
A MIXED METHOD FOR THE BIHARMONIC PROBLEM BASED ON

A SYSTEM OF FIRST-ORDER EQUATIONS

EDWIN M. BEHRENS AND JOHNNY GUZMÁN

Abstract. We introduce a new mixed method for the biharmonic problem. The method
is based on a formulation where the biharmonic problem is re-written as a system of four
first-order equations. A hybrid form of the method is introduced which allows to reduce
the globally coupled degrees of freedom to only those associated with Lagrange multipliers
which approximate the solution and its derivative at the faces of the triangulation. For k ≥
1 a projection of the primal variable error superconverges with order k + 3 while the error
itself converges with order k + 1 only. This fact is exploited by using local postprocessing
techniques that produce new approximations to the primal variable converging with order
k + 3. We provide numerical experiments that validate our theoretical results.

1. Introduction

We consider the biharmonic problem

42u =f in Ω, (1.1a)

u =0 on ∂Ω, (1.1b)

∇u · n =0 on ∂Ω, (1.1c)

where Ω ⊂ Rd is a polyhedral domain and f ∈ L2(Ω). Our method is based on the following
formulation of the above problem

q = ∇u, z = ∇q in Ω,

σ = ∇ · z, ∇ · σ = f in Ω,

u = 0, q · n = 0 on ∂Ω.

Following our convention (∇q)ij = ∂xj
(qi) for 1 ≤ i, j ≤ d where qi is the i-th component

of q. Moreover, (∇ · z)i =
∑d

j=1 ∂xj
zij where the zij is the ij-entry of z. The method we

propose will approximate u, q, z,σ simultaneously. However, we introduce a hybrid form of
the mixed method that will allow us to eliminate all the interior variables locally to obtain
a system for the Lagrange multipliers which approximate u and q on the interfaces of the
triangulation.

There are several mixed methods for the biharmonic problem; see [14, 28, 24, 1]. They
are based on introducing the variable z = 4u or the variable z = ∇(∇u). For example,
the Ciarlet and Raviart (C-R) method [14] chooses as unknowns u and 4u and obtains a
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coupled system of Poisson problems. Therefore, piece-wise continuous approximations are
used for both variables. The error analysis of the C-R method can be found in [25, 4, 39, 38].
Optimal convergence rates for the approximation to u are obtained however sub-optimal
convergence rates are proved for the approximation to 4u. More precisely, assuming certain
L∞ smoothness assumptions on the derivatives of the solutions, the approximation to 4u
convergences with rate hk−1/2 if piecewise polynomials of degree k are used; see [39]. It is
well known that this result is in fact sharp. However, Scholz [38] proved that in fixed sub-
domains optimal convergence rates can be recovered. The discontinuous Galerkin method
introduced by Gudi et al. [26] is related to the C-R method.

On the other hand, the Hellan-Herrmann-Johnson (HHJ) method analyzed by John-
son [28] takes as the new unknown z = ∇(∇u). The method uses continuous piecewise
polynomial approximations to u of degree k and normal-normal continuous symmetric ap-
proximations to z of degree k − 1. For this method optimal error estimates are proved for
both variables. Moreover, by using the hybrid form of the method one can eliminate the
approximation to z locally to get a final system involving the approximation to u (which is
continuous) and a Lagrange multiplier that approximates the normal components of u on
the interfaces of the triangulation. Moreover, one can postprocess the approximate solution
locally to get a new approximation to u which converges with order k + 2; see [22, 41]. We
would like to mention that as far as we know optimal estimates have only been proving
in two dimensions for the HHJ method. Scapolla [35] introduced a related rectangular
element.

Recently a hybridizable discontinuous Galerkin (HDG) method was developed by Cock-
burn et al. [16] for the biharmonic problem based on an HDG method for second-order
problems [17]. Similar to the C-R method it has as unknowns u, and 4u, but in addition
it also approximates ∇u and ∇4u. In fact, equal order approximations where used for all
the variables. Optimal error estimates were proved for u and ∇u; however, similar to the
C-R method, only sub-optimal error estimates where obtained for 4u. Nonetheless, the
approximation to 4u converges with order k + 1/2 when polynomials of degree k are used
which is an improvement of the C-R method which converges with order k − 1/2. How-
ever, again, L∞ regularity of higher order derivatives of the exact solution were assumed.
A postprocessing technique was used to compute locally a new approximation to u that
converges with order k + 2 for k ≥ 1. Also, hybridization of the method was discussed
that shows that the only globally coupled degrees of freedom are those of the Lagrange
multipliers that approximate u and 4u on the interfaces of the triangulation. We would
like to mention that HDG methods are similar to mixed methods in their hybrid form; see
[20]. In fact, mixed method techniques were used to analyze HDG methods in [21].

In search of a method that would see an improvement on convergence rates as compared
to the method in [16], while retaining some of the positive properties of that method we
devised the method we present in this paper. Indeed, our method will approximate the
second derivatives of u, namely z, with optimal order k + 1 while assuming the correct
regularity for z. Moreover, the hybrid form of our method will allow us to eliminate all the
variables local to obtain a final system for Lagrange multipliers that approximate u and q
on the interfaces of the triangulation. Finally, we also develop a postprocessing technique
that produces a new approximation to u that converges with order k+3 for k ≥ 1 compared
to order k + 2 obtained for the method in [16] and the HHJ method.
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Our method uses the formulation used by HHJ method, but instead writes the problem
as four first-order equations instead of two second-order equations. In fact, our method and
the HHJ method achieve optimal convergence rates for the approximation of z whereas the
C-R method and the method in [16] converge in a sub-optimal way to 4u.

There are of course many methods that are based on the primal formulation. These
methods only have the approximation to u as an unknown. Among these methods is the
classical non-conforming Morley element; [30, 29]. There is also many DG methods based
on the primal formulation [5, 10, 31, 23]. We should mention that there are mixed methods
that do not have the approximation to z = ∇(∇u) or z = 4u as an unknown; see for
example [7, 8].

In two dimensions the biharmonic problem (1.1) is a model of a clamped plate under
a vertical load. In [6] we extend our methodology to the Reissner-Mindlin plate model,
a more complicated plate model. In fact, in the Reissner-Mindlin plate problem, we will
have direct approximations to the transverse displacement, rotation, bending moment, and
shear stress. The biharmonic problem also has a connection to the Stokes problem as the
stream function satisfies the biharmonic equation.

The paper is organized as follows. In the next section we present our method. In
Section 3 we provide error estimates. In the fourth section postprocessing is discussed. In
Section 5 the hybrid form of the mixed method is presented. Section 6 contains a different
analysis based on Helmholtz decomposition. Section 7 contains numerical experiments.
Finally, in the last section we conclude with a few final remarks including a discussion on
different choices of finite element spaces.

2. The Method

We assume that Th is a shape-regular simplicial decompositions of Ω. Moreover, we
define the following function spaces.

Wh :={w ∈ L2(Ω) : w|K ∈ P
k(K), for all K ∈ Th},

Qh :={m ∈ L2(Ω) :m|K ∈ P
k(K), for all K ∈ Th},

Σh :={v ∈H(div , Ω) : v|K ∈ RT k(K) for all K ∈ Th},

Zh :={s ∈H(div , Ω) : each row of s belongs to Σh}.

We will also need the space

W `
h := {w ∈ L2(Ω) : w|K ∈ P

`(K), for all K ∈ Th}, ` ≥ −1.

Here L2(Ω) = [L2(Ω)]d. The space of polynomials of degree less than or equal to
k ≥ 0 is denoted by Pk(K) and P

k(K) = [Pk(K)]d. Furthermore, we let P−1(K) := {0}.
The space RT k(K) = P

k(K) + Pk(K)x is the Raviart-Thomas space of index k. Finally,
H(div , Ω) denotes all d × d matrix-valued functions such that each row belongs to the
space H(div , Ω).

The finite element method finds (uh, qh, zh,σh) ∈ Wh ×Qh ×Zh × Σh that satisfy

(qh,v) + (uh,∇ · v) =0 (2.2a)

(zh, s) + (qh,∇ · s) =0 (2.2b)

−(σh,m) + (m,∇ · zh) =0 (2.2c)

(w,∇ · σh) =(f, w) (2.2d)
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for all (w,m, s,v) ∈ Wh ×Qh ×Zh × Σh.
For matrix-valued functions we used the notation

(z, s) :=
∑

K∈Th

(z, s)K , where (z, s)K :=

∫

K

z(x) : s(x)dx,

where : is the Froebenius inner product. For vector-valued and scalar-valued functions we
take a similar definition.

Since u = 0 on ∂Ω it will also be true that the tangential component of q is equal to
zero at the ∂Ω. Hence, q vanishes on ∂Ω and this will make the above equations consistent.

We prove that the method is well defined, but we first state a standard result. For the
proof in two dimensions see for example [19].

Proposition 2.1. If v ∈ Σh and ∇ · v ∈ W k−1
h then v ∈ Σh ∩Qh.

Theorem 2.2. The mixed method (2.2) is well defined.

Proof. Since (2.2) is a square linear system it is enough to prove uniqueness. To this end,
we assume that f ≡ 0 and we have

‖zh‖
2
L2(Ω) = −(qh,∇ · zh) by (2.2b)

= −(σh, qh) by (2.2c)

= (uh,∇ · σh) by (2.2a)

= 0. by (2.2d)

This shows that zh = 0. From (2.2b) we get

(qh,∇ · s) = 0, for all s ∈ Zh .

By the property of the Raviart-Thomas space we have that the divergence operator is onto
from Zh to Qh; see [13]. Hence, qh = 0. Similarly, we conclude that uh = 0 since by (2.2a)
we have

(uh,∇ · v) = 0, for all v ∈ Σh.

Finally, from (2.2d) we easily get that ∇ · σh = 0 and by Proposition 2.1 we have
σh ∈ Σh ∩Qh. Hence, using (2.2c) we obtain σh = 0. �

3. Error Estimates

In this section we prove error estimates for all the variables. We start by writing the
error equations

(q − qh,v) + (u− uh,∇ · v) =0, (3.3a)

(z − zh, s) + (q − qh,∇ · s) =0, (3.3b)

−(σ − σh,m) + (m,∇ · (z − zh) ) =0, (3.3c)

(w,∇ · (σ − σh) ) =0, (3.3d)

for all (w,m,v, s) ∈ Wh ×Qh × Σh ×Zh .
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We also need to define some projections. We let Π : H(div , Ω) ∩ Lp(Ω) → Σh (for
p > 2) be the Raviart-Thomas projection [34, 32] of index k defined by on each K ∈ Th by

(Πσ − σ,v)K = 0 for all v ∈ P
k−1(K), (3.4a)

〈(Πσ − σ) · n, µ〉F = 0 for all µ ∈ P
k(F ), for all faces F of K. (3.4b)

Here we used the notation 〈µ, m〉F =
∫

F
µ(s)m(s)ds. Moreover, we letΠ denote the matrix

version of Π as it acts on matrix-valued functions where Π acts on each row. We let P be
the L2-projection onto Qh. We let P 0 be the L2-projection onto piecewise constant vector-
valued functions. Finally, P is the L2-projection onto Wh and P ` is the L2-projection onto
W `

h. Throughout this paper we will assume that σ belongs to the domain of Π and z
belongs to the domain of Π.

We will need a few properties of Π. First, the commutative property says

∇ · (Πσ) = P ∇ · σ. (3.5)

The following approximation properties hold

‖σ − Πσ‖L2(K) ≤ hr+1
K ‖σ‖Hr+1(K), (3.6)

for 0 ≤ r ≤ k and K ∈ Th.
Before proving the error estimates we prove an important lemma that gives error esti-

mates for q in terms of z.

Lemma 3.1. There exists a constant C such that

‖(Pq − qh) − P
0(q − qh)‖L2(K) ≤ C hK‖z − zh‖L2(K), (3.7)

for all K ∈ Th. Here hK is the diameter of K. Moreover, we have the global estimate

‖Pq − qh‖L2(Ω) ≤ C ‖z − zh‖L2(Ω). (3.8)

Proof. It is well known that there exists a ψ ∈H1(K) such that

∇ ·ψ = (Pq − qh) − P
0(q − qh) in K

ψ = 0 on ∂K

with
‖ψ‖H1(K) ≤ C ‖(Pq − qh) − P

0(q − qh)‖L2(K).

Since (Pq − qh) − P
0(q − qh) ∈ P

k(K), (3.5) gives us that

∇ · (Πψ) = (Pq − qh) − P
0(q − qh) in K,

(Πψ)n = 0 on ∂K,

where we also used (3.4b).
By (3.3b) we have

‖(Pq − qh) − P
0(q − qh)‖

2
L2(K) = ((Pq − qh) − P

0(q − qh),∇ · (Πψ))K

= (Pq − qh,∇ · (Πψ))K

= (q − qh,∇ · (Πψ))K

= −(z − zh,Πψ)K

≤ ‖z − zh‖L2(K) ‖Πψ‖L2(K).
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In the second equation we used integration by parts, the fact that ∇P 0(q− qh) = 0 on K,
and that (Πψ)n = 0 on ∂K. Next we use the approximation property (3.6) and Poincare’s
inequality to get

‖Πψ‖L2(K) ≤ ‖Πψ −ψ‖L2(K) + ‖ψ‖L2(K)

≤ C hK‖ψ‖H1(K)

≤ C hK‖(Pq − qh) − P
0(q − qh)‖L2(K).

This proves (3.7). The proof of (3.8) is similar, but instead there exists a globally defined
ψ (not necessarily with zero boundary conditions) with right-hand side Pq − qh. �

3.1. Error estimates for z. We start this section by stating the main theorem of this
section plus a simple corollary.

Theorem 3.2. We have

‖z − zh‖L2(Ω) ≤C ‖z −Πz‖L2(Ω) + C

(

∑

K∈Th

h2 jk

K ‖σ − Πσ‖2
L2(K)

)1/2

,

where jk = 0 if k = 0 and jk = 1 if k ≥ 1.

The following corollary easily follows from this theorem.

Corollary 3.3. If k ≥ 1, then for any 1 ≤ r ≤ k we have

‖z − zh‖L2(Ω) ≤ C hr+1‖z‖Hr+1(Ω),

and for k = 0 we have

‖z − zh‖L2(Ω) ≤ C h‖z‖H2(Ω).

We see that this gives optimal error estimates. However, more regularity as compared
to the interpolation error is required for the case k = 0. In a later section we will see how
to improve this in two and three dimensions.

Before proving Theorem 3.2 we first prove a simple but important lemma.

Lemma 3.4. We have,

∇ · (Πσ − σh) = 0, (3.9)

and

Πσ − σh ∈ Σh ∩Qh. (3.10)

Proof. Using (3.3d) and (3.5) we have

(∇ · (Πσ − σh), w) = 0 for all w ∈ Wh.

This proves (3.9), and (3.10) follows from Proposition 2.1. �

In the remainder of this section we prove Theorem 3.2.
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Proof. (Theorem 3.2)
We have

‖Πz − zh‖
2
L2(Ω) =(Πz − z,Πz − zh) − (Pq − qh,∇ · (Πz − zh)) by (3.3b)

=(Πz − z,Πz − zh) − (Pq − qh,∇ · (z − zh)) by (3.5)

=(Πz − z,Πz − zh) − (σ −σh,Pq − qh) by (3.3c)

=(Πz − z,Πz − zh) − (σ −Πσ,Pq − qh)

− (Πσ −σh, q − qh) by (3.10)

=(Πz − z,Πz − zh) − (σ −Πσ,Pq − qh)

+ (Pu − uh,∇ · (Πσ − σh)) by (3.3a)

=(Πz − z,Πz − zh) − (σ −Πσ,Pq − qh) by (3.3d).

Hence, we obtain

‖Πz − zh‖
2
L2(Ω) = (Πz − z,Πz − zh) − (σ − Πσ,Pq − qh). (3.11)

To bound the last term we first consider the case k ≥ 1

−(σ − Πσ,Pq − qh) =
∑

K∈Th

−(σ − Πσ,Pq − qh − P 0(q − qh))K by (3.4a)

≤
∑

K∈Th

‖σ − Πσ‖L2(K)‖Pq − qh − P
0(q − qh)‖L2(K)

≤C
∑

K∈Th

hK‖σ − Πσ‖L2(K)‖z − zh‖L2(K) by (3.7)

≤C ‖z − zh‖L2(Ω)

(

∑

K∈Th

h2
K‖σ − Πσ‖L2(K)

)1/2

.

Combining this inequality with (3.11) proves the theorem for k ≥ 1. For k = 0, we instead
use (3.8) to get

(σ − Πσ,Pq − qh) ≤ C ‖z − zh‖L2(Ω)‖σ − Πσ‖L2(Ω),

which combined with (3.11) will prove the theorem for k = 0. �

3.2. Error estimate for q and σ. The next theorem is a consequence of Theorem 3.2.

Theorem 3.5. If k ≥ 1, then for any 1 ≤ r ≤ k, we have

‖q − qh‖L2(Ω) ≤ C hr+1‖z‖Hr+1(Ω). (3.12)

and for k = 0
‖q − qh‖L2(Ω) ≤ C h‖z‖H2(Ω). (3.13)

Also,

‖Πσ − σh‖L2(K) ≤ ‖∇ · (Πz − zh)‖L2(K) + ‖Πσ − σ‖L2(K) (3.14)

for all K ∈ Th.

If we assume the mesh is quasi-uniform then for k ≥ 1 and any 1 ≤ r ≤ k we have

‖σ − σh‖L2(Ω) ≤ C hr ‖z‖Hr+1(Ω). (3.15)
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Before proving this theorem we make a few remarks. From this theorem we see that we
get optimal estimates for q for any k ≥ 0. However, we get sub-optimal estimates for σ.
Later we show that ‖Pq − qh‖L2(Ω) converges with order k + 2 for k ≥ 1 on quasi-uniform
meshes.

Proof. (Theorem 3.5)
By (3.8) we have

‖q − qh‖L2(Ω) ≤ C (‖z − zh‖L2(Ω) + ‖q −Pq‖L2(Ω)),

which proves (3.13) after we use Corollary 3.3 and approximation properties of P .
In order to prove (3.14) we use (3.10) and in (3.3c) we choose m|K = (Πσ − σh)|K

and define m = 0 outside of K to get

‖Πσ − σh‖
2
L2(K) =(Πσ − σ,m) + (σ − σh,m)

=(Πσ − σ,m) + (∇ · (z − zh),m)

=(Πσ − σ,m) + (∇ · (Πz − zh),m),

where we used (3.5). This proves (3.14).
We can then use inverse estimates and Corollary 3.3 to get

‖∇ · (Πz − zh)‖L2(Ω) ≤ C hr ‖z‖Hr+1(Ω).

This with (3.6) proves (3.15). �

3.3. Error estimate for u. We prove estimates for u via a duality argument.
Consider the dual problem

42θ = γ in Ω, (3.16a)

θ = 0 on ∂Ω, (3.16b)

∇θ · n = 0 on ∂Ω. (3.16c)

In order to get the best possible estimates we assume the following elliptic regularity
result

‖θ‖H4(Ω) ≤ C ‖γ‖L2(Ω). (3.17)

Such estimates are known to hold for polygonal domains with inner-angle conditions; see
[9]. Moreover, we assume that ξ belongs to the domain of Π and φ belongs to the domain
of Π where ψ = ∇θ, ξ = ∇ψ and φ = ∇ · ξ.

We first prove an estimate for P k−1(u− uh) for k ≥ 1 then we prove a weaker estimate
for Pu − uh.

Theorem 3.6. Assuming the regularity result (3.17) and that ξ and φ belong to the do-

mains of Π and Π, respectively, we have for k ≥ 1

‖P k−1(u− uh)‖L2(Ω) ≤ C hr+3(‖f‖Hr+1(Ω) + ‖z‖Hr+1(Ω)),

for any 1 ≤ r ≤ k.

Before we present the proof, we note that this is a superconvergent result which shows
that P k−1(u − uh) converges with two orders higher than the optimal order k + 1.
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Proof. We let θ solve (3.16) with γ = P k−1(u − uh). Note that by (3.5) ∇ · (Πφ) = γ.
Since γ ∈ W k−1

h , Proposition (2.1) give us that

Πφ ∈ Σh ∩Qh. (3.18)

We have that

‖P k−1(u − uh)‖
2
L2(Ω) =(P k−1(u − uh),∇ · φ)

=(P k−1(u − uh),∇ · (Πφ))

=(u− uh,∇ · (Πφ)),

where we used (3.5). Then,

‖P k−1(u − uh)‖
2
L2(Ω) =−(q − qh,Πφ) by (3.3a)

=−(Pq − qh,Πφ) by (3.18)

=−(Pq − qh,φ)−(Pq − qh,Πφ− φ)

=−(Pq − qh,∇ · ξ)−(Pq − qh,Πφ−φ) since ∇ · ξ = φ

=−(Pq − qh,∇ · (Πξ))−(Pq − qh,Πφ− φ) by (3.5)

=(z − zh,Πξ)−(Pq − qh,Πφ− φ) by (3.3b)

=(z − zh,∇ψ)+(z − zh,Πξ − ξ)

−(Pq − qh,Πφ− φ). since ∇ψ = ξ

Moreover,

(z − zh,∇ψ) =−(∇ · (z − zh),ψ) integration by parts, ψ = 0 on ∂Ω

=−(∇ · (z − zh),Pψ)

−(∇ · (z − zh),ψ − Pψ)

=−(σ − σh,Pψ)

−(∇ · (z − zh),ψ − Pψ) by (3.3c)

=−(Πσ − σh,Pψ)

−(σ − Πσ,Pψ)

−(σ,ψ −Pψ) definition of P , ∇ · z = σ.

We show the first term in the right is zero. Indeed,

(Πσ − σh,Pψ) =(Πσ − σh,ψ) property of P and (3.10)

=(Πσ − σh,∇θ) since ψ = ∇θ

= − (∇ · (Πσ − σh), θ) since θ = 0 on ∂Ω

=0. by (3.9)
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Moreover, using (3.5), the fact that ∇θ = ψ and ∇ · σ = f , and the properties of the
L2-projections P and P we get

(σ − Πσ,Pψ) + (σ,ψ − Pψ) =(Πσ,ψ −Pψ) + (σ − Πσ,∇θ)

=(Πσ,ψ −Pψ) − (∇ · (σ − Πσ), θ)

=(Πσ,ψ −Pψ) − (∇ · σ − P∇ · σ, θ)

=(Πσ,ψ −Pψ) − (f − Pf, θ − Pθ)

=(Πσ − v,ψ −Pψ) − (f − Pf, θ − Pθ),

for any v ∈ Qh.
Therefore,

(z − zh,∇ψ) =−(Πσ − v,ψ − Pψ)+(f − Pf, θ − Pθ).

Also, using (3.4a) we have

(Pq − qh,Πφ− φ) = (Pq − qh − P
0(q − qh),Πφ− φ),

where we used that k ≥ 1. Hence,

‖P k−1(u − uh)‖
2
L2(Ω) = − (Πσ − v,ψ − Pψ) + (f − Pf, θ − Pθ)

+(z − zh,Πξ − ξ)

−(Pq − qh − P
0(q − qh),Πφ− φ),

for any v ∈ Qh.
It is not difficult to show that

inf
v∈Qh

‖Πσ − v‖L2(Ω) ≤ C hr+1‖∇ · σ‖Hr(Ω) = C hr+1‖f‖Hr(Ω), (3.19)

for any 0 ≤ r ≤ k; see for instance (vi) of Proposition 2.1 in [18] .
Therefore,

‖P k−1(u − uh)‖
2
L2(Ω) ≤C hr+3‖f‖Hr(Ω)‖ψ‖H2(Ω)

+ C hr+3‖f‖Hr+1(Ω)‖θ‖H2(Ω)

+ C h2‖z − zh‖L2(Ω) ‖ξ‖H2(Ω)

+ C h2‖z − zh‖L2(Ω)‖φ‖H1(Ω),

for 0 ≤ r ≤ k. Here we used (3.7), (3.8) and approximation properties of Π. If we use the
regularity assumption (3.17) and Corollary 3.3 we arrive at our result. �

We would like to note that if one inspects the proof we can replace ‖f‖Hr+1(Ω) with
‖f‖Hr−1(Ω) in the above estimate for k ≥ 3.

Next we prove an estimate for Pu − uh. The result will show that ‖Pu − uh‖L2(Ω)

converges with order k + 2. Numerical experiments show that this in fact is sharp.

Theorem 3.7. Assuming the regularity result (3.17) and that ξ and φ belong to the do-

mains of Π and Π, respectively, we have for k ≥ 1

‖Pu − uh‖L2(Ω) ≤ C hr+2(‖f‖Hr+1(Ω) + ‖z‖Hr+1(Ω)),

for any 1 ≤ r ≤ k.
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If k = 0
‖Pu − uh‖L2(Ω) ≤ C h2(‖f‖H1(Ω) + ‖z‖H2(Ω)).

Before proving this result we note that this theorem give us that ‖u − uh‖L2(Ω) con-
verges with optimal order k + 1. This follows easily from the above result and the triangle
inequality. Also, we see that Pu − uh is superconvergent with one order higher than the
optimal order.

Proof. (Theorem 3.7) We let γ = Pu − uh in (3.16). Similar to the proof of Theorem 3.6
we can easily show that

‖Pu − uh‖
2
L2(Ω) = − (Πσ − v,Pψ −ψ) + (f − Pf, θ − Pθ)

− (z − zh,Πξ − ξ)

+ (Pq − qh,Πφ− φ)

+ (q −Pq,Πφ− Pφ),

for any v ∈ Qh. Note that the last term appears here and not in the estimate of P k−1(u−uh)
in Theorem 3.6. This is indeed the term that reduces the order of convergence of Pu− uh

to k + 2.
It easily follows that

‖Pu − uh‖
2
L2(Ω) ≤C hr+2‖f‖Hr(Ω)‖ψ‖H1(Ω)

+ C hr+2‖f‖Hr+1(Ω)‖θ‖H1(Ω)

+ C h‖z − zh‖L2(Ω) ‖ξ‖H1(Ω)

+ C h‖Pq − qh‖L2(Ω)‖φ‖H1(Ω)

+ C h‖q − Pq‖L2(Ω)‖φ‖H1(Ω),

where we used (3.19). Finally, our result now follows if we use (3.13) and Corollary 3.3. �

3.4. Error Estimates for Pq− qh. In this section we prove superconvergence results for
Pq−qh with k ≥ 1 and quasi-uniform meshes in two and three dimensions. We start with
a lemma.

Lemma 3.8. Let F be the common face of two elements K, K ′ ∈ Th. Then

‖(Pq − qh)|K − (Pq − qh)|K′‖L2(F ) ≤ C h
1/2
F ‖z − zh‖L2(K∪K′), (3.20)

where hF is the diameter of F . Moreover, if F is a face of K ∈ Th and F belongs to the

boundary ∂Ω then

‖Pq − qh‖L2(F ) ≤ C h
1/2
F ‖z − zh‖L2(K). (3.21)

Proof. We only prove (3.20). To this end, let r = (Pq − qh)|K − (Pq − qh)|K′ and define
s ∈ Zh in the following way: First, s|K ∈ RT k(K) solves

(s,v)K = 0 for all v ∈ P
k−1(K), (3.22a)

〈snK ,µ〉F = 〈r,µ〉F for all µ ∈ P
k(F ), (3.22b)

〈snK ,µ〉G = 0, for all µ ∈ P
k(G), for all faces G of K and G 6= F , (3.22c)

where here nK is the outward unit normal to K. Here RT k(K) is the set of matrix-valued
functions such that each row belongs to RT k(K).
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Define s|K′ ∈ RT k(K ′)

(s,v)K′ = 0 for all v ∈ P
k−1(K ′), (3.23a)

〈snK′ ,µ〉F = −〈r,µ〉F for all µ ∈ P
k(F ), (3.23b)

〈snK′,µ〉G = 0 for all µ ∈ P
k(G), for all faces G of K ′ and G 6= F , (3.23c)

where here nK′ is the outward unit normal to K ′.
Finally, set

s|Ω\K∪K′ ≡ 0. (3.24)

A standard scaling argument gives

‖s‖L2(K∪K′) ≤ C h
1/2
F ‖r‖L2(F ). (3.25)

Hence, we have

‖r‖2
L2(F ) =〈r, r〉F

=〈r, snK〉F by (3.22b)

=〈(Pq − qh)|K , snK〉F + 〈(Pq − qh)|K′, snK′〉F

=

∫

∂K

(Pq − qh) · snK +

∫

∂K′

(Pq − qh) · snK′ by (3.22c),(3.23c)

=(Pq − qh,∇ · s)K + (Pq − qh,∇ · s)K′ by (3.22a), (3.23a)

=(Pq − qh,∇ · s) by (3.24)

= − (z − zh, s) by (3.3b)

= − (z − zh, s)K − (z − zh, s)K′ . by (3.24)

Therefore,

‖r‖L2(F ) ≤ ‖z − zh‖L2(K∪K′)‖s‖L2(K∪K′).

The result now follows if we apply (3.25). �

We can now state the main results of this section.

Theorem 3.9. For k ≥ 1 we have

‖Pq − qh‖L2(Ω) ≤ C h ‖z − zh‖L2(Ω) + C (
∑

K∈Th

1

h2
K

‖P k−1(u − uh)‖
2
L2(K))

1/2.

Before proving this we can state a simple consequence that follows from Corollary 3.3
and Theorem 3.6.

Corollary 3.10. Suppose the hypotheses of Theorem 3.6 hold. Furthermore, assume the

mesh Th is quasi-uniform. Then, for k ≥ 1

‖Pq − qh‖L2(Ω) ≤ C hr+2(‖z‖Hr+1(Ω) + ‖f‖Hr+1(Ω)),

for 1 ≤ r ≤ k.

Note that this shows that Pq − qh is superconvergent with one order higher than the
optimal order.
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Proof. (Theorem 3.9)
We need some notation. Let F be the common face of K ∈ Th and K ′ ∈ Th. Let vK

be the restriction of v|K to F and vK′ be the restriction of v|K′ to F . Define {{v}} and [[v]]
on F as

{{v}} =
1

2
(vK + vK′), [[v]] = vK · nK + vK′ · nK′, (3.26)

where nK is the outward unit-normal to K and nK′ is the outward unit-normal to K ′.
We let r = Pq−qh. Using this notation define a function ω ∈ Σh∩Qh in the following

way: For every K ∈ Th define ω|K ∈ P
k(K) as the unique solution to

(ω,v)K = (r,v) for all v ∈N k−1(K), (3.27a)

〈ω ·nK , µ〉F = 〈{{r}} · nK , µ〉F for all µ ∈ P
k(F ) and all faces F of K, (3.27b)

where nK is the outward unit normal to K. Here N k−1(K) is the Nédélec space of index
k − 1; see [33]. On each element K ∈ Th we have

(ω − r,v)K = 0 for all v ∈N k−1(K), (3.28a)

〈(ω − r) · nK , µ〉F = −〈
1

2
[[r]], µ〉F for all µ ∈ P

k(F ), and all faces F of K (3.28b)

A scaling argument then gives

‖ω − r‖L2(K) ≤ C h
1/2
K ‖[[r]]‖L2(∂K).

However, by Lemma 3.8 we have

‖ω − r‖L2(K) ≤ C hK

∑

K′∈D(K)

‖z − zh‖L2(K′), (3.29)

where D(K) denotes the set of all K ′ ∈ Th that share a face with K.
We can then write

‖r‖2
L2(Ω) =(r,ω) + (r, r − ω)

=(q − qh,ω) + (r, r − ω) since ω ∈ Qh

=−(u − uh,∇ · ω) + (r, r − ω) since ω ∈ Σh, and (3.3a)

=−(P k−1(u − uh),∇ ·ω) + (r, r − ω). since ω ∈ Qh

We first bound the first term on the right hand side using an inverse estimate

(P k−1(u − uh),∇ · ω) =−
∑

K∈Th

(P k−1(u − uh),∇ · r)K

−
∑

K∈Th

(P k−1(u − uh),∇ · (ω − r))K

≤
∑

K∈Th

C

hK
‖P k−1(u − uh)‖L2(K) ‖r‖L2(K)

+
∑

K∈Th

C

hK
‖P k−1(u − uh)‖L2(K) ‖r −ω‖L2(K).

Also, we have
(r, r − ω) ≤ ‖r‖L2(Ω) ‖r − ω‖L2(Ω).
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Hence,

‖r‖L2(Ω) ≤ C ‖r − ω‖L2(Ω) + C (
∑

K∈Th

1

h2
K

‖P k−1(u − uh)‖
2
L2(K))

1/2.

The result now follows if we apply (3.29).
�

4. Postprocessing

Postprocessing solutions of mixed methods have been widely used; see for example
[2, 41]. Here we give a postprocessed approximation to u which is calculated locally on
each element K ∈ Th. First, we provide the postprocessed approximation for k ≥ 2 which
converges with order k + 3. Then, we give a postprocessing technique for q that converges
with order k + 2. Finally, we give postprocessed approximation of u for k = 0, 1. We will
need the following space of functions.

P
`,m
⊥ (K) := {v ∈ P

`(K) : (v, ω)K = 0 for all ω ∈ P
m(K)}.

and also P
`,m
⊥ = [P`,m

⊥ (K)]d.

4.1. Postprocessing for u: The case k ≥ 2. Let D2(u) denote the matrix containing
the second order derivatives of u. In other words, (D2(u))ij := ∂xj

∂xi
u for i, j = 1, . . . , d.

We define the postprocessed approximation u?
h ∈ Pk+2(K) for k ≥ 1 locally by

(D2(u?
h),D

2(v))K =(zh,D
2(v))K ∀v ∈ P

k+2,1
⊥ (K) (4.30a)

(u?
h, w)K =(uh, w)K ∀w ∈ P

1(K). (4.30b)

We prove that u?
h is well defined.

Theorem 4.1. The problem (4.30) is well defined.

Proof. Since (4.30) is a square system we only need to prove uniqueness. To this end,

assume zh = 0 and uh = 0. Then, (4.30b) gives us that u?
h ∈ P

k+2,1
⊥ (K) and P 1u?

h = 0.
Approximation properties of P 1 give us that

‖u?
h‖L2(K) = ‖u?

h − P 1u?
h‖L2(K) ≤ Ch2

K‖D2(u?
h)‖L2(K).

The first equation (4.30a) gives us that

‖D2(u?
h)‖L2(K) = 0,

which proves the theorem. �

Although we defined the postprocessed approximation for k ≥ 1 we can only prove
k + 3 order of convergence for k ≥ 2. The reason for this is that P 1(u − uh) is of order
k + 3 as long as k ≥ 2; see Theorem 3.6.

Theorem 4.2. For k ≥ 2 and 1 ≤ r ≤ k we have

‖u − u?
h‖L2(Ω) ≤ C hr+3(‖u‖Hr+3(Ω) + ‖f‖Hr+1(Ω)).

Proof. We start by applying the triangle inequality to get

‖u − u?
h‖L2(K) ≤ ‖P 1(u − uh)‖L2(K) + ‖(u − u?

h) − P 1(u − u?
h)‖L2(K),

where we used that P 1u?
h = P 1uh which follows from (4.30b). However,

‖(u − u?
h) − P 1(u − u?

h)‖L2(K) ≤ Ch2
K‖D2(u− u?

h)‖L2(K).
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Hence,
‖u − u?

h‖L2(K) ≤ ‖P 1(u − uh)‖L2(K) + C h2
K‖D2(u− u?

h)‖L2(K).

In order to approximate ‖D2(u− u?
h)‖L2(K) we use

‖D2(u − u?
h)‖

2
L2(K) =(D2(u − u?

h),D
2(u − u?

h))K

=(D2(u − u?
h),D

2(P k+2u − u?
h − P 1(u− u?

h)))K

+ (D2(u − u?
h),D

2(u − P k+2u))K ,

Noting that P k+2u− u?
h − P 1(u − u?

h) ∈ P
k+2,1
⊥ (K) and using (4.30a) we have

(D2(u − u?
h),D

2(P k+2u − u?
h − P 1(u − u?

h)))K =(z − zh,D
2(P k+2u − u?

h − P 1(u − u?
h)))K

=(z − zh,D
2(P k+2u − u))K

+ (z − zh,D
2(u − u?

h))K .

Therefore,

‖D2(u − u?
h)‖L2(K) ≤C (‖D2(u − P k+2u)‖L2(K) + ‖z − zh‖L2(K)).

Hence,

‖u− u?
h‖L2(K) ≤C (‖P 1(u − uh)‖L2(K) + h2

K‖D2(u − P k+2u)‖L2(K) + h2
K‖z − zh‖L2(K))

≤C (‖P 1(u − uh)‖L2(K) + h2
K‖z − zh‖L2(K) + hr+3

K ‖u‖Hr+3(K)),

for 0 ≤ r ≤ k.
Adding the contribution of all K ∈ Th we get

‖u − u?
h‖L2(Ω) ≤C (‖P 1(u − uh)‖L2(Ω) + h2‖z − zh‖L2(Ω) + hr+3‖u‖Hr+3(Ω)).

The proof is complete if we apply Theorem 3.6 and Corollary 3.3. �

4.2. Postprocessing for q. In this section we will take advantage of Corollary 3.10 and
define a postprocessed approximation to q that converges with order k + 2 for k ≥ 1.

We define q?
h|K ∈ P

k+1(K) as the solution to

(∇q?
h,∇v)K =(zh,∇v)K for all v ∈ P

k+1,0
⊥ (K) (4.31a)

(q?
h,w)K =(qh,w)K for all w ∈ P

0(K), (4.31b)

for all K ∈ Th. The proof of the next theorem is similar to the proof of Theorems 4.1 and
4.2 so we omit the details.

Theorem 4.3. The post processing approximation q?
h defined by (4.31) is well defined.

Moreover, the following estimate holds for 0 ≤ r ≤ k

‖q − q?
h‖L2(K) ≤C hr+2

K ‖q‖Hr+2(K) + C hK‖z − zh‖L2(K) + ‖P 0(q − qh)‖L2(K),

for all K ∈ Th.

The following corollary easily follows if we use Corollary 3.3 and Corollary 3.10.

Corollary 4.4. Assume the hypotheses of Theorem 3.6 hold. Moreover, assume the mesh

Th is quasi-uniform. Then, for k ≥ 1

‖q − q?
h‖L2(Ω) ≤ C hr+2(‖z‖Hr+1(Ω) + ‖f‖Hr+1(Ω)),

where 1 ≤ r ≤ k.
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4.3. Postprocessing for u: The case k = 1. We present the following postprocessing
technique for k ≥ 1. However, since we already have an optimal postprocessing technique
for k ≥ 2 we would numerically only use this one for k = 1. We define the post-processing
approximation u?

h|K ∈ Pk+2(K)

(∇u?
h,∇v)K =(q?

h,∇v)K for all v ∈ P
k+2,0
⊥ (K), (4.32a)

(u?
h, w)K =(uh, w)K for all w ∈ P

0(K), (4.32b)

for all K ∈ Th. Here q?
h is defined in (4.31).

The proof of the next theorem is similar to the proof of Theorems 4.1 and 4.2 so we
omit the details.

Theorem 4.5. The solution u?
h of (4.32) is well defined. Moreover,

‖u − u?
h‖L2(K) ≤ C hr+3

K ‖u‖Hr+3(K) + C hK‖q − q?
h‖L2(K) + C ‖P 0(u − uh)‖L2(K).

for 0 ≤ r ≤ k.

The following corollary is a simple consequence of the above theorem, Theorem 3.6 and
Corollary 4.4.

Corollary 4.6. Assume the hypotheses of Theorem 3.6 hold. Moreover, assume the mesh

Th is quasi-uniform. Then, for k ≥ 1

‖u − u?
h‖L2(Ω) ≤ C hr+3(‖f‖Hr+1(Ω) + ‖z‖Hr+1(Ω)),

for 1 ≤ r ≤ k.

4.4. Postprocessing for u: The case k = 0. Since P 0(u − uh) does not converge with
order k +3 for k = 0 we cannot take advantage of the post-processing technique defined in
the previous section. Instead we define the following simple postprocessed approximation.
For k = 0 find u?

h|K ∈ P
1(K) that solves

(∇u?
h,∇v)K =(qh,∇v)K for all v ∈ P

1,0
⊥ (K), (4.33a)

(u?
h, w)K =(uh, w)K for all w ∈ P

0(K), (4.33b)

We can easily prove the following result.

Theorem 4.7. The approximation u?
h defined by (4.33) is well defined. Moreover, if we

assume the hypothesis of Theorem 3.7 we have that

‖u − u?
h‖L2(Ω) ≤ Ch2(‖z‖H2(Ω) + ‖f‖H1(Ω)).

5. Implementation issues: Hybrid Form

In this section we introduce a more efficient way of implementing (2.2). We do this by
introducing the hybrid form of (2.2) which is done by relaxing the continuity requirements
of the spaces Σh and Zh . As a consequence Lagrange multipliers are introduced that
approximate u and q on the interfaces of Th. We then show that the only globally coupled
degrees of freedom are those associated with the Lagrange multipliers. Moreover, the other
variables can be recovered element by element. We note that using the hybrid form of
mixed methods has been well studied; see for example [42, 22, 13, 11, 2, 19]. We follow
more closely the notation used in [19].

Here we write the hybrid form of (2.2). In order to do so, we define the following
non-conforming versions of Σh and Zh .
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Σ̃h :={v ∈ L2(Ω) : v|K ∈ RT k(K) for all K ∈ Th},

Z̃h :={s ∈ L2(Ω) : each row of s belongs to Σ̃h}.

We also need to define the Lagrange multiplier spaces

Mh :={µ : µ|F ∈ P
k(F ) for all faces of F of Th, µ = 0 on ∂Ω},

M h :={µ : µ|F ∈ P
k(F ) for all faces of F of Th,µ = 0 on ∂Ω}.

The hybrid method finds (ũh, q̃h, z̃h, σ̃h, λh,αh) ∈ Wh × Qh × Z̃h × Σ̃h × Mh ×M h

that satisfy

(q̃h,v) + (ũh,∇ · v) − 〈λh,v ·n〉 =0, (5.34a)

(z̃h, s) + (q̃h,∇ · s) − 〈αh, sn〉 =0, (5.34b)

−(σ̃h,m) + (m,∇ · z̃h) =0, (5.34c)

(w,∇ · σ̃h) =(f, w), (5.34d)

〈σ̃h · n, µ〉 =0, (5.34e)

〈z̃hn,µ〉 =0, (5.34f)

for all (w,m, s,v, µ,µ) ∈ Wh ×Qh × Z̃h × Σ̃h ×Mh ×Mh.
Here we used the notation

〈µ, λ〉 :=
∑

K∈Th

∫

∂K

µ(s)λ(s) ds.

We state a trivial but important result. We leave the details to the reader.

Theorem 5.1. The problem (5.34) is well defined. Moreover, let (ũh, q̃h, z̃h, σ̃h, λh,αh) ∈
Wh×Qh×Z̃h ×Σ̃h×Mh×Mh be the solution to (5.34), then (ũh, q̃h, z̃h, σ̃h) = (uh, qh, zh,σh)
where (uh, qh, zh,σh) is the solution to (2.2).

In order to see the advantage of using the hybrid formulation (5.34) we need to introduce
local solvers. First for m ∈ Mh let (u1(m),Q1(m),Z1(m),S1(m)) ∈ Wh ×Qh × Z̃h × Σ̃h

solve

(Q1(m),v) + (u1(m),∇ · v) =〈m, v · n〉, (5.35a)

(Z1(m), s) + (Q1(m),∇ · s) =0, (5.35b)

−(S1(m),m) + (m,∇ · Z1(m)) =0, (5.35c)

(w,∇ · S1(m)) =0, (5.35d)

for all (w,m, s,v) ∈ Wh ×Qh × Z̃h × Σ̃h.
Similarly, for µ ∈M h let (u2(µ),Q2(µ),Z2(µ),S2(µ)) ∈ Wh ×Qh × Z̃h × Σ̃h solve

(Q2(µ),v) + (u2(µ),∇ · v) =0, (5.36a)

(Z2(µ), s) + (Q2(µ),∇ · s) =〈µ, sn〉, (5.36b)

−(S2(µ),m) + (m,∇ · Z2(µ)) =0, (5.36c)

(w,∇ · S2(µ)) =0, (5.36d)

for all (w,m, s,v) ∈ Wh ×Qh × Z̃h × Σ̃h.
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Finally, let (u3(f),Q3(f),Z3(f),S3(f)) ∈ Wh ×Qh × Z̃h × Σ̃h solve

(Q3(f),v) + (u3(f),∇ · v) =0, (5.37a)

(Z3(f), s) + (Q3(f),∇ · s) =0, (5.37b)

−(S3(f),m) + (m,∇ · Z3(f)) =0, (5.37c)

(w,∇ · S3(f)) =(f, w), (5.37d)

for all (w,m, s,v) ∈ Wh ×Qh × Z̃h × Σ̃h.
The important fact is that the local solvers are defined locally on each element since

the spaces Wh × Qh × Z̃h × Σ̃h are completely discontinuous. It is simple to show that
they are well defined.

Now that we have the local solvers we define three bilinear forms. For m, µ ∈ Mh and
µ, r ∈Mh define

a(m, µ) :=(Z1(m),Z1(µ)),

c(µ, r) :=(Z2(µ),Z2(r)),

b(m,µ) :=(Z1(m),Z2(µ)).

We next define another problem which will allow us to find the Lagrange multipliers
λh and αh.

Let (λ̃h, α̃h) ∈ Mh ×Mh solve

a(λ̃h, m) + b(m, α̃h) =(f, u1(m)) (5.38a)

b(λ̃h,µ) + c(α̃h,µ) =(f, u2(µ)), (5.38b)

for all (m,µ) ∈ Mh ×M h.
We next prove that this problem is well defined.

Theorem 5.2. The problem (5.38) is well defined.

Proof. Since (5.38) is a square system we need to show uniqueness, so we let f = 0. If we

let m = λ̃h and µ = α̃h and add the two equations (5.38a) and (5.38b) we get

a(λ̃h, λ̃h) + 2 b(λ̃h, α̃h) + c(α̃h, α̃h) = 0.

Using the definition of the bilinear forms a, b, c, this gives exactly

‖Z1(λ̃h) + Z2(α̃h)‖
2
L2(Ω) = 0,

which in turn gives us that
Z1(λ̃h) + Z2(α̃h) = 0. (5.39)

Next we show that this implies that λ̃h = 0 and α̃h = 0. Indeed, by (5.35b), (5.36b) and
(5.39) we have that

(Q1(λ̃h) + Q2(α̃h),∇ · s) = 〈α̃h, sn〉,

Integration by parts gives us that

−(∇(Q1(λ̃h) + Q2(α̃h)), s) = 〈α̃h − (Q1(λ̃h) + Q2(α̃h)), sn〉,

for all s ∈ Z̃h . Using the degrees of freedom of the Raviart-Thomas space Z̃h we can easily
show that ∇(Q1(λ̃h) + Q2(α̃h)) = 0 on Ω and that α̃h = (Q1(λ̃h) + Q2(α̃h)) on the faces

of Th. This implies that Q1(λ̃h) + Q2(α̃h) is constant on Ω, and since it vanishes on ∂Ω
because it is equal to α̃h there, it must be identically zero. This in turn implies that α̃h is
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identically zero. Now that we have that Q1(λ̃h) + Q2(α̃h) = 0 we can combine (5.35a) and
(5.36a) to show that λ̃h = 0 in a similar way. �

We can now prove the main result of this section.

Theorem 5.3. Let (λ̃h, α̃h) ∈ Mh ×M h solve (5.38), then (λh,αh) = (λ̃h, α̃h) where

(ũh, q̃h, z̃h, σ̃h, λh,αh) ∈ Wh ×Qh × Z̃h × Σ̃h × Mh ×Mh solves (5.34). Moreover,

ũh =u1(λ̃h) + u2(α̃h) + u3(f),

q̃h =Q1(λ̃h) + Q2(α̃h) + Q3(f),

z̃h =Z1(λ̃h) + Z2(α̃h) + Z3(f),

σ̃h =S1(λ̃h) + S2(α̃h) + S3(f).

Proof. Let us use the notation

u =u1(λ̃h) + u2(α̃h) + u3(f),

Q =Q1(λ̃h) + Q2(α̃h) + Q3(f),

Z =Z1(λ̃h) + Z2(α̃h) + Z3(f),

S =S1(λ̃h) + S2(α̃h) + S3(f).

Then using the definition of the local solvers, we easily can show that (u,Q,Z,S, λ̃h, α̃h)
satisfies (5.34a)-(5.34d). Hence, by the uniqueness of (5.34) it is enough to show that

〈S · n, µ〉 =0,

〈Zn,µ〉 =0.

In other words, if (λ̃h, α̃h) solves (5.38) we need to show that

〈
(

S1(λ̃h) + S2(α̃h) + S3(f)
)

· n, µ〉 =0,

〈
(

Z1(λ̃h) + Z2(α̃h) + Z3(f)
)

n,µ〉 =0,

for all (µ,µ) ∈ Mh ×M h.
This in turn follows from the following identities

〈S3(f) · n, µ〉 =(f, u1(µ)), (5.40a)

〈Z3(f)n,µ〉 = − (f, u2(µ)), (5.40b)

〈S1(m) · n, µ〉 = − (Z1(m),Z1(µ)), (5.40c)

〈Z2(µ)n, r〉 =(Z2(µ),Z2(r)), (5.40d)

〈S2(µ) · n, µ〉 = − (Z2(µ),Z1(µ)), (5.40e)

〈Z1(µ)n,µ〉 =(Z2(µ),Z1(µ)), (5.40f)

which hold for all m, µ ∈ Mh and µ, r ∈Mh.
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Since the proof of the above identities are similar we only prove (5.40a), (5.40c) and
(5.40e). To this end,

(f, u1(µ)) =(u1(µ),∇ · S3(f)) by (5.37d)

= − (Q1(µ),S3(f)) + 〈µ,S3(f) · n〉 by (5.35a)

= − (Q1(µ),∇ · Z3(f)) + 〈µ,S3(f) · n〉 by (5.37c)

=(Z1(µ),Z3(f)) + 〈µ,S3(f) · n〉 by (5.35b)

= − (Q3(f),∇ · Z1(µ)) + 〈µ,S3(f) · n〉 by (5.37b)

= − (Q3(f),S1(µ)) + 〈µ,S3(f) · n〉 by (5.35c)

=(u3(f),∇ · S1(µ)) + 〈µ,S3(f) · n〉 by (5.37a)

=〈µ,S3(f) · n〉 by (5.35d).

This proves (5.40a).
Also,

(Z1(m),Z1(µ)) = − (Q1(µ),∇ · Z1(m)) by (5.35b)

= − (Q1(µ),S1(m)) by (5.35c)

=(u1(µ),∇ · (S1(m)))− 〈µ,S1(m) · n〉 by (5.35a)

= − 〈µ,S1(m) · n〉 by (5.35d).

This proves (5.40c).
Next we prove (5.40e).

(Z2(µ),Z1(µ)) = − (Q1(µ),∇ · Z2(µ)) by (5.35b)

= − (Q1(µ),S2(µ)) by (5.36c)

=(u1(µ),∇ · S2(µ)) − 〈µ,S2(µ) · n〉 by (5.35a)

= − 〈µ,S2(µ) · n〉 by (5.36d).

This proves (5.40e). Since the proof of the other identities are similar we omit the details.
This completes the proof of theorem. �

6. Alternative analysis for d = 2, 3

One of the drawbacks of the error analysis presented above is that, in the lowest-order
case, more regularity is needed than required by interpolation error; see Corollary 3.3. Here
we give a different analysis that will require less regularity. The key is using Helmholtz
decomposition. Although our alternative analysis will apply in two and three dimensions
we will only consider the three dimensional case here. We start by stating the Helmholtz
decomposition we will use; see for example [27].

Proposition 6.1. Let v ∈ H(div, Ω). Then, there exists φ ∈ H1
0 (Ω) and p ∈H1(Ω) such

that

v = ∇φ + curl p,

with

‖φ‖H1(Ω) ≤ ‖∇ · v‖H−1(Ω), (6.41)

and

‖p‖H1(Ω) ≤ C ‖v‖L2(Ω). (6.42)
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In the result above φ ∈ H1
0 (Ω) solves

4φ = ∇ · v on Ω,

and, hence, we clearly see that the estimate (6.41) holds.
Instead of using the Raviart–Thomas projection applied to σ as defined in (3.4) we will

use the smoothed projection ΠS : L2(Ω) → Σh defined recently in [15] which has a larger
domain than Π; see also [3, 37, 36]. This projection is given by

ΠS = J ΠR,

whereR : L2(Ω) → [C∞(Ω)]d is a smoothing operator, Π is the Raviart–Thomas projection
and J = (ΠR|Σh

)−1. It satisfies, the commutative property

∇ · ΠSv = P S∇ · v (6.43)

where P S is a projection onto Wh and is giving by P S = J P R. Here R : L2(Ω) → C∞(Ω)
is a smoothing operator, P is the L2 projection onto Wh, and J = (P R|Wh

)−1. In fact,
∇ · Rv = R∇ · v; see [15]. By definition it is clear that P Sw = w for all w ∈ Wh and
ΠSv = v for all v ∈ Σh. Moreover, they satisfy the following approximation properties

‖v −ΠSv‖L2(Ω) ≤hr‖v‖Hr(Ω), (6.44)

‖w − P Sw‖L2(Ω) ≤hr‖w‖Hr(Ω), (6.45)

for all 0 ≤ r ≤ k + 1; see [15].
We will need an auxiliary function σ̃. To define it we use the Helmholtz decomposition

of σ to get
σ = ∇θ + curl g,

where, in particular, θ ∈ H1
0 (Ω) satisfies 4θ = ∇ · σ = f . The function σ̃ is defined by

σ̃ = ∇θ̃ + curl g,

where θ̃ ∈ H1
0 (Ω) is the unique solution to 4θ̃ = P f . In particular, note that ∇ · θ̃ = P f .

It is clear from an energy argument that

‖σ − σ̃‖L2(Ω) = ‖∇(θ − θ̃)‖L2(Ω) ≤ C ‖f − P f‖H−1(Ω). (6.46)

Moreover, using the triangle inequality, (6.44) (with r = 0) and (6.46) we can easily
show that

‖σ̃ − ΠSσ̃‖L2(Ω) ≤ ‖σ − ΠSσ‖L2(Ω) + C ‖f − P f‖H−1(Ω). (6.47)

Finally, we will need the following lemma.

Lemma 6.2. We have,

∇ · (ΠSσ̃ − σh) = 0, (6.48)

and

ΠSσ̃ − σh ∈ Σh ∩Qh. (6.49)

Proof. By (2.2d) we get that σh = P f . On the other hand, by (6.43) we have ∇ · ΠSσ̃ =
P S∇ · σ̃ = P S P f = P f . This proves (6.48), and (6.49) follows from Proposition 2.1. �

Theorem 6.3. We have

‖z − zh‖L2(Ω) ≤ C (‖Πz − z‖L2(Ω) + h‖σ − ΠSσ‖L2(Ω) + ‖f − Pf‖H−1(Ω)).

Before proving this result we state a simple corollary that follows from (3.6), (6.44),
approximation properties of P and using that ‖σ‖Hr0−1(Ω) ≤ C‖z‖Hr0(Ω).
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Corollary 6.4. For any 1 ≤ r0 ≤ k + 1 and 0 ≤ r1 ≤ k + 1 we have

‖z − zh‖L2(Ω) ≤ C (hr0‖z‖Hr0(Ω) + h1+r1‖f‖Hr1 (Ω)).

In particular, we see that ‖z − zh‖L2(Ω) ≤ C h(‖z‖H1(Ω) + ‖f‖L2(Ω)) in the case k = 0.

Proof. (Theorem 6.3) As in the proof of Theorem 3.2 we can show that

‖Πz − zh‖
2
L2(Ω) = (Πz − z,Πz − zh) − (σ − σh,Pq − qh). (6.50)

Then we can re-write the last term as follows

−(σ − σh,Pq − qh) = −(σ − σ̃,Pq − qh) − (σ̃ − ΠSσ̃,Pq − qh) (6.51)

where we used that (ΠSσ̃−σh,Pq− qh) = 0 which follows from (6.48), (6.49) and (3.3a).
The first term on the right-hand side of (6.51) can be bounded using (6.46) and to get

−(σ − σ̃,Pq − qh) ≤ C ‖f − Pf‖H−1(Ω) ‖z − zh‖L2(Ω). (6.52)

In order to bound the second term on the right-hand side of (6.51) we use Proposition
6.1 to find p ∈H1(Ω) such that

σ̃ − ΠSσ̃ = curl p, (6.53)

where we used that ∇ · (σ̃ − ΠSσ̃) = P f − P S P f = 0.
To bound the second term of (6.51), note that curl (Ip) ⊂ Qh∩Σh where Ip ∈H1(Ω)

is the piece-wise linear Scott-Zhang [40] interpolant of p. We, of course, will use the
approximation property

‖p− Ip‖L2(Ω) + h‖p− Ip‖H1(Ω) ≤ C h‖p‖H1(Ω). (6.54)

Hence, using integration by parts and (3.3a) we have

−(curl p,Pq − qh) = − (curl (p− Ip),Pq − qh)

= − (p− Ip, curl (Pq − qh)) − 〈(p − Ip) × n,Pq − qh〉.

Using (3.3b) and using the degrees of freedom of the Raviart-Thomas space we can
easily show that

‖∇(Pq − qh)‖L2(K) ≤ C ‖z − zh‖L2(K), (6.55)

for all K ∈ Th.
Hence, if we use (6.55), (6.54) and (6.42) we get

−(p− Ip, curl (Pq − qh)) ≤ C h ‖σ̃ − ΠSσ̃‖L2(Ω)‖z − zh‖L2(Ω). (6.56)

Similarly, noting that p− Ip ∈H1(Ω) and using (3.20), (6.54) and (6.42) we have

−〈(p− Ip) ×n,Pq − qh〉 ≤ C h ‖σ̃ −ΠSσ̃‖L2(Ω)‖z − zh‖L2(Ω). (6.57)

Therefore,

−(σ̃ − ΠSσ̃,Pq − qh) ≤ C (h ‖σ − ΠSσ‖L2(Ω) + ‖f − P f‖H−1(Ω))‖z − zh‖L2(Ω),

where we also used (6.47). We complete the proof if we combine this inequality with (6.52),
(6.51) and (6.50). �
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7. Numerical Experiments

In this section we provide numerical experiments that validate our theoretical results.
First we will consider a smooth problem. Then, we consider a corner singularity problem
and we investigate the performance of our method with graded meshes.

7.1. Smooth Solution. For our first example, we chose Ω = [0, 1] × [0, 1] and f so that
the solution u(x, y) = u = 10 (y − 1)3 y3 (x − 1)2 x2. We provide the results for uniform
meshes and we denote the mesh with mesh size 1

2i simply by mesh i; see Figure 1 for an
example. Table 1 shows that the order of convergence of the errors for u, q and z are
optimal and that the order of convergence for the error in σ is sub-optimal. In Table 2 we
see that ‖P k−1(u − uh)‖L2(Ω) converges order k + 3 while ‖P (u − uh)‖L2(Ω) converges with
order k + 2. Moreover, we see that ‖P (q − qh)‖L2(Ω) converges with order k + 2 for k ≥ 0.
Note, however, that we were only able to prove this for k ≥ 1; see Corollary 3.10. Also, in
Table 2 we display the order of convergence for ‖q−q?

h‖L2(Ω) and ‖u−u?
h‖L2(Ω). As one can

see from Table 2 the order of convergence for ‖q− q?
h‖L2(Ω) is k +2. The approximation u?

h

we calculated is given by (4.30) for k = 2, by (4.32) for k = 1, and (4.33) for k = 0. Table
2 shows that ‖u− u?

h‖L2(Ω) converges with order k + 3 for k = 1, 2 and k + 2 for k = 0 just
as the theory predicted.

Figure 1. Mesh 3, h = 1
23

7.2. Non-convex domain and graded meshes. For our second example, we consider
the example given in [16] where a non-convex polygon is used with vertices (0, 0), (0.5, 0),
(0.5, 0.5), (-0.5, 0.5), (-0.5,-0.25) and (-0.25,-0.25); see Figure 2. The exact solution can
be found in [16]. The important point is that u /∈ H4(Ω). There is a corner singularity at
the re-entrant corner (0, 0). We generated graded meshes; see Figure 2 for an example. We
then computed the errors and orders of convergence as in [16]. Although our theory does
not cover non-convex domains, we see from Table 3 that using graded meshes we obtain
optimal convergence orders for u, q, and z and get the predicted order k for σ. Moreover,
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Table 1. History of convergence: smooth solution

mesh ‖u− uh‖L2(Ω) ‖q− qh‖L2(Ω) ‖z − zh‖L2(Ω) ‖σ − σh‖L2(Ω)

k i error order error order error order error order

1 .41e-2 0.00 .21e-1 0.00 .16e+0 0.00 .14e+1 0.00

2 .15e-2 1.44 .93e-2 1.20 .80e-1 0.97 .89e+0 0.63
3 .62e-3 1.27 .44e-2 1.09 .41e-1 0.95 .49e+0 0.88

4 .29e-3 1.10 .21e-2 1.03 .21e-1 0.96 .25e+0 0.96
0 5 .14e-3 1.03 .11e-2 1.01 .11e-1 0.99 .13e+0 0.96

6 .70e-4 1.01 .53e-3 1.00 .54e-2 1.00 .67e-1 0.93
7 .35e-4 1.00 .26e-3 1.00 .27e-2 1.00 .37e-1 0.88

8 .18e-4 1.00 .13e-3 1.00 .13e-2 1.00 .21e-1 0.81
9 .88e-5 1.00 .66e-4 1.00 .67e-3 1.00 .13e-1 0.72

1 .13e-2 0.00 .86e-2 0.00 .63e-1 0.00 .69e+0 0.00

2 .28e-3 2.20 .22e-2 1.97 .20e-1 1.65 .26e+0 1.37
3 .68e-4 2.04 .62e-3 1.84 .55e-2 1.86 .12e+0 1.15

1 4 .17e-4 1.99 .16e-3 1.95 .14e-2 1.96 .60e-1 1.00
5 .43e-5 1.99 .40e-4 1.99 .36e-3 1.99 .30e-1 0.99

6 .11e-5 2.00 .10e-4 2.00 .90e-4 1.99 .15e-1 0.99
7 .27e-6 2.00 .25e-5 2.00 .23e-4 2.00 .76e-2 0.99

1 .36e-3 0.00 .34e-2 0.00 .20e-1 0.00 .28e+0 0.00
2 .51e-4 2.81 .55e-3 2.63 .37e-2 2.41 .67e-1 2.06

3 .71e-5 2.85 .78e-4 2.81 .55e-3 2.76 .17e-1 2.02
2 4 .92e-6 2.95 .10e-4 2.95 .73e-4 2.92 .41e-2 2.03

5 .12e-6 2.99 .13e-5 2.99 .92e-5 2.97 .99e-3 2.04
6 .15e-7 3.00 .16e-6 3.00 .12e-5 2.99 .24e-3 2.04

Figure 2. Example of graded mesh
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Table 2. History of convergence for postprocessing: smooth solution

mesh ‖Pk−1(u − uh)‖L2(Ω) ‖P (u− uh)‖L2(Ω) ‖P (q − qh)‖L2(Ω) ‖u − u?
h‖L2(Ω) ‖q − q?

h‖L2(Ω)

k i error order error order error order error order error order

1 – – .33e-2 – .18e-1 – .42e-2 – .22e-1 –

2 – – .10e-2 1.66 .48e-2 1.91 .11e-2 1.90 .66e-2 1.75
3 – – .28e-3 1.92 .14e-2 1.82 .29e-3 1.97 .19e-2 1.77

4 – – .70e-4 1.97 .37e-3 1.90 .73e-4 1.98 .52e-3 1.89
0 5 – – .18e-4 1.99 .93e-4 1.97 .18e-4 2.00 .13e-3 1.97

6 – – .44e-5 2.00 .23e-4 1.99 .46e-5 2.00 .33e-4 1.99
7 – – .11e-5 2.00 .59e-5 2.00 .11e-5 2.00 .84e-5 2.00

8 – – .28e-6 2.00 .15e-5 2.00 .29e-6 2.00 .21e-5 2.00
9 – – .69e-7 2.00 .37e-6 2.00 .72e-7 2.00 .52e-6 2.00

1 .80e-3 – .13e-2 – .59e-2 – .11e-2 – .67e-2 –

2 .82e-4 3.29 .13e-3 3.33 .68e-3 3.12 .93e-4 3.52 .95e-3 2.80
3 .63e-5 3.70 .12e-4 3.51 .75e-4 3.19 .68e-5 3.76 .13e-3 2.93

1 4 .42e-6 3.91 .11e-5 3.41 .85e-5 3.14 .45e-6 3.93 .16e-4 2.99
5 .27e-7 3.98 .12e-6 3.18 .10e-5 3.05 .28e-7 3.98 .20e-5 3.00

6 .17e-8 4.00 .14e-7 3.06 .13e-6 3.01 .18e-8 4.00 .25e-6 3.00
7 .10e-9 4.02 .18e-8 3.01 .16e-7 3.00 .11e-9 4.02 .31e-7 3.00

1 .17e-3 – .25e-3 – .11e-2 – .16e-3 – .16e-2 –
2 .56e-5 4.93 .12e-4 4.42 .59e-4 4.25 .68e-5 4.58 .14e-3 3.54

3 .12e-6 5.55 .69e-6 4.09 .37e-5 4.00 .20e-6 5.08 .91e-5 3.90
2 4 .24e-8 5.65 .44e-7 3.98 .24e-6 3.94 .61e-8 5.05 .58e-6 3.96

5 .56e-10 5.42 .27e-8 3.99 .16e-7 3.95 .19e-9 5.01 .37e-7 3.99
6 .17e-11 5.04 .17e-9 4.00 .10e-8 3.97 .59e-11 5.00 .23e-8 4.00

Table 3. History of convergence: non-smooth solution

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖z − zh‖L2(Ω) ‖σ − σh‖L2(Ω)

k #triangles error order error order error order error order

24 .12e+0 – .44e+0 – .10e+1 – .73e+1 –

247 .56e-1 0.58 .19e+0 0.66 .37e+0 0.83 .35e+1 0.58
945 .27e-1 1.05 .100e-1 0.97 .20e+0 0.90 .22e+1 0.72

0 2948 .14e-1 1.10 .53e-1 1.09 .11e+0 1.06 .15e+1 0.65
10850 .76e-2 0.98 .27e-1 1.02 .56e-1 1.01 .10e+1 0.54

24 .13e-1 – .26e-1 – .20e+0 – .43e+1 –

247 .26e-2 1.28 .44e-2 1.41 .16e-1 2.02 .16e+1 0.76

1 945 .68e-3 1.97 .11e-2 1.96 .45e-2 1.83 .89e+0 0.89
2948 .19e-3 2.19 .32e-3 2.23 .14e-2 2.07 .51e+0 0.95

10850 .52e-4 2.01 .86e-4 1.99 .37e-3 2.00 .24e+0 1.19

from Table 4 we see that the postprocessing approximations for this example converge with
the same order as in the previous example.
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Table 4. History of convergence for postprocessing: non-smooth solution

mesh ‖Pk−1(u − uh)‖L2(Ω) ‖Pk(u − uh)‖L2(Ω) ‖Pk(q − qh)‖L2(Ω) ‖u − u?
h
‖L2(Ω) ‖q − q?

h
‖L2(Ω)

k #triangles error order error order error order error order error order

24 – – .86e-2 – .94e-2 – .18e-1 – .60e-1 –
247 – – .18e-2 1.23 .24e-2 1.09 .37e-2 1.27 .95e-2 1.46

945 – – .47e-3 2.00 .70e-3 1.79 .96e-3 1.97 .28e-2 1.78
0 2948 – – .14e-3 2.15 .18e-3 2.34 .27e-3 2.19 .78e-3 2.22

10850 – – .34e-4 2.09 .45e-4 2.12 .72e-4 2.02 .21e-3 2.01

24 .15e-3 – .54e-3 – .28e-2 – .24e-3 – .58e-2 –
247 .13e-5 3.78 .41e-4 2.04 .95e-4 2.67 .34e-5 3.37 .19e-3 2.73

1 945 .10e-6 3.73 .50e-5 3.09 .14e-4 2.75 .25e-6 3.84 .27e-4 2.83
2948 .10e-7 3.97 .69e-6 3.44 .22e-5 3.25 .21e-7 4.30 .41e-5 3.26

10850 .79e-9 3.95 .10e-6 2.91 .31e-6 3.00 .15e-8 3.96 .57e-6 3.00

8. Boundary conditions

Here we show that our method easily generalizes to non-homogeneous boundary con-
ditions of mixed clamped and simply supported type. We Consider the two-dimensional
problem

q = ∇u, z = ∇q in Ω,

σ = ∇ · z, ∇ · σ = f in Ω,

u = u0, q · n = qN on ΓC

u = u0, zn = zN on ΓS ,

where ΓD ∪ ΓS = ∂Ω.
We only need to define the Lagrange multiplier space

MS
h := {µ ∈ L2(ΓS) : µ|F ∈ P

k(F ) for all faces of F of Th and F ⊂ ΓS}.

Then, the method finds (uh, qh, zh,σh,αh) ∈ Wh ×Qh ×Zh ×Σh ×M
S
h that satisfy

(qh,v) + (uh,∇ · v) =〈u0,v ·n〉∂Ω (8.58a)

(zh, s) + (qh,∇ · s) − 〈αh, sn〉ΓS
=〈qN , sn · n〉ΓC

+ 〈∂tu0, sn · t〉ΓC
(8.58b)

−(σh,m) + (m,∇ · zh) =0 (8.58c)

(w,∇ · σh) =(f, w) (8.58d)

〈zhn,µ〉ΓS
=〈zN ,µ〉ΓS

, (8.58e)

for all (w,m, s,v,µ) ∈ Wh ×Qh ×Zh × Σh ×MS
h .

The case of free boundary conditions is more difficult and it is currently under investi-
gation; see [7, 8, 1] for other methods that consider general boundary conditions. As above,
we can potentially use Lagrange multipliers to formulate a method, but it seems that the
multipliers would have to be continuous and possibly of higher order on the free part of
the boundary.
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9. Concluding Remarks

We have developed a method that approximates u, q and z with optimal order and σ
in a sub-optimal way. Moreover, we used postprocessed approximations to u which can be
calculated locally on each element which converge with order k + 3 for k ≥ 1 and k + 2
for k = 0. In addition, we defined a postprocessed approximation to q that converges with
order k + 2 for k ≥ 1.

A natural question is if we can use other spaces. The answer is yes, but in order to
elaborate we need a standard definition.

Definition 9.1. The pair Qh × Zh is a stable pair for the vector-valued Poisson problem

if there exists a constant C such that for any v ∈ Qh there exists s ∈ Zh such that

∇ · z = v,

with

‖z‖H(div,Ω) ≤ C ‖v‖L2(Ω).

Similarly, Wh × Σh is a stable pair for Poisson’s problem if it is a row of a stable pair for

the vector-valued Poisson problem.

One can follow the argument given in the proof of Theorem 2.2 to obtain the following
result.

Theorem 9.2. Suppose Wh ×Σh is a stable pair for Poisson’s problem and Qh ×Zh is a

stable pair for the vector-valued Poisson problem. If the following inclusion holds

{v ∈ Σh : ∇ · v = 0} ⊂ Qh, (9.59)

then (2.2) is well-defined with spaces Wh ×Qh ×Zh × Σh.

In addition to the spaces we defined in the beginning of the paper we can, for instance,
use the spaces (k ≥ 1)

Wh :={w ∈ L2(Ω) : w|K ∈ P
k−1(K), for all K ∈ Th},

Qh :={m ∈ L2(Ω) :m|K ∈ P
k−1(K), for all K ∈ Th},

Σh :={v ∈H(div , Ω) : v|K ∈ RT k−1(K) for all K ∈ Th},

Zh :={s ∈H(div , Ω) : s|K ∈ P
k(K) for all K ∈ Th}.

We see that Qh × Zh is d copies of the Brezzi-Marini-Douglas spaces (or Brezzi-Douglas-
Durán-Fortin in 3d) [11, 12] for Poisson’s problem. The pair Wh×Σh is the Raviart-Thomas
space for Poisson’s problem. Furthermore, (9.59) follows from Proposition 2.1. In fact, we
can prove Theorem 6.3 with these spaces for d = 2, 3. Of course, P is now the projection
onto our new space Wh, ΠS : L2(Ω) → Σh satisfies (6.43) and (6.44) with 0 ≤ r ≤ k and
Π is the matrix-valued BDM projection (d copies of BDM projection: one for each row)
onto the space Zh . It follows then that we get optimal convergence rates for z. In fact,
(3.14) will hold for these new spaces and therefore we will get optimal error estimates for
σ as well. Finally, one can also prove optimal error estimates for q and u.
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[36] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), no. 262,
633–649.
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