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POSITIVITY AND OPTIMIZATION FOR

SEMI-ALGEBRAIC FUNCTIONS

JEAN B. LASSERRE AND MIHAI PUTINAR

Abstract. We describe algebraic certificates of positivity for functions
belonging to a finitely generated algebra of Borel measurable functions,
with particular emphasis to algebras generated by semi-algebraic func-
tions. In which case the standard global optimization problem with con-
straints given by elements of the same algebra is reduced via a natural
change of variables to the better understood case of polynomial opti-
mization. A collection of simple examples and numerical experiments
complement the theoretical parts of the article.

1. Introduction

Key sums of squares representation results from real algebraic geometry
have been successfully applied during the last decade to polynomial opti-
mization. Indeed, for instance, by combining such results with semidefinite
programing (a powerful tool of convex optimization), one may approximate
as closely as desired (or sometimes compute exactly) the global minimum of
a polynomial over a compact basic semi-algebraic set. Several other exten-
sions have also been proposed for finding real zeros of polynomials equations,
minimizing a rational function, and solving the generalized problem of mo-
ments with polynomial data. For more details on this so-called moment-sos
approach the interested reader is referred to e.g. [19] and the many refer-
ences therein.

Even though questions involving polynomial data represent a sufficiently
large framework, one may wonder whether this approach can be extended to
a more general class of problems that involve some larger algebra than the
polynomial ring. Typical examples are algebras generated by the polyno-
mials and some elementary functions like the absolute value, trigonometric
polynomials, exponentials, splines or discontinuous step functions.

To mention only one classical source of such natural generalizations we
invoke the original works of Tchebysheff and Markov concerning the limiting
values of integrals of specific measures with a finite number of prescribed
moments against non-polynomial functions. A variety of remarkable re-
sults: first on the theoretical side [13, 14], then in statistics [7, 8, 10, 11],
numerical integration [3] and not last in the theory of best approximation
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[29, 11] have resulted from Tchebysheff-Markov work. All these researches,
plus quite recent contingent works, such as wavelet decomposition of func-
tions, involve non-polynomial moment problems. In this respect, our essay
provides an algebraic analysis of positivity in the “pre-dual’ of concrete dis-
tribution/measure spaces. The importance of non-polynomial solutions to
classical problems in the polynomial algebra, such as Hilbert’s 17-th Prob-
lem, was early recognized, see for instance [4, 5] and also [1].

Contribution. The purpose of this paper is to povide a first step
in the understanding of Positivestellensätze in algebras generated by non-
polynomials functions, and to provide a robust relaxation method for the
numerical verification of the constrained positivity of such functions as well
as for optimization purposes.

(a) First we consider the case of an algebra A of functions generated by a
finite family of functions that contains the polynomials. In this context we
prove a Positivstellensatz for a function positive on a compact set K ⊂ R

n

defined by finitely many inequality constraints involving functions of this
algebra. When A is the polynomial ring the set K is a basic semi-algebraic
set and one retrieves a Positivstellensatz due the second author [23].

(b) Further on we consider a slightly different framework. The algebra A
now consists of functions generated by basic monadic and dyadic relations on
polynomials. The monadic operations are | · | and (·)1/p, p = 1, 2, . . ., while
the dyadic operations are (+,×, /,∧,∨). Notice that this algebra contains
highly nonlinear and nondifferentiable functions! We then show that this
algebra is a subclass of semi-algebraic functions and every element of A has
the very nice property that it has a lifted basic semi-algebraic representation.
As in (a) we provide an extension to this algebra of the Positivstellensatz
due the second author for polynomials [23].

(c) Finally, in both cases (a) and (b) we also provide a converging hi-
erarchy of semidefinite relaxations for optimization. Actually, the original
problem in the algebra reduces to an equivalent polynomial optimization
problem in a lifted space. The dimension of the lifting (i.e. the number of
additional variables) is directly related to the number of elementary opera-
tions on polynomials needed to define the functions in the description of the
original problem. Moreover, the resulting polynomial optimization problem
exhibits a natural sparsity pattern with respect to the lifted variables for
which the important running intersection property holds true. Therefore, if
on the one hand one has to handle additional variables, on the other hand
this increase in dimension is partly compensated by this sparsity patterns
that permits to apply the sparse semidefinite relaxations defined in [28] and
whose convergence was proved in [18]. To the best of our knowledge, the
present article outlines a first systematic generalization of the moment-sos
approach initiated in [16, 17, 21] for polynomial optimization to algebras of
non-polynomial functions and to (global) semi-algebraic optimization.
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2. Preliminaries and main result

Although a more general abstract measure space or probability space
framework is very natural for the main results of the present article, due to
the optimization theory applications, we confine ourselves to an algebra of
Borel measurable functions defined on a set of the Euclidean space.

We start by recalling a few standard definitions from real algebra, [22].
Specifically, let X ⊂ R

d be a Borel measurable set and let A be a unital
algebra of real valued Borel measurable functions defined on X. We denote
by ΣA2 the convex cone of squares of elements of A. A quadratic module
Q ⊂ A is a convex cone containing 1, such that

(ΣA2) ·Q ⊂ Q.

In practice we deal with finitely generated quadratic modules, of the form

Q = ΣA2 +ΣA2 · h1 + ...+ΣA2 · hm,

where h1, ..., hm ∈ A. The positivity set of a quadratic module Q is by
definition

P (Q) = {x ∈ X : f(x) ≥ 0, ∀f ∈ Q}.

Similarly to complex algebraic geometry, the duality between a quadratic
module and its positivity set lies at the heart of real algebraic geometry
[1, 22]. An useful tool for implementing this duality is provided by the
abstract moment problem on the algebra A, from where we import a simple
definition: we say that the quadratic module Q ⊂ A possesses the moment
property if every linear functional L ∈ A′ which is non-negative on Q is
represented by a positive Borel measure µ supported by P (Q).

Also, for duality type arguments, we recall the following concept: an
element f of a convex cone C ⊂ A lies in the algebraic interior of C, if
for every h ∈ A there exists ǫ > 0 with the property f + th ∈ C for all
t, 0 ≤ t < ǫ.

The starting point of all representation theorems below is the following
simple but crucial observation. Unless otherwise stated, all measurable func-
tions and sets below are meant to be Borel mesurable.

Proposition 1. Let A be a unital algebra of measurable functions defined
on the measurable subset X ⊂ R

d. Let Q ⊂ A be a quadratic module with
an algebraic interior point and possessing the moment property.

If a function f ∈ A is positive on P (Q), then f ∈ Q.

Proof. Assume by contradiction that f /∈ Q, and let ξ be an interior point
of Q. By the separation theorem for convex sets, see [12], or for a historical
perspective [9, 15], there exists a linear functional L ∈ A satisfying

L(f) ≤ 0 ≤ L(h), h ∈ Q, L(ξ) > 0.
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By assumption there exists a positive Borel measure µ, such that

L(a) =

∫

P (Q)
dµ, a ∈ A.

Since L(ξ) > 0 we infer that the measure µ is non-zero. On the other hand,
f |P (Q) > 0 and L(p) ≤ 0, a contradiction. �

The converse is also notable:

Corollary 1. Assume X compact and A ⊂ C(X) is a subalgebra of contin-
uous functions which separates the points of X. Let Q ⊂ A be a quadratic
module with the constant function 1 in its algebraic interior and suppose
that every f ∈ A which is positive on P (Q) belongs to Q. Then Q has the
moment property.

Proof. Let L ∈ A′ be a linear functional satisfying L|Q ≥ 0, L(1) > 0.
Due to the compactness assumption all continuous functions are compara-
ble to the constant function ξ = 1 in the following precise sense: for every
F ∈ C(X), there is a positive constant C with the property −Cξ(x) ≤
F (x) ≤ Cξ(x). Then Marcel Riesz extension theorem [26] provides a linear
functional Λ ∈ C(X)′ which extends L. Hence Λ is represented by a signed
measure µ; since the algebra A is dense in C(X) by Stone-Weierstrass the-
orem, and Λ(a2) ≥ 0 for all a ∈ A, we infer that µ is a positive measure.

In addition, we know by assumption that for every point x /∈ P (Q) there
exists h ∈ Q such that h(x) < 0 and h|P (Q) ≥ 0. Hence

∫

X
ha2dµ ≥ 0, a ∈ A.

Again Stone -Weierstrass Theorem implies that x /∈ supp(µ), that is the
representing measure µ is supported by the closed set P (Q). �

Thus the main questions we are faced with at this first stage of inquiry
are: under which conditions a quadratic module Q has an interior point
and/or possesses the moment property. While the first question has a simple
solution, having to do with the boundedness of the positivity set P (Q), the
second one involves solving an abstract moment problem, it is more delicate,
but on the other hand has a long and glorious past, with a wealth of partial
results and side remarks [14, 10, 11].

Towards finding solutions to the above two questions we consider only
a finitely generated algebra A = R[h1, ..., hn], where h = (h1, ..., hn) is an
n-tuple of measurable functions on the set X ⊂ R

d. Let y = (y1, ..., yn) be
variables, so that, by noetherianity

A ∼= R[y]/I,

where I is a finitely generated ideal of R[y]. The ideal I describes all the al-
gebraic relations between generators of the algebra. This ideal is in addition
radical, in the following sense: if p21 + ... + p2k ∈ I, where p1, ..., pk ∈ R[y],
then p1, ..., pk ∈ I, [1]. Indeed, if p1(h)

2 + ... + pk(h)
2 = 0 as functions
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defined on X, then p1 ◦h = 0, ..., pk ◦h = 0 in the algebra A. Denote by ”◦”
the usual composition of functions, i.e., with g : Rn → R and f : R → R,
x 7→ (f ◦ g)(x) := f(g(x)).

Lemma 1. Assume that A = R[h1, ..., hn] is a finitely generated algebra of
measurable functions and let Q ⊂ A be a quadratic module. If 1− (h21+ ...+
h2n) ∈ Q, then the constant function 1 belongs to the algebraic interior of Q.

For a simple algebraic proof we refer to [22]. Already a first approximative
solution to the moment problem associated to Q is available.

Proposition 2. Let A = R[h1, ..., hn] be an algebra of measurable functions
defined on the set X ⊂ R

d and let L ∈ A′ be a linear functional which is
non-negative on the quadratic module ΣA2+(1− (h21+ ...+h2n))ΣA

2. Then
there exists a positive measure ν, supported by the unit ball in R

n, with the
property

L(p(h1, ..., hn)) =

∫

‖y‖≤1
p(y)dν(y), p ∈ R[y].

Proof. The familiar Gelfand-Naimark-Segal construction can be invoked at
this moment. In short, define an inner product on the polynomial algebra
R[y] by

〈p, q〉 = L(p(h)q(h)), p, q ∈ R[y].

Denote by J the set of null-vectors p ∈ J if and only if 〈p, p〉 = 0. It is
an ideal of R[y] by Cauchy-Schwarz inequality. The quotient space R[y]/J
is endowed then with a non-degenerate inner product structure. Let H be
its Hilbert space completion. The multiplication operators with the vari-
ables Mip(y) = yip(y) are self-adjoint and bounded, due to the positivity
assumption imposed on L:

〈Mip,Mip〉 = L(h2i p(h)
2) ≤ L(p(h)2) = 〈p, p〉.

In addition, the operators Mi mutually commute on the Hilbert space H.
Thus the spectral theorem gives a positive Borel measure ν, with the prop-
erty

L(p(h)) = 〈p, 1〉 = 〈p(M1, ...,Mn)1, 1〉 =

∫

pdν, p ∈ R[y].

In addition, the support of the measure ν is contained in the unit ball, as a
consequence of the spherical contraction assumption M∗

1M1+ ...+M
∗
nMn ≤

I. �

Thus, a quadratic module Q ⊂ A = R[h1, ..., hn] with (1−(h21+...+h
2
n)) ∈

Q satisfies the moment property if the measure ν appearing in the above
proposition is the push-forward via the map h : X −→ R

d of a positive
measure µ supported by P (Q), that is:

∫

‖y‖≤1
p(y)dν(y) =

∫

P (Q)
p(h(x))dµ(x), p ∈ R[y] .
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A series of sufficient conditions assuring ν = h∗µ in the above sense are
discussed next.

Again for A = R[h1, ..., hn] consider a finitely generated quadratic module
Q = ΣA2 + g0(h)ΣA

2 + g1(h)ΣA
2 + ...+ gm(h)ΣA2, where g0, ..., gm ∈ R[y]

and g0(y) = 1−y21 − ...−y
2
n. Let also the radical ideal I = (p1(y), ..., pk(y)).

Then

Q̃ = ΣR[y]2 + g0(y)ΣR[y]
2 + ...+ gm(y)ΣR[y]2 ± p1ΣR[y]

2 ± ...± pkΣR[y]
2

is a quadratic module in the polynomial algebra R[y]. Its positivity set

P (Q̃) is contained in the closed unit ball intersection with the zero set V (I)
of the ideal I. Note that we have a natural pull-back (substitution) map

h∗ : R[y] −→ A, h∗(p) = p ◦ h, p ∈ R[y],

and h∗(Q̃) = Q. At the level of positivity sets we obtain

h(P (Q)) ⊂ P (Q̃),

but the inclusion might be strict. Indeed, we derive the following direct
observation.

Lemma 2. With the above notation, assume that f = p ◦ h ∈ Q, where
p ∈ R[y]. Then p is non-negative on P (Q̃).

Proof. The assumption f ∈ Q amounts to the algebraic identity

f ◦ h = σ ◦ h+ (g0 ◦ h) (σ0 ◦ h) + · · · + (gm ◦ h) (σm ◦ h),

where σ, σ0, ..., σm ∈ ΣR[y]2. In its turn, this identity becomes

f(y) = σ(y) + g0(y)σ0(y) + ...+ gm(y)σm(y) + r(y),

where r ∈ I. By evaluating at a point a ∈ P (Q̃) ⊂ V (I) we infer

f(a) = σ(a) + g0(a)σ0(a) + ...+ gm(a)σm(a) ≥ 0.

�

We will see in the next section simple examples showing that the positivity
of a function f on P (Q) does not guarantee in general a decomposition of
the form f ∈ Q. The gap between the two statements is explained in the
following general result.

Theorem 1. Let A = R[h1, ..., hn] be a finitely generated algebra of measur-
able functions defined on a measurable set X ⊂ R

d and let Q be a quadratic
module with the function 1 in its algebraic interior. Assume that f ∈ A
is positive on P (Q). Then f ∈ Q̂, where Q̂ is the pullback by the map
h : X −→ R

d of a quadratic module which serves as a positivity certificate
for the set h(P (Q)).

Of course the choice of Q̂ is not unique, and it may not be a finitely
generated quadratic module. For instance, as a first rough approximation,
one can choose

Q′ = {p ◦ h; p|h(X)∩P (Q̃) ≥ 0},
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where Q̃ is the pull-back of Q via the projection map π : R[y] −→ A.

Corollary 2. Assume, in the conditions of Theorem 1, that the set h(X) is
closed in R[y]. Choose an at most countable set of polynomials vi ∈ R[y], i ∈
J, |J | ≤ ∞, with the property

{y ∈ R
n : vi(y) ≥ 0, i ∈ J} = h(X) ∩ P (Q̃).

Then every element f ◦ h ∈ A which is positive on the set P (Q) can be
written as

f ◦ h = σ ◦ h+ (M − h21 − ...− h2n) (σ0 ◦ h) +
∑

i∈J0

(vi ◦ h)(σi ◦ h),

where M > 0, the subset J0 ⊂ J is finite and σ, σ0, σi ∈ ΣR[y]2, i ∈ J0.

The remaining of this section is concerned with particular choices of the
”saturation” process Q 7→ Q̂ and the resulting effective sums of squares
representations.

2.1. Examples in algebras of semi-algebraic functions. Let X = R
n

and let A = R[x, h1(x), ..., ht(x)] for some functions hi : R
n → R, i =

1, . . . , t. Consider the set K ⊂ R
n defined by:

K := {x ∈ R
n : gj(x, h1(x), . . . , ht(x)) ≥ 0, j = 1, . . . ,m}, (2.1)

and suppose that K is compact and

x 7→M − ‖x‖2 −

t
∑

i=1

|hi(x)|
2 > 0 on K.

Example 1. Here hi(x) = |xi|, i = 1, . . . , n (so let |x| = (|xi|). In this case
y = (y1, . . . , y2n) and one has the algebraic relation y2n+i = y2i , i = 1, . . . , n,

between the generators, hence A ∼= R[y]/I, with I := 〈y2n+1 − y21, . . . , y
2
2n −

y2n〉. Let’s choose the quadratic module with the constant 1 in its algebraic
interior:

Q = ΣA2 + (M − (

n
∑

i=1

x2i + |xi|
2))ΣA2 +

m
∑

j=1

ΣA2gj(x, |x|)

= ΣA2 + (M − 2‖x‖2)ΣA2 +
m
∑

j=1

ΣA2gj(x, |x|)

The lifted quadratic module is

Q̃ = ΣR[y]2 + (M − ‖y‖2)ΣR[y]2 +

m
∑

j=1

ΣR[y]2gj(y),

whose positivity support set is the set

{y ∈ R
2n : M − ‖y‖2 ≥ 0; gj(y) ≥ 0, j = 1 . . . ,m}.

On the other hand, P (Q) lives in K ⊂ R
n.
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For instance if K = [−1, 1]n and t = n with gj(x) = 1 − x2j , j = 1, . . . , t,

a function such as |x1|
3+1/2 belongs to the algebra A, is positive on P (Q),

but it cannot be written as

|x1|
3 + 1/2 = σ(x, |x|) + (2n− 2‖x‖2)σ0(x, |x|) +

n
∑

j=1

σj(x, |x|)gj(x),

with σ, σj ∈ ΣR[y]2. Indeed, such a representation would lift to

y3n+1 + 1/2 = σ(y) + (2n − ‖y‖2)σ0(y) +
n
∑

j=1

σj(y)gj(y),

and this is obviously impossible by choosing for example yi = 0 for all
i 6= n+ 1 and yn+1 = −1.

In order to obtain the correct representation we invoke the main result of
the previous section, and first consider the image set

h(X) = {(x, |x|); x ∈ R
n} ⊂ R

2n.

This set can be exactly described by the inequalities

y2n+i − y2i ≥ 0, y2n+i − y2i ≥ 0, yn+i ≥ 0; i = 1, . . . , n.

Therefore,

h(X) ∩ P (Q̃) = {y ∈ R
2n : 2n− ‖y‖2 ≥ 0; gj(x) ≥ 0, j = 1, . . . , t;

y2n+i − y2i = 0, yn+i ≥ 0, i = 1, . . . , n},

and by Corollary 2, the quadratic module in R[y] generated by the polyno-

mials that describe the above semi-algebraic set h(X) ∩ P (Q̃), provide the
desired certificate of positivity. And so we have:

Proposition 3. Let K be as in (2.1). An element f of the algebra R[x, |x|]
which is positive on K can be written as

x 7→ f(x, |x|) = σ(x, |x|) + (n− ‖x‖2)σ0(x, |x|)

+
n
∑

i=1

|xi|σi(x, |x|) +
t
∑

j=1

gj(x, |x|)ψj(x, |x|)

where σ, σi, ψj ∈ ΣR[y]2.

Example 2. Given two polynomials p, q ∈ R[x], let A := R[x, p(x) ∨ q(x)]
where a ∨ b := max[a, b], and let K be as in (2.1) with t = 1 and h1 =
p(x)∨ q(x). Recall that 2(a∨ b) = |a− b|+(a+ b), and so one may consider
the new algebra A′ = R[x, |p(x)− q(x)|] since a polynomial in the variables
x and p(x)∨ q(x)] is a particular polynomial in x and |p(x)− q(x)|. In this
case y = (y1, . . . , yn+1) and one has the algebraic dependency

y2n+1 = (p(x)− q(x))2

and the additional constraint yn+1 ≥ 0.
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Proposition 4. Let K be as in (2.1) and let f be an element of the algebra
A := R[x, p(x) ∨ q(x)]] which is positive on K. Equivalently

x 7→ f(x, p(x) ∨ q(x)]) = f̃(x, |p(x) − q(x)|),

for some f̃ ∈ A′ := R[x, |p(x)−q(x)|], positive on K. Then f̃ can be written

f̃(x, |p(x) − q(x)|) = σ(x, |p(x) − q(x)|)

+(M − ‖x‖2 − |p(x)− q(x)|2)σ0(x, |p(x) − q(x)|)

+|p(x)− q(x)|σ1(x, |p(x) − q(x)|)

+

m
∑

j=1

ψj(x, |p(x) − q(x)|)gj(x, |p(x) − q(x)|)

where σ, σi, ψj ∈ ΣR[y1, . . . , yn+1]
2.

Of course a similar thing can be done with p(x)∧ q(x) := min[p(x), q(x)]
using 2(a ∧ b) = (a+ b)− |a− b|.

Example 3. Let u = (ui)
n
i=1 ∈ R[x]n and let f be an element of the algebra

A := R[x, ‖u(x)‖p]] which is positive on K, where ‖x‖p = (
∑n

i=1 |xi|
p)1/p,

with either p ∈ N or p−1 ∈ N.
If p/2 ∈ N one uses the algebraic lifting y ∈ R

n+1 with:

ypn+1 =
n
∑

i=1

ui(x)
p; yn+1 ≥ 0.

If p = 2q + 1 with q ∈ N, one uses the algebraic lifting y ∈ R
2n+1, with:

y2n+i = ui(x)
2; yp2n+1 =

n
∑

i=1

ypn+i; yn+i ≥ 0, i = 1, . . . , n+ 1.

If 1/p ∈ N one uses the algebraic lifting:

y
2/p
n+i = ui(x)

2; y2n+1 =

(

n
∑

i=1

yn+i

)1/p

; yn+i ≥ 0, i = 1, . . . , n + 1.

Proposition 5. Let K be as in (2.1) and let f be an element of the algebra
A := R[x, ‖u(x)‖p] which is positive on K.

(a) If p/2 ∈ N then f can be written

f(x, ‖u(x)‖p) = σ(x, ‖u(x)‖p)

+(M − ‖x‖2 − ‖u(x)‖2p)σ0(x, ‖u(x)‖p)

+‖u(x)‖p σ1(x, ‖u(x)‖p) +
m
∑

j=1

gj(x)ψj(x, ‖u(x)‖p)

where σ, σi, ψj ∈ ΣR[y1, . . . , yn+1]
2.
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(b) If p = 2q + 1 with q ∈ N then f can be written

f(x, ‖u(x)‖p) = σ(x, |u(x)|, ‖u(x)‖p)

+(M − ‖x‖2 − ‖u(x)‖2 − ‖u(x)‖2p)σ0(x, |u(x)|, ‖u(x)‖p)

+

n
∑

i=1

|ui(x)|σi(x, |u(x)|, ‖u(x)‖p)

+‖u(x)‖p ϕ(x, |u(x)|, ‖u(x)‖p)

+

m
∑

j=1

gj(x)ψj(x, |u(x)|, ‖u(x)‖p)

where σ, σi, ψj , ϕ ∈ ΣR[y1, . . . , y2n+1]
2.

(c) If 1 < p−1 ∈ N then f can be written

f(x, ‖u(x)‖p) = σ(x, |u1(x)|
p, . . . , |un(x)|

p, ‖u(x)‖p)

+(M − ‖x‖2 −
n
∑

i=1

|ui(x)|
2p − ‖u(x)‖2p)

×σ0(x, |u1(x)|
p, . . . , |un(x)|

p, ‖u(x)‖p)

+

n
∑

i=1

|ui(x)|
p σi(x, |u1(x)|

p, . . . , |un(x)|
p, ‖u(x)‖p)

+‖u(x)‖p ϕ(x, |u1(x)|
p, . . . , |un(x)|

p, ‖u(x)‖p)

+

m
∑

j=1

gj(x)ψj(x, |u1(x)|
p, . . . , |un(x)|

p, ‖u(x)‖p)

where σ, σi, ϕ, ψj ∈ ΣR[y1, . . . , y2n+1]
2.

Example 4. Let A = R[x,
√

p(x)]. Of couse one here considers the new
basic semi-algebraic set:

K′ := K ∩ {x : gm+1(x) ≥ 0} with x 7→ gm+1(x) := p(x), (2.2)

and the lifting

y2n+1 = p(x); yn+1 ≥ 0.

Proposition 6. Let f be an element of the algebra A := R[x,
√

p(x)] which
is positive on K′. Then f can be written

f(x,
√

p(x)) = σ(x,
√

p(x)) + (M − ‖x‖2 − p(x))σ0(x,
√

p(x))

+

m+1
∑

j=1

gj(x)ψj(x,
√

p(x)) +
√

p(x)ϕ(x,
√

p(x))

where σ, σi, ϕ, ψj ∈ ΣR[y1, . . . , yn+1].
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2.2. Examples in algebras of nonsemi-algebraic functions.

Example 5. Let X = [0, π/2] and A = R[x, sinx]. Again y = (y1, y2)
but this time the algebra A is isomorphic to the full polynomial algebra
R[y]. For illustration we consider the quadratic module Q ⊂ A generated
by the elements x, π/2−x, 1−sin2 x. Although the inequality 1−sin2 x ≥ 0 is
redundant, it is necessary to add it for having the function 1 in the algebraic
interior of Q.

As we wish to obtain a certificate of positivity for a function f(x, sinx)
belonging to A, an algebraic description of the graph of x 7→ sinx is in order.
Choose the polynomials

x 7→ pk(x) =
k
∑

j=0

(−1)k
x2k+1

(2k + 1)!
, k ≥ 0.

It is well known that

p2k(x) ≥ p2k+2(x) ≥ sinx ≥ p2k+1(x) ≥ p2k−1(x), ∀x ∈ [0, π/2],

and that these polynomials converge uniformly to sinx on [0, π/2]. A de-
scription of the graph of sinx is:

h(X) = {(x, sin x) : 0 ≤ x ≤ π/2} =

{y ∈ R
2 : 0 ≤ y1 ≤ π/2, p2k+1(y1) ≤ y2 ≤ p2k(y1), k ≥ 0}.

In view of our main result, the conclusion is:

Proposition 7. Let f be an element of the algebra R[x, sinx] and assume
that f > 0 for all x ∈ [0, π/2]. Then there exists k ≥ 0 such that

x 7→ f(x, sinx) = σ(x, sin x) + xσ0(x, sinx) + (π/2− x)σ2(x, sinx)+

[p2k(x)− sinx]σ3(x, sinx) + [sinx− p2k+1(x)]σ4(x, sin x),

where σ, σi ∈ ΣR[y]2.

Example 6. Let X = R and A = R[x, eax, ebx]. Two distinct cases, corre-
sponding to a, b commensurable or not, will be treated. This dichotomy is
well known to the experts in the control theory of delay systems.

To fix ideas, we assume that b > a > 0 and the base is the interval [0, 1].
Denote y1 = x, y2 = eax, y3 = ebx. We will impose the archimedeanity
constraints

x ≥ 0, 1 − x ≥ 0, y2 ≥ 0, ea − y2 ≥ 0, y3 ≥ 0, eb − y3 ≥ 0.

Along with these we have to consider the polynomial approximations of the
two exponentials:

pn(ax) =
n
∑

k=0

akxk

k!
≤ y2 ≤ pn(ax) +

an+1eaxn+1

(n+ 1)!
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and

pn(bx) =

n
∑

k=0

bkxk

k!
≤ y3 ≤ pn(bx) +

bn+1ebxn+1

(n+ 1)!
.

The reader will recognize above an upper bound of the remainder of Taylor’s
series approximation of the exponential function.

Case I. The frequencies a, b are not commensurable. Then there is no alge-
braic relation among the variables y1, y2, y3 and a function f ∈ R[x, eax, ebx]
which is positive on the interval [0, 1] is decomposable into a weighted sum of
squares generated by x, 1−x, eax, ea−eax, ebx, eb−ebx, eax−pn(ax), pn(ax)+
an+1eaxn+1

(n+1)! − eax, ebx − pn(bx), pn(bx) +
bn+1ebxn+1

(n+1)! − ebx, for a large enough
n.

Note that the above list of weights is redundant, as for instance the con-
straint eax > 0 follows from eax − pn(ax) > 0, and so on. In practice it will
be important to identify a minimal set of positivity constraints.

Case II. The frequencies a, b are commensurable. Assume that Na =
Mb where N,M are positive integers. Then the decomposition above of
a positive (on [0, 1]) element f ∈ R[x, eax, ebx] holds modulo the algebraic
relation yN2 = yM3 .

Example 7. When dealing with trigonometric (real valued) polynomials in
n variables, one has to consider the algebra A = R[sin θi, cos θi], 1 ≤ i ≤ n.
The standard lifting proposed in the present article is

yi = sin θi, zi = cos θi, 1 ≤ i ≤ n,

modulo the ideal generated by the relations

y2i + z2i − 1 = 0, 1 ≤ i ≤ n. (2.3)

Note that in this case every quadratic module Q ⊂ A in the variables
sin θi, cos θi lifts to an archimedean quadratic module Q̂ in the variables
yi, zi. Specifically, relations (2.3) assure that the constant function 1 be-

longs to the algebraic interior of Q̂.

3. Representation of positive semi-algebraic functions

We now consider an algebra of functions which forms an important sub-
class of semi-algebraic functions.

Let (gj)
m
j=1 ⊂ R[x] and let K ⊂ R

n be the basic semi-algebraic set

K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}. (3.1)

Recall that f : K → R is a semi-algebraic function if its graph Ψf :=
{(x, f(x)) : x ∈ K} is a semi-algebraic set of Rn × R.

Recall the notation

a ∨ b = max[a, b]; a ∧ b := min[a, b]; |x| = (|x1|, . . . , |xn|) ∈ R
n,
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and let A be the algebra of fonctions f : K → R generated by finitely many
of the dyadic operations {+,×, /,∨,∧} and monadyc operations | · | and

(·)1/p (p ∈ N) on polynomials.
For instance, with u, v, ℓ ∈ R[x] and h ∈ R[x]2, q ∈ N, the function

x 7→ f(x) := (|u(x) + v(x)|1/p) ∧

(

√

‖h(x)‖2q+1 + 1/ℓ(x)

)

(3.2)

is a member of A (assuming of course that ℓ(x) > 0 or ℓ(x) < 0 for all
x ∈ K).

Definition. A function f ∈ A is said to have a basic semi-algebraic lifting
(in short a ”b.s.a.l.”), or f is basic semi-algebraic (b.s.a.) if there exist
p, s ∈ N, polynomials (hk)

s
k=1 ⊂ R[x, y1, . . . , yp] and a basic semi-algebraic

set

K′
f := {(x,y) ∈ R

n+p : x ∈ K; hk(x,y) ≥ 0, k = 1, . . . , s}

such that the graph of f (denoted Ψf ) satisfies:

Ψf := {(x, f(x)) : x ∈ K} = {(x, yp) : (x,y) ∈ K′
f}. (3.3)

In other words, Ψf is an orthogonal projection of the basic semi-algebraic
set K′

f which lives in the lifted space R
n+p.

Hence by the projection theorem of real algebraic geometry, a function
f ∈ A that admits a b.s.a.l. is semi-algebraic.

Lemma 3. Let K be the basic semi-algebraic set in (2.1). Then every well-
defined f ∈ A has a basic semi-algebraic lifting.

Proof. It is obvious that the sum f + g and multiplication fg of two b.s.a.
functions f, g ∈ A, is b.s.a. So let f ∈ A be b.s.a., i.e.,

Ψf = {(x, yp) : (x,y) ∈ K′
f ⊂ R

n+p}

for some integer p and some basic semi-algebraic set K′
f . Then:

• If f 6= 0 on K then f−1 has the b.s.a.l.

Ψf−1 = {(x, yp+1) : (x, (y1, . . . , yp)) ∈ K′; yp+1yp = 1}

and so f/g is b.s.a. whenever f and g are.

• With f ≥ 0 on K and q ∈ N, f1/q has the b.s.a.l.

Ψf1/q = {(x, yp+1) : (x, (y1, . . . , yp)) ∈ K′; yqp+1 = yp; yp+1 ≥ 0}

• |f | has the b.s.a.l.

Ψ|f | = {(x, yp+1) : (x, (y1, . . . , yp)) ∈ K′; y2p+1 = y2p; yp+1 ≥ 0}

• If f and g have a b.s.a.l.then so does f ∧ g (resp. f ∨ g) because
2(f ∧ g) = (f + g)− |f − g| (resp. 2(f ∨ g) = (f + g) + |f − g|).

�
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Example 8. Let f ∈ A be the function defined in (3.2), and let K′
f ⊂ R

n+8

be the basic semi-algebraic set defined by the constraints:

K′
f =

{

(x,y) ∈ R
n+9 : gj(x) ≥ 0, j = 1, . . . ,m;

y2i − hi(x)
2 = 0; yi ≥ 0; i = 1, 2.

y2q+1
3 − y2q+1

1 − y2q+1
2 = 0; y3 ≥ 0

y4 ℓ(x) = 1;

y25 − y4 − y3 = 0; y5 ≥ 0

y2p6 − (u(x) + v(x))2 = 0; y6 ≥ 0

y27 − (y6 − y5)
2 = 0; y7 ≥ 0

2y8 − (y6 + y5) + y7 = 0 }

Then Ψf = {(x, y8) : (x,y) ∈ K′
f}.

Observe that with each variable yk of the lifting y is associated a certain
function vk ∈ A. For instance in Example 8:

yi → vi(x) := |hi(x)|, i = 1, 2; y3 → v3(x) := (v1(x)
2q+1+ v2(x)

2q+1)1/(2q+1)

y4 → v4(x) := (ℓ(x)−1; y5 → v5(x) :=
√

v3(x) + v4(x)

y6 → v6(x) := |u(x) + v(x)|1/p; y7 → v7(x) := |v6(x)− v5(x)|

and y8 → v8(x) := f(x).

Next, with K ⊂ R
n as in (3.1), consider the set S ⊆ K defined by:

S := {x ∈ K : hℓ(x) ≥ 0, ℓ = 1, . . . , s} (3.4)

for some finite family (hk)
s
k=1 ⊂ A.

Lemma 4. The set S in (3.4) is a semi-algebraic set which is the projection
of a lifted basic semi-algebraic set. It can be written

S =
{

x ∈ R
n : ∃y ∈ R

t s.t. x ∈ K; uk(x,y) = 0, k = 1, . . . , r

yj ≥ 0, j ∈ J} (3.5)

for some integers r, t, some polynomials (uk)
r
k=1 ⊂ R[x,y] and some index

set J ⊆ {1, . . . , t}.
With the lifting y is associated a vector of functions v ∈ At.

Proof. By Lemma 3, each function hℓ is b.s.a. and so there is an integer nℓ
and a basic semi-algebraic set K′

ℓ ⊂ R
n+nℓ such that:

Ψhℓ
= {(x, yℓnℓ

) : (x,yℓ) ∈ K′
ℓ}, ℓ = 1, . . . , s,

with yℓ ∈ R
nℓ , ℓ = 1, . . . , s. Therefore,

S = {x ∈ R
n : ∃y1, . . . ,ys s.t. (x,yℓ) ∈ K′

ℓ; y
ℓ
nℓ

≥ 0; ℓ = 1, . . . , s},

and so S is the projection of a lifted basic semi-algebraic set which lives in
R
n+

∑
ℓ nl . Obviously it is of the form (3.5). �

Next we state the main result of this section.
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Theorem 2. Let K ⊂ R
n be a compact basic semi-algebraic set as in (3.1)

and let S be as in (3.4) for some finite family (hℓ) ⊂ A. Let f ∈ A have the
b.s.a.l.

Ψf =
{

(x, zmf
) : x ∈ K; qℓ(x, z) = 0, ℓ = 1, . . . , tf

zj ≥ 0, j ∈ Jf}

(where z = (z1, . . . , zmf
) and J ⊆ {1, . . . ,mf}) and let p = (p1, . . . ,pmf

) ∈
Amf be the vector of functions associated with the lifting z.

If f is positive on S then

f(x) = σ0(x,v(x),p(x)) +

m
∑

j=1

σj(x,v(x),p(x)) gj (x)

+
∑

k∈J

ψk(x,v(x),p(x))vk(x) (3.6)

+
∑

ℓ∈Jf

ϕℓ(x,v(x),p(x))pℓ(x) (3.7)

+ϕ0(x,v(x),p(x))(M − ‖(x,v(x),p(x))‖2) (3.8)

for some (σj), (ψk), (ϕℓ) ⊂ ΣR[x,y, z] and a sufficiently large M > 0.

Example 9. The following simple example illsutrates why the b.s.a. func-
tions are much nicer than general semi-algebraic functions. LetA = R[x, χS ]
be the algebra generated by the polynomials in the variables x ∈ R and the
characteristic function of a basic algebraic set, say for simplicity given by a
single inequality

S = {x ∈ R; h(x) ≥ 0}

where h ∈ R[x] is a non-zero polynomial. An element f ∈ A is of the form
f = f1χS + f2(1 − χS), with f1, f2 ∈ R[x]. Let Q ∈ A be an archimedean
quadratic module with associated positivity set P (Q). The question whether
f |P (Q) > 0 reduces therefore to (f1)|P (Q)∩S > 0 and independently
(f2)|P (Q)\S > 0. While the first condition is reducible to the above setting

(f1)|P (Q+hΣR[x]2) > 0,

the second condition involves the positivity of the polynomial f2 on a non-
closed semi-algebraic set. This case can be resolved in general only with the
help of Stengle’s Positivstellensatz, see for details [1, 22].

To be more explicit, consider h(x) = ‖x‖2 − 1 and Q = ΣR[x]2 + (2 −
‖x‖2)ΣR[x]2. We are then led to consider the problem

f2(x) > 0 whenever ‖x‖2 < 1, (3.9)

where f2 is a polynomial in x. Stengle’s Theorem states that the im-
plication (3.9) holds if and only if there exists a positive integer N and
σi ∈ ΣR[x]2, 0 ≤ i ≤ 3, such that

f2(σ0 + (1− ‖x‖2)σ1) = (1− ‖x‖2)2N + σ2 + (1− ‖x‖2)σ3.
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In conclusion, even if the graph of the characteristic function χS is semi-
algebraic, a departure from the requirement that it is a (lifted) basic semi-
algebraic set implies that the sought certificate of positivity of an element
f ∈ A requires denominators.

4. Semi-algebraic optimization

In this section we consider the application of preceding results to opti-
mization of a function f of the algebra A, over a compact set S as in (3.4)
(with K as in (3.1)) and whose defining inequality constraints are also de-
fined with functions in this algebra A. Recall that by Lemma 4, the set S

can also be written as the projection (3.5) of a basic semi-algebraic set in a
lifted space R

n+t.
Consider the optimization problem:

P : f∗ := min
x

{ f(x) : x ∈ S } (4.1)

Proposition 8. With K in (3.1) compact and with S as in (3.4)-(3.5), let
f ∈ A have the b.s.a.l.

Ψf = {(x, zf ) : x ∈ K; qℓ(x, z) = 0, ℓ = 1, . . . , tf

zj ≥ 0, j ∈ Jf}

(where z = (z1, . . . , zmf
) and J ⊆ {1, . . . ,mf}) and let p = (p1, . . . ,pmf

) ∈
Amf be the vector of functions associated with the lifting z. Then P is also
the polynomial optimization:

f∗ = min
x,y,z

{zmf
: (x,y, z) ∈ Ω}

where Ω ⊂ R
n+t+mf is the basic semi-algebraic set

Ω = {(x,y, z) : gj(x) ≥ 0, j = 1, . . . ,m
uk(x,y) = 0, k = 1, . . . , r
qℓ(x, z) = 0, ℓ = 1, . . . , tf
yk, zj ≥ 0, k ∈ J, j ∈ Jf }

(4.2)

The proof follows directly from Lemma 4 and the definiton of the b.s.a.l.Ψf .

Then one may apply the moment-sos approach developed in e.g. [17, 19]
and build up a hierarchy of semidefinite programs whose associated sequence
of optimal values converges to the global optimum f∗.

That is, with w = (wαβγ) being a real sequence indexed in the index set
N
n × N

t × N
mf , let Lw : R[x,y, z] → R be the linear functional

p (=
∑

αβγ

pαβγ x
α yβ zγ) 7→ Lw(p) :=

∑

αβγ

pαβγ wαβγ .

Let θ ∈ R[x,y z] be the quadratic polynomial

(x,y z) 7→ θ(x,y, z) := M − ‖(x,y, z)‖2 ,
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with M such that M > ‖(x,y, z)‖2 on Ω, and let ak := ⌈(deg uk)/2⌉ and
bℓ := ⌈(deg qℓ)/2⌉, for every k = 1, . . . , r, ℓ = 1, . . . , tf .

For i ≥ maxk,ℓ[ak, bℓ], consider the semidefinite program

ρi = min w00mf

s.t. Mi(w) � 0
Mi−ak(uk w) � 0, k = 1, . . . , r
Mi−bℓ(qℓw) � 0, ℓ = 1, . . . , tf
Mi−1(yj w) � 0, j ∈ J
Mi−1(zj w) � 0, j ∈ Jf
Mi−1(θw) � 0
w000 = 1.

(4.3)

Theorem 3. Consider the hierarchy of semidefinite programs (4.3).
(a) The sequence (ρi) is monotone nondecreasing and ρi → f∗ as i→ ∞.
(b) Let wi be an optimal solution of (4.3) and assume that

rankMi(w) = rankMi−c(w) =: d, (4.4)

whre c := maxbk,aℓ . Then ρi = f∗ and w is the moment sequence of a
d-atomic probability measure supported on d points of the set Ω defined in
(4.2).

Proof. As P is a standard polynomial optimization problem, the proof fol-
lows directly from e.g. [17, 19]. �

Theorem 3 is illustrated below on the following two simple examples:

Example 10. Let n = 2 and P : f∗ = max
x

{ |x1|x2 − x21 : ‖x‖2 = 1}.

Hence

Ω = {(x, z) : ‖x‖2 − 1 = 0; z2 − x21 = 0; z ≥ 0}.

Observe that |x1| ≤ 1 on K = {x : ‖x‖2 = 1} and so one may choose
θ(x, z) := 3 − ‖(x, z)‖2. At the second relaxation (4.3) the rank condition
(4.4) is satisfied with d = 2, and one obtains f∗ = ρ2 = 0.2071 with the two
optimal solutions:

(x∗, z∗) = (0.3827, 0.9239, 0.3827); (x∗, z∗) = (−0.3827, −0.9239, 0.3827).

Example 11. Let n = 2 and P : f∗ = max
x

{x1 |x1 − 2x2| : ‖x‖2 = 1}.

Hence

Ω = {(x, z) : ‖x‖2 − 1 = 0; z2 − (x1 − 2x2)
2 = 0; z ≥ 0}.

Observe that |x1 − 2x2| ≤ 3 on K = {x : ‖x‖2 = 1} and so one may choose
θ(x, z) := 11 − ‖(x, z)‖2. At the second relaxation (4.3) the rank condition
(4.4) is satisfied with d = 1, and one obtains f∗ = ρ2 = 1.6180 and the
optimal solution: (x∗, z∗) = (0.8507, −0.5257, 1.9021).

Remark. (a) A usual lifting strategy (well-known from optimizers) to han-
dle optimization problems of the form P : minx{f(x) : x ∈ K}, with
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f(x) = maxj∈J fj(x) for some finite index set J , is to use only one lifting z
and solve

min
x,z

{ z : x ∈ K, z ≥ fj(x), j ∈ J}.

Similarly with f(x) = |g(x)| one uses z ≥ ±g(x). In this case one has
only one additional variable with no equality constraint. In particular, this
lifting preserves convexity (when present). But this lifting is valid in some
particular cases only and for instance it does not work if f is replaced with
f(x) = h(x)−maxj∈J [fj(x)], or f(x) = h(x)− |g(x)|.

(b) In the description of the set Ω, a ”lifting” yℓ is associated with each
non polynomial function hℓ ∈ A that appears in the description of P, as
well as a lifting z for f (if non polynomial). This can be rapidly penalizing.
However it is worth noting that there is no mixing between the lifting vari-
ables z and yℓ, as well as between the lifting variables yℓ of different ℓ’s.
The coupling of all these variables is through the variables x. Hence there
is an obvious sparsity pattern if the set of all variables (x,y, z) is written as
the union (with overlaps)

(x,y, z) = (x) ∪ (x, z) ∪ (x,y1) ∪ · · · ∪ (x,ys)

and this sparsity pattern obviously satifies the co-called running intersection
property, because for each 1 ≤ k < s,

(x,yk+1)
⋂

(

(x) ∪ (x, z) ∪k
i=1 (x,y

i)
)

⊆ (x).

See e.g. [18]. This is a good news because with such a sparsity pattern one
may use the sparse semidefinite relaxations defined in [28], whose associ-
ated sequence of optimal values was still proved to converge to f∗ in [18].
Hence if on the one hand lifting is penalizing, on the other hand the special
structure of the lifted polynomial optimization problem permits to use spe-
cialized ”sparse” relaxations, which (partly) compensates the increase in the
number of variables. For more details on sparse semidefinite relaxations, the
interested reader is referred to e.g. [18] and [28]. And finally, one should also
bear in mind that the original problem P being very hard, there is obviously
some price to pay for its resolution!
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