
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. ANAL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 1305–1333

ON A NONLOCAL REACTION-DIFFUSION PROBLEM ARISING
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Abstract. In this paper we analyze a nonlocal reaction-diffusion model which arises from the
modeling of competition of phytoplankton species with incomplete mixing in a water column. The
nonlocal nonlinearity in the model describes the light limitation for the growth of the phytoplankton
species. We first consider the single-species case and obtain a complete description of the long-
time dynamical behavior of the model. Then we study the two-species competition model and
obtain sufficient conditions for the existence of positive steady states and uniform persistence of
the dynamical system. Our approach is based on a new modified comparison principle, fixed point
index theory, global bifurcation arguments, elliptic and parabolic estimates, and various analytical
techniques.
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1. Introduction. In this paper we analyze a reaction-diffusion model which de-
scribes the growth of phytoplankton species in a eutrophic environment. In such
environments there are ample nutrients and the phytoplankton species typically com-
pete for light. In [17, 18, 25] Huisman and Weissing developed a theory of interspecific
competition for light that assumes complete mixing of phytoplankton species. This
theory is based on a system of ordinary differential equations (ODEs) and predicts
that complete mixing leads to competitive exclusion similar to that in [13, 12, 1, 23];
namely, the species with the lowest “critical light intensity” wins the competition.

However, in many aquatic environments, phytoplankton species are not thor-
oughly mixed. To understand the effect of incomplete mixing on the growth of
phytoplankton species in a eutrophic environment, Huisman, van Oostveen, and
Weissing [16] introduced a reaction-diffusion model and analyzed the model through
numerical simulations. But a thorough mathematical treatment of the model has
been lacking. The purpose of this paper is to prove some basic mathematical facts
for this model which provide a basis for further rigorous mathematical analysis of
the involved reaction-diffusion system. Our uniform persistence result indicates that
with incomplete mixing of the phytoplankton species, competitive exclusion does not
always happen, and coexistence can occur in some parameter ranges.
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1306 YIHONG DU AND SZE-BI HSU

The model of [16] is one among many mathematical models of phytoplankton
proposed and investigated in recent years; see [20, 9, 14, 10, 15, 21, 26] and the
references therein for related study on the formation of phytoplankton blooms from
mathematical, experimental, and numerical viewpoints. It is our hope that some
of the mathematical theory and techniques developed here for treating the model
of [16] can also find applications in the study of other phytoplankton models. Some
mathematical research closely related to the subject of this paper is mentioned at the
end of this section in more detail.

We now briefly describe the model of [16]. Consider a water column with a cross
section of one unit area and with n phytoplankton species. Let x denote the depth
within the water column where x runs from 0 (top) to L (bottom). And let ui(x, t)
denote the population density (numbers per unit volume) of a phytoplankton species
i at depth x and time t. The rate of change in phytoplankton densities is described
by the following system of reaction-diffusion equations:

(1.1) (ui)t = Di(ui)xx + (gi(I(x, t)) − di)ui, i = 1, 2, . . . , n,

where gi(I(x, t)) is the specific growth rate of phytoplankton species i as a function of
light intensity I(x, t), Di is the diffusion coefficient, and di is the loss rate of the phy-
toplankton species i. Assume that the water column is closed, with no phytoplankton
species entering or leaving the column at the top or the bottom. Thus the following
boundary conditions are satisfied:

(1.2) (ui)x(0, t) = (ui)x(L, t) = 0, i = 1, 2, . . . , n.

The initial conditions are

(1.3) ui(x, 0) = u0i (x) ≥ 0, 0 ≤ x ≤ L, i = 1, 2, . . . , n.

The specific growth rate gi(I) satisfies

(1.4) gi(0) = 0, g′i(I) > 0 for I ≥ 0.

A typical example of gi(I) takes the Michaelis–Menten form, gi(I) = miI/(ai + I),
where mi is the maximal growth rate and ai is the half saturation constant. The light
intensity I(x, t) takes the form

(1.5) I(x, t) = I0e
−k0x exp

(
−
∫ x

0

[k1u1(s, t) + · · ·+ knun(s, t)]ds
)
,

where I0 is the incident light intensity, k0 is the background turbidity that summarizes
light absorption by all nonphytoplankton components, and ki is the specific light
attenuation coefficient of the phytoplankton species i.

In this paper we consider only the single-species case (n = 1) and the two-species
case (n = 2). For a single species we obtain a complete understanding of the dynamical
behavior of the reaction-diffusion problem. We show the existence of a critical loss
rate d∗ > 0, determined by an eigenvalue problem, such that when the loss rate d lies
in (0, d∗), the population density u(x, t) of the species stabilizes at a unique positive
steady state as time t goes to infinity, and u(x, t) goes to 0 as t → ∞ when d ≥ d∗.
Moreover, we obtain qualitative properties of the unique positive steady-state solution,
which are crucial for the study of the multispecies model. For the two-species model,
our results are partial; we obtain some existence results for positive steady states and
prove uniform persistence of the system under suitable conditions.
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A main technical difficulty in our analysis is the lack of an “order-preserving
property” of the single-species equation, caused by the nonlocal nature of the non-
linearity. Many key techniques for handling similar problems collapse for the model
here because of this. In section 2, we study the steady state for the single-species
equation based on a bifurcation approach (for existence) and various subtle analyt-
ical techniques (for uniqueness and other properties of the solution). Section 3 is
devoted to the global dynamical behavior of the single-species equation, which relies
on a comparison lemma and a boundedness lemma, and a key observation used in our
proof is that the function v(x, t) :=

∫ x

0
u(y, t)dy satisfies an equation which has the

order-preserving property (see (3.4)). In section 4, we consider the two-species model
and prove the existence of positive steady states by making use of the fixed point
index theory and global bifurcation arguments. In section 5, we prove the uniform
persistence and some extinction results for the two species dynamical system under
certain suitable conditions. The analysis in sections 4 and 5 relies heavily on our
results for the single-species case in sections 2 and 3.

We end the introduction by mentioning some closely related mathematical re-
search. In [19], a reaction-diffusion model for a single phytoplankton species was
studied, and global dynamical behavior of the equation was determined, where the
water column was assumed to have infinite depth, and the sinking effect of the phyto-
plankton species is included. In [24], the two-species model of a nature similar to [19]
was considered, but only for the special case that the functions gi(I) (i = 1, 2) are
linear. However, the proof of the main result in [24] seems to contain serious gaps (the
proof of Lemma 7 in [24] does not seem complete; for example, under the assumption
that two positive solutions exist, there are more possibilities than (i) and (ii) listed
there). The single-species model in [19] but with finite water depth was considered in
two recent papers [9] and [21]. In [9], for the special case that g(I) = Iα, α ∈ (0, 1], the
authors showed that there is a critical water depth for the existence and uniqueness of
positive steady-state solutions. This work covered the case of buoyant phytoplankton
(apart from the sinking type as in [19]), and it also characterized the phytoplankton
bloom (for both sinking and buoyant type) by some critical values of the vertical
turbulent diffusion coefficient. Moreover, it investigated the phase transition curve by
reducing the equation to a Bessel equation (by taking advantage of the special nonlin-
earity g(I) = Iα). However, the stability of the steady state solution or the dynamical
behavior of the parabolic equation was not considered. In [21], under suitable condi-
tions, the existence and uniqueness of a positive steady state was proved, and it was
also shown that the steady state is locally asymptotically stable. Our Theorem 3.3
below shows that the unique positive steady state is not only locally asymptotically
stable, but it is also globally attractive. On the other hand, our Theorem 2.1 implies
that the conditions imposed in [21] for the existence of a positive steady state are not
sharp. (To be accurate, our results here cover only the special case that the sinking
velocity v is 0 in [21], but a simple modification of our techniques shows that both our
Theorems 2.1 and 3.3 are valid for nonzero v.) In [7, 8], a reaction-diffusion model
proposed by Klausmeier and Litchman [20] was examined, where both nutrient and
light limitations for the growth of a single phytoplankton species were included, and
the focus was on the location of biomass concentration under the assumption that,
apart from passive diffusion caused by currents movement, the species actively move
to the optimal spatial location for its growth (determined by the light and nutrient
distributions).
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2. The steady states of a single population species. In this section we
study the steady states of a single population growth, i.e., (1.1)–(1.5) with n = 1,
namely,

ut = Duxx + (g(I(x, t)) − d)u, 0 < x < L, t > 0,(2.1)

ux(0, t) = 0, ux(L, t) = 0, t > 0,(2.2)

u(x, 0) = u0(x) � 0, 0 ≤ x ≤ L,(2.3)

where g ∈ C1([0,∞)) satisfies

g(0) = 0 and g is strictly increasing,(2.4)

I(x, t) = I0e
−k0x exp

(
−k

∫ x

0

u(s, t)ds

)
, I0, k0, k > 0.(2.5)

With suitable scaling, we may assume that L = 1, and by replacing g(·) by g(I0·) we
may assume I0 = 1. With these conventions the steady-state problem becomes

(2.6) −Du′′ = [
g
(
e−k0xe−k

∫
x
0

u(s)ds
)− d

]
u in (0, 1), u′(0) = u′(1) = 0,

where D, k0, k, and d are positive constants, and g : [0,∞) → [0,∞) is a C1 increasing
function, with g(0) = 0.

The following eigenvalue problem will play an important role in our analysis to
follow:

(2.7)

{
−Dφ′′ +Ψ(x)φ = λφ in (0, 1),

φ′(0) = 0, φ′(1) = 0,

where Ψ(x) is a continuous function in [0, 1]. It is well known that (2.7) has a smallest
eigenvalue λ1 = λ1(Ψ), which corresponds to a positive eigenfunction φ1, and λ1 is the
only eigenvalue whose corresponding eigenfunction does not change sign. Moreover,
Ψ1 ≥ Ψ2 implies λ1(Ψ1) ≥ λ1(Ψ2), and equality holds only if Ψ1 ≡ Ψ2; Ψn → Ψ in
C([0, 1]) implies λ1(Ψn) → λ1(Ψ).

Define

(2.8) Ψ0(x) := −g(e−k0x), d∗ := −λ1(Ψ0).

We are now ready to state and prove the main result of this section.
Theorem 2.1. Problem (2.6) has a unique positive solution for d ∈ (0, d∗), and

it has no positive solution if d �∈ (0, d∗). Moreover, if we denote the unique positive
solution by ud, then

(i) d→ ud is continuous from (0, d∗) to C2([0, 1]),
(ii) 0 < d1 < d2 < d∗ implies ud1(0) > ud2(0),
(iii) ud → ∞ uniformly on [0, 1] as d→ 0,
(iv) 0 < d1 < d2 < d∗ implies

∫ x

0 ud1(s)ds >
∫ x

0 ud2(s)ds for all x ∈ (0, 1].
Proof. It follows from a standard bifurcation argument of Crandall and Rabi-

nowitz [3] and Rabinowitz [22] that (2.6) has an unbounded branch of positive solu-
tions, which we denote as Γ = {(d, u)} ⊂ R1 × C1([0, 1]), that bifurcates from the
trivial solution branch {(d, 0)} at (d∗, 0). If (d, u) is a positive solution of (2.6), then
from the equation we deduce

−d = λ1
[− g

(
e−k0xe−k

∫
x
0

u(s)ds
)] ∈ (

λ1
[− g

(
e−k0x

)]
, λ1(0)

)
= (−d∗, 0).
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That is,

0 < d < d∗.

Therefore (2.6) has no positive solution when d �∈ (0, d∗).
We show next that the branch Γ can only become unbounded through (d, u) ∈ Γ

satisfying d → 0 and ‖u‖∞ → ∞. We argue indirectly and assume that there exists
(dn, un) ∈ Γ satisfying dn → d0 ∈ (0, d∗] and ‖un‖∞ → ∞. Denote ûn = un/‖un‖∞.
Then

−Dû′′n =
[
g
(
e−k0xe−k

∫
x
0

un(s)ds
)− dn

]
ûn in (0, 1), û′n(0) = û′n(1) = 0.

Therefore {ûn} and {û′′n} are both bounded sequences in L∞([0, 1]). By standard
Lp theory of elliptic equations, {ûn} is bounded in W 2,p([0, 1]) for any p > 1, and
hence, by the Sobolev embedding theorem, it is precompact in C1([0, 1]). By pass-
ing to a subsequence, we may assume that ûn → û in C1([0, 1]). Since fn(x) :=
g
(
e−k0xe−k

∫
x
0

un(s)ds
)
is a bounded sequence in L∞([0, 1]), by passing to a subse-

quence, we may assume that fn → f weakly in L2([0, 1]). We note that 0 ≤ f ≤ g(1)
in [0, 1] since each fn has this property. It is now easily seen that û is a weak solution
of

−Dû′′ = (f − d0)û in (0, 1), û′(0) = û′(1) = 0,

and û ≥ 0, ‖û‖∞ = 1. Since (f − d0) ∈ L∞([0, 1]), we can apply the strong maximum
principle to conclude that û > 0 on [0, 1] and −d0 = λ1(−f).

On the other hand, from ûn → û > 0 uniformly in [0, 1] and ‖un‖∞ → ∞, we
deduce that un → ∞ uniformly on [0, 1]. It follows that

e−k
∫

x
0

un(s)ds → 0

uniformly on any compact subset of (0, 1]. This implies that f ≡ 0 and hence

−d0 = λ1(−f) = λ1(0) = 0,

a contradiction to our assumption that d0 ∈ (0, d∗]. Therefore Γ can only become
unbounded through the existence of a sequence (dn, un) ∈ Γ such that dn → 0 and
‖un‖∞ → ∞; moreover, the above proof shows that in such a case, un → ∞ uniformly
on [0, 1]. (In fact, un/‖un‖∞ → 1 in C1([0, 1]).)

As a consequence of the connectedness of Γ, we conclude that (2.6) has at least
one positive solution for each d ∈ (0, d∗).

We next prove the uniqueness conclusion. Suppose by way of contradiction that
for some d ∈ (0, d∗), (2.6) has two positive solutions, u1 and u2. We first observe
that u1 − u2 must change sign in (0, 1). Otherwise we may assume that u1 ≤ u2 and
u1 �≡ u2 in [0, 1]. From this and the equations for u1 and u2 we deduce

−d = λ1
[− g

(
e−k0xe−k

∫
x
0

u1(s)ds
)]
< λ1

[− g
(
e−k0xe−k

∫
x
0

u2(s)ds
)]

= −d,
a contradiction. Therefore u1 − u2 changes sign in (0, 1).

We claim that u1(0) �= u2(0). Otherwise, for i = 1, 2, we denote vi(x) =∫ x

0 ui(s)ds, wi(x) = u′i(x), and find that (ui, vi, wi) are solutions of the initial value
system

(u′, v′, w′) =
(
w, u,−D−1

[
g
(
e−k0xe−kv

)− d
]
u
)
,
(
u(0), v(0), w(0)

)
=

(
u1(0), 0, 0

)
.
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By the well-known existence and uniqueness theorem of ODEs, we conclude that
(u1, v1, w1) ≡ (u2, v2, w2) in a small neighborhood [0, δ). We may then repeat this
argument to conclude that u1 ≡ u2 as long as they are defined, which is a contradiction
to our assumption that they are different solutions of (2.6). Therefore u1(0) �= u2(0).

For definiteness we assume that u1(0) < u2(0). Since u1 − u2 changes sign in
(0, 1), there exists x0 ∈ (0, 1) such that u2(x) > u1(x) in [0, x0) and u1(x0) = u2(x0).
We have ∫ x0

0

[−u′′1u2]dx = D−1

∫ x0

0

[
g
(
e−k0xe−k

∫
x
0

u1(s)ds
)− d

]
u1u2dx.

Using integration by parts, we deduce

−u′1u2
∣∣∣x0

0
+

∫ x0

0

u′1u
′
2dx = D−1

∫ x0

0

g
(
e−k0xe−k

∫ x
0

u1(s)ds
)
u1u2dx−D−1d

∫ x0

0

u1u2dx.

Similarly, ∫ x0

0

[−u′′2u1]dx = D−1

∫ x0

0

[
g
(
e−k0xe−k

∫ x
0

u2(s)ds
)− d

]
u1u2dx

and

−u′2u1
∣∣∣x0

0
+

∫ x0

0

u′1u
′
2dx = D−1

∫ x0

0

g
(
e−k0xe−k

∫
x
0

u2(s)ds
)
u1u2dx−D−1d

∫ x0

0

u1u2dx.

Therefore
(2.9)

[u1u
′
2 − u′1u2]

∣∣∣x0

0
= D−1

∫ x0

0

[
g
(
e−k0xe−k

∫
x
0

u1(s)ds
)− g

(
e−k0xe−k

∫
x
0

u2(s)ds
)]
u1u2dx.

Since u′1(0) = u′2(0) = 0 by the boundary condition, and u1(x0) = u2(x0),
u′1(x0) ≥ u′2(x0), we have

[u1u
′
2 − u′1u2]

∣∣∣x0

0
= u1(x0)[u

′
2(x0)− u′1(x0)] ≤ 0.

Therefore (2.9) implies that∫ x0

0

[
g
(
e−k0xe−k

∫
x
0

u1(s)ds
)− g

(
e−k0xe−k

∫
x
0

u2(s)ds
)]
u1u2dx ≤ 0.

But on the other hand, from u1(x) < u2(x) in (0, x0) we deduce∫ x0

0

[
g
(
e−k0xe−k

∫
x
0

u1(s)ds
)− g

(
e−k0xe−k

∫
x
0

u2(s)ds
)]
u1u2dx > 0.

This contradiction proves our uniqueness conclusion, and we can now denote the
unique positive solution of (2.6) by ud.

The fact that d→ ud is continuous as a map from (0, d∗) to C1([0, 1]) follows from
a standard compactness and uniqueness consideration: If dn → d0 ∈ (0, d∗), then a
subsequence of udn converges in C1([0, 1]) to a positive solution of (2.6) with d = d0.
By uniqueness, this positive solution must be ud0. Therefore the entire sequence
converges to ud0 . Moreover, from the equation of udn we easily see that udn → ud0 in
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C1([0, 1]) implies that the convergence also holds in C2([0, 1]). Conclusion (i) is now
proved.

We now show that 0 < d1 < d2 < d∗ implies ud1(0) > ud2(0). To simplify the
notation, we will write u1 = ud1 , u2 = ud2 in the following discussion.

We argue indirectly and assume that for some 0 < d1 < d2 < d∗ the inequality
u1(0) ≤ u2(0) holds. Consider first the case u1(0) < u2(0). Then we can show u1−u2
changes sign and define [0, x0] as in the above uniqueness proof. We similarly have

[u1u
′
2 − u′1u2]

∣∣∣x0

0
≤ 0.

On the other hand,

[u1u
′
2 − u′1u2]

∣∣∣x0

0
=

∫ x0

0

[−u′′1u2 + u′′2u1]dx

= D−1

∫ x0

0

[
g
(
e−k0xe−k

∫
x
0

u1(s)ds
)− g

(
e−k0xe−k

∫
x
0

u2(s)ds
)]
u1u2dx

+ D−1(d2 − d1)

∫ x0

0

u1u2dx

> 0,

a contradiction.
Consider now the case u1(0) = u2(0). Then from (2.6) and d2 > d1 we find that

u′′2(0) > u′′1(0). Since u′1(0) = u′2(0) = 0, it follows that u2(x) > u1(x) for x > 0
small. Thus we can still find an interval (0, x0) as above and derive a contradiction.
Therefore u1(0) > u2(0). Conclusion (ii) is now proved.

Conclusion (iii) follows from our argument earlier, where we proved that Γ can be-
come unbounded only through a sequence (dn, un) ∈ Γ with dn → 0 and ‖un‖∞ → ∞.

We now consider (iv). We observe that if u is a positive solution of (2.6), then,
by integrating (2.6) from 0 to x, v(x) :=

∫ x

0
u(s)ds satisfies

−Dv′′ = −dv +
∫ x

0

g(e−k0s−kv(s))u(s)ds

= −dv + k−1

∫ x

0

g(e−k0s−kv(s))d(k0s+ kv(s)) − k0k
−1

∫ x

0

g(e−k0s−kv(s))ds

= −dv + k−1

∫ k0x+kv(x)

0

g(e−ξ)dξ − k0k
−1

∫ x

0

g(e−k0s−kv(s))ds

= −dv +G(k0x+ kv(x))− k0k
−1

∫ x

0

g(e−k0s−kv(s))ds,

where

G(η) := k−1

∫ η

0

g(e−ξ)dξ.

(The use of the function G in the above equation for v was motivated by [19].)
For d ∈ (0, d∗) we set vd(x) =

∫ x

0 ud(s)ds. Fixing any d2 ∈ (0, d∗), we want to
show that vd1(x) > vd2(x) for all x ∈ (0, 1] if 0 < d1 < d2. To simplify the notation,
whenever no confusion is caused, we write ui = udi and vi = vdi . By (iii), if d1 > 0 is
small enough, we have u1 > u2 on [0, 1] and hence v1 > v2 for x ∈ (0, 1]. If the desired
conclusion does not hold, then we can find a maximal d1 < d2 such that vd(x) > vd2(x)
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in (0, 1] for d ∈ (0, d1). Then clearly vd1 ≥ vd2 . We claim that vd1(x) = vd2(x) holds
for some x ∈ (0, 1]. Otherwise v1(x) > v2(x) for all x ∈ (0, 1]. Fix d0 ∈ (d1, d2).
By (ii), for any d ∈ [d1, d0], ud(0) ≥ ud0(0) > ud2(0). By (i), there exists C > 0 such
that ‖ud‖C2([0,1]) < C for all d ∈ [d1, d0]. Therefore we can find δ > 0 small enough
such that vd(x) > vd2(x) for d ∈ [d1, d0] and x ∈ (0, δ]. Since v1(x) > v2(x) in [δ, 1],
by (i) we can find d̃1 ∈ (d1, d0] such that vd(x) > vd2(x) for d ∈ [d1, d̃1] and x ∈ [δ, 1].
Thus vd(x) > vd2(x) for d ∈ (0, d̃1] and x ∈ (0, 1], contradicting the maximality
of d1. This proves our claim that vd1(x) = vd2(x) holds for some x ∈ (0, 1]. We show
that this leads to a contradiction.

Consider first the possibility that x = 1, i.e., v1(1) = v2(1). Since v
′′
1 (1) = v′′2 (1) =

0, we deduce from the above equation for v that, for i = 1, 2,

divi(1) = G(k0 + kvi(1))− k0k
−1

∫ 1

0

g(e−k0s−kvi(s))ds.

Denote σ := v1(1) = v2(1). We obtain from the above identity

(d2 − d1)σ = k0k
−1

∫ 1

0

[
g(e−k0s−kv1(s))− g(e−k0s−kv2(s))

]
ds.

Since v1 ≥ v2, the right side of the above identity is less than or equal to 0, but
the left side is positive, and we arrive at a contradiction. Hence we necessarily have
v1(1) > v2(1).

Consider next the remaining possibility, namely, x ∈ (0, 1). Denoting w := v1−v2,
we obtain

−Dw′′ = d2v2 − d1v1 + C(x)w − k0k
−1

∫ x

0

[
g(e−k0s−kv1(s))− g(e−k0s−kv2(s))

]
ds

≥ [C(x) − d1]w,

w(0) = 0, w(1) > 0,

where C(x) = G′(k0x+kθ(x)) for some θ(x) ∈ [v2(x), v1(x)]. By the strong maximum
principle we deduce w > 0 in (0, 1], again reaching a contradiction.

The proof is now complete.

3. The dynamics of a single population species. In this section we study
the asymptotic behavior of the solution of the partial differential equation (2.1)–(2.3)
satisfying (2.4) and (2.5). As before, without loss of generality we assume I0 = 1,
L = 1 in (2.1)–(2.5). The initial boundary value problem now has the form

ut = Duxx +
[
g(e−k0x−k

∫
x
0

u(s,t)ds)− d
]
u, 0 < x < 1, t > 0,(3.1)

ux(0, t) = 0, ux(1, t) = 0, t > 0,(3.2)

u(x, 0) = u0(x) � 0, 0 ≤ x ≤ 1.(3.3)

We assume that u0 ∈ C([0, 1]).
By standard argument, it is not difficult to prove the uniqueness and global

existence of the solution u(x, t) of (3.1)–(3.3). By the maximum principle, u(x, t) > 0
for t > 0 and x ∈ [0, 1]. Our aim here is to understand the long-time behavior of
u(x, t).
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Recall that d∗ = −λ1(Ψ0) is defined in (2.8). If d > d∗, then using

ut ≤ Duxx − du+ g(e−k0x)u

and the comparison principle we deduce u(x, t) ≤ Ce−(d−d∗)tφ1(x) → 0 as t → ∞
uniformly in x ∈ [0, 1], where φ1 is a positive eigenfunction corresponding to λ1(Ψ0)
and C is a positive constant such that u0(x) ≤ Cφ1(x) in [0, 1]. Therefore

lim
t→∞u(x, t) = 0 uniformly for x ∈ [0, 1] if d > d∗.

We consider next the case d ∈ (0, d∗); the case d = d∗ will be discussed last. So
we suppose now 0 < d < d∗. By Theorem 2.1, (3.1)–(3.2) has a unique positive steady
state ud(x). We will show that u(x, t) → ud(x) as t → ∞ uniformly for x in [0, 1].
To prove this conclusion, we need two key results, namely, a comparison lemma and
a boundedness lemma.

Set

v(x, t) =

∫ x

0

u(s, t)ds.

Then v(x, t) satisfies v(0, t) ≡ 0 and

vt = Dvxx − dv +

∫ x

0

g(e−k0s−kv(s,t))u(s, t)ds(3.4)

= Dvxx − dv +G(k0x+ kv(x, t)) − k0k
−1

∫ x

0

g(e−k0s−kv(s,t))ds,

where G(η) = k−1
∫ η

0
g(e−ξ)dξ.

In the following two lemmas, we do not require d ∈ (0, d∗).
Lemma 3.1 (comparison lemma). Suppose d ∈ (−∞,∞) and u, ũ ∈ C2,1([0, 1]×

(0,∞)) satisfy

ut ≤ Duxx +
[
g(e−k0x−k

∫
x
0

u(s,t)ds)− d
]
u, 0 ≤ x ≤ 1, t > 0,

ux(0, t) = 0, ux(1, t) = 0, t > 0,

and

ũt ≥ Dũxx +
[
g(e−k0x−k

∫
x
0

ũ(s,t)ds)− d
]
ũ, 0 ≤ x ≤ 1, t > 0,

ũx(0, t) = 0, ũx(1, t) = 0, t > 0.

If u(x, t) < ũ(x, t) for x ∈ [0, 1] and all small t ≥ 0 (say t ∈ [0, ε]), then v(x, t) < ṽ(x, t)
for all t > 0 and x ∈ (0, 1], where

v(x, t) =

∫ x

0

u(s, t)ds, ṽ(x, t) =

∫ x

0

ũ(s, t)ds.

Proof. Since u(x, t) < ũ(x, t) for t ≥ 0 small and x ∈ [0, 1] we have

(3.5) v(x, t) < ṽ(x, t) for t ≥ 0 small and x ∈ (0, 1].

Suppose the conclusion of Lemma 3.1 is not true. Then there exists a finite maximal
time denoted by t∗ such that (3.5) holds for every t ∈ [0, t∗). Clearly v(x, t∗) ≤ ṽ(x, t∗)
for all x ∈ [0, 1]. We claim that

(3.6) v(x, t∗) = ṽ(x, t∗) for some x ∈ (0, 1].
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Otherwise we have v(x, t∗) < ṽ(x, t∗) for all x ∈ (0, 1]. Denote

w(x, t) = ṽ(x, t)− v(x, t).

Then w(x, t) ≥ 0 for 0 ≤ t ≤ t∗, 0 ≤ x ≤ 1, and

wt ≥ Dwxx − dw + C(x, t)w + k0k
−1

∫ x

0

[
g(e−k0s−kv(s,t))− g(e−k0s−kṽ(s,t))

]
ds(3.7)

≥ Dwxx +
[
C(x, t) − d

]
w for 0 ≤ x ≤ 1, t ∈ (0, t∗],

w(0, t) = 0, w(1, t) > 0 for 0 < t ≤ t∗,
w(x, 0) > 0 for 0 < x ≤ 1,

where

C(x, t) = G′(k0x+ kθ(x, t)), θ(x, t) ∈ [
v(x, t), ṽ(x, t)

]
.

Thus we may use the strong maximum principle and the Hopf boundary lemma to
conclude that w(x, t) > 0 for t ∈ (0, t∗] and x ∈ (0, 1], and wx(0, t

∗) > 0. Then by
the smoothness of w(x, t), we obtain wx(x, t) > 0 for all t close to t∗ and x close to 0.
Thus from w(0, t) ≡ 0 we deduce w(x, t) > 0 for 0 < x ≤ δ, t∗ ≤ t ≤ t∗ + δ, δ > 0
small. From w(x, t∗) > 0 for x ∈ [δ, 1], we can find δ0 ∈ (0, δ) such that w(x, t) > 0
for x ∈ [δ, 1] and t ∈ [t∗, t∗ + δ0]. Thus w(x, t) > 0 for x ∈ (0, 1] and t ∈ (0, t∗ + δ0],
contradicting the maximality of t∗. This proves (3.6).

Thus there exists x0 ∈ (0, 1] such that w(x0, t
∗) = 0. If x0 = 1, i.e., w(1, t∗) = 0,

then wt(1, t
∗) ≤ 0. By the boundary condition vxx(1, t

∗) = ux(1, t
∗) = 0, ṽxx(1, t

∗) =
ũx(1, t

∗) = 0, and hence wxx(1, t
∗) = 0. Therefore we can use (3.7) to obtain

0 ≥ wt(1, t
∗) ≥ k0k

−1

∫ 1

0

[
g(e−k0s−kv(s,t∗))− g(e−k0s−kṽ(s,t∗))

]
ds.

Since v(x, t∗) ≤ ṽ(x, t∗) in [0, 1], the above inequality holds only if v(x, t∗) ≡ ṽ(x, t∗),
which implies u(x, t∗) ≡ ũ(x, t∗).

From the inequality in (3.7), w(x, t) is an upper solution of the problem⎧⎨
⎩

w̃t = Dw̃xx − dw̃, 0 < x < 1, 0 < t ≤ t∗,
w̃(0, t) = w̃(1, t) = 0, 0 < t ≤ t∗,
w̃(x, 0) = w(x, 0) > 0, 0 < x < 1.

By the strong maximum principle, w̃(x, t) > 0 for x ∈ (0, 1) and 0 < t ≤ t∗. On the
other hand, by the comparison principle, we have w(x, t) ≥ w̃(x, t) for x ∈ (0, 1) and
0 < t ≤ t∗. Hence w(x, t∗) > 0 for x ∈ (0, 1). This contradicts our earlier conclusion
that w(x, t∗) ≡ 0. Therefore we must have w(1, t∗) > 0. We may now apply the
strong maximum principle to (3.7) to conclude that w(x, t∗) > 0 for x ∈ (0, 1], which
is a contradiction to (3.6). The proof is now complete.

Lemma 3.2 (boundedness lemma). Suppose d > 0, and let u(x, t) be the unique
solution of (3.1)–(3.3). Then there exists C > 0 such that

(3.8) u(x, t) ≤ C for all x ∈ [0, 1], t > 0.

Proof. Our assumption on g implies that

g(I) ≤ σI for some σ > 0 and all I ∈ [0, 1].
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Therefore with

I(x, t) = exp

(
−k0x− k

∫ x

0

u(y, t)dy

)
,

we have

g(I(x, t)) ≤ σI(x, t) ≤ σe−k
∫

x
0

udy,

and from the equation for u we deduce that

ut ≤ Duxx +
[
σe−k

∫ x
0

udy − d
]
u.

Integrating for x from 0 to 1, we obtain[∫ 1

0

udx

]
t

≤ σ

∫ 1

0

e−k
∫

x
0

udyudx− d

∫ 1

0

udx.

Denote

w(t) =

∫ 1

0

u(x, t)dx, v(x, t) =

∫ x

0

u(y, t)dy.

Then ∫ 1

0

e−k
∫ x
0

udyudx =

∫ 1

0

e−kvvxdx

= k−1
[
e−kv(0,t) − e−kv(1,t)

]
= k−1

[
1− e−kw(t)

]
.

Therefore,

wt ≤ σk−1
[
1− e−kw

]
− dw

and

wt + dw ≤ C0 := σk−1.

It follows that (
edtw

)
t
≤ C0e

dt,

from which we deduce

(3.9) w(t) ≤ w(0)e−dt + C0e
−dt

∫ t

0

edsds ≤ C := w(0) + C0/d.

To show the boundedness of u(x, t) we set

W (t) := max
x∈[0,1],s∈[0,t]

u(x, s).

Clearly W (t) is nondecreasing. Suppose for contradiction that W (t) → ∞ as t→ ∞.
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Since W (t) → ∞, we can find tn → ∞ such that W (tn) = maxx∈[0,1] u(x, tn). We
may assume that tn > 1 for all n ≥ 1. We then define

vn(x, t) =
u(x, t+ tn − 1)

W (tn)
.

Clearly vn satisfies ⎧⎨
⎩

(vn)t = D(vn)xx + cnvn,
(vn)x = 0 for x ∈ {0, 1} and t > 0,

vn(x, 0) ∈ [0, 1],

where cn(x, t) = g(I(x, t + tn − 1)) − d, and |cn| ≤ M0 := maxI∈[0,1] |g(I) − d|. A
simple comparison consideration gives

0 ≤ vn(x, t) ≤ eM0t for x ∈ [0, 1] and t ≥ 0.

Hence we may apply standard parabolic regularity to conclude that {vn} is bounded
in C1+α,α([0, 1]× [ 12 , 2]) for any α ∈ (0, 1). Therefore by passing to a subsequence if
necessary we have vn → v∗ in C1,0([0, 1] × [ 12 , 2]). Since |cn| ≤ M0, by passing to a
further subsequence, we may assume that cn → c weakly in L2([0, 1]× [ 12 , 2]). Clearly
we have |c| ≤M0. It follows that v

∗ is a weak solution to⎧⎨
⎩
v∗t = Dv∗xx + cv∗ for x ∈ [0, 1], t ∈ [1/2, 2],
v∗x = 0 for x ∈ {0, 1} and t ∈ [1/2, 2],
v∗ ∈ [0, e2M0 ] for x ∈ [0, 1], t ∈ [1/2, 2].

Since maxx∈[0,1] vn(x, 1) = 1, we have maxx∈[0,1] v
∗(x, 1) = 1 and hence v∗ is not

identically zero. By the strong maximum principle we deduce v∗(x, 1) ≥ δ0 > 0 in
[0, 1]. It follows that vn(x, 1) ≥ δ0/2 for all large n and x ∈ [0, 1]. Therefore

u(x, tn) ≥ (δ0/2)W (tn) for all large n and x ∈ [0, 1].

But then we deduce

w(tn) ≥ (δ0/2)W (tn) → ∞

as n→ ∞, which contradicts (3.9). Therefore there exists C > 0 such that

u(x, t) ≤ C for all x ∈ [0, 1] and t > 0.

The proof is complete.
We are now ready to prove the main result of this section.
Theorem 3.3. Let 0 < d < d∗. Then the solution u(x, t) of (3.1)–(3.3) converges

to the unique steady state ud(x) as t→ ∞ uniformly in x ∈ [0, 1].
Proof. We may assume that the initial data u0 satisfies u0 > 0 in [0, 1], for

otherwise we can replace u(x, t) by u(x, 1 + t) and u0(x) by u(x, 1).
Since d < d∗ = −λ1(Ψ0) and

Ψδ(x) := −g(e−(k0+kδ)x
) → Ψ0(x)

uniformly in [0, 1] as δ → 0, we can find δ > 0 sufficiently small such that d < −λ1(Ψδ).
Fix such a δ and let φ be a positive eigenfunction corresponding to λ1(Ψδ). Then we
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choose ε > 0 small so that εφ < u0, εφ < δ in [0, 1]. Let u(x, t) be the unique solution
of (3.1)–(3.2) with initial condition u(x, 0) = εφ(x). Then we can find σ > 0 small
such that

0 < u(x, t) < δ for t ∈ (0, σ] and x ∈ [0, 1].

Hence for t ∈ (0, σ],

ut = Duxx +
[
g
(
e−k0x−k

∫ x
0

u(y,t)dy
)− d

]
u

≥ Duxx +
[−Ψδ(x) − d

]
u

> Duxx +
[−Ψδ(x) + λ1(Ψδ)

]
u.

It follows that⎧⎨
⎩

(u− εφ)t > D(u− εφ)xx +
[−Ψδ(x) + λ1(Ψδ)

]
(u− εφ), x ∈ [0, 1], t ∈ (0, σ],

(u− εφ)x = 0, x = 0, 1, t ∈ (0, σ],
u− εφ = 0, x ∈ [0, 1], t = 0.

By the strong maximum principle we deduce u(x, t) − εφ(x) > 0 for t ∈ (0, σ] and
x ∈ [0, 1]. Fixing s ∈ (0, σ], we thus have

u(x, s) > u(x, 0) in [0, 1].

By continuity,

u(x, s+ t) > u(x, t) in [0, 1] for all small t ≥ 0.

Thus we can use Lemma 3.1 to conclude that v(x, t) < v(x, s + t) for x ∈ [0, 1] and
t > 0, where v(x, t) =

∫ x

0
u(s, t)ds. It follows that v(x, t) is monotone increasing in t.

By Lemma 3.2, v(x, t) ≤ C for all x ∈ [0, 1] and t > 0 for some C > 0.
Hence limt→∞ v(x, t) = v∗(x) exists. On the other hand, due to the boundedness of
‖u(·, t)‖∞ (which follows from Lemma 3.2), we can apply the standard parabolic regu-
larity theory to (3.1)–(3.2) to conclude that, for any sequence tn → ∞, {u(·, tn)} has a
subsequence which converges in C1([0, 1]), say u(·, tnk

) → u∗. Since v(·, tn) → v∗, we
necessarily have v∗(x) =

∫ x

0
u∗(y)dy. Hence u∗ = v′∗. This implies that limt→∞ u(x, t)

exists and equals v′∗(x). It follows that v′∗ must be a nonnegative steady state of (3.1),
(3.2). Since v∗(0) = 0 and v∗ is the limit of an increasing sequence, we have v∗(x) > 0
for x ∈ (0, 1] and v′∗ �≡ 0. Therefore v′∗ is a nontrivial nonnegative steady state of
(3.1), (3.2). By the strong maximum principle v′∗ is positive, and hence we can use
Theorem 2.1 to conclude that v′∗ ≡ ud.

Next we consider dM = −λ1
(
ΨM

)
with M > 0 large. Recall that ΨM (x) =

−g(e−(k0+kM)x
)
. Let φM (x) be the positive eigenfunction corresponding to λ1(ΨM )

with ‖φM‖∞ = 1. It is easy to see by a regularity and compactness argument that as
M → ∞, λ1(ΨM ) → 0 and φM → 1 in C1([0, 1]). Therefore we can find M0 > 0 large
so that

d > −λ1(ΨM ),
1

2
< φM (x) ≤ 1 for M ≥M0.

We now fix M > M0 such that 2M > u0(x) in [0, 1]. Then

u0(x) < 2MφM (x) and M < 2MφM (x) for x ∈ [0, 1].
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Let ū(x, t) be the solution of (3.1)–(3.2) with initial condition ū(x, 0) = 2MφM (x).
Then we can find δ0 > 0 small so that u0(x) < ū(x, t), M < ū(x, t) for t ∈ (0, δ0] and
x ∈ [0, 1]. Hence for t ∈ (0, δ0], we have

ūt = Dūxx +
[
g
(
e−k0x−k

∫ x
0

ū(y,t)dy
)− d

]
ū

≤ Dūxx +
[−ΨM (x)− d

]
ū

< Dūxx +
[−ΨM (x) + λ1(ΨM )

]
ū.

Thus for w(x, t) := ū(x, t) − 2MφM (x), we have⎧⎨
⎩

wt < Dwxx +
[−ΨM (x) + λ1(ΨM )

]
w, x ∈ [0, 1], t ∈ (0, δ0],

wx = 0, x = 0, 1, t ∈ (0, δ0],
w = 0, x ∈ [0, 1], t = 0.

By the strong maximum principle we deduce w = ū − 2MφM < 0 for t ∈ (0, δ0] and
x ∈ [0, 1]. It follows that ū(x, s) < ū(x, 0) for 0 < s ≤ δ0. Using the same argument
as before, we deduce that

v̄(x, t) :=

∫ x

0

ū(s, t)ds

is monotone decreasing in t. Moreover, from Lemma 3.1 it follows that v̄(x, t) >
v(x, t) :=

∫ x

0 u(s, t)ds > v(x, t) for all t > 0 and x ∈ (0, 1]. Hence limt→∞ v̄(x, t) =

v∗(x) ≥ ∫ x

0 ud(s)ds. We may then use parabolic regularity theory much as before to
deduce that ū(x, t) → (v∗)′(x) in C1([0, 1]), and (v∗)′(x) is a positive steady state of
(3.1)–(3.2). Thus we must have (v∗)′(x) ≡ ud(x).

Since v ≤ v ≤ v̄ and limt→∞ v(x, t) = limt→∞ v̄(x, t) =
∫ x

0 ud(s)ds, we necessarily
have

lim
t→∞ v(x, t) =

∫ x

0

ud(s)ds.

Thus we can repeat the above argument to conclude that u(x, t) → ud(x) as t → ∞
uniformly for x ∈ [0, 1]. This completes the proof.

Finally we consider the case d = d∗.
Theorem 3.4. Suppose d = d∗. Then the solution u(x, t) to (3.1)–(3.3) converges

to 0 as t→ ∞ uniformly in x ∈ [0, 1].
Proof. This follows from a simple modification of the second part of the proof of

Theorem 3.3. Indeed, let ū(x, t) be defined exactly as in the proof of Theorem 3.3.
Then we know that v̄(x, t) :=

∫ x

0 ū(s, t)ds > 0 is strictly decreasing in t. Hence
limt→∞ v̄(x, t) = v∗(x) ≥ 0 exists. By the same consideration as in the proof of
Theorem 3.3 we can show that ū(x, t) → (v∗)′(x) as t→ ∞ in the norm of C1([0, 1]),
and hence (v∗)′(x) is a nonnegative steady state of (3.1)–(3.2). However, since d =
d∗, by Theorem 2.1, the only nonnegative steady state of (3.1)–(3.2) is the trivial
solution 0. Hence ū(x, t) → 0 as t → ∞ uniformly for x ∈ [0, 1], and thus v̄(x, t) → 0
as t→ ∞.

Using Lemma 3.1 we deduce 0 < v(x, t) < v̄(x, t), which implies that v(x, t) → 0
as t → ∞. Using this fact and the parabolic regularity, as before, we deduce
limt→∞ u(·, t) exists in the C1([0, 1]) norm, and the limit is a nonnegative steady state
of (3.1)–(3.2). Since d = d∗, this limit must be 0. This completes the proof.
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4. Steady states of the two-species model. In this section we study the
steady states of the system (1.1)–(1.3) with n = 2. As before we assume, without
loss of generality, that L = 1 and I0 = 1. Thus we are interested in the nonnegative
solutions of the elliptic system

(4.1)

⎧⎨
⎩

D1(u1)xx +
[
g1(I(x)) − d1

]
u1 = 0, 0 < x < 1,

D2(u2)xx +
[
g2(I(x)) − d2

]
u2 = 0, 0 < x < 1,

(ui)x(0) = (ui)x(1) = 0, i = 1, 2,

where g1(I), g2(I) satisfy (2.4), and

I(x) = e−k0x exp
(
−
∫ x

0

[
k1u1(y) + k2u2(y)

]
dy

)
,

with k0, k1, k2 > 0.
In the following we will regard k0, k1, k2 as fixed constants and treat d1 and d2

as varying parameters. We need to introduce some notation first. We will use λ1(Ψ)
to denote the first eigenvalue of (2.7) with D = D1 and use μ1(Ψ) to denote the first
eigenvalue of (2.7) with D = D2. We also denote

d∗1 = −λ1(−g1(e−k0x)), d∗2 = −μ1(−g2(e−k0x)).

Nonnegative solutions of (4.1) can be categorized into three classes: (i) The unique
trivial solution (u1, u2) ≡ (0, 0), which exists for all d1 and d2. (ii) Two semitrivial
solutions (u1, u2) = (0, u∗d2

) and (u1, u2) = (u∗d1
, 0), the former existing for d2 ∈ (0, d∗2)

and the latter existing for d1 ∈ (0, d∗1), where u
∗
d1
, d∗d2

denote the unique steady state
for the u1 and u2 equations, respectively, guaranteed by Theorem 2.1. (iii) The third
class are positive solutions (u1, u2) with u1(x) > 0 and u2(x) > 0 in [0, 1], which are
the most difficult to understand and are the main interest here.

Some necessary conditions for the existence of a positive solution to (4.1) can be
easily observed. Suppose that (u1, u2) is a positive solution of (4.1). Then from the
equation for u1 we obtain

−d1 = λ1(−g1(e−k0x−
∫ x
0
(k1u1+k2u2)dy)) ∈ (λ1(−g1(e−k0x)), λ1(0)) = (−d∗1, 0).

That is d1 ∈ (0, d∗1). Similarly from the equation for u2 we deduce d2 ∈ (0, d∗2). Thus
for (4.1) to possess a positive solution we necessarily have

(4.2) 0 < d1 < d∗1, 0 < d2 < d∗2.

Next we assume (4.2) and use a global bifurcation argument to find sufficient
conditions for the existence of positive solutions to (4.1). We will rewrite (4.1) as an
abstract equation involving a completely continuous operator. Let E = C([0, 1]), and
let P be the usual positive cone in E: P = {u ∈ E : u(x) ≥ 0 in [0, 1]}. We define
A : E × E → E × E by

A(u1, u2) = (A1(u1, u2), A2(u1, u2)),

where

A1(u1, u2) = L1 ◦G1(d1, u1, u2), A2(u1, u2) = L2 ◦G2(d2, u1, u2),

G1(d1, u1, u2)(x) =
[
d∗1 − d1 + g1(e

−k0x−
∫ x
0
(k1u1+k2u2)dy)

]
u1(x),
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G2(d2, u1, u2)(x) =
[
d∗2 − d2 + g2(e

−k0x−
∫ x
0
(k1u1+k2u2)dy)

]
u2(x),

and for i = 1, 2, Li is the solution operator for the problem

−Diuxx + d∗i u = fi(x), ux(0) = ux(1) = 0,

namely, u = Li(fi). It is easily seen that (u1, u2) solves (4.1) if and only if (u1, u2) =
A(u1, u2).

By standard elliptic regularity theory we know that A : E × E → E × E is
completely continuous. Moreover, by the strong maximum principle and the fact that
(due to (4.2))

d∗i − di + gi(e
−k0x−

∫ x
0
(k1u1+k2u2)dy) > 0 in [0, 1],

we find that if ui ∈ P , then Ai(u1, u2) ∈ P , and if ui ∈ Ṗ := P \{0}, then Ai(u1, u2) ∈
P ◦ := {u ∈ P : u(x) > 0 in [0, 1]}. Thus we have

A(P × P ) ⊂ P × P, A(Ṗ × Ṗ ) ⊂ P ◦ × P ◦,

A(Ṗ × P ) ⊂ P ◦ × P, A(P × Ṗ ) ⊂ P × P ◦.

To apply the bifurcation argument, we will fix d1 ∈ (0, d∗1) and use d2 as the
bifurcation parameter. To stress the dependence of A(u1, u2) on d2, we rewrite it as
A(d2, u1, u2). We will examine how a positive solution branch Γ = {(d2, u1, u2)} ⊂
R1 × P × P bifurcates from the semitrivial solution branches Γ1 = {(d2, u∗d1

, 0) :
d2 ∈ R1} and Γ2 = {(d2, 0, u∗d2

) : d2 ∈ (0, d∗2)}. To this end, the Fréchet derivative
of A(d2, u1, u2), with respect to (u1, u2) at (u∗d1

, 0) and at (0, u∗d2
), and the associ-

ated eigenvalue problems play a crucial role. We will denote these derivatives by

A′
(u1,u2)

(d2, u
∗
d1
, 0) and A′

(u1,u2)
(d2, 0, u

∗
d2
), respectively, and the associated eigenvalue

problems are

(4.3) A′
(u1,u2)

(d2, u
∗
d1
, 0)(h1, h2)

T = ξ(h1, h2)
T

and

(4.4) A′
(u1,u2)

(d2, 0, u
∗
d2
)(h1, h2)

T = η(h1, h2)
T .

Here we use (h1, h2)
T to denote the transpose of the row matrix (h1, h2). A direct

calculation shows that η = 1 is an eigenvalue of (2.7) if and only if the following
problem has a solution (h1, h2) �= (0, 0):

(4.5)

⎧⎪⎪⎨
⎪⎪⎩

−D1h
′′
1 = [g1(σ2(x)) − d1]h1, x ∈ (0, 1),

−D2h
′′
2 = [g2(σ2(x)) − d2]h2

− g′2(σ2(x))u∗d2
(x)σ2(x)

∫ x

0 [k1h1(y) + k2h2(y)]dy, x ∈ (0, 1),
h′1 = h′2 = 0, x = 0, 1,

where

σ2(x) = e−k0x−
∫ x
0

k2u
∗
d2

(y)dy.

Similarly, if we define

σ1(x) = e−k0x−
∫

x
0

k1u
∗
d1

(y)dy,
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then ξ = 1 is an eigenvalue of (4.3) if and only if the following problem has a solution
(h1, h2) �= (0, 0):

(4.6)

⎧⎪⎪⎨
⎪⎪⎩
−D1h

′′
1 = [g1(σ1(x))− d1]h1

− g′1(σ1(x))u
∗
d1
(x)σ1(x)

∫ x

0 [k1h1(y) + k2h2(y)]dy, x ∈ (0, 1),

−D2h
′′
2 = [g2(σ1(x))− d2]h2, x ∈ (0, 1),
h′1 = h′2 = 0, x = 0, 1.

The following lemma holds the key for solving (4.5) and (4.6).
Lemma 4.1. Let i ∈ {1, 2}. If ψ ∈ C2([0, 1]) satisfies

(4.7){ −Diψ
′′ = [gi(σi(x)) − di]ψ − g′i(σi(x))u

∗
di
(x)σi(x)

∫ x

0
kiψ(y)dy, x ∈ (0, 1),

ψ′(0) = ψ′(1) = 0,

then ψ ≡ 0.
Proof. We argue indirectly. Suppose ψ �≡ 0 solves (4.7). We first claim that

ψ(0) �= 0. Otherwise, define

ξ(x) =

∫ x

0

ψ(y)dy, η(x) = ψ′(x).

Then (ξ(x), ψ(x), η(x)) is a solution of the ODE system

⎧⎨
⎩
ξ′ = ψ,
ψ′ = η,
η′ = −D−1

i [gi(σi(x)) − di]ψ +D−1
i g′i(σi(x))u

∗
di
(x)σi(x)kiξ,

with initial condition (ξ(0), ψ(0), η(0)) = (0, 0, 0). Clearly (ξ, ψ, η) ≡ (0, 0, 0) is the
unique solution of this initial value ODE problem. Hence ψ ≡ 0, contradicting our
assumption that ψ �≡ 0. This proves our claim that ψ(0) �= 0.

Without loss of generality we may assume that ψ(0) > 0. Next we claim that ψ(x)
changes sign in (0, 1). Otherwise ψ(x) ≥, �≡ 0 in [0, 1]. Multiply the first equation in
(4.7) by u∗di

and integrate it over [0, 1]; we easily deduce

∫ 1

0

(
g′i(σi(x))[u

∗
di
(x)]2σi(x)

∫ x

0

kiψ(y)dy
)
dx = 0.

But the integrand function of x is clearly nonnegative and not identically zero in [0, 1].
Hence the integral should be positive. This contradiction shows that ψ(x) changes
sign in (0, 1).

Let x0 ∈ (0, 1) be the first zero of ψ(x), namely, ψ(x) > 0 in [0, x0) and ψ(x0) = 0.
We now consider the eigenvalue problem

(4.8) −Diφ
′′ = [gi(σi(x)) − di]φ+ λφ in (0, x0), φ

′(0) = φ(x0) = 0.

We claim that the first eigenvalue λ1 of this problem is positive. Indeed, let φ1 be a
positive eigenfunction corresponding to λ1. By the Hopf boundary lemma, φ′1(x0) < 0.
Multiplying the first equation in (4.8) (with λ = λ1, φ = φ1) by u

∗
di

and integrating
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over [0, x0] we obtain∫ x0

0

[gi(σi)− di]φ1u
∗
di
+ λ1

∫ x0

0

φ1u
∗
di

= −Di

∫ x0

0

φ′′1u
∗
di

= −Diφ
′
1(x0)u

∗
di
(x0)−Di

∫ x0

0

(u∗di
)′′φ1

>

∫ x0

0

[gi(σi)− di]φ1u
∗
di
.

Hence λ1
∫ x0

0 φ1u
∗
di
> 0, which gives λ1 > 0, as claimed.

To obtain the desired contradiction, we now multiply the first equation in (4.8)
(with λ = λ1, φ = φ1) by ψ and then integrate it over [0, x0], which gives us∫ x0

0

[gi(σi)− di]φ1ψ + λ1

∫ x0

0

φ1ψ

= −Di

∫ x0

0

φ′′1ψ = −Di

∫ x0

0

ψ′′φ1

=

∫ x0

0

[gi(σi)− di]φ1ψ −
∫ x0

0

[
g′i(σi)σiu

∗
di

∫ x

0

kiψdy

]
φ1dx.

It follows that

(4.9) λ1

∫ x0

0

φ1ψ = −
∫ x0

0

[
g′i(σi)σiu

∗
di

∫ x

0

kiψdy

]
φ1dx.

Since λ1 > 0 and ψ(x) > 0 in [0, x0), the left side of the above identity is positive.
However, the bracketed integrand function on the right side of (4.9) is nonnegative,
and hence the right side of (4.9) is not positive. This contradiction completes the
proof.

Using Lemma 4.1, we can easily prove the following result.
Lemma 4.2. Problem (4.5) has a solution (h1, h2) �= (0, 0) if and only if h1 �= 0

and

−D1h
′′
1 = [g1(σ2(x)) − d1]h1, h

′
1(0) = h′1(1) = 0.

Moreover, with h1 given, h2 can be uniquely solved from the second equation in (4.5)
together with the Neumann boundary conditions.

Similarly, (4.6) has a solution (h1, h2) �= (0, 0) if and only if h2 �= 0 and

−D2h
′′
2 = [g2(σ1(x)) − d2]h2, h

′
2(0) = h′2(1) = 0.

Moreover, with h2 given, h1 can be uniquely solved from the first equation in (4.6)
together with the Neumann boundary conditions.

Proof. We consider only the statement for (4.5); the proof of that for (4.6) is
analogous. Let (h1, h2) solve (4.5). If h1 = 0, then by Lemma 4.1 we deduce h2 = 0.
Suppose now h1 �= 0. Then we can apply the Fredholm alternative for compact
operators and Lemma 4.1 to conclude that the second equation in (4.5) together with
the Neumann boundary conditions is uniquely solvable for any given h1.

Recall that

σ2(x) = σ2(d2, x) = e−k0x−
∫

x
0

k2u
∗
d2

(y)dy
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and

σ1(x) = σ1(d1, x) = e−k0x−
∫

x
0

k1u
∗
d1

(y)dy.

By Theorem 2.1(iv), we know that d2 → σ2(d2, x) is strictly increasing for x ∈ (0, 1].
This implies that

λ(d2) := −λ1
(− g1(σ2(d2, ·))

)
is strictly increasing for d2 ∈ (0, d∗2). By Theorem 2.1(i), we know that λ(d2) is
continuous. Since u∗d2

(x) → 0 uniformly in [0, 1] as d2 → d∗2 and u∗d2
(x) → ∞

uniformly in [0, 1] as d2 → 0, we easily see that

lim
d2→0

λ(d2) = 0, lim
d2→d∗

2

λ(d2) = d∗1.

Therefore for any given d1 ∈ (0, d∗1), there exists a unique d̂2 = d̂2(d1) ∈ (0, d∗1) such
that

(4.10) λ(d̂2) = d1.

Let us also introduce

(4.11) d̃2 = d̃2(d1) := −μ1

(− g2(σ1(d1, ·))
)
.

It is easily seen that d̃2 ∈ (0, d∗2).
We are now ready to state and prove our main result of this section.
Theorem 4.3. For fixed d1 ∈ (0, d∗1) let d̂2 and d̃2 be defined as above. Then (4.1)

has a positive solution (u1, u2) if d2 lies between d̂2 and d̃2. Moreover, there exists a
branch of positive solutions Γ = {(d2, u1, u2)} ⊂ R1×E×E that meets the semitrivial
solution branch Γ1 = {(d2, u∗d1

, 0) : d2 ∈ R1} precisely at (d̃2, u
∗
d1
, 0), and meets the

semitrivial solution branch Γ2 = {(d2, 0, u∗d2
) : d2 ∈ (0, d∗2)} precisely at (d̂2, 0, u

∗
d̂2
).

More accurately, Γ is a connected set in R1×E×E such that Γ∩Γ1 = {(d̃2, u∗d1
, 0)},

Γ ∩ Γ2 = {(d̂2, 0, u∗d̂2
)}, and Γ \ {(d̃2, u∗d1

, 0), (d̂2, 0, u
∗
d̂2
)} consists of positive solutions

of (4.1).
Proof. For clarity we divide the proof into four steps.
Step 1. We show that for any small δ > 0 and fixed d1 ∈ (0, d∗1), there exists C

such that any positive solution (u1, u2) of (4.1) with d2 ∈ [δ, d∗2 − δ] satisfies

(4.12) ‖u1‖∞ + ‖u2‖∞ < C.

Otherwise we can find a small δ > 0 and a sequence dn2 ∈ [δ, d∗2 − δ] such that (4.1)
with d2 = dn2 has a positive solution (un1 , u

n
2 ) satisfying

lim
n→∞(‖un1‖∞ + ‖un2‖∞) = ∞.

By passing to a subsequence, we have either ‖un2‖∞ → ∞ or ‖un1‖∞ → ∞. In the
first case, we define ûn = un2/‖un2‖∞. Then from the equation for un2 we deduce

(4.13) −D2û
′′
n =

[
g2(fn(x))− dn2 ]ûn, û

′
n(0) = û′n(1) = 0,

where

fn(x) = e−k0x−
∫ x
0
(k1u

n
1 +k2u

n
2 )dy.
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Since ‖ûn‖∞ = 1 and the right side of the first equation in (4.13) has a bound in
L∞([0, 1]) that is independent of n, by standard elliptic regularity we know that {ûn}
is precompact in C1([0, 1]). Hence by passing to a subsequence we may assume that
ûn → û in C1([0, 1]). Since 0 < fn(x) ≤ 1 and δ ≤ dn2 ≤ d∗2 − δ, by passing to a
subsequence we may assume that fn → f weakly in L2([0, 1]) and dn2 → d∞2 , with
0 ≤ f ≤ 1 and d∞2 ∈ [δ, d∗2 − δ]. Since g2 is C1, we easily see that g2(fn) → g2(f)
weakly in L2([0, 1]). Thus û is a weak solution to

−D2û
′′ = [g2(f(x)) − d∞2 ]û, û′(0) = û′(1) = 0.

Clearly û ≥ 0 and ‖û‖∞ = 1. Thus we can apply the strong maximum principle to
conclude that û(x) > 0 in [0, 1]. This implies that un2 (x) → ∞ uniformly in [0, 1], and
hence f ≡ 0, g2(f) ≡ 0. Thus û is a positive solution of

−D2û
′′ = −d∞2 û, û′(0) = û′(1) = 0.

This implies that −d∞2 = μ1(0) = 0, a contradiction to d∞2 ∈ [δ, d∗2 − δ].
If ‖un1‖∞ → ∞, then we can use the equation for un1 and a similar argument to

reach a contradiction. This completes the proof of Step 1.
Step 2. We show that if δ > 0 is small enough, then (4.1) has no positive solution

if d2 �∈ (δ, d∗2 − δ).
Otherwise, due to (4.2), we can find dn2 ↓ 0 or dn2 ↑ d∗2 and a positive solution

(un1 , u
n
2 ) of (4.1) with d2 = dn2 . In the first case we define ûn and fn as in Step 1 above

and find by the same reasoning that by passing to a subsequence ûn → û in C1([0, 1]),
fn → f and g2(fn) → g2(f) weakly in L2([0, 1]), and û is a positive solution to

−D2û
′′ = g2(f)û, û′(0) = û′(1) = 0.

Integrating the first equation for x over [0, 1], we deduce
∫ 1

0 g2(f)ûdx = 0. Since û > 0
in [0, 1] and g2(f(x)) ≥ 0 in [0, 1], the above identity implies that g2(f(x)) = 0 a.e. in
[0, 1]. It follows that f(x) = 0 a.e. in [0, 1].

Now we define v̂n = un1/‖un1‖∞ and obtain from the equation for un1 that

−D1v̂n = [g1(fn(x)) − d1]v̂n, v̂′n(0) = v̂′n(1) = 0.

As before by elliptic regularity, subject to passing to a subsequence, v̂n → v̂ in
C1([0, 1]) and g2(fn) → g1(f) = 0 weakly in L2([0, 1]), and v̂ is a positive solution to

−D1v̂
′′ = −d1v̂, v̂′(0) = v̂′(1) = 0.

This implies d1 = 0, a contradiction to our assumption d1 ∈ (0, d∗1).
Next we consider the case dn2 → d∗2. We define ûn, v̂n, and fn as above. By

the same argument we know that by passing to a subsequence, ûn → û and v̂n → v̂
in C1([0, 1]), fn → f and gi(fn) → gi(f) weakly in L2([0, 1]), and û, v̂ are positive
solutions to

(4.14) −D2û
′′ = [g2(f)− d∗2]û, û′(0) = û′(1) = 0

and

(4.15) −D1v̂
′′ = [g1(f)− d1]v̂, v̂′(0) = v̂′(1) = 0,

respectively.
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Let us now look at the sequence {‖un1‖∞}. If this sequence is not bounded, then
by passing to a subsequence we have ‖un1‖∞ → ∞ and hence un1 = ‖un1‖∞v̂n → ∞
uniformly in [0, 1]. This implies that f ≡ 0, and hence (4.15) becomes

−D1v̂
′′ = −d1v̂, v̂′(0) = v̂′(1) = 0,

which implies d1 = 0, a contradiction. Thus {‖un1‖∞} is bounded. For the same
reason, {‖un2‖∞} is bounded. So we may assume that

‖un1‖∞ → α1 ≥ 0, ‖un2‖∞ → α2 ≥ 0.

It then follows that

fn(x) → e−k0x−
∫

x
0
(k1α1v̂+k2α2û)dy uniformly in [0, 1].

Thus

f(x) = e−k0x−
∫

x
0
(k1α1v̂+k2α2û)dy ≤ e−k0x,

with equality holding for all x ∈ [0, 1] if and only if α1 = α2 = 0. It follows that
g2(f(x)) ≤ g2(e

−k0x), with equality holding for all x ∈ [0, 1] if and only if α1 = α2 = 0.
From this and (4.14) we deduce

d∗2 = −μ1(−g2(f)) ≤ −μ1(−g2(e−k0x)),

with equality holding if and only if α1 = α2 = 0. Thus in view of the definition of d∗2,
we necessarily have α1 = α2 = 0 and thus f(x) = e−k0x. We now use (4.15) and find

d1 = −λ1(−g1(f)) = −λ1(−g1(e−k0x)).

That is, d1 = d∗1, a contradiction to our assumption on d1. This completes our proof
of Step 2.

Step 3. Global bifurcation analysis. Let us now fix δ > 0 small enough such that
(4.1) has no positive solution for d2 �∈ Λ := (δ, d∗2 − δ), and d̃2, d̂2 ∈ Λ. Then define
Ω = Λ× U × V with

U = {u1 ∈ P : ‖u1‖∞ < C}, V = {u2 ∈ P : ‖u2‖∞ < C},
where C > 0 is large enough such that (4.12) holds and ‖u∗d1

‖∞ < C.
We are going to apply the global bifurcation result of [5], namely, [5, Theorem 2.3],

to the operator

(d2, u1, u2) ∈ Ω → A(d2, u1, u2) ∈ P × P.

It is easily seen that the conditions (I′), (II′), and (III′) in that theorem are satisfied,
with T = {(u∗d1

, 0)}. By that theorem, if for some small ε > 0, A(d2, u1, u2) = (u1, u2)

has no bifurcation value in (d̃2 − ε, d̃2) ∪ (d̃2, d̃2 + ε), and

(4.16) indexP×P (A(λ, ·), (u∗d1
, 0)) �= indexP×P (A(μ, ·), (u∗d1

, 0))

for λ ∈ (d̃2 − ε, d̃2), μ ∈ (d̃2, d̃2 + ε), then
(i) d2 = d̃2 is a bifurcation value;
(ii) there is a connected set Σ ⊂ Σ∗, where Σ∗ = {(d2, u1, u2) ∈ Ω : A(d2, u1, u2) =

(u1, u2), u2 �= 0}, such that Σ contains the point (d̃2, u
∗
d1
, 0) and
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(a) a point (λ0, u
∗
d1
, 0) with λ0 �= d̃2, or

(b) a point in ∂Ω, or
(c) a point in Λ × (0, 0),
where

∂Ω := {(d2, u1, u2) ∈ Ω : d2 = δ, or d2 = d∗2−δ, or ‖u1‖∞ = C, or ‖u2‖∞ = C}.
By Lemma 4.2 we find that for ε > 0 small and d2 ∈ [d̃2 − ε, d̃2 + ε] \ {d̃2},

(u∗d1
, 0) is a nondegenerate solution of (4.1). Thus there is no bifurcation value in

[d̃1 − ε, d̃2 + ε] \ {d̃2}. It follows that the fixed point indices (with respect to the cone
P × P ) in (4.16) are well-defined and are independent of λ and μ in their respective
given ranges.

Suppose for the moment that (4.16) holds; we now analyze the connected set Σ.
We first observe that Σ ∩ Γ1 = {(d̃2, u∗d1

, 0)}. Indeed, suppose (λ, u∗d1
, 0) ∈ Σ ∩ Γ1.

Then we can find a sequence of points (dn2 , u
n
1 , u

n
2 ) ∈ Σ∗ that converges to (λ, u∗d1

, 0)
in R1 × E × E. Using the equation for un2 , we obtain

−dn2 = μ1(−g2(e−k0x−
∫ x
0
(k1u

n
1 +k2u

n
2 )dy)) → μ1(−g2(e−k0x−

∫
x
0

k1u
∗
d1

dy)) = −d̃2.
Hence λ = d̃2. This proves Σ ∩ Γ1 = {(d̃2, u∗d1

, 0)}, which implies that alternative (a)
cannot occur.

We now show that alternative (c) does not happen either. Otherwise, we can find
a sequence of points (dn2 , u

n
1 , u

n
2 ) ∈ Σ∗ that converges to (λ, 0, 0) ∈ Λ × (0, 0). Again

we use the equation for un2 and obtain

−dn2 = μ1(−g2(e−k0x−
∫ x
0
(k1u

n
1 +k2u

n
2 )dy)) → μ1(−g2(e−k0x)) = −d∗2.

Thus d∗2 = λ ∈ Λ = (δ, d∗2 − δ), which is a contradiction. Hence (c) cannot occur.
So alternative (b) necessarily happens. But by our choice of δ and C used in

the definition of Ω, no positive solution (d2, u1, u2) belongs to ∂Ω. Thus necessarily
Σ ∩ ∂Ω consists of semitrivial solutions. Since Σ ∩ Γ1 = {(d̃2, u∗d1

, 0)} and d̃2 ∈ Λ,
‖u∗d1

‖∞ < C, the semitrivial solutions in Σ ∩ ∂Ω must belong to Γ2. This shows that
Σ intersects Γ2.

We show next that Σ has a subset Γ which is connected and has the following
properties:

Γ ∩ Γ2 = {(d̂2, 0, u∗d̂2
)}, Γ ∩ Γ1 = {(d̃2, u∗d1

, 0)},

Γ \ {(d̃2, u∗d1
, 0), (d̂2, 0, u

∗
d̂2
)} consists of positive solutions of (4.1).

To this end we consider Γ∗ := Σ \ Γ2. By what was proved above, we know that
(d̃2, u

∗
d1
, 0) ∈ Γ∗. From the connectedness of Σ we easily deduce that Γ∗ ∩ Γ2 �= ∅.

Then much as before we can show that Γ∗ ∩ Γ2 = {(d̂2, 0, u∗d̂2
)}. We claim that

Γ∗ has a connected component Γ which contains both (d̂2, 0, u
∗
d̂2
) and (d̃2, u

∗
d1
, 0).

Otherwise, let Γ1∗ be the maximal connected subset of Γ∗ containing (d̃2, u
∗
d1
, 0); then

Γ1
∗ and Σ \ Γ1

∗ have positive distance to each other, which implies that Σ is not
connected. This proves that the above-mentioned Γ does exist. Much as before we
can easily show that Γ ∩ Γ2 = {(d̂2, 0, u∗d̂2

)} and Γ ∩ Γ1 = {(d̃2, u∗d1
, 0)}. It follows

that Γ \ {(d̃2, u∗d1
, 0), (d̂2, 0, u

∗
d̂2
)} consists of positive solutions of (4.1).

To complete the proof of the theorem, it remains to prove (4.16).
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Step 4. Fixed point index calculation. We now calculate the fixed point indices
appearing in (4.16) by making use of Theorem 2.1 in [4]. Let B1 be a small ball in E
containing u∗d1

. Since u∗d1
∈ P ◦, we may assume that B1 ⊂ P ◦. Then by Theorem 2.1

of [4], we have

indexP×P (A(d2, ·), (u∗d1
, 0)) =

{
0 if r(L) > 1,
degP (I −A1(·, 0), B1) if r(L) < 1,

where L = (A2)
′
u2
(u∗d1

, 0) and r(L) denotes the spectral radius of the linear operator L.

It is easily checked that r(L) > 1 if d2 < −μ1(−g2(σ1)) = d̃2, and r(L) < 1 if
d2 > −μ1(−g2(σ1)) = d̃2. Thus

indexP×P (A(d2, ·), (u∗d1
, 0)) =

{
0 if d2 < d̃2,

degP (I −A1(·, 0), B1) if d2 > d̃2.

We show next that

degP (I −A1(·, 0), B1) = 1.

Since u∗d1
is the only fixed point of A1(·, 0) in B1, we clearly have

degP (I −A1(·, 0), B1) = indexP (A1(·, 0), u∗d1
).

We will use a homotopy argument to A1(λ, u1, 0) = L1 ◦ G1(λ, u1, 0) with
λ ∈ [d1, d

∗
1 + 1]. By Theorem 2.1 we know that for λ ∈ [d1, d

∗
1) the equation

A1(λ, u, 0) = u has exactly two solutions in P : The trivial solution u = 0 and the
unique positive solution u = uλ > 0. For λ ∈ [d∗1, d

∗
1 + 1], there is one solution in P :

u = 0. Moreover, one easily sees that 0 is a linearized stable fixed point of A1(λ, ·, 0)
when λ > d∗1, and it is a linearized unstable fixed point when λ < d∗1. It follows that

indexP (A1(λ, ·, 0), 0) = 0 for λ < d∗1, and this index is 1 for λ > d∗1.

Choose C0 > 0 large enough such that ‖uλ‖∞ < C0 for λ ∈ [d1, d
∗
1), and denote

PC0 := {u ∈ P : ‖u‖∞ < C0}. Then by the homotopy invariance property of
the topological degree, we find that degP (I − A(λ, ·, 0), PC0) is well-defined and its
value does not depend on λ for λ ∈ [d1, d

∗
1 + 1]. By the additivity of the topological

degree we have

degP (I −A1(λ, ·, 0), PC0) = indexP (A1(λ, ·, 0), 0) + indexP (A1(λ, ·, 0), uλ)
= indexP (A1(λ, ·, 0), uλ)

for λ ∈ [d1, d
∗
1), and

degP (I −A(λ, ·, 0), PC0) = indexP (A1(λ, ·, 0), 0) = 1

for λ ∈ (d∗1, d∗1 + 1]. It follows that

indexP (A1(λ, ·, 0), uλ) = 1

for λ ∈ [d1, d
∗
1). Taking λ = d1 we obtain

degP (I −A1(·, 0), B1) = indexP (A1(·, 0), u∗d1
) = 1.

Thus (4.16) holds, and the proof is complete.
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Remark 4.4. The degree calculation methods developed in [4, 6] and the bifurca-
tion method of [5] can also be used to study the existence of positive steady states of
the phytoplankton model with three or more species.

We note that the global bifurcation arguments in [2] do not seem easily applicable
to our problem here. First, in the abstract global bifurcation result in [2] the fixed
point index in the entire space is required, which was calculated there based on a good
understanding of the eigenvalues of (4.3) with ξ �= 1. This seems difficult to obtain
due to the nonlocal terms in our problem. Second, the analysis in [2] also relies on the
local bifurcation result of [3], which requires the bifurcation point to correspond to a
simple eigenvalue. In contrast, the global bifurcation result of [5] used here involves
the fixed point index in the positive cone, which depends on (4.3) with ξ = 1 and
the second equation in (4.6), which are much easier to handle. Moreover, the result
of [5] can be used to discuss systems with more than two equations. (The fixed point
index calculation in [2] can also be done by using Theorem 3.1 in [5], which avoids
the analysis of the eigenvalues of (4.3) with ξ �= 1.)

We complete this section with some further analysis on d̂2 and d̃2. We now regard
di ∈ (0, d∗i ) (i = 1, 2) as fixed and examine the variation of d̂2 and d̃2 as k1 and k2
vary. Let us note that by definition d∗1 and d∗2 are independent of k1 and k2. We now
denote the unique positive solution of the equation for u1 in (4.1) by u†k1

. It is easily

checked that u†k1
= k1u

†
1. Thus

σ1(x) = e−k0x−
∫

x
0

k2
1u

†
1dy.

It follows that

d̃2 = −μ1(−g2(σ1))

is continuous and strictly decreasing in k1 and

lim
k1→0

d̃2 = d∗2, lim
k1→∞

d̃2 = 0.

Thus there exists a unique k∗1 > 0 such that

d̃2 = d2 if k1 = k∗1 , d̃2 < d2 if k1 > k∗1 , d̃2 > d2 if 0 < k1 < k∗1 .

Similarly, if we define

d̃1 = −λ1(−g1(σ2)),

then there exists a unique k∗2 > 0 such that

d̃1 = d1 if k2 = k∗2 , d̃1 < d1 if k2 > k∗2 , d̃1 > d1 if 0 < k2 < k∗2 .

On the other hand, it is easily seen that

d1 < d̃1 and d2 < d̃2 imply d̂2 < d2 < d̃2

and

d1 > d̃1 and d2 > d̃2 imply d̂2 > d2 > d̃2.
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Hence we can use Theorem 4.3 to obtain the following conclusion:
For fixed di ∈ (0, d∗i ) (i = 1, 2), if (k1 − k∗1)(k2 − k∗2) > 0, then (4.1) has at least

one positive solution.
We conjecture that (4.1) has no positive solution when (k1 − k∗1)(k2 − k∗2) < 0,

and it has a continuum of positive solutions when k1 = k∗1 and k2 = k∗2 .
Remark 4.5. It can be shown that when 0 < di < d̃i (i = 1, 2), the set of positive

solutions of (4.1) has topological degree 1, and if di > d̃i (i = 1, 2), the set of positive
solutions of (4.1) has topological degree −1. The first conclusion can be extended to
the n ≥ 3 species case (by arguments similar to those in [6]).

5. Uniform persistence and extinction for the two-species model. In
this section we consider the corresponding parabolic system of (4.1), namely,

(5.1)

⎧⎪⎪⎨
⎪⎪⎩

(u1)t = D1(u1)xx +
[
g1(I(x, t)) − d1

]
u1, 0 < x < 1, t > 0,

(u2)t = D2(u2)xx +
[
g2(I(x, t)) − d2

]
u2, 0 < x < 1, t > 0,

(ui)x(0, t) = (ui)x(1, t) = 0, t > 0, i = 1, 2,
ui(x, 0) = u0i (x), 0 < x < 1, i = 1, 2,

where u01, u
0
2 ∈ P , g1(I), g2(I) satisfy (2.4), and

I(x, t) = e−k0x exp
(
−
∫ x

0

[
k1u1(y, t) + k2u2(y, t)

]
dy

)
,

with k0, k1, k2 > 0.
If the initial data in (5.1) satisfy u01 ∈ Ṗ and u02 ≡ 0, then from the results in

section 3 we have the following:

(i) If 0 < d1 < d∗1, then u1(x, t) → u∗1(x) > 0 as t→ ∞, u2(x, t) ≡ 0.(5.2)

(ii) If d1 ≥ d∗1, then u1(x, t) → 0 as t→ ∞, u2(x, t) ≡ 0,

where we use u∗i to denote u∗di
for convenience.

Similarly, if u02 ∈ Ṗ and u01 ≡ 0, then we have the following:

(i) If 0 < d2 < d∗2, then u2(x, t) → u∗2(x) > 0 as t→ ∞, u1(x, t) ≡ 0.(5.3)

(ii) If d2 ≥ d∗2, then u2(x, t) → 0 as t→ ∞, u1(x, t) ≡ 0.

Next we consider the case that u0i ∈ Ṗ for i = 1, 2. By standard arguments one
sees that (5.1) has a unique solution (u1, u2) and ui(x, t) > 0 for t > 0 and x ∈ [0, 1].
Since

(ui)t ≤ Di(ui)xx + [gi(1)− di]ui,

one can use the comparison principle to see that ui does not blow up in finite time,
and hence it is defined for all t > 0. We show next that it is uniformly bounded for
all t > 0. Indeed, since gi(I) ≤ σI for some σ > 0 and I ∈ [0, 1], we have, for i = 1, 2,

(ui)t ≤ Di(ui)xx + [σe−ki

∫ x
0

uidy − di]ui.

Hence by the argument used in the proof of Lemma 3.2 we deduce that for some
C > 0,

(5.4) 0 ≤ ui(x, t) ≤ C for all x ∈ [0, 1] and t > 0.
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Theorem 5.1 (uniform persistence). If 0 < d1 < d̃1 and 0 < d2 < d̃2, then the
system (5.1) with initial data u0i ∈ Ṗ (i = 1, 2) is uniformly persistent: There exists
ε0 > 0 such that

lim inf
t→∞ ‖u1(·, t)‖∞ ≥ ε0, lim inf

t→∞ ‖u2(·, t)‖∞ ≥ ε0.

Proof. We apply a general result of Hale and Waltman, namely, Theorem 4.1
in [11]. We note that (5.1) generates a semigroup (more often called a semiflow) T (t)
on P × P , and T (t) is compact for t > 0. By the results of section 3 (for semitrivial
solutions) and (5.4) (for positive solutions), T (t) is point dissipative in P × P .

Let

X0 = Ṗ × Ṗ and X = X0 = P × P.

Then X0 is invariant and relatively open in X , and ∂X0 = (P×{0})∪({0}×P ) is also
invariant. From Theorem 3.3, the rest pointM1 = (u∗1, 0) attracts (u

0
1, 0) with u

0
1 ∈ Ṗ ,

and M2 = (0, u∗2) attracts (0, u
0
2) with u

0
2 ∈ Ṗ . The omega limit sets of the semiflow

on ∂X0, denoted by Ã∂ , are given by Ã∂ = {M0, M1, M2}, where M0 = (0, 0). Now
M = {M0, M1, M2} is a covering of Ã∂ . From (5.2) and (5.3), M0 is a repeller,
M contains no cycle, and this covering is isolated. To apply Theorem 4.1 in [11], it
remains to check that the stable set ofMi, denoted byW s(Mi), does not intersect X

0,
that is, W s(Mi) ∩X0 = ∅.

Suppose that (u01, u
0
2) ∈ X0 lies in the stable set of M1 = (u∗1, 0), so that

the unique solution (u1(x, t), u2(x, t)) of (5.1) with these initial conditions satisfies
limt→∞ u1(·, t) = u∗1(·) and limt→∞ u2(·, t) = 0 uniformly in [0, 1]. Then for any given
ε > 0 there exists a t0 > 0 such that for t ≥ t0,

g2(I(x, t)) > g2(e
−k0x−k1

∫
x
0

u∗
1(s)ds)− ε, x ∈ [0, 1].

Hence for t ≥ t0, u2(x, t) satisfies

(u2)t = D2(u2)xx +
[
g2(I(x, t)) − d2

]
u2

≥ D2(u2)xx +
[
g2(e

−k0x−k1

∫
x
0

u∗
1(s)ds)− ε − d2

]
u2.

Comparing u2(x, t) with the unique solution of

(U2)t = D2(U2)xx +
[
g2(e

−k0x−k1

∫
x
0

u∗
1(s)ds)− ε− d2

]
U2,

(U2)x(0, t) = 0, (U2)x(1, t) = 0,

U2(x, t0) =
1

2
u2(x, t0),

we deduce

u2(x, t) > U2(x, t) for t > t0.

On the other hand, if ε > 0 has been chosen sufficiently small so that d2 + ε < d̃2 =
−μ1(−g2(σ1)), then U2(x, t) → ∞ as t→ ∞ uniformly for x ∈ [0, 1]. Thus we obtain
a contradiction.

Similarly, using 0 < d1 < d̃1 we can show that W s(M2) ∩X0 = ∅.
Finally if (u01, u

0
2) ∈ X0 lies in the stable set of M0 = (0, 0), then we can similarly

deduce that

u2(x, t) > U0(x, t) for all large t,
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where U0 is the solution of the equation for U2 except that u∗1 is replaced by 0. Since
U0(x, t) → ∞ we obtain a contradiction.

Thus Theorem 4.1 of [11] can be applied, and the proof is complete.
Remark 5.2. From Theorem 1.3.7 in [27], uniform persistence implies the exis-

tence of a positive steady state of (5.1). Since the assumptions in Theorem 5.1 imply

d̂2 < d2 < d̃2, this conclusion also follows from Theorem 4.3 of the previous section.
On the other hand, when d1 > d̃1 and d2 > d̃2, we have d̂2 > d2 > d̃2, and hence (5.1)
has a positive steady state by Theorem 4.3. However, it is easily checked that in this
case (5.1) is not uniformly persistent.

Theorem 5.3 (extinction). Let (u1, u2) be the unique solution of (5.1) with
initial data u0i ∈ Ṗ (i = 1, 2). Then the following conclusions hold:

(1) If d1 ≥ d∗1 and d2 ≥ d∗2, then limt→∞ u1(x, t) = 0 and limt→∞ u2(x, t) = 0
uniformly in x ∈ [0, 1].

(2) If 0 < d1 < d∗1 and d2 ≥ d∗2, then limt→∞ u1(x, t) = u∗1(x) and limt→∞ u2(x, t)
= 0 uniformly in x ∈ [0, 1].

(3) If d1 ≥ d∗1 and 0 < d2 < d∗2, then limt→∞ u1(x, t) = 0 and limt→∞ u2(x, t) =
u∗2(x) uniformly in x ∈ [0, 1].

Proof. Suppose that d1 ≥ d∗1 and d2 ≥ d∗2. For i = 1, 2, from the equation for ui
we obtain

(ui)t −Di(ui)xx ≤ [
gi(e

−k0x−
∫

x
0

kiuidy)− di]ui.

Applying the strong maximum principle to the equation satisfied by ui we deduce
ui(x, 1) > 0 in [0, 1]. Let u0i = 1

2ui(x, 1) and let Ui be the unique solution to

(5.5)

⎧⎨
⎩

Ut = DiUxx +
[
gi(e

−k0x−
∫ x
0

kiUdy)− di
]
U, 0 < x < 1, t > 0,

Ux(0, t) = Ux(1, t) = 0, t > 0,
U(x, 0) = u0i (x), 0 < x < 1.

By Lemma 3.1 we deduce that vi(x, t + 1) < Vi(x, t) for t > 0 and x ∈ (0, 1], where
vi(x, t) =

∫ x

0
ui(y, t)dy, Vi(x, t) =

∫ x

0
Ui(y, t)dy.

Since di ≥ d∗i , from our results in section 3 we know that limt→∞ Ui(x, t) = 0
uniformly in x ∈ [0, 1]. It follows that limt→∞ Vi(x, t) = 0 uniformly in x ∈ [0, 1] and
hence limt→∞ vi(x, t) = 0 uniformly in x ∈ [0, 1]. We may now use (5.4) and parabolic
regularity much as in the proof of Theorem 3.3 to conclude that limt→∞ ui(x, t) = 0
uniformly in x ∈ [0, 1]. This proves conclusion (1).

We next prove conclusion (2). Since d2 ≥ d∗2, the above argument can be repeated
to show that limt→∞ u2(x, t) = 0 uniformly in x ∈ [0, 1]. Therefore for any given small
ε > 0 we can find t0 > 0 such that

g1(I(x, t)) ∈ [g1(e
−k0x−

∫
x
0

k1u1dy)− ε, g1(e
−k0x−

∫
x
0

k1u1dy) + ε]

for all t ≥ t0 and x ∈ [0, 1]. It follows that for such x and t,

(u1)t −D1(u1)xx ≥ [g1(e
−k0x−

∫
x
0

k1u1dy)− ε− d1]u1,

(u1)t −D1(u1)xx ≤ [g1(e
−k0x−

∫
x
0

k1u1dy) + ε− d1]u1.

Let uε(x, t) be the unique solution to⎧⎨
⎩

ut = D1uxx +
[
g1(e

−k0x−
∫

x
0

kiudy)− ε− d1
]
u, 0 < x < 1, t > t0,

ux(0, t) = ux(1, t) = 0, t > t0,
u(x, t0) =

1
2u1(x, t0), 0 < x < 1.
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Then by Theorem 3.3 we have

lim
t→∞uε(x, t) = u∗d1+ε(x)

uniformly in x ∈ [0, 1], where u∗d1+ε denotes the unique positive steady state of the
above problem.

By Lemma 3.1 we deduce

v1(x, t) :=

∫ x

0

u1(y, t)dy >

∫ x

0

uε(y, t)dy for t > t0, x > 0.

It follows that

lim inf
t→∞ v1(x, t) ≥

∫ x

0

u∗d1+ε(y)dy.

Letting ε→ 0, we obtain

lim inf
t→∞ v1(x, t) ≥

∫ x

0

u∗d1
(y)dy.

Similarly, if uε is the unique solution to⎧⎨
⎩

ut = D1uxx +
[
g1(e

−k0x−
∫

x
0

kiudy) + ε− d1
]
u, 0 < x < 1, t > t0,

ux(0, t) = ux(1, t) = 0, t > t0,
u(x, t0) =

3
2u1(x, t0), 0 < x < 1,

then we can make use of Theorem 3.3 and Lemma 3.1 to deduce that

lim sup
t→∞

v1(x, t) ≤
∫ x

0

u∗d1−ε(y)dy.

Letting ε→ 0, we obtain

lim sup
t→∞

v1(x, t) ≤
∫ x

0

u∗d1
(y)dy.

Thus we must have

lim
t→∞ v1(x, t) =

∫ x

0

u∗d1
(y)dy.

We may now use (5.4) and the parabolic regularity theory to conclude, as in the proof
of Theorem 3.3, that u1(x, t) → u∗d1

(x) as t→ ∞ uniformly in x ∈ [0, 1]. This proves
conclusion (2).

The proof of conclusion (3) is parallel to the proof of (2) above.
Theorem 5.1 can be extended to the n ≥ 3 species case. A complete understanding

of the dynamical behavior for the model with three or more species seems out of reach
at the moment. For the two-species model, we conjecture the following:

1. If 0 < d2 < d̃2 and d̃1 < d1 < d∗1, then limt→∞ u1(x, t) = 0 and limt→∞ u2
(x, t) = u∗2(x) uniformly in x ∈ [0, 1].

2. If 0 < d1 < d̃1 and d̃2 < d2 < d∗2, then limt→∞ u1(x, t) = u∗1(x) and
limt→∞ u2(x, t) = 0 uniformly in x ∈ [0, 1].

3. If d̃1 < d1 < d∗1 and d̃2 < d2 < d∗2, then the competition outcomes depend on
the initial data.

4. If 0 < d1 < d̃1 and 0 < d2 < d̃2, then there exists a unique positive steady
state (uc1(·), uc2(·)) such that limt→∞ u1(x, t) = uc1(x), limt→∞ u2(x, t) = uc2(x)
uniformly in x ∈ [0, 1] for any initial data u0i ∈ Ṗ (i = 1, 2).
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