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Abstract.
A model for the time evolution of bluetongue, a viral disease in sheep and cattle that is

spread by midges as vectors, is formulated as a delay differential equation system of six equations.
Midges are assumed to have a pre-adult stage of constant duration, and a general incubation
period for bluetongue. A linear stability analysis leads to identification of a basic reproduction
number that determines if the disease introduced at a low level dies out, or is uniformly weakly
persistent in the midges. Stronger conditions sufficient for global stability of the disease free
equilibrium are derived. The control reproduction numbers, which guide control strategies for
midges, cattle or sheep, are determined in the special case in which the incubation period for
midges is exponentially distributed. The possibility of backward bifurcation is briefly discussed as
is an equilibrium situation in which the disease wipes out sheep populations that are introduced
in small numbers.
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1. Introduction. Bluetongue is a viral infection of ruminants, including cattle
and sheep, that is spread by biting midges of the Culicoides family. In ruminants it
causes changes to the mucous linings of the mouth and nose, but it does not affect
humans [7]. According to [7], bluetongue has long been present in most tropical and
sub-tropical countries, but since 1999 it has expanded northwards across Europe,
with a severe outbreak in the summer of 2007 in Northern Europe. These affected
countries started vaccinating livestock in 2008. The situation on bluetongue disease
in the world and latest research is given in the monograph by Mellor et al [22].

A differential equation model for the transmission dynamics of bluetongue has
been developed and analysed by Gubbins et al. [11]. This model includes cattle
and sheep as separate hosts with infected hosts divided into a number of stages.
For the special case of an exponentially distributed infectious period, the basic
reproduction number is given, and sensitivity of this number to changes in each
parameter is assessed, mainly in the context of UK data. Explicit temperature
dependence for some midge parameters is included, as the biting rate, mortality
and incubation period of midges is known to be strongly temperature dependent.
Hartemink et al. [13] derived an expression for the next generation matrix in a
system with three types of individuals. Specifying this to midges, sheep and cattle
for bluetongue virus, an expression for the basic reproduction number is derived,
and risk maps for an epidemic in the Netherlands are presented.

Here we present a model for bluetongue dynamics that includes midges with a
general incubation period as vectors, cattle and sheep as hosts. Our model presumes
that midges are active all year round. This is a reasonable assumption for most
tropical and subtropical regions, where bluetongue virus is very common (Gibbs and
Greiner [10]). It is not a reasonable assumption in regions such as northern Europe
where midges would be unlikely to survive the winter. For such regions it would
be essential to incorporate the effects of seasonality. An interesting and unresolved
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issue in such regions, but not one we consider here, is the precise mechanism for
overwintering of the virus. Our model does not incorporate seasonal effects and does
not explicitly incorporate temperature dependence. Details of the epidemiology of
bluetongue and of our assumptions are given in Section 2, where the model with a
general incubation period for midges is formulated. Section 3 contains analysis of
the general model, including derivation of a threshold condition in terms of a basic
reproduction number that determines whether the disease introduced at a low level
dies out, or is uniformly weakly persistent in the midges.

Stronger conditions for global stability of the disease free equilibrium are de-
rived. Further analysis of the special case in which the incubation period is assumed
to be exponentially distributed is given in Section 4, which includes derivation of
type reproduction numbers and the discussion of a disease equilibrium at which the
disease (present in midges and cattle) wipes out sheep populations that are intro-
duced in small numbers. Section 5 contains a discussion of results for our model of
bluetongue dynamics.

2. Model formulation. To develop our model for the spread of bluetongue,
we consider the time evolution of the disease in the hosts (cattle and sheep) and
vectors (midges). The various contact rates, which are determined by the biting
rate of the midges and the transmission probabilities, are denoted by β with self-
explanatory subscripts, for example, βmc is the contact rate from midges to cattle,
and includes the probability of transmission of bluetongue from midges to cattle
and the biting rate of midges on cattle. The cross infection between hosts (cattle
and sheep) and vectors (midges) is modeled using mass action normalized by the
total host density. This reservoir frequency-dependent transmission, which assumes
that midge biting is not limited by host density, follows that used by [2] for malaria
and by several authors for West Nile virus models, e.g., [5, 31].

In cattle, bluetongue generally does not cause death [1], and we assume that it
does not cause birth defects. Thus the total number of cattle is taken as a constant
Nc, so that the numbers Ic and Sc of infectious and susceptible cattle satisfy

Ic + Sc = Nc. (2.1)

Thus, for the cattle there is effectively just one equation for the time evolution of
the disease, namely

I ′c(t) =
βmcSc(t)Im(t)

Is(t) + Ss(t) +Nc
− µcIc(t), (2.2)

where µc is the per-capita cattle natural death rate and Im(t), Is(t) and Ss(t) are the
numbers of infectious midges, infectious sheep and susceptible sheep respectively at
time t. Here and throughout the paper, prime denotes differentiation with respect
to t. Bluetongue does cause death in sheep, but mild cases usually recover rapidly
and completely [1, 23]. The equations for the sheep take the form

S′s(t) = bs(Ss(t))−
βmsSs(t)Im(t)

Is(t) + Ss(t) +Nc
+ γIs(t)− µsSs(t),

I ′s(t) =
βmsSs(t)Im(t)

Is(t) + Ss(t) +Nc
− γIs(t)− µisIs(t),

(2.3)

with µis = µs + δs where µs is the per-capita sheep natural death rate, bs(·) is
the birth rate for sheep, δs is their disease induced death rate, γ is the per-capita
recovery rate and βms is interpreted similarly to βmc. We assume that only sus-
ceptible sheep have viable offspring, since bluetongue virus tends to cause abortion
and congenital anomalies in sheep (Merck Veterinary Manual [23]). It is assumed
that infected sheep do not compete for reproductive resources.



Model for bluetongue dynamics 3

The incubation period for the sheep, which is around 4 to 6 days (Merck Veteri-
nary Manual [23]) could also be included, but for reasons of simplicity in the model
we have chosen to incorporate only the longer incubation period for the midges
(see below). We are assuming that cattle do not recover from the disease while
sheep may do. This again is an approximation to the reality that although cattle
do not show clinical symptoms they are the main amplifying hosts and tend to be
long term virus reservoirs (Hourrigan and Klingsporn [17]). Indeed, in experiments,
bluetongue virus was isolated from the blood of infected cattle for up to 49 days
after infection, yet it was not isolated from infected sheep after as little as 11 days
(Bonneau et al [4]).

The derivation of the evolution equations for the midges is a little more compli-
cated. For now, let B(t) be the rate at time t at which midges become infected as a
result of having bitten an infectious cow or an infectious sheep. An expression for
B(t) is presented below. A midge acquires the virus with a blood meal, but there
is an extrinsic incubation period of the virus in the midges which is very roughly
of the order of 2 weeks [1], but fluctuates considerably with temperature and is
therefore weather dependent (Wilson and Mellor [30]). For these reasons we model
the incubation delay using a probability density function. During the incubation
period the virus multiplies in the gut of the midge and then moves to its salivary
glands to be injected into a cow or sheep when it bites. Mathematically speaking,
when the midge first acquires the virus it moves from the susceptible Sm class into
the exposed Em class. After the incubation delay the midge moves from the Em
class into the infectious Im class.

Let F : R+ → R+ be the sojourn function of the incubation period, i.e., F(η)
is the probability of still being in the incubation period η time units after having
taken a blood meal containing the virus [28, ch.12]. We assume that the sojourn
function has a probability density f : R+ → R+,

F(η) =

∫ ∞
η

f(r) dr, F(0) = 1. (2.4)

Note that F is a decreasing function. Of all the exposed midges at time t, the
number that acquired the infection between times t− η and t− η + dη with dη in-
finitesimal is B(t−η) dη e−µemηF(η), as this quantity is the number B(t−η) dη that
acquired the infection between the times mentioned, multiplied by the probability
e−µemη of still being alive at time t, multiplied by the probability of still being in
the exposed class at time t. Here µem is the per-capita mortality rate for exposed
midges, including natural death and death due to disease. The total number Em(t)
of exposed midges at time t is the integral of the above quantity over all possible
durations of the incubation period and is therefore given by

Em(t) =

∫ ∞
0

B(t− η)e−µemηF(η) dη =

∫ t

−∞
B(η)e−µem(t−η)F(t− η) dη. (2.5)

By (2.4), Em satisfies

E′m(t) = B(t)−
∫ t

−∞
B(η)e−µem(t−η)f(t− η) dη − µemEm(t). (2.6)

We have incorporated the incubation period for the midges via a distributed delay
and, as the above derivation makes clear, this formulation allows for a stochastic
element in what is otherwise a deterministic model. Our preference for this type of
formulation is that the incubation period exhibits strong temperature dependence.
We quoted a figure of about 2 weeks, but Gubbins et al [11] cite data suggesting that
the period actually varies from 4 days at 30oC to 26 days at 15oC, see also Wilson
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and Mellor [30]. Such wide variation due to temperature, a stochastically varying
parameter, justifies our use of a distributed delay formulation for the incubation
period in the midges. For an important particular case, assume that the incubation
period is given by the negative exponential distribution f(ξ) = αe−αξ with α > 0.
In this case (2.6) becomes an ordinary differential equation, and further analysis of
this case is given in Section 4.

Next we need to choose an appropriate expression for the rate B(t) at which
midges become infected. A midge may acquire the infection from either a cow or a
sheep, and therefore there are two contributions to B(t). We write

B(t) =
βcmSm(t)Ic(t)

Is(t) + Ss(t) +Nc
+

βsmSm(t)Is(t)

Is(t) + Ss(t) +Nc
, (2.7)

where βcm and βsm are interpreted similarly to βmc. Insertion of this expression
into (2.6) completes the derivation of a differential equation for the exposed midges.
An equation for the number of infectious midges Im(t) is easily obtained from it by
picking up the relevant flux term from the Em equation, and inserting a mortality
term involving the per-capita mortality µim of infectious midges.

For susceptible midges, we assume that only adult midges can contract the virus,
and thus Sm(t) denotes the number of susceptible adult midges. Midges go through
a life cycle involving various pre-adult (such as larval) stages that we assume to be of
exactly the same total duration τ for each midge. For convenience we group all these
pre-adult stages together and call it the larval stage, during which there is per-capita
larval mortality µl. The probability of a midge surviving the larval phase to become
an adult is exp(−µlτ). Since we could not find any information as to whether and
how bluetongue affects midge reproduction, we assume that only susceptible midges
reproduce and compete for reproductive resources. Thus if the egg laying rate at
time t is a function bm of the total number of adult susceptible midges at that
time, then the maturation rate of the midges is exp(−µlτ)bm(Sm(t − τ)). Per-
capita natural mortality of adult susceptible midges is denoted by µm. Midges
pass from the susceptible class to the exposed class at a rate B(t), given by (2.7).
These considerations lead to the following equations for susceptible, exposed and
infectious midges:

S′m(t) = e−µlτ bm(Sm(t− τ))− µmSm(t)− βcmSm(t)Ic(t)
Is(t) + Ss(t) +Nc

− βsmSm(t)Is(t)
Is(t) + Ss(t) +Nc

,

E′m(t) = −µemEm(t) +
βcmSm(t)Ic(t)

Is(t) + Ss(t) +Nc
+

βsmSm(t)Is(t)
Is(t) + Ss(t) +Nc

−
∫ t

−∞

(
βcmSm(η)Ic(η)

Is(η) + Ss(η) +Nc
+

βsmSm(η)Is(η)

Is(η) + Ss(η) +Nc

)
×e−µem(t−η)f(t− η) dη,

I ′m(t) = −µimIm(t) +

∫ t

−∞

(
βcmSm(η)Ic(η)

Is(η) + Ss(η) +Nc
+

βsmSm(η)Is(η)

Is(η) + Ss(η) +Nc

)
×e−µem(t−η)f(t− η) dη.

(2.8)
The model thus consists of six equations, namely (2.2) with Sc(t) = Nc− Ic(t),

the two equations of (2.3) and the three equations of (2.8). The system is not fully
coupled since the Em equation of (2.8) may be dropped for most purposes and the
remaining five equations determine all other variables. Then Em is given by (2.5),
with B(t) given by (2.7).
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All parameters are positive with µis ≥ µs, µem ≥ µm and µim ≥ µm except τ ,
which is nonnegative.

3. Analysis of the model. The model consisting of (2.2), (2.3) and (2.8) is
to be solved for t > 0 subject to initial data, which we now discuss. Because of the
delay, initial data for most of the variables have to be prescribed on an interval (in
fact for all negative time, for general f). Moreover, as is common in epidemiological
delay models with an exposed class, the components of the initial data are not
completely independent of each other. It is possible to prescribe any non-negative
initial data for the variables Sm(θ), Ss(θ), Is(θ) and Ic(θ), θ ∈ (−∞, 0], and any non-
negative value for Im(0). For a well posed problem, Em(0) is determined from (2.5)
in terms of the other initial data [6]. The initial data therefore have the form

Im(0) = Im0 ≥ 0,

Sm(θ) = Sm0(θ) ≥ 0, Ss(θ) = Ss0(θ) ≥ 0

Is(θ) = Is0(θ) ≥ 0, Ic(θ) = Ic0(θ) ∈ [0, Nc]

}
θ ∈ (−∞, 0],

Em(0) =

∫ 0

−∞
Sm0(η)

βcmIc0(η) + βsmIs0(η)

Is0(η) + Ss0(η) +Nc
eµemηF(−η) dη,

Ss0, Sm0, Ic0, Is0 ∈ C∆, 0 < 3∆ < µem,

(3.1)

with C∆ defined below, in (3.3). The last assumption in (3.1) needs further expla-
nation. Since the model involves infinite delay, it is important to consider carefully
the issue of the choice of an appropriate state space. As noted, the Em equation
may be dropped (although at times we still need the Em expression such as in the
proof of Proposition 3.4). By the state at time t, we mean the entity

St = (Sst , Smt
, Ict , Ist , Im(t)) (3.2)

where the subscript t means the state at time t, for example Sst is the function
defined by Sst(θ) = Ss(t + θ), θ ∈ (−∞, 0]. Note that the Im variable differs from
the others in that it does not involve delay. We set up a suitable fading memory
space. Let BUC(−∞, 0] denote the set of bounded uniformly continuous functions
on (−∞, 0]. For a ∆ > 0 to be chosen, let

C∆ = {φ : (−∞, 0]→ R : φ(s)e∆s ∈ BUC(−∞, 0]} (3.3)

which is a Banach space with the norm

‖φ‖ = sup
s≤0
|φ(s)e∆s|. (3.4)

Note that, for any s ≤ 0, φ(s) ≤ ‖φ‖e−∆s. The state St of the solution at time t
evolves in the space C4

∆×R, where the factor of R relates to the undelayed variable
Im. This space is also a Banach space with the norm

|||S||| = max (‖Ss‖, ‖Sm‖, ‖Ic‖, ‖Is‖, |Im|) .

Regarding the choice of ∆, we examine the delay term in the right hand side of the
Im equation of (2.8), and consider the situation at time t = 0. At this time the
integral is the sum of two similar terms the first of which is bounded by

βcm
Nc

∫ 0

−∞
Sm0(η)Ic0(η)eµemηf(−η) dη.
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For Sm0, Ic0 ∈ C∆, this term is bounded by (βcm‖Sm0‖‖Ic0‖/Nc)
∫ 0

−∞ e(−2∆+µem)η

f(−η) dη. Finiteness of this integral is assured by choosing ∆ such that 0 < 2∆ <
µem. We assume the stronger condition 0 < 3∆ < µem to obtain local existence
and uniqueness.

Recall that a function b : R+ → R is locally Lipschitz continuous if for every
S > 0 there exists some LS > 0 such that |b(s) − b(s̃)| ≤ LS |s − s̃| whenever
0 ≤ s, s̃ ≤ S. If b is continuously differentiable on R+, then b is locally Lipschitz
continuous. However, our formulation also includes birth functions such as b(S) =
min{S, S�} with some S� > 0. For the purpose of the next theorem, we extend the
birth functions bs, bm : R+ → R from R+ to R by bs(S) = bs(0) and bm(S) = bm(0)
for S < 0. This extension preserves Lipschitz continuity. In realistic cases, bs(0) =
bm(0) = 0.

Theorem 1. If the initial data have the form (3.1) and if bm(Sm) and bs(Ss)
are locally Lipschitz continuous, then the model (2.2), (2.3) and (2.8) has a unique
solution defined on an interval [0, A) for some 0 < A ≤ ∞.

Proof. It is sufficient to prove existence for the subsystem without the Em
equation. Let t] > 0 be fixed but arbitrary. On the interval t ∈ [0, t]], the system
with

I ′m(t) = −µimIm(t) +

t∫
−∞

βcmIc(r) + βsmIs(r)

Is(r) + Ss(r) +Nc
Sm(r)e−µem(t−r)f(t− r) dr

is equivalent to the finite delay system with

I ′m(t) =− µimIm(t) + g(t)

+

t∫
t−t]

βcmIc(r) + βsmIs(r)

Is(r) + Ss(r) +Nc
Sm(r)e−µem(t−r)f(t− r) dr,

(3.5)

where g : [0, t]]→ R is the given function

g(t) =

t−t]∫
−∞

βcmIc(r) + βsmIs(r)

Is(r) + Ss(r) +Nc
Sm(r)e−µem(t−r)f(t− r) dr, t ∈ [0, t]], (3.6)

which exists and is continuous if the restrictions of Ss, Sm, Ic, Is to (−∞, 0] are ele-
ments of C∆. Existence and uniqueness of solutions on subintervals of [0, t]] follows
from standard functional differential equations theory; see for example [12, Sec. 3
and 5]. 2

It is of particular importance to know the conditions under which the number of
infectious midges Im(t) is strictly positive. The conditions on the initial data that
ensure this are enumerated in Proposition 3.1 below. Condition (ii) requires some
interpretation. It is in fact the weakest hypothesis on the initial data that ensures
that Im(t) becomes positive at some time, when there are no infectious midges at
time t = 0 (i.e., when Im0 = 0). In this situation infectious midges could appear at
a positive time if there was a transfer of midges from the susceptible to the exposed
compartment prior to time t = 0, and then some of these midges remained alive and
in the exposed class long enough to include the time t = 0. This could only happen if
the function f(ξ), which measures the probability of the incubation period having a
particular duration, allows long enough incubation times to permit a midge to enter
the infectious compartment at a positive time having become exposed possibly long
before time t = 0. The hypothesis f([−η∗,∞)) 6= {0} is imposed for this reason.
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Proposition 3.1. Suppose the birth functions bm(Sm) and bs(Ss) are non-
negative and locally Lipschitz continuous. Then each component of any solution of
model (2.2), (2.3), (2.8) that satisfies the initial data (3.1) is non-negative wherever
the solution exists. If, in addition, either

(i) Im0 > 0, or
(ii) Sm0(η∗)Ic0(η∗) > 0 or Sm0(η∗)Is0(η∗) > 0 for some η∗ ∈ (−∞, 0], the

initial functions are continuous, f ∈ C[0,∞) and f([−η∗,∞)) 6= {0}, or
(iii) Ic0(0) > 0 or Is0(0) > 0, Sm0(θ) 6≡ 0 on [−τ, 0] and f(η) > 0 for all η > 0,

then Im(t) becomes strictly positive at some time, and remains strictly positive as
long as the solution exists.

Proof. As noted earlier the subsystem without the Em equation consists of a
self-consistent subsystem of five equations that determines all variables other than
Em. We start by establishing non-negativity of all variables other than Em (non-
negativity of Em then follows from (2.5) with (2.7)).

Let t] > 0 be fixed but arbitrary. To show that the variables other than
Em, with non-negative initial data, remain non-negative as long as they exist, we
use [27, Thm.2.1]. Assume that Ss, Sm, Ic, Is ≥ 0 on (−∞, 0] and Im(0) ≥ 0.
Then the function g(t) defined in (3.6) satisfies g(t) ≥ 0 for t ∈ [0, t]]. Further, if
Ss, Sm, Ic, Is ≥ 0 and Im(0) = 0, then the right hand side of (3.5) is non-negative.
Similarly, the other assumptions of [27, Thm.2.1] can be verified, and the non-
negativity of every solution defined on a subinterval of [0, t]] follows.

Strict positivity of Im(t) for all t > 0 under condition (i) follows as I ′m(t) ≥
−µimIm(t).

Establishing strict positivity of Im(t) under condition (ii) is a little more tricky,
as there may not be any infectious midges at time t = 0. Suppose that η∗ ∈
(−∞, 0] is such that Sm0(η∗)Ic0(η∗) > 0 or Sm0(η∗)Is0(η∗) > 0. By continu-
ity, Sm0(η)Ic0(η) > 0 or Sm0(η)Is0(η) > 0 in some neighborhood of η∗. Now,
f([−η∗,∞)) 6= {0}, so there exists ξ∗ ≥ −η∗ such that f(ξ∗) > 0. Continuity of
f implies that f(ξ) > 0 in some neighborhood of ξ∗, which can be chosen so that
ξ∗ > −η∗. It also follows that f(η∗ + ξ∗ − η) > 0 for η sufficiently close to η∗. Now
suppose that Im(t) ≡ 0 for all t > 0. Then, the Im equation of (2.8) shows that the
first term of its right hand side (the integral term) is zero for all t > 0. However,
this is impossible, because at time t∗ = η∗ + ξ∗ > 0 the integral term becomes∫ η∗+ξ∗

−∞

(
βcmSm(η)Ic(η)

Is(η) + Ss(η) +Nc
+

βsmSm(η)Is(η)

Is(η) + Ss(η) +Nc

)
e−µem(η∗+ξ∗−η)f(η∗+ξ∗−η) dη

and the interval of integration includes an interval of η for which the integrand
is strictly positive. After time t∗, Im(t) can never again be zero because I ′m(t) ≥
−µimIm(t), so that Im(t) ≥ Im(t∗)e−µim(t−t∗) > 0.

Now suppose condition (iii) holds, and that Im(t) = 0 for all t > 0. Then the
third equation of (2.8) shows that Sm(t)Ic(t) = Sm(t)Is(t) = 0 for all t > 0. But
if Ic starts strictly positive then it remains so, and the same is true for Is, thus
Sm(t) = 0 for all t > 0. From the Sm equation of (2.8) it follows that Sm0(θ) ≡ 0
on [−τ, 0], a contradiction. 2

Remark. On inspection of this proof, the need for the compatibility condition
in the initial data (3.1) becomes clear, since without this relationship non-negativity
of Em(t) need not hold. However any biologically admissible initial data satisfy the
compatibility condition.

Lemma 3.2. Let b : R+ → R+ be continuous. Assume that there are S0 > 0
and µ > 0 such that b(S) < µS for all S > S0. Define the increasing upper hull b̄
of b as

b̄(S) = sup
0≤s≤S

b(s), b0 = b̄(S0), S̆ = b0/µ.
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Then b̄ has the following properties:
(a) b̄ is monotone increasing and continuous.
(b) b(S) ≤ b̄(S) for all S ≥ 0.
(c) There exist S̆ ≥ S0 such that b̄(S) < µS for all S > S̆.

Moreover, if b is monotone increasing on [0, S0], S̆ can be chosen as S0.
Proof. (a) and (b) are obvious. To show (c), let S > S̆. Since b is continuous,

b̄(S) = b(s) for some s ∈ [0, S]. We consider the two possibilities:
case 1 : s ∈ [0, S0]. Then b̄(S) ≤ b̄(S0) = b0 = µS̆ < µS.
case 2 : s ∈ (S0, S]. Then, by assumption, b̄(S) = b(s) < µs ≤ µS.

Now assume that b is monotone increasing on [0, S0]. Then b0 = b̄(S0) = b(S0) and
therefore S̆ = b(S0)/µ ≤ S0.

The next result ensures that solutions exist for all positive times and satisfy
bounds that are eventually uniform.

Proposition 3.3. Let b : R+ → R+ be continuous. Assume that there are
S0 > 0 and µ > 0 such that b(S) < µS for all S > S0. Choose S̆ as in Lemma 3.2.
Let σ ∈ (0,∞] and N,S : [−τ, σ) → R+ be continuous, N differentiable on (0,∞),
and S(t) ≤ N(t) for all t ∈ [−τ, σ). Let N and S satisfy the differential inequality

N ′(t) ≤ b(S(t− τ))− µN(t), t ∈ (0, σ).

Then N(t) ≤ max{S̆, supθ∈[−τ,0]N(θ)} for all t ∈ [−τ, σ). If σ =∞, then

lim supt→∞N(t) ≤ S̆. Moreover, if b is monotone increasing on [0, S0], then S̆ can
be replaced by S0.

Proof. Let r ∈ (0, σ). Since N is continuous, it is bounded on [−τ, r] and takes
its maximum at some point t ∈ [−τ, r]. If t ∈ [−τ, 0], then N(t) ≤ sup[−τ,0]N .

Assume that t ∈ (0, r]. Then N ′(t) ≥ 0 and N(t) ≥ N(t − τ). Suppose N(t) > S̆.
By the differential inequality,

0 ≤ b(S(t− τ))− µN(t) ≤ b̄(S(t− τ))− µN(t).

Since b̄ is increasing and S(t− τ) ≤ N(t− τ) ≤ N(t),

0 ≤ b̄(N(t− τ))− µN(t) ≤ b̄(N(t))− µN(t) < 0,

with the last inequality following from Lemma 3.2. This contradiction implies that
N(t) ≤ S̆. Since N takes at t its maximum on [0, r], the desired estimate on [0, r]
follows. Since r ∈ (0, σ) has been arbitrary, this estimate holds on [0, σ).

Now let σ = ∞. By the fluctuation method [28, Prop.A.22], there exists a
sequence (tj) such that tj → ∞, N(tj) → N∞ = lim supt→∞N(t), N ′(tj) → 0 as
j →∞. Then

0 ≤ lim sup
j→∞

b(S(tj − τ))− µN∞ ≤ lim sup
j→∞

b̄(N(tj − τ))− µN∞.

Since b̄ is increasing,

0 ≤ b̄(lim sup
j→∞

N(tj − τ))− µN∞ ≤ b̄(N∞)− µN∞.

By Lemma 3.2, N∞ ≤ S̆.
Proposition 3.4. Suppose the birth functions bm and bs are both nonnegative

and locally Lipschitz continuous. Assume that there are S0
m > 0 and S0

s > 0 such
that

e−µlτ bm(S) < µmS, S > S0
m,

bs(S) < µsS, S > S0
s .
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Then any solution of model (2.2), (2.3), (2.8) that satisfies the initial data (3.1) is
defined for all t ≥ 0 and is bounded. More precisely, there exist constants S̆m > 0
and S̆s > 0 that do not depend on the solutions such that

Sm(t) + Em(t) + Im(t) = Nm(t) ≤ max{S̆m, supθ∈[−τ,0]Nm(θ)}

and

Ss(t) + Is(t) = Ns(t) ≤ max{S̆s, Ns(0)}.

Moreover

lim sup
t→∞

Nm(t) ≤ S̆m, lim sup
t→∞

Ns(t) ≤ S̆s.

In addition, if bs is monotone increasing on [0, S0
s ], then S̆s can be chosen as S0

s ,
and if bm is monotone increasing on [0, S0

m], then S̆m can be chosen as S0
m.

Proof. The hypotheses include those that by Proposition 3.1 assure the non-
negativity of solution components. Adding the equations of (2.3) and letting Ns =
Ss + Is gives

N ′s(t) = bs(Ss(t))− µsNs(t)− δsIs(t) ≤ bs(Ss(t))− µsNs(t).

By Proposition 3.3, with τ = 0, Ns, and hence also Ss and Is, are bounded and the
inequalities hold on whatever interval the solution exists.

Adding the equations (2.8) gives

N ′m(t) = e−µlτ bm(Sm(t− τ))− µmSm(t)− µemEm(t)− µimIm(t)

≤ e−µlτ bm(Sm(t− τ))− µmNm(t),

using µem ≥ µm and µim ≥ µm. By Proposition 3.3, Nm, and hence Sm, Em and
Im are bounded and the inequalities hold on whatever interval the solution exists.
For the variables Sc and Ic boundedness is clear.

By [3, Rem.2.1(ii)], the solution exists for all positive times and the estimates
hold on R+. The estimates for the superior limits follow from Proposition 3.3. 2

3.1. The situation with no disease. In the situation when there is no dis-
ease, there are Nc susceptible cattle, while the numbers Ss and Sm of susceptible
sheep and susceptible midges evolve according to

S′s(t) = bs(Ss(t))− µsSs(t) (3.7)

and

S′m(t) = e−µlτ bm(Sm(t− τ))− µmSm(t). (3.8)

A reasonable assumption to make is that when the disease remains absent, numbers
of susceptible sheep and midges evolve to constants as t→∞. These constants are
denoted by S0

s and S0
m, and they must satisfy

bs(S
0
s ) = µsS

0
s , e−µlτ bm(S0

m) = µmS
0
m. (3.9)

The existence of unique values S0
s > 0 and S0

m > 0 satisfying these equations
depends very much on the functional forms of the birth functions bs(·) and bm(·).
We always make the following basic assumptions on these functions, and sometimes
additional assumptions as needed. The basic assumptions set out below assure the
existence of unique values with S0

s > 0 and S0
m > 0 satisfying (3.9). These values
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correspond to the disease free equilibrium with which we shall be most concerned,
but under the assumptions there are four disease free equilibria in all. The others
correspond to total extinction, an equilibrium with Ss = S0

s > 0 and Sm = 0, and
an equilibrium with Sm = S0

m > 0 and Ss = 0. For bs(Ss), we assume:

bs(Ss) is non-negative with bs(0) = 0. Moreover, bs is locally Lip-
schitz continuous and there exists S0

s > 0 such that bs(Ss) > µsSs
when 0 < Ss < S0

s , and bs(Ss) < µsSs when Ss > S0
s .

(3.10)

These conditions ensure that (3.7) has zero and S0
s as its only equilibria, and that

S0
s is globally asymptotically stable for all initial data with Ss(0) > 0 as long as no

disease is introduced. For bm(Sm), the basic assumptions that we always make are:

bm(Sm) is non-negative with bm(0) = 0. Moreover, bm is lo-
cally Lipschitz continuous and there exists S0

m > 0 such that
e−µlτ bm(Sm) > µmSm when 0 < Sm < S0

m, and e−µlτ bm(Sm) <
µmSm when Sm > S0

m.

(3.11)

Under these assumptions equation (3.8) has zero and S0
m as its only equilibria.

The scalar equation (3.8) is very well studied, and various sufficient conditions
for the global stability of its equilibria can be found in Kuang [20]. The following
result is almost identical to the one in [20, Theorem 9.1, p. 159], but can be proved
under less stringent assumptions.

Theorem 2. Suppose that bm satisfies (3.11) and is (not necessarily strictly)
monotone increasing on [0, S0

m], and that Sm(θ) ≥ 0 for θ ∈ [−τ, 0] with Sm(θ) 6≡ 0
on [−τ, 0]. Then the solution of (3.8) satisfies Sm(t)→ S0

m as t→∞.
Proof. By Proposition 3.3, lim supt→∞ Sm(t) = S∞m ≤ S0

m. By the fluctuation
method [28, Prop.A.22], there exists a sequence (tj) such that tj → ∞, Sm(tj) →
Sm∞ = lim inft→∞ Sm(t), S′m(tj)→ 0 as j →∞. Then

0 = lim
j→∞

(
e−µlτ bm(Sm(tj−τ))−µmSm(tj)

)
≥ e−µlτ lim inf

j→∞
bm(Sm(tj−τ))−µmSm∞.

Now

lim inf
j→∞

bm(Sm(tj − τ)) = bm(S), where S ∈ [Sm∞, S
∞
m ] ⊆ [0, S0

m].

Since bm is increasing on [0, S0
m],

lim inf
j→∞

bm(Sm(tj − τ)) ≥ bm(Sm∞).

Substituting this inequality into a previous one,

0 ≥ e−µlτ bm(Sm∞)− µmSm∞.

By (3.11), Sm∞ ≥ S0
m or Sm∞ = 0. It is sufficient to rule out the latter, because if

Sm∞ ≥ S0
m then

S∞m ≤ S0
m ≤ Sm∞ ≤ S∞m ,

which implies S∞m = Sm∞ = S0
m and Sm(t)→ S0

m as t→∞.
We now show that Sm∞ 6= 0. It follows from the assumptions on the initial data

that Sm(t) > 0 for all t > τ . Suppose for contradiction that Sm∞ = 0. For each
n ∈ N, there exists rn ∈ [τ + 1, τ + 1 + n] such that Sm(rn) = inf{Sm(s); τ + 1 ≤
s ≤ τ + 1 + n}. Since Sm∞ = 0, rn → ∞ as n → ∞. For sufficiently large n,
S′m(rn) ≤ 0, Sm(rn) < S0

m, and Sm(rn) ≤ Sm(rn − τ). From (3.8) and (3.11),

S′m(rn) ≥ e−µlτ bm(Sm(rn))− µmSm(rn) > 0,

a contradiction.
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3.2. Local asymptotic stability of the disease-free equilibrium. We
have noted the existence of a disease-free equilibrium with Sm = S0

m > 0, Ss =
S0
s > 0, Sc = S0

c = Nc > 0, and the other variables all zero if (3.10) and (3.11) are
assumed. There are three other disease-free equilibria, one with Sm = Ss = 0, one
with Sm = 0 and Ss > 0, and the third with Sm > 0 and Ss = 0. These latter three
are all easily seen to be unstable. The cattle-only and the cattle-midge disease-free
equilibria are unstable because, if there is no disease and sheep are introduced,
the number of sheep converges to S0

s . The cattle-sheep disease-free equilibrium is
unstable under the assumptions of Theorem 2 because, if there is no disease and
midges are introduced, the number of midges converges to S0

m.
To obtain a threshold inequality (the weakest possible) for the local asymptotic

stability of the first disease-free equilibrium (with susceptible midges, sheep and
cattle positive) in terms of a basic reproduction number, we introduce the following
notation,

Rcm =
1

µc

βcmS
0
m

(S0
s +Nc)

f̂(µem), (3.12)

Rmc =
1

µim

βmcNc
(S0
s +Nc)

, (3.13)

Rsm =
1

(γ + µis)

βsmS
0
m

(S0
s +Nc)

f̂(µem), (3.14)

Rms =
1

µim

βmsS
0
s

(S0
s +Nc)

. (3.15)

Let us focus on (3.14) to explain these expressions. Here 1
γ+µis

is the average so-
journ of a sheep in the infectious stage. A typical infectious sheep infects susceptible

midges at the rate
βsmS

0
m

S0
s+Nc

. The quantity f̂(µem) =
∫∞

0
e−µemtf(t) dt is the proba-

bility of an infected midge to survive the latency period and become infectious [28,
Sec.13.6]. So Rsm is the average number of infectious midges that is produced by
one typical infectious sheep when the bluetongue is introduced at the disease-free
equilibrium, i.e., it is the basic reproduction number of the infection from sheep
to midges. Similarly, Rms is the basic reproduction number of the infection from
midges to sheep, Rcm is the basic reproduction number of the infection from cattle
to midges, and Rmc is the basic reproduction number of the infection from midges
to cattle.

As the joint vector for two hosts, the midges are central for the infection. So
let us take the midges’ point of view. The product RmcRcm is the average number
of infectious midges produced via cattle hosts by a typical infectious midge when
introduced at the disease-free equilibrium while RmsRsm is the average number
of infectious midges produced via sheep hosts. Combining both infection venues,
RmcRcm + RmsRsm is the average number of infectious midges produced via ei-
ther host by one typical infectious midge. Since this reproduction requires two
epidemiological generations, the basic reproduction number is given by

R0 = (RmcRcm +RmsRsm)1/2. (3.16)

Theorem 3. Assume that the birth functions bs and bm satisfy (3.10) and (3.11)
and are differentiable at S0

s and S0
m, respectively, and that

b′s(S
0
s ) < µs, −µm ≤ e−µlτ b′m(S0

m) < µm. (3.17)
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Then, if R0 < 1, the disease free equilibrium

(Ic, Ss, Is, Sm, Em, Im) = (0, S0
s , 0, S

0
m, 0, 0)

of system (2.2), (2.3), (2.8) is locally asymptotically stable.
Proof. The proof uses the principle of linearized stability for functional delay

equations; see, for example, [26]. Since the Em equation may be dropped, it is
sufficient to look at the linearized equations for the variables Ss, Sm, Is, Ic and Im.
From (2.2), (2.3) and (2.8), the linearized equations are

S′s(t) = b′s(S
0
s )Ss(t)−

βmsS
0
s

S0
s +Nc

Im(t)− µsSs(t),

S′m(t) = e−µlτ b′m(S0
m)Sm(t− τ)− βcmS

0
mIc(t)

S0
s +Nc

− βsmS
0
mIs(t)

S0
s +Nc

− µmSm(t),

I ′s(t) =
βmsS

0
s

S0
s +Nc

Im(t)− (γ + µis)Is(t),

I ′c(t) =
βmcS

0
c

S0
s +Nc

Im(t)− µcIc(t),

I ′m(t) =

∫ ∞
0

(
βcmS

0
mIc(t− η)

S0
s +Nc

+
βsmS

0
mIs(t− η)

S0
s +Nc

)
e−µemηf(η) dη − µimIm(t).

By [26], the disease-free equilibrium is locally asymptotically stable, if the origin is
exponentially asymptotically stable for the linearized system. By [15, Sect. 3], this is
the case if nontrivial solutions of the form (Ss, Sm, Is, Ic, Im) = eλt(c1, c2, c3, c4, c5)
only exist if Reλ < 0.

Since the linearized system is reducible, nontrivial exponential solutions of this
form can only exist when λ satisfies one of the following characteristic equations,

λ = b′s(S
0
s )− µs, (3.18)

λ+ µm = e−µlτ b′m(S0
m)e−λτ , (3.19)

λ+ µim =
S0
m f̂(λ+ µem)

(S0
s +Nc)2

(
βcmβmcNc
λ+ µc

+
βsmβmsS

0
s

λ+ γ + µis

)
, (3.20)

where f̂ is the Laplace transform of the kernel f , namely f̂(λ) =
∫∞

0
f(η)e−λη dη. It

is easy to see from our assumptions that any solution λ of the first two characteristic
equations has negative real part. Suppose, for contradiction, that a root λ of (3.20)
exists with Reλ ≥ 0. For such a λ, |λ+ µc| ≥ µc, |λ+ γ + µis| ≥ γ + µis and

|f̂(λ+ µem)| ≤
∫ ∞

0

f(η)e−(Reλ+µem)η dη ≤ f̂(µem).

Therefore

|λ+ µim| ≤
S0
mf̂(µem)

(S0
s +Nc)2

(
βcmβmcNc

µc
+
βsmβmsS

0
s

γ + µis

)
= R2

0µim, (3.21)

which means that the root λ lies in the disk in C centered at −µim and of radius
R2

0µim. This is a contradiction because, if R0 < 1, this disk is contained in the
open left half of the complex plane and so λ cannot satisfy Reλ ≥ 0. So, if R0 < 1,
then all roots of (3.20) satisfy Reλ < 0 and local asymptotic stability holds. 2

We mention that (3.10) and (3.11) and monotone increasing bm imply (3.17) with
strict inequalities being replaced by weak inequalities.
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3.3. Uniform weak persistence of the bluetongue. In this section we
prove uniform weak persistence of the bluetongue in the midges if the basic re-
production number defined in (3.16) satisfies R0 > 1. Recall that the disease-free
equilibrium is locally asymptotically stable if R0 < 1.

We prove that, under certain conditions, the variable representing the infec-
tious midge compartment is persistent in the weak, uniform sense. In other words,
for midges, there exists some constant ε > 0, which is independent of the initial
conditions, such that lim supt→∞ Im(t) > ε provided that the disease is present at
some point in time and that sheep are also present. We now introduce the basic
reproduction numbers Rs

0 for sheep and Rm
0 for midges, given by

Rs0 =
1

µs
lim inf
S→0+

bs(S)

S
(3.22)

and

Rm0 =
e−µlτ

µm
lim inf
S→0+

bm(S)

S
. (3.23)

For the midges, lim infS→0+
bm(S)
S is the per capita oviposition rate at almost zero

midge density, e−µlτ the probability of surviving the larval stage and 1/µm the
mean life expectancy at the very end of the larval stage (i.e. the mean duration of
the adult stage).

Theorem 4. Assume that the birth functions satisfy (3.10) and (3.11) and
that bm is monotone increasing on [0, S0

m]. If R0 > 1, Rm
0 > 1 and Rs

0 > 1, then
there exists some ε > 0 such that

lim sup
t→∞

Im(t) > ε (3.24)

for all solutions with Ss(0) > 0, Im(0) > 0, and Sm(t) > 0 for some t ∈ [−τ, 0].

Proof. Suppose the statement is not true. Then, for ε > 0 to be chosen later,
there exists a solution such that Im(0) > 0 and

I∞m = lim sup
t→∞

Im(t) < ε.

By Proposition 3.1, Im(t) > 0 for all t ≥ 0. By Proposition 3.4, there exists some
c > 0 such that

Sc(t) + Ss(t) + Sm(t) ≤ Nc +Ns(t) +Nm(t) ≤ c.

The fluctuation method ([16], [28, Sec.A.3]) applied to (2.2) provides a sequence
(tj) with tj →∞, Ic(tj)→ I∞c , I ′c(tj)→ 0 as j →∞. By (2.2),

0 ≤ lim sup
j→∞

βmccIm(tj)

Nc
− µcI∞c ≤

βmccI
∞
m

Nc
− µcI∞c .

This implies that I∞c < c1ε with a constant c1 > 0 not depending on ε. Similarly
there is a constant c2 > 0 such that I∞s < c2ε.

Since Sm(t) > 0 for some t ∈ [−τ, 0], Sm(t) > 0 for all t > τ . Also Sm∞ ≥
limn→∞ inf [τ+1,n] Sm. For n ≥ τ + 1, choose tn ∈ [τ + 1, n] such that Sm(tn) =
inf [τ+1,n] Sm. Suppose that Sm∞ = 0. Then tn → ∞ as n → ∞, Sm(tn) → 0,
S′m(tn) ≤ 0 and Sm(tn) ≤ Sm(tn − τ) if n is sufficiently large. It follows from the
equation for Sm in (2.8) that there is some ν > 0 such that eνtSm(t) is an increasing
function of t. This implies that Sm(tn − τ) ≤ eντSm(tn) and so Sm(tn − τ)→ 0 as
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n → ∞. By (3.11) and Rm0 > 1, there exists some ζ > 0 such that e−µlτ bm(S) >
(µm + ζ)S for all S ∈ (0, S0

m/2]. For sufficiently large n,

S′m(tn) ≥ (µm + ζ)Sm(tn − τ)− µmSm(tn)− βcmIc(tn)

Nc
Sm(tn)− βsmIs(tn)

Nc
Sm(tn).

For sufficiently large n, Sm(tn − τ) ≥ Sm(tn), Ic(tn) ≤ c1ε and Is(tn) ≤ c2ε, so

S′m(tn) ≥ (ζ − (ε/Nc)[c1βcm + c2βsm])Sm(tn).

Note that ζ does not depend on ε as it is a property of the function bm and not the
solution. If ε > 0 has been chosen small enough, S′m(tn) > 0, a contradiction. This
implies that Sm∞ > 0.

The fluctuation method applied to the first equation in (2.8) provides a sequence
(tj) with tj → ∞, Sm(tj) → Sm∞ and S′m(tj) → 0 as j → ∞. Here Sm∞ =
lim inft→∞ Sm(t). By (2.8),

0 ≥ e−µlτ lim infj→∞ bm(Sm(tj − τ))− µmSm∞

−
[
lim sup
j→∞

βcmIc(tj)

Nc
+ lim sup

j→∞

βsmIs(tj)

Nc

]
Sm∞.

Since bm is increasing on [0, S0
m], S∞m ≤ S0

m by Proposition 3.4 and the subsequent
remark. Hence

lim inf
j→∞

bm(Sm(tj − τ)) = bm(S) where S ∈ [Sm∞, S
∞
m ] ⊆ (0, S0

m].

Again, since bm is increasing on [0, S∞m ],

lim inf
j→∞

bm(Sm(tj − τ)) ≥ bm(Sm∞).

Substituting this into a previous inequality,

0 ≥ e−µlτ bm(Sm∞)− µmSm∞ −
βcmI

∞
c

Nc
Sm∞ −

βsmI
∞
s

Nc
Sm∞.

Using the previous estimates, this gives

0 ≥ e−µlτ bm(Sm∞)− µmSm∞ − ε
(βcmc1

Nc
+
βsmc2
Nc

)
Sm∞. (3.25)

Let δ > 0. Since Sm∞ > 0, by (3.11) and (3.25), if ε > 0 is chosen small enough,

Sm∞ > S◦m − δ.

Similar considerations, and further smallness constraints on ε, provide S∞m < S◦m+δ
and S∞s < S◦s + δ.

From the differential equation for Ss in (2.3),

S′s(t) ≥ bs(Ss(t))−MεSs(t)− µsSs(t)

for t > tε, with some constant M > 0. Let δ ∈ (0, S0
s ). By the assumption Rs

0 > 1
and (3.10), there exists some ζ > 0 such that bs(S) ≥ (µs+ζ)S for all S ∈ [0, S0

s−δ].
Choose ε > 0 so small that Mε < ζ. Then Ss(t) satisfies S′s(t) ≥ (ζ −Mε)Ss(t) for
as long as t ≥ tε and Ss(t) ≤ S0

s − δ, and so Ss(t) grows at least exponentially while
Ss(t) ≤ S0

s − δ. But this implies that Ss(t) ≥ S0
s − δ for sufficiently large t > 0.



Model for bluetongue dynamics 15

After shifting forward in time, it can be assumed that

0 < Im(t) ≤ ε, Ic(t) ≤ c1ε, Is(t) ≤ c2ε,
0 < S◦m − δ ≤ Sm(t) ≤ S◦m + δ, 0 < S◦s − δ ≤ Ss(t) ≤ S◦s + δ, 0 ≤ S◦c − δ ≤ Sc(t)

for all t ≥ 0, where the last inequality follows from Sc(t) = Nc−Ic(t) = S0
c −Ic(t) ≥

S0
c − c1ε ≥ S0

c − δ for sufficiently small ε. These give the following differential
inequalities,

I ′c(t) ≥
βmc(S

◦
c − δ)Im(t)

c2ε+ S◦s + δ +Nc
− µcIc(t),

I ′s(t) ≥
βms(S

◦
s − δ)Im(t)

c2ε+ S◦s + δ +Nc
− γIs(t)− µisIs(t),

I ′m(t) ≥
∫ t

0

(
βcm(S◦m − δ)Ic(r)
c2ε+ S◦s + δ +Nc

+
βsm(S◦m − δ)Is(r)
c2ε+ S◦s + δ +Nc

)
e−µem(t−r)f(t− r)dr

− µimIm(t)

where we have replaced −∞ by 0 in the lower limit of integration, since the contri-

bution from
∫ 0

−∞ is non-negative. Applying the Laplace transform to the differential
inequalities and using the usual rules, for example, that the Laplace transform turns
convolutions into products, and the fact that Ic(0), Is(0), Im(0) ≥ 0,

λÎc(λ) ≥ βmc(S
◦
c − δ)

c2ε+ S◦s + δ +Nc
Îm(λ)− µcÎc(λ),

λÎs(λ) ≥ βms(S
◦
s − δ)

c2ε+ S◦s + δ +Nc
Îm(λ)− γÎs(λ)− µisÎs(λ),

λÎm(λ) ≥ S◦m − δ
c2ε+ S◦s + δ +Nc

(
βcmÎc(λ) + βsmÎs(λ)

)
f̂(µem + λ)− µimÎm(λ),

where λ is the transform variable, taken as real and strictly positive. Reorganizing
the terms gives

Îc(λ) ≥ 1

(λ+ µc)

βmc(S
◦
c − δ)

(c2ε+ S◦s + δ +Nc)
Îm(λ),

Îs(λ) ≥ 1

(λ+ γ + µis)

βms(S
◦
s − δ)

(c2ε+ S◦s + δ +Nc)
Îm(λ),

Îm(λ) ≥ 1

λ+ µim

(
βcm(S◦m − δ)

c2ε+ S◦s + δ +Nc
Îc(λ) +

βsm(S◦m − δ)
c2ε+ S◦s + δ +Nc

Îs(λ)

)
f̂(µem + λ).

Substituting the first and second inequality into the third and dividing by Îm(λ) > 0,

1 ≥ 1

λ+ µim
f̂(µem + λ)

[
βcm(S◦m − δ)

(c2ε+ S◦s + δ +Nc)

1

(λ+ µc)

βmc(S
◦
c − δ)

(c2ε+ S◦s + δ +Nc)

+
βsm(S◦m − δ)

(c2ε+ S◦s + δ +Nc)

1

(λ+ γ + µis)

βms(S
◦
s − δ)

(c2ε+ S◦s + δ +Nc)

]
.

This inequality holds for all λ > 0. Letting λ → 0, then ε → 0 and finally δ → 0,
and recalling that S◦c = Nc, gives

1 ≥

[
βcmS

◦
m

(S◦s +Nc)

1

µc

βmcS
◦
c

(S◦s +Nc)
+

βsmS
◦
m

(S◦s +Nc)

1

(γ + µis)

βmsS
◦
s

(S◦s +Nc)

]
1

µim
f̂(µem) = R2

0.

This contradicts the assumption R0 > 1.
Note that the Laplace transform has previously been used to establish uniform

weak persistence; see [28, Sec.22.3] and [21].



16 S.A. GOURLEY, H.R. THIEME, P. VAN DEN DRIESSCHE

3.4. Global stability of the disease free equilibria. In this section we
obtain some conditions that are sufficient for global stability of the disease free
equilibria (Ic, Ss, Is, Sm, Em, Im) = (0, S0

s , 0, S
0
m, 0, 0) and (0, 0, 0, S0

m, 0, 0). The
conditions are stronger than those of Theorem 3.

Theorem 5. Suppose that the birth function bs(Ss) satisfies (3.10) and is
monotone non-decreasing on [0, S0

s ], and that the birth function bm(Sm) satisfies (3.11)
and is monotone non-decreasing on [0, S0

m]. Assume also that

S0
m

Nc

(
βcmβmc
µcµim

+
βsm

γ + µis
Rms

)
f̂(µem) < 1. (3.26)

Then Im(t), Ic(t), Is(t)→ 0 as t→∞. Moreover:
(i) if Rm0 > 1 and Rs0 > 1, the disease free equilibrium (Ic, Ss, Is, Sm, Em, Im) =

(0, S0
s , 0, S

0
m, 0, 0) of (2.2), (2.3) and (2.8) attracts all solutions whose initial data

satisfy (3.1) and the additional requirements that Ss(0) + Is(0) > 0 and Sm0(θ) 6≡ 0
on [−τ, 0];

(ii) if Rm0 > 1, the disease free equilibrium (Ic, Ss, Is, Sm, Em, Im) = (0, 0, 0, S0
m, 0, 0)

of (2.2), (2.3) and (2.8) attracts all solutions whose initial data satisfy (3.1) and
the additional requirements that Ss(0) = 0 = Is(0) and Sm0(θ) 6≡ 0 on [−τ, 0].

Proof. By Proposition 3.4,

S∞m := lim sup
t→∞

Sm(t) ≤ S0
m, S∞s := lim sup

t→∞
Ss(t) ≤ lim sup

t→∞
Ns(t) ≤ S0

s . (3.27)

We apply the fluctuation method to the Is equation in (2.3); actually to the following
inequality,

I ′s(t) ≤
βmsSs(t)Im(t)

Ss(t) +Nc
− (γ + µis)Is(t). (3.28)

By [28, Prop.A.22] there exists a sequence (tj) such that

tj →∞, Is(tj)→ I∞s := lim sup
t→∞

Is(t), I ′s(tj)→ 0, j →∞.

Since x/(x+Nc) is an increasing function of x,

0 ≤ βmsS
∞
s I
∞
m

S∞s +Nc
− (γ + µis)I

∞
s .

Solving for I∞s and using S∞s ≤ S0
s ,

I∞s ≤
βmsS

0
sI
∞
m

(γ + µis)(S0
s +Nc)

=: φ(I∞m ). (3.29)

Similarly, from the infectious cattle equation (2.2), since Sc(t) ≤ Nc,

I ′c(t) ≤
βmcNc Im(t)

Is(t) + Ss(t) +Nc
− µcIc(t) ≤ βmcIm(t)− µcIc(t). (3.30)

The fluctuation method yields

I∞c ≤
βmc
µc

I∞m . (3.31)

For the infectious midges equation the situation is more delicate because of the
delay. By non-negativity of solution components, the function B(t) defined by (2.7)
satisfies

B(t) ≤
(
βcmIc(t)

Nc
+

βsmIs(t)

Is(t) +Nc

)
Sm(t). (3.32)
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We apply the fluctuation method to the equation

I ′m(t) = −µimIm(t) +

∫ ∞
0

B(t− η)e−µemηf(η) dη. (3.33)

By [28, Prop.A.22], there exists a sequence (tj) such that

tj →∞, Im(tj)→ I∞m , I ′m(tj)→ 0, j →∞.

Using this and Fatou’s lemma [28, p. 468],

0 ≤− µimI∞m +

∫ ∞
0

lim sup
j→∞

B(tj − η)e−µemηf(η) dη

≤− µimI∞m + lim sup
t→∞

B(t)

∫ ∞
0

e−µemηf(η) dη.

Solving for I∞m , using (3.32) and that x/(x+Nc) increases with x,

I∞m ≤
(
βcmI

∞
c

Nc
+

βsmI
∞
s

I∞s +Nc

)
S∞m

f̂(µem)

µim
.

Suppose that I∞m > 0. Substituting S∞m ≤ S0
m and (3.31) into this inequality,

making use of (3.29), and again using that x/(x+Nc) is increasing in x, gives

I∞m ≤
(
βcmβmcI

∞
m

µcNc
+

βsmφ(I∞m )

φ(I∞m ) +Nc

)
S0
m

f̂(µem)

µim

so that, dividing by I∞m > 0 and again using (3.29),

1 ≤
(
βcmβmc
µcNc

+
βsm

(φ(I∞m ) +Nc)

βmsS
0
s

(γ + µis)(S0
s +Nc)

)
S0
m

f̂(µem)

µim
.

Since φ(I∞m ) > 0, this contradicts the threshold condition (3.26). Thus, under
this condition, I∞m = 0 and also I∞c = 0 = I∞s by (3.31) and (3.29). Hence
(Is(t), Ic(t), Im(t))→ (0, 0, 0) as t→∞, and obviously Sc(t)→ Nc.

In this limit, the equations for the numbers of susceptible sheep and midges
become (3.7) and (3.8). The former is just a one-dimensional ODE, and assump-
tion (3.10) together with Ss(0) + Is(0) > 0 and γ > 0 ensures that Ss → S0

s if
Rs0 > 1.

We consider the first equation in (2.8) as a scalar asymptotically autonomous
differential-delay equation,

S′m(t) = e−µlτ bm(Sm(t− τ))− µmSm(t)− Sm(t)ψ(t), (3.34)

where ψ is a nonnegative differentiable function on R+ and ψ(t)→ 0 as t→∞. Sim-
ilarly as in the proof of Theorem 4, we first show that Sm∞ = lim inft→∞ Sm(t) > 0
and then

0 ≥ e−µlτ bm(Sm∞)− µmSm∞.

By (3.11), Sm∞ ≥ S0
m. Since S∞m ≤ S0

m by Proposition 3.4, Sm(t)→ S0
m as t→∞

if Rm0 > 1.
Remark. If bs and bm are not assumed to be monotone non-decreasing, then

the attraction result above remains true if the threshold condition is replaced by

S̆m
Nc

(
βcmβmc
µcµim

+
βsm

γ + µis

1

µim

βmsS̆s

(S̆s +Nc)

)
f̂(µem) < 1, (3.35)

with S̆s and S̆m from Proposition 3.4.
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3.5. Uniform weak persistence of midges. Let S]m be defined by the equa-
tion

S]m
Nc

(
βcmβmc
µcµim

+
βsm

γ + µis

1

µim

βmsS̆s

(S̆s +Nc)

)
f̂(µem) = 1, (3.36)

with S̆s from Proposition 3.4.

Proposition 3.5. Assume that the birth functions satisfy (3.10) and (3.11)
and that bm is monotone increasing. If Rm0 > 1, where Rm0 is defined by (3.23),
then, for all solutions with Sm0(θ) 6≡ 0 on [−τ, 0],

lim sup
t→∞

Sm(t) ≥ min{S]m, S0
m}. (3.37)

Proof. Suppose lim supt→∞ Sm(t) < min{S]m, S0
m}. The same proof as for The-

orem 5 shows that Sm(t)→ S0
m, a contradiction.

4. Exponentially distributed incubation period. Assuming that the in-
cubation period is exponentially distributed with mean time 1/α in the exposed
class, f(ξ) = αe−αξ with α > 0. In this case, equation (2.5) becomes

Em(t) =

∫ t

−∞
B(η)e−(α+µem)(t−η) dη. (4.1)

Neglecting the pre-adult stages (i.e., setting τ = 0), using (2.8) and differentiat-
ing (4.1), the equations for the midges become the ordinary differential equation
(ODE) system

S′m(t) = bm(Sm)− µmSm − βcmSmIc
Is + Ss +Nc

− βsmSmIs
Is + Ss +Nc

,

E′m(t) =
βcmSmIc

Is + Ss +Nc
+

βsmSmIs
Is + Ss +Nc

− (α+ µem)Em,

I ′m(t) = αEm − µimIm.

(4.2)

The complete model in this case is given by the six dimensional ODE system (2.2),
(2.3), and (4.2) with Sc = Nc − Ic, and initial conditions Ss(0), Sm(0) > 0,
Ic(0), Is(0), Im(0) ≥ 0 with Ic(0) + Is(0) + Im(0) > 0 and E(0) satisfying (4.1)
with t = 0.

4.1. Basic reproduction number revisited. As in the general model, there
are four disease free equilibria, three of which are unstable: see Section 3.1.

We focus on the other disease free equilibrium with Ss = S0
s > 0, Sm = S0

m > 0
and satisfying bs(S

0
s ) = µsS

0
s and bm(S0

m) = µmS
0
m, and all other variables equal to

zero. Assumptions on the birth functions are made as in Section 3.1, namely (3.10)

and (3.11). After observing that f̂(µem) = α
α+µem

, the expression for R0 can

systematically be derived using the next generation matrix method [9, 29].

From Section 3.1, the system is stable in the absence of disease, thus it is suffi-
cient to consider the four dimensional system in the infected variables Em, Im, Is, Ic
linearized at the disease free equilibrium. Writing the Jacobian matrix J = F − V ,
where F contains the new infections and V contains the transfer between compart-
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ments gives

F =
1

S0
s +Nc


0 0 βsmS

0
m βcmS

0
m

0 0 0 0
0 βmsS

0
s 0 0

0 βmcNc 0 0

 ,

V =


α+ µem 0 0 0
−α µim 0 0
0 0 γ + µis 0
0 0 0 µc

 .
(4.3)

After computing FV −1, its spectral radius equals R0 defined in (3.16), the basic
reproduction number for this special case, and Theorem 3 follows from [9, 29].

Our bluetongue model ODE system has similarities to the model for bluetongue
spread in UK livestock developed by Gubbins et al. [11] with exponential distribu-
tions; see especially [11, equation (3.1)] for the basic reproduction number in their
model. Hartemink et al. [13, page 155] also give a similar expression.

4.2. Type reproduction numbers. In order to consider control of blue-
tongue by either reducing infectious midges or exposed sheep, it is useful to consider
type reproduction numbers T` as introduced by [14, 25]. Using the result of [25,
Appendix A] taking infected individuals of type ` only, T` = r(M`), with

M` = P`K(I − (I − P`)K)−1 (4.4)

where K is the next generation matrix and P` is the projection matrix having 1 in
the `, ` entry and 0 elsewhere. Note that in general, T` = 1 iff R0 = 1. Because F
in (4.3) has a zero row, K is taken to be the 3× 3 matrix on the infected variables
Em, Is, Ic, namely

K =
1

S0
s +Nc


0

βsmS
0
m

γ+µis

βcmS
0
m

µc

αβmsS
0
s

µim(α+µem) 0 0
αβmcNc

µim(α+µem) 0 0

 . (4.5)

Assume that one exposed midge is introduced into a susceptible population of
midges, sheep and cattle, thus ` = 1 and P1 = diag(1, 0, 0). From (4.4) insert-
ing (4.5), gives T1 = R2

0 with R0 given by (3.16). Thus the expected number of
secondary exposed midges that result from the introduction of a single exposed
midge is R2

0, as infection from midge to midge requires two generations. If culling
of midges is a strategy under consideration, then a proportion 1− 1/R2

0 should be
culled to eliminate infection.

By contrast, assume that one infectious sheep is introduced into a susceptible
population, thus ` = 2 and P2 = diag(0, 1, 0). From (4.4) using (4.5) gives T2 =
RmsRsm/(1−RmcRcm), in which the various reproduction numbers are given by
(3.12) - (3.15), and it is assumed that RmcRcm < 1, i.e., the disease cannot persist
in the midges and cattle alone. If it is desired to treat only the sheep, perhaps by
vaccination, to eradicate the disease, then a proportion 1−1/T2 must be vaccinated.

Similarly, assuming that one infectious cow is introduced, the type reproduction
number is T3 = RmcRcm/(1−RmsRsm), where it is assumed that the disease cannot
persist in the midges and sheep alone. Treating only the cattle, a fraction 1− 1/T3

must be treated to eradicate the disease.

4.3. Backward bifurcation. Huang et al. [18] first described backward bifur-
cation in a multiple-group HIV/AIDS model, and we demonstrate the possibility of
this phenomenon in our bluetongue model. Consider a simplified model in which the
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birth functions are constant, there are no cattle, no sheep recover, and the midges
have no incubation period and do not die from the disease, i.e., bm(Sm) = bm,
bs(Ss) = bs, Nc = 0, γ = 0, α→∞ and δm = 0. The system then becomes

S′m(t) = bm − µmSm − βsmSmIs
Is + Ss

,

I ′m(t) =
βsmSmIs
Is + Ss

− µmIm,

S′s(t) = bs − βmsSsIm
Is + Ss

− µsSs,

I ′s(t) =
βmsSsIm
Is + Ss

− µisIs,

(4.6)

where µis = µs+δs, with non-negative initial data and Im(0)+Is(0) > 0. This four
dimensional model is equivalent to the one considered by Bowman et al. [5] and
further analyzed by Jiang et al. [19] for the transmission of West Nile virus in the
primary mosquito-bird cycle. The disease free equilibrium always exists and is given
by (Sm, Im, Ss, Is) = (bm/µm, 0, bs/µs, 0). Note that the constant birth functions
taken here do not satisfy all the conditions of (3.10), (3.11), but as we only consider
this simplified model near the DFE, this causes no problem. From (3.16) the basic
reproduction number for this simplified model is

R0 =

{
bmµsβsmβms
bsµ2

mµis

} 1
2

= (RmsRsm)1/2. (4.7)

If R0 > 1, then there is a unique endemic equilibrium that is locally asymptotically
stable [19, Theorem 3.3]. If R0 < 1, then the disease free equilibrium is locally
asymptotically stable, but a backward bifurcation may occur if δs > µs, i.e. the
sheep disease induced death rate is greater than the natural death rate: details
are given in [19, Section 4]. By continuity with respect to parameters, our six
dimensional ODE bluetongue model also has the possibility of backward bifurcation,
in which case R0 is not sufficient to determine whether the disease dies out, as
solutions are initial value dependent for a range of R0 values below one.

4.4. A stable sheep-free disease equilibrium. To demonstrate the possi-
bility that the disease wipes out the sheep population, we consider a simplified ODE
model without an incubation period and a juvenile stage for the midges, namely

I ′c =
βmc(Nc − Ic)Im
Is + Ss +Nc

− µcIc,

S′m =bm(Sm)− µmSm −
βcmSmIc

Is + Ss +Nc
− βsmSmIs
Is + Ss +Nc

,

I ′m =
βcmSmIc

Is + Ss +Nc
+

βsmSmIs
Is + Ss +Nc

− µimIm,

S′s =bs(Ss)−
βmsSsIm

Is + Ss +Nc
+ γIs − µsSs,

I ′s =
βmsSsIm

Is + Ss +Nc
− γIs − µisIs.

(4.8)
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4.4.1. The equilibrium. Denoting the steady state variables with a super-
script ∼ and setting Ss = Is = 0 gives

0 =
βmc(Nc − Ĩc)Ĩm

Nc
− µcĨc,

0 =bm(S̃m)− µmS̃m −
βcmS̃mĨc

Nc
,

0 =
βcmS̃mĨc

Nc
− µimĨm.

(4.9)

From the first and third equations with Ĩc > 0,

0 =
βmc(Nc − Ĩc)

Nc

βcmS̃m
Nc

− µcµim. (4.10)

We rewrite this equation as

Ĩc
Nc

= 1− 1

R̃2
0

S0
m

S̃m
(4.11)

with

R̃0 =

√
βmc
µim

βcmS0
m

µcNc
. (4.12)

Similarly to Section 3.2, R̃0 can be interpreted as the basic disease reproduction
number of the cattle-midge bluetongue system (without the sheep). If there is a
positive equilibrium, it follows from the second equation in (4.9) that S̃m < S0

m

and from (4.11) that R̃0 > 1. We divide the second equation in (4.9) by S̃m and
substitute (4.11) to obtain

0 =
bm(S̃m)

S̃m
− µm − βcm

(
1− 1

R̃2
0

S0
m

S̃m

)
.

Assume that R̃0 > 1. By (3.11), the right hand side of this equation is negative for
S̃m = S0

m and positive for S̃m = S0
m/R̃2

0. By the intermediate value theorem, there
exists a solution S̃m between S0

m/R̃2
0 and S0

m.

The solution is unique if it is assumed that the per capita midge reproduction
rate bm(x)/x is a decreasing function of midge density x.

4.4.2. The linearization about the equilibrium. The Jacobian matrix
taken at this sheep-free disease equilibrium is of block form and its eigenvalues are
eigenvalues of the matrix

J =

 −
βmcĨm
Nc

− µc 0 βmc
Nc−Ĩc
Nc

−βcmS̃m

Nc
−κ 0

βcmS̃m

Nc

βcmĨc
Nc

−µim

 (4.13)

where the birth functions are assumed differentiable and

κ = −b′m(S̃m) + µm +
βcmĨc
Nc

, (4.14)
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and of the matrix [
b′s(0)− βmsĨm

Nc
− µs γ

βmsĨm
Nc

−(γ + µis)

]
. (4.15)

The eigenvalues of the second matrix have negative real parts if and only if

0 < −b′s(0) + µs +
βmsĨm
Nc

µis
(γ + µis)

.

Here µis

γ+µis
is an infected sheep’s probability of dying during the infection stage [28,

Sec. 2.3]. Since Ĩm is independent of the sheep parameter, this condition can be
satisfied by choosing βms large enough.

The eigenvalues of J all have negative real parts if the trace tr J and the deter-
minant det J of J are negative and

~J := det J − (tr J)
( 3∑
i=1

Jii

)
> 0 (4.16)

where Jii is the determinant of the 2× 2 matrix formed from J by deleting the ith

row and column; see, for example, [8, Thm.12]. By (4.13),

tr J = −βmcĨm
Nc

− µc − κ− µim.

It is reasonable to assume that the per capita midge birth rate bm(x)
x is a decreasing

function of midge density x, which implies that b′m(S̃m) ≤ bm(S̃m)

S̃m
. Then the second

equation in (4.9) implies that κ ≥ 0 and trJ < 0. By (4.10),

det J =− βmcĨm
Nc

κµim −
βcmĨc
Nc

µcµim < 0,

∑
Jii =

(βmcĨm
Nc

+ µc + µim

)
κ+

βmcĨm
Nc

µim.

Since κ ≥ 0, by (4.16),

~J ≥ −βcmĨc
Nc

µcµim +
βmcĨm
Nc

µim

(βmcĨm
Nc

+ µc + µim

)
.

The first equation of (4.9) gives µcĨc ≤ βmcĨm and so

~J ≥µim
βmcĨm
Nc

(
− βcm +

βmcĨm
Nc

+ µc + µim

)
.

In particular, ~J > 0 if µc + µim ≥ βcm. This condition is compatible with R̃0 >

1 by choosing
βmcS

0
m

Nc
large enough. This implies that the equilibrium is locally

asymptotically stable [8, Thm.12].
Summarizing the above discussion gives the following result which means that,

at this equilibrium, the disease can wipe out any sheep population that is introduced
in small numbers.

Theorem 6. Assume that the per-capita midge birth rate bs(x)/x is a decreas-
ing function of midge density x. If

µc + µim ≥ βcm, 1 <
βmc
µim

βcmS
0
m

µcNc
= R̃0 and b′s(0) < µs +

βmsĨm
Nc

µis
(γ + µis)

,

then there exists a disease equilibrium with midges and cattle, but no sheep, which
is locally asymptotically stable for the epidemic system involving all three species.
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5. Discussion. We have derived and analyzed a mathematical model for the
time evolution of bluetongue disease in sheep and cattle. The model takes the form
of a coupled system of differential equations incorporating two time delays that
model the maturation time for the midges and the incubation time of the virus in
the midges.

We have established fundamental properties of the model, obtained necessary
and sufficient conditions for local stability of the disease free equilibrium and for
disease uniform weak persistence in the midges, and sufficient conditions for global
stability of the disease free equilibrium. We also studied an important particular
case in which the incubation period is exponentially distributed. Since the disease
affects sheep more than cattle, we incorporated recovery and disease-induced death
for the sheep and assumed that only healthy sheep reproduce. As a consequence, the
disease can wipe out the sheep under certain circumstances. Mathematically, this
makes it difficult to prove the more desirable result of uniform disease persistence
where the limit superior is replaced by the limit inferior in Theorem 4, a result that
we conjecture, but that remains open at this point.

We have identified a basic reproduction number R0, given by (3.16). If the
disease is introduced at a low level, it will die out if R0 < 1 holds, whereas it
will persist if the opposite inequality R0 > 1 holds. These inequalities can be
interpreted in a variety of ways and give guidance for control strategies. Inequality
R0 < 1 is satisfied if at least one of the contact rates involving cattle and at least
one of those involving sheep is sufficiently low, if the mortality µim of infected
midges is sufficiently high or if there is a low probability that a midge, having
acquired the virus from a blood meal, will survive the incubation period to become
an infectious midge (this probability is

∫∞
0
f(η) exp(−µemη) dη). The inequality

R0 < 1 is also satisfied if S0
m is low, and for reasonable birth functions the quantity

S0
m decreases as µl, µm or τ increases, i.e. per-capita larval, adult susceptible

midge mortality or midge maturation delay increases. Moreover, R0 < 1 is satisfied
whenever S0

s or Nc is sufficiently high. It is slightly less obvious why this should be
so, and it is a conclusion that can only be drawn from the linearized analysis and
therefore for low level introductions of disease (compare with the involvement of
S0
s and Nc in the inequality for global stability, inequality (3.26)). It comes about

because of the assumption of frequency-dependent transmission rather than simple
mass action and is to do with the lowering of certain probabilities as S0

s or Nc are
increased. For example, increasing Nc lowers the probability that an individual
bite by an infectious midge is on a susceptible sheep (this probability being close to
S0
s/(S

0
s+Nc) near the disease free equilibrium), although increasing Nc increases the

probability, approximately Nc/(S
0
s +Nc), that the bitten animal is a cow. However,

as with any vector-borne disease, transmission is a two-stage process that requires
a susceptible midge to acquire the virus by biting an infectious animal, and then
later to pass on the virus when it bites as an infectious midge. Increasing Nc lowers
the probability, when a susceptible midge bites, that the bitten animal is infectious,
and this applies to both cows and sheep. The probabilities here are respectively
roughly Ic/(S

0
s + Nc) and Is/(S

0
s + Nc) at the disease free equilibrium. The effect

of increasing S0
s is similar. The threshold parameter, R0, is strictly decreasing in

µc (per-capita cattle mortality) and in γ + µis (the sum of the per-capita recovery
rate and mortality rate of infectious sheep).

For the case that the incubation period is exponentially distributed, we also
calculated type reproduction numbers, which focus on one host type and provide
guidance for targeted control of this one type. For example, the proportion of
midges that must be eliminated to eliminate bluetongue disease is given in terms
of the basic reproduction number.

Spatial effects have not been considered in this model, but the northward expan-
sion of bluetongue across Europe suggests that the incorporation of spatial effects
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is very important and might facilitate, for example, a theoretical prediction of the
spatial spread rate of bluetongue. However, the simple random walk is likely to be
too oversimplistic as a model for midge dispersal due to their well known swarm-
ing tendency. This point is discussed in Okubo and Levin [24], where the use of
a diffusion-advection equation is suggested, involving an advection velocity that
varies within a swarm. It is also well known that environmental features such as
trees, animals and water surfaces can act as swarm markers. Theoretical study of
the effects of vaccination will also be an important area of future study.
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