ) =
∫ π

0

(1 − ρ cos θ) sinn−2 θ√
1 + ρ2 − 2ρ cos θ

dθ, I2(ρ) =
∫ π

0

(ρ− cos θ) sinn−2 θ√
1 + ρ2 − 2ρ cos θ

dθ, (3.5)

I3(ρ) =
∫ π

0

sinn−2 θ√
1 + ρ2 − 2ρ cos θ

dθ. (3.6)
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Fig. 3.1. Auxiliary functions in different spatial dimensions: (a) I1 (upper branch) and I2 (lower branch),
(b) I3.

The auxiliary variable ρ is chosen such that those integrations are computed only at dis-
crete points and the interpolations of I1, I2 and I3 are restricted on the bounded interval [0, 1].
Therefore these functions I1, I2 and I3 can be computed as accurately as needed without in-
creasing the computation effort during the time evolution. In this way the total computational
expense is reduced to O(N2) at each time step, where N is number of spatial points used to
represent the solution. These auxiliary functions (Figure 3.1) are relatively smooth inside the
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interval [0, 1] for dimension greater or equal than three. It is easy to see that I3(1) actually be-
comes divergent as the dimension n less or equal than two. For these reason, the computations
are performed only for n > 2.

3.2. Further reduction in odd dimension. In odd dimension, using the fact that the
successive Laplacians of the kernel K(x) = |x| is proportional to the fundamental solution of
the Laplace equation, we can further reduce the computation to be O(N) per time step. This
is exactly the fact used to prove the nonexistence of mass concentrating self-similar solutions
in [7]. First, we start with dimension three to give the basic idea and then generalize it to any
odd dimension greater than three. Let v0 = u, and define v1 and v2 to be the solutions of the
following equations

−∆v1 = v0, ∆v2 = 8πv1 in R3, (3.7)

with v1 and v2 decay to zero at infinity. We can just write down the solution via the method
of fundamental solution, i.e.,

v1(x) =
∫

R3

v0(y)
4π|x− y|

dy,

v2(x) =
∫

R3

2v1(y)
|x− y|

dy =
∫

R3

∫
R3

v0(z)
2π|x− y||y − z|

dzdy

=
∫

R3
|x− z|u(z)dz = K ∗ u(x). (3.8)

In the radial symmetric case, we only need to solve

− 1
r2

d

dr

(
r2
dv1
dr

)
= v0, − 1

r2
d

dr
(r2v2r) = 8πv1, (3.9)

with the following boundary condition

v1(∞) = 0,
∂v1(0)
∂r

= 0, v2r(0) = 0. (3.10)

Then the right hand sides of the equations in (3.2) are replaced by

∂

∂r
K ∗ u = −v2r, ∆rK ∗ u = 8πv1, (3.11)

with the time scaled by 8π. Note that we only need to find the derivative ∂rv2 of v2, instead of
v2 itself. In actual implementation, the infinity boundary condition v1(∞) = 0 is transformed
to a condition at r = 0, i.e., the value of v1(0),

v1(0) = −
∫ ∞

0

∂v1(r)
∂r

dr =
∫ ∞

0

1
r2

∫ r

0

v0(s)s2dsdr =
∫ ∞

0

u(r)rdr. (3.12)

This integral is usually truncated on a bounded domain if u is compactly supported or decays
fast enough. In theory, this transformed boundary condition at the origin gives the unique
zero boundary condition at infinity, while any inappropriate choice of v1 at the end of the
computational domain (an approximation to the condition v1(∞) = 0) could give a different
effective kernel K, resulting in some inconsistence in theory and numerics. Once we have the
right boundary condition, we can use an O(N) numerical quadrature scheme to find the solution
of (3.9), i.e.,

v1(r) = v1(0) −
∫ r

0

1
η2

∫ η

0

u(s)s2dsdτ = v1(0) −
∫ r

0

u(s)(s− s2

r
)ds,
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v2r(r) =
8π
r2

∫ r

0

v1(s)s2ds. (3.13)

In odd dimension greater than three, with n = 2k+1, similarly we introduce v1, v2, · · · , vk+1

such that

−∆v1 = v0, −∆v2 = v1, · · · , −∆vk = vk−1, ∆vk+1 = dkvk in Rn. (3.14)

and finally set in the characteristics ODEs (3.2)

∂

∂r
K ∗ u = −∂vk+1

∂r
, ∆rK ∗ u = dkvk, (3.15)

where v0 = u and

dk = 2k(2k + 1)k!
π

2k+1
2

Γ(k + 1 + 1
2 )
. (3.16)

To transform the boundary condition at infinity to the one at the original, we need to
find the appropriate integration like (3.12) with the aid of fundamental solution of the Laplace
equation, which is given by

N(x) =
1

n(n− 2)ωn|x|n−2
, ωn =

πn/2

Γ(n/2 + 1)
, (3.17)

where ωn is the volume of the unit sphere in Rn. Using the presentation formula of the solution
to the Poisson equation, we have

vi(xi) =
∫

Rn

· · ·
∫

Rn

N(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)u(x0)dx0dx1 · · · dxi−1 (3.18)

for any 1 ≤ i ≤ k + 1. Translation and rotation invariance of the fundamental solutions gives
the following identity∫

Rn

· · ·
∫

Rn

N(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1 = Ni(xi − x0), (3.19)

for some radially symmetric function Ni. Moreover, dimensional analysis indicates that Ni is
homogeneous of degree 2i− n, i.e.,

Ni(xi − x0) =
ci,n
nωn

|xi − x0|2i−n (3.20)

for some constant ci,n. When i = 1, this is just the fundamental solution, giving the following
initial condition

c1,n =
1

n− 2
. (3.21)

We can find a recursive relation for ci,n by taking the negative Laplacian ofNi w.r.t xi. Formally,
on one hand using equation (3.20),

−∆xiNi(xi − x0) =
2(n− 2i)(i− 1)ci,n

nωn
|xi − x0|2(i−1)−N . (3.22)

On the other hand, using the definition of Ni,

−∆xi

∫
Rn

· · ·
∫

Rn

N(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1
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=
∫

Rn

· · ·
∫

Rn

δ(xi − xi−1)N(xi−1 − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−1

=
∫

Rn

· · ·
∫

Rn

N(xi − xi−2) · · ·N(x1 − x0)dx1 · · · dxi−2

=
ci−1,n

nωn
|xi − x0|2(i−1)−N . (3.23)

Match the coefficients of above two identities, we have the following recursive formula

ci,n =
1

2(i− 1)(n− 2i)
ci−1,n (3.24)

and consequently with the initial condition (3.21),

ci,n =
1

2i−1(i− 1)!(n− 2i)!!
, (3.25)

where m!! is the double factorial of m. Finally, we get the boundary condition of vi at the
origin in terms of the integral with u, i.e.,

vi(0) =
ci,n
nωn

∫
Rn

|x0|2i−nu(x0)dx0 =
1

2i−1(i− 1)!(n− 2i)!!

∫ ∞

0

r2i−1u(r)dr. (3.26)

With these boundary conditions, we can find all the auxiliary functions vis through a series
of O(N) numerical integrations like (3.13) to find the right hand side the characteristic ODEs
(3.2).

3.3. Numerical Renormalization Group. Since we are more interested in the expo-
nents characterizing the intermediate asymptotics of the dynamics than other quantitative
details, we can rescale the solution appropriately to get the the profile. This is the basic princi-
ple underlying Renormalization Group Method, which is employed successfully to the numerical
investigation of nonlinear filtration and porous medium equations [23, 11].

We start with the solution u(0)(x, t) = u(x, t), whose solution is known on the time interval
[t00, t

0
1]. Without loss of generality, we let u(0)(0, t00) = 1 and t01 is determined implicitly by

u(0)(0, t01) = M for some predetermined constant M > 1. For a given guess of the exponent
βm, at then end of m−th iteration, we can renormalize the function as

u(m+1)(x, tm+1
0 ) = M−1u(m)(xM−βm/αm , tm1 ), αm = (n− 1)βm + 1. (3.27)

An equation for βm can be estimated from the spatial-temporal relation of the blowup
dynamics. Near blow-up time, we have

u(0, t) = (T − t)−αU0, r1/2(t) = (T − t)βr0, (3.28)

where r1/2(t) is the position where u is half of u at the origin, i.e.,

u(r1/2(t), t) =
1
2
u(0, t). (3.29)

Therefore, on one hand we have

d lnu(0, t)
d ln r1/2(t)

=
d lnu(0, t)/dt
d ln r1/2(t)/dt

= −α
β

= 1 − n− 1
β
. (3.30)

On the other hand, using the original evolution equation, we can calculate the time deriva-
tives explicitly, i.e.,

d lnu(0, t)
d ln r1/2(t)

=
r1/2(t)
u(0, t)

du(0, t)/dt
dr1/2(t)/dt

=
r1/2(t)
u(0, t)

∇ · (u∇K ∗ u)|r=0

dr1/2(t)/dt
(3.31)
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Finally dr1/2(t)/dt can be obtained by taking the time derivative of equation (3.29)

ur(r1/2(t), t)
dr1/2(t)
dt

+ ut(r1/2(t), t) =
1
2
ut(0, t), (3.32)

or equivalently

dr1/2(t)
dt

=
1
2∇ · (u∇K ∗ u)|r=0 −∇ · (u∇K ∗ u)|r=r1/2(t)

ur(r1/2(t), t)
. (3.33)

At the end of m−th iteration, the exponent βm is solved by combining (3.30) and (3.31),
i.e.,

1 − n− 1
βm

=
r1/2(tm1 )
u(m)(0, tm1 )

u
(m)
r (r1/2(tm1 ), tm1 )∇ · (u(m)∇K ∗ u(m))|r=0

1
2∇ · (u(m)∇K ∗ u(m))|r=0 −∇ · (u(m)∇K ∗ u(m))|r=r1/2(t

m
1 )

(3.34)

Above relation is preserved under the renormalization transformation (3.27), in the sense
that

1−n− 1
βm

=
r1/2(tm+1

0 )
u(m+1)(0, tm0 )

u
(m+1)
r (r1/2(tm+1

0 ), tm+1
0 )∇ · (u(m+1)∇K ∗ u(m+1))|r=0

1
2∇ · (u(m+1)∇K ∗ u(m+1))|r=0 −∇ · (u(m+1)∇K ∗ u(m+1))|r=r1/2(t

m+1
0 )

(3.35)
Because the renormalized function decays only algebraically even with a compactly sup-

ported initial data, the function u(m) is computed on a interval r ∈ [0, L] and is chosen to be
u(L)(L/r)αm/βm for r > L.

The anomalous exponent β computed using this numerical renormalization method is com-
pared with that from direct simulation in Figure 2.3. The former concentrates the computation
on the profile and the exponents with a fixed spatial domain while the latter have to resolve
the solution on a large spatial domain and eventually cannot give a good fit at lower dimension
when the kernel becomes singular. Therefore, the profile and the exponents can be computed
with high accuracy without any formation of singularity. On the other hand, the direct simu-
lation tells more details about the blowup dynamics, like various norms of the solution when
approaching the blowup time.

For simulation in general dimensions, the auxiliary functions I1, I2 and I3 are computed
on 104 equally-spaced points on the interval [0, 1]. The number of spatial points is 4000 and
the whole simulation takes a few days for one single dimension on a 3.0 GHz Intel Pentium IV
cluster machine compiled with GNU GCC. For the special formulation in odd dimensions, the
number of spatial points is as large as 2 × 104, and the simulation takes usually a few hours.
Initially the grid points {rj} are placed such that ln(1+ rj) is equally spaced on [0, ln(1+ rN )].
The initial condition is chosen to be Gaussian, even though other smooth, compactly supported
functions (not necessary to be radially decreasing) work well too and produce computationally
identical similarity solutions. The special code for simulation in odd dimensions gives exponents
α and β and other parameters consistent with code for general dimensions. The main difference
is computational speed. We reiterate that we do not have to perform adaptive mesh refinement
because the characteristics due a good job of following the similarity variables, although they
are not identical.

4. Additional Numerical Results. Besides those results already shown in previous
sections, we gather addition numerical results and verifications to validate the claims made
before.
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4.1. Estimation of the exponents. Close to the blowup time, U(0, τ) should approach
a constant U0, and u(0, t) ≈ (T − t)−αU0. The time derivative ut(0, t) can be approximated by
u(0, t) too, i.e.,

ut(0, t) ∼ αU
−1/α
0 u(0, t)1+1/α. (4.1)

On the other hand, from the second characteristic ODE (3.2), ut(0, t) = u(0, t)∆rK ∗ u(0, t),
we have

ln (∆rK ∗ u(0, t)) = ln(αU−1/α
0 ) +

1
α

lnu(0, t). (4.2)

Using u(0, t),∆rK ∗ u(0, t) at each time step, a simple least square fitting gives the pair of
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Fig. 4.1. Estimation of α and β in three dimension. The straight lines in the log-log plots indicate a strong
evidence of the self-similar blowup of the radially symmetric solutions.

parameters (α,U0). To estimate the exponent β for spatial spread, we need to introduce a
spatial scale. The most natural one is the half-width of the blowup profile, r1/2(t), the position
at which the magnitude is half of that at the origin, i.e.,

u(r1/2(t), t) = u(0, t)/2. (4.3)
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The similarity form of the blowup implies

r1/2(t) ∼ r0(T − t)β (4.4)

for some constant r0. Using r1/2(t) (from interpolation if there is no function value that is
exactly half of the maximum magnitude) and T − t estimated with parameters obtained above,
we can get β. In all the parameter estimation, only those data that close to blowup time
(u(0, t) > 1010) is used and the profiles should be radially decreasing such that there is one
unique r1/2(t). The simulation is terminated when u(0, t) reaches an upper bound 1050 provided
that the profile near the origin is well resolved, say there are at least one hundred points nodes
on the interval [0, r1/2(t)].

4.2. Blowup in Lp norm. Since the blow up does not concentrate any mass, it is possible
that the Lp norm of the solution could still be finite for some p > 1 at the blowup time. Using the
self-similar form verified in previous sections, we can give a more quantitative characterization
of the blow up in Lp norm. First, we have

||u||pLp =
∫

Rn

updx = (T − t)−αp+nβ

∫
Rn

Updy = (T − t)−αp+nβC

∫ ∞

0

Uprn−1dr. (4.5)

Let the critical exponent be defined as p∗ = nβ/α. To the leading order, U has an algebraic
decay rate of the form r−α/β , and this rate of decay is extended to infinity as t→ T . If p > p∗,
the integrand Uprn−1 decays fast enough and the last integral in equation(4.5) is uniformly
bounded and nonzero, therefore the behavior of ||u||Lp is determined by (T − t)−α(1−p∗/p),
which becomes infinity.

For p ∈ (1, p∗), the integral in the last expression blows up but the factor (T − t)−αp+nβ

goes to zero. Therefore, we need a more delicate estimate for the integral using the fact that U
has an algebraic decay only up to some large distance R(t). This upper bound can be estimated
from the total mass for U . On one hand, from the evolution equation for U , we have,

d

dτ

∫
Rn

U(y, τ)dy = (β − 1)
∫

Rn

U(y, τ)dy (4.6)

or ∫
Rn

U(y, τ)dy = e(β−1)τ

[
e(β−1) ln T

∫
Rn

U(y,− lnT )dy
]

= (T − t)−(β−1)M0, (4.7)

where M0 is a constant depending only on the initial condition. On the other hand, the integral
above can be approximated by assuming U(y, τ) has an algebraic decay of order O(|y|−α/β)
exactly up to R(t) and is zero beyond R(t), i.e., for t close to the blowup time T ,∫

Rn

U(y, τ)dy ≈
∫ R(t)

R0

Cr−α/β+n−1dr ≈ C1R(t)n−α/β = C1R(t)1−1/β .

Compared with (4.7),

R(t) ≈ C2(T − t)−β

and consequently the Lp norm is

||u||pLp ≈ C(T − t)−αp+nβ

∫ R(t)

0

r−αp/β+n−1dr = C1(T − t)−αp+nβ−β(−αp/β+n) = C1. (4.8)

In another word, if p ∈ (1, p∗), ||u||Lp is still uniformly bounded up to blowup time.
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Fig. 4.2. ||u||Lp for p = 1 and p = (1 + p∗)/2(< p∗) in dimension n = 3. Note that the mass (p=1) is
perfectly conserved in our numerical scheme.

At the critical norm p = p∗,

||u||p
∗

Lp∗ ≈ C

∫ R(t)

R0

r−1dr = C1 + C2 lnR(t) = C1 − C2β ln(T − t). (4.9)

For all three cases, the above analysis is in perfect agreement with numerical observation
of the norms (Figure 4.2 and 4.3). The total mass ||u||L1 is still perfectly conserved even for
u(0, t) close to 1050. In the critical (p = p∗) and supercritical (p > p∗) case, the blowup of
the norms fit the expected form of logarithm and power law blowup very well. This blowup
result is also consistent with the Lp theory developed in a companion paper [10], in which
the local well-posedness of the equation is proved for initial data in Lp space with p greater
than ps = n/(n − 1) > p∗. At the time of blowup, our numerical solution exhibits a pure
power law behavior at the origin. in [10] it is shown that continuation of a solution of this
type leads to instantaneous mass concentration, hence proving that the dynamics is ill-posed
in the Lp for sufficiently small p. Thus the numerical results here, combined with the analysis
of that paper, give a complete picture of the dynamics, from smooth initial data, to finite time
blowup with a power law singularity, and then instantaneous mass concentration after the initial
singularity. We note that this is a multidimensional generalization of how singularities form in
Burgers equation, which we have shown is equivalent to our problem in one dimension. In the
Burgers case, the initial singularity for equation (2.10) involves ϕ(x, T ) ∼ x1/3 at the blowup
time, which, following the classical theory of conservation laws, instantaneously leads to shock
formation with a jump discontinuity, corresponding to mass concentration in the corresponding
aggregation problem. Thus we see the same phenomena occurring in multiple dimensions.

5. Conclusions. We have studied the blowup behavior of solutions of the aggregation
equation ut = ∇ · (u∇K ∗ u) in multiple dimensions for the kernel K(x) = |x|. The numerical
observations give strong evidence that the solutions are self-similar and of the second kind. Even
though the numerical results are consistent with known theory, in particular the lack of first
kind similarity solutions in odd dimensions higher than one [7], there are still many important
questions left behind. First, the solutions are computed only in the radially symmetric case.
However, this radial symmetry could be broken by a non-radially symmetric perturbation. We
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Fig. 4.3. Logarithmic blowup of ||u||Lp for p = p∗(a) and power law blow up for p > p∗(b) in dimension
n = 3. In the latter case 1/5 is exactly the theoretic predicted value 1 − p∗/p.

have not performed linear stability theory for this problem, as has been done in other examples
of self-similarity [5] and this would be interesting, both for the radially symmetric and non-radial
cases. Likewise, we have not done a systematic study of solutions of the similarity equation (2.7)
- as has been shown for other problems [26, 50] there may exist unstable similarity solutions
with different shape from the ones found in this paper. Moreover, the homogeneity of the
kernel can be generalized to K(x) = |x|γ , which has been proposed for some one dimensional
models of granular flow [21, 41] and the dynamics of blowup for such kernels is an interesting
open problem in multiple dimensions. We also note that there are recent theoretical results
on blowup for this class of problems with additional linear and nonlinear diffusion [39, 40] and
it would be interesting to understand blowup profiles for these problems as well. Our method
of characteristics does not directly apply to such problems due to the diffusive nature of the
dynamics. One possibility, which we have not discussed here, is to use ideas from optimal
transport theory, which applies to this class of equations [7]. A recent numerical scheme built
on this idea, for diffusive and aggregation phenomena, has been introduced in [22].
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