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FAMILIES OF SURFACE GAP SOLITONS AND THEIR STABILITY VIA THE

NUMERICAL EVANS FUNCTION METHOD

ELIZABETH BLANK∗ AND TOMÁŠ DOHNAL†

Abstract. The nonlinear Schrödinger/Gross-Pitaevskii equation with a linear periodic potential and a nonlinearity
coefficient Γ with a discontinuity supports stationary localized solitary waves with frequencies inside spectral gaps, so
called surface gap solitons (SGSs). We compute families of 1D SGSs using the arclength continuation method for a
range of values of the jump in Γ. Using asymptotics, we show that when the frequency parameter converges to the
bifurcation gap edge, the size of the allowed jump in Γ converges to 0 for SGSs centered at any xc ∈ R.

Linear stability of SGSs is next determined via the numerical Evans function method, in which the stable and
unstable manifolds corresponding to the 0 solution of the linearized spectral ODE problem are evolved up to a common
location where the determinant of their bases, i.e., the Evans function, is evaluated. Zeros of the Evans function coincide
with eigenvalues of the linearized operator. Far from the SGS location the manifolds are spanned by exponentially
decaying/increasing Bloch functions. As we show, evolution of the manifolds suffers from stiffness. A numerically
stable formulation is possible in the exterior algebra formulation and with the use of Grassmanian preserving ODE
integrators. Eigenvalues with a positive real part larger than a small constant are then detected via the use of the
complex argument principle and a contour parallel to the imaginary axis. The location of real eigenvalues is found
via a straightforward evaluation of the Evans function along the real axis and several complex eigenvalues are located
using Müller’s method. The numerical Evans function method is described in detail in order to facilitate its use as
a practical tool for locating eigenvalues. Our results show the existence of both unstable and stable SGSs (possibly
with a weak instability), where stability is obtained even for some SGSs centered in the domain half with the less
focusing nonlinearity. Direct simulations of the PDE for selected SGS examples confirm the results of Evans function
computations.

Key words. surface gap solitons, arclength continuation, periodic nonlinear Schrödinger equation, numerical Evans
function method, exterior algebra, argument principle, Müller’s method

AMS subject classifications. 35Q55,35B35,65L15,78A40

1. Introduction. Waves in periodic media with a nonlinear response are of fundamental im-
portance in several areas of physics including propagation of light in nonlinear photonic crystals and
evolution of Bose Einstein condensates (BECs) loaded on optical lattices. A classical and highly
universal one dimensional model in these settings is the periodic nonlinear Schrödinger (PNLS) /
Gross-Pitaevskii equation

i∂tψ(x, t) + ∂2xψ(x, t) − V (x)ψ(x, t) + Γ(x)|ψ(x, t)|2ψ(x, t) = 0 (1.1)

on x ∈ R, t ≥ 0 with V (x + d) = V (x) ∀ x ∈ R. Equation (1.1) is a model for BECs confined via a
magnetic or optical trap (in the directions transversal to x) to a quasi-1D geometry and loaded on an
optical lattice [9, 15] and also for optical beams propagating in Kerr nonlinear media in a direction
orthogonal to the x−axis along which the linear part of the refractive index of the medium is periodic
[47]. In the latter case t is a spatial variable along the propagation direction. We investigate stationary
solitary waves for nonlinear interfaces

Γ(x) = Γ+ χ[0,∞)(x) + Γ− χ(−∞,0)(x), where Γ± ∈ R. (1.2)

In optics this coefficient describes two media with different values of the cubic susceptibility affixed
at x = 0 while in BECs it corresponds to two condensates with different s-wave scattering lengths. If
Γ(x) > 0, the BEC interaction is ‘attractive’ at x; in optics the medium is called ‘focusing’ at x. In
the opposite case the respective terms are ‘repulsive’ and ‘defocusing’.
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Localized solitary waves are of particular physical as well as mathematical interest due to their
properties of finite energy and constant shape throughout evolution. In optics they are considered as
viable candidates for bit carriers. Solitary wave solutions ψ(x, t) = e−iµtφ(x), µ ∈ R of (1.1) with a
periodic V and with exponentially localized φ are called surface gap solitons (SGSs) when Γ+ 6= Γ− in
(1.2) and gap solitons (GSs) when Γ is periodic. The spatial profile φ satisfies the stationary periodic
nonlinear Schrödinger equation

φ′′(x) + µφ(x) − V (x)φ(x) + Γ(x)|φ(x)|2φ(x) = 0, x ∈ R. (1.3)

The word ‘gap’ in the names of GS and SGS comes from the fact that the frequency parameter µ
must lie in a gap of the spectrum σ(L) of the operator

L := −∂2x + V (x), x ∈ R.

(S)GSs arise due to a balance between the linear periodicity induced dispersion and the nonlinear
focusing or defocusing. GSs of (1.1) were studied theoretically, for instance, in [47, 41]. In [46, 39]
existence of gap soliton ground states in all gaps of σ(L) for the d-dimensional PNLS was proved
rigorously using variational methods. GSs have been also observed experimentally in optics [7, 18] as
well as in BECs [16].

One dimensional SGSs have been previously studied mainly at linear interfaces, i.e., for Γ ≡ const.
and V (x) = V1(x) χ[0,∞)(x) + V2(x) χ(−∞,0)(x), V1,2(x + d1,2) = V1,2(x), see the numerical studies
e.g. in [28, 34]. Analogous linear interfaces have been considered in 2D [26, 27]. SGSs have been
observed also experimentally in photonic crystals [43, 48].

At the nonlinear interface (1.2) SGSs were studied via numerical and asymptotic methods in [13].
Using the implicit function theorem, their existence was shown to hold via a parameter continuation
from GSs with Γ ≡const. for sufficiently small |Γ+ − Γ−| under a non-degeneracy condition on the
GS. Families of SGSs were then numerically continued in Γ− for Γ+ fixed up to a critical point where
the corresponding Jacobian becomes singular. Here we first use the numerical arclength continuation
to extend these families past the critical points, which are all apparently simple folds of the SGS
families. The families are continued up to a chosen threshold value of Γ− or total energy. Next, we
investigate linear stability of these SGSs via the numerical Evans function method and identify stable
and unstable segments of the SGS families. We show that folds are often associated with a stability
change.

The phenomenon of localization in a medium with a purely nonlinear interface relies crucially
on the presence of a linear structure. Without a linear structure, i.e., for V ≡ const., no localized
solutions of (1.3) exist as shown in the following lemma. This result also appears (for real φ) in Sec.
3.3 of [13].

Lemma 1.1. If V ≡ const. and Γ+ 6= Γ−, then the stationary periodic nonlinear Schrödinger

equation (1.3) has no nontrivial solutions in H1(R).
Proof. Due to the presence of the term µφ in (1.3) we can assume without any loss of generality

that V ≡ 0. As a first order system in real variables φRe := Re(φ) and φIm := Im(φ) equation (1.3)
reads

d

dx

( φRe

φIm

φ′
Re

φ′
Im

)

=





φ′
Re

φ′
Im

−µφRe−Γ(x)(φ2
Re+φ2

Im)φRe

−µφIm−Γ(x)(φ2
Re+φ2

Im)φIm



 ,

which is a Hamiltonian system with H(φRe, φIm, φ
′
Re, φ

′
Im) = 1

2

[

(φ′Re)
2 + (φ′Im)

2 + µ(φ2Re + φ2Im)
]

+
1
4Γ(x)

(

φ2Re + φ2Im
)2
. Because Γ(x) = Γ+ χ[0,∞)(x) + Γ− χ(−∞,0)(x), the Hamiltonian H is conserved

on each x ≥ 0 and x < 0. As φ ∈ H1(R), both φ(x) and φ′(x) decay to 0 as |x| → ∞ so that
H(φRe(x), φIm(x), φ′Re(x), φ

′
Im(x)) → 0 as |x| → ∞, and thus H ≡ 0.
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Differentiation yields

0 ≡ d

dx
H = φ′Re

[

φ′′Re + µφRe + Γ(x)
(

φ2Re + φ2Im
)

φRe

]

+

φ′Im
[

φ′′Im + µφIm + Γ(x)
(

φ2Im + φ2Re

)

φIm
]

+
1

4
(Γ+ − Γ−)δ(x)

(

φ2Re + φ2Im
)2
,

(1.4)

where δ(x) is the Dirac delta. Integrating (1.4) over R, we get 0 = 1
4 (Γ+ − Γ−)

(

φ2Re(0) + φ2Im(0)
)2

so
that φRe(0) = φIm(0) = 0.

Finally, due to the C1-nature of φ we have also 0 = limx→0+H(φRe(x), φIm(x), φ′Re(x), φ
′
Im(x)) =

1
2

(

(φ′Re(0))
2 + (φ′Im(0))2

)

. In summary φRe(0) = φ′Re(0) = φIm(0) = φ′Im(0) = 0. Hence φ ≡ 0.
As a result, solitons of the constant coefficient nonlinear Schrödinger equation cannot be continued

in (Γ− −Γ+) from Γ− = Γ+. This is due to the presence of the spatial shift invariance, which renders
the corresponding Jacobian singular so that a parameter continuation fails. A periodic linear structure
can thus be viewed as one of the simplest structures supporting localized waves at nonlinear interfaces.

In the rest of the paper we limit our attention to real SGSs profiles φ(x) : R → R. These satisfy

φ′′(x) + µφ(x) − V (x)φ(x) + Γ(x)φ3(x) = 0, x ∈ R. (1.5)

The C1-solutions of (1.5) are critical points of the total energy

Eµ(φ) =

∫

R

[

(φ′)2 − µφ2 + V (x)φ2
]

dx− 1

2

∫

R

Γ(x)φ4dx, (1.6)

so that the first variation of Eµ(φ) is equivalent to (1.5).
Understanding stability of SGSs with respect to perturbations of the initial data φ(x) is of crucial

importance for predicting physically and numerically observable solutions since experiments as well
as numerical simulations generate unavoidable error. We investigate linear stability by inspecting the
spectrum of the corresponding linearized operator. Standard methods for numerically approximating
spectra of operators include direct eigenvalue computations in a finite dimensional approximation, e.g.
finite differences or finite elements; Floquet-Bloch theory, where the problem is artificially treated
as periodic [11]; and the numerical Evans function method [12, 4, 41, 19], out of which the last
method is in principle restricted to one dimensional problems. Direct eigenvalue computations in a
finite dimensional space typically suffer from spurious eigenvalues, which are difficult to identify [12].
Although certain techniques for tackling this spectral pollution are available [10, 35], we choose the
Evans function method, which does not suffer from spectral pollution. A further advantage of the
Evans function method is the possibility to determine the number of eigenvalues within a region of the
complex plane with a single contour integration via the use of the argument principle. Nevertheless,
we do not claim the superiority of this method over others. In the Evans function approach finding
eigenvalues is reformulated as determining linear dependence of the stable and unstable manifolds of
the zero solution of the linearized ODE. In the end this problem reduces to the evolution of an ODE
system and the computation of a determinant, called the Evans function. Zeros of the Evans function
coincide with eigenvalues of the linearized operator. As we show, a numerically stable and accurate
evaluation of the Evans function, however, requires a careful computation of exponentially exploding
solutions, the use of exterior algebra, which avoids numerical stiffness while preserving analyticity of
the Evans function as well as the use of an ODE integrator which approximately preserves the weak
Grassmanian invariant of the ODE system. Analyticity is essential in our method as we apply the
argument principle in order to determine eigenvalues in the right half complex plane.

The aim of the paper is twofold. Firstly, it is to investigate properties of SGSs of (1.1), including
their stability, and secondly to develop a practical numerical Evans function method combined with
the argument principle for determining linear stability in problems with periodic coefficients. At the
same time we point out possible difficulties of the method.
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The rest of the paper is structured as follows. In the remaining part of the introduction we
give a brief overview of Floquet theory and define some quantities needed in later sections. Section
2 discusses the numerical method of arclength continuation as applied to computing SGS families.
Results of these computations are then presented and discussed for SGSs in the first two spectral
gaps. Section 3 is devoted to linear stability of SGSs. After summarizing available information
about the spectrum of the linearization we describe the Evans function method for locating the point
spectrum. Next, we discuss difficulties in evaluating the Evans function in a numerically stable and
accurate way and offer their solutions. Results of Evans function computations are then presented for
the SGS families computed in Section 2. Finally, direct numerical simulations of the PDE (1.1) are
performed for selected SGS examples to demonstrate their (un)stable evolution.

1.1. Review of Floquet Theory. The linear part of the stationary equation (1.5) is Hill’s
equation

Lq = −∂2xq + V (x)q = µq, x ∈ R. (1.7)

An overview of Floquet theory for Hill’s equation can be found in [33, 14]. The spectrum σ(L)
can be determined by studying the trace of the monodromy matrix of the first order version of (1.7).
The spectrum is composed of bands, σ(L) = ∪k∈N[s2k−1, s2k], where s2k+1 ≥ s2k > s2k−1. We define
int(σ(L)) = ∪k∈N(s2k−1, s2k) and ∂σ(L) = {s1, s2, . . .}. For µ ∈ C \ ∂σ(L) there are two linearly
independent solutions of (1.7), so called Bloch waves, which have the form

q1(x) = p1(x)e
ikx, q2(x) = p2(x)e

−ikx,

where p1,2(x+ d) = p1,2(x) ∀x ∈ R and k ∈ C. The periodic parts p1,2 satisfy

− (∂x ± ik)2p1,2(x) + V (x)p1,2(x) = µp1,2(x), x ∈ [0, d] (1.8)

with periodic boundary conditions.
For µ ∈ int(σ(L)) the Bloch waves are bounded since k ∈ R. For µ ∈ ∂σ(L) one solution is a

periodic Bloch wave, and thus remains bounded, while the other linearly independent solution grows
linearly in x. We denote the periodic Bloch function at the edge µ = sn ∈ ∂σ(L) by qn. When
µ ∈ C \ ∂σ(L), the Bloch waves grow exponentially in either x direction since Im(k) 6= 0.

2. SGS Existence and Numerical Continuation. In [13] an implicit function theorem argu-
ment was used to show that gap solitons φGS, i.e. solutions of (1.5) with Γ ≡ Γ0, can be continued to
SGSs as Γ− departs from Γ+ = Γ0 provided the Jacobian J = −∂2x+V (x)−3Γ0φ

2
GS(x) is nonsingular.

This condition on J is expected to hold due to the absence of shift invariance in equation (1.5). Note
that the continuation result holds for GSs centered at any xc ∈ R. In [13] continuation in Γ− is
carried out numerically for xc = 0 and V (x) = sin2(πx/10) up to a critical value of Γ−, where J
becomes singular. Here we show using the numerical arclength continuation method [30, 29] that the
SGS families simply turn back with respect to (Γ− − Γ+) at this critical point and can be continued
further. Often numerous turning points occur within an SGS family. These results suggest that the
critical points are simple folds, where the kernel of J is only one dimensional. Arclength continuation
has been used in the context of the discrete NLS for instance in [32].

Let us denote equation (1.5) as G(φ,Γ−) = 0 with Γ+ fixed and φ and Γ− unknown. Due
to the jump in the coefficient Γ the solution φ is only C1 regular and we thus discretize (1.5) via
H1 conforming finite elements (using a FEM package by M. Richter from the Karlsruhe Institute of
Technology). We use elements of 3rd order (p = 3) on a domain [−R,R] with R > 0 large enough so
that a given φGS is well decayed at x = ±R (typically φGS ≈ 10−14 for x ∈ [−R,− 9

10R] ∪ [ 9
10R,R]).

We use the element size h ≤ 0.06 in all computations. As we show in Sec. 3.5.1, the accuracy of
the Evans function, measured by how well the Evans function recovers the zero eigenvalue of the
linearization, improves as h→ 0.
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In order to describe the arclength continuation, let us denote the resulting FEM-discretized system
of N algebraic equations by

~G(~φ,Γ−) = 0, (2.1)

where ~φ = (φk)
N
k=1 and φk is the approximation of φ(xk), xk = −R+ (k− 1) 2R

N−1 , k ∈ {1, . . . , N}. In
the arclength continuation method the solution family (~φ,Γ−) is parametrized by the arclength τ of

the curve generated by the family in the (‖~φ‖,Γ−) plane with a selected norm ‖ · ‖, e.g. the l2-norm.
System (2.1) is underdetermined and the arclength method appends it with an equation that ensures
continuation in the tangent direction. Namely, to extend the family from τ = τ0 to τ = τ1, one solves

~G(~φ,Γ−) = 0
(

~φ(τ1)− ~φ(τ0)
)T d

dτ
~φ(τ0) + (Γ−(τ1)− Γ−(τ0))

d

dτ
Γ−(τ0)− (τ1 − τ0) = 0

(2.2)

for the vector (~φT (τ1),Γ−(τ1)) ∈ RN+1, which we do by Newton’s iteration using (~φT (τ0),Γ−(τ0))+(τ1−
τ0)(

d
dτ
~φT (τ0),

d
dτ
Γ−(τ0)) as the initial guess. After convergence the tangent vector at τ = τ1 is ob-

tained by solving

(

~G~φ
(τ1) ~GΓ−

(τ1)
d
dτ
~φ(τ0)

d
dτ
Γ−(τ0)

)

(

d
dτ
~φ(τ1)

d
dτ
Γ−(τ1)

)

=

(

~0
1

)

,

where ~G~φ
is the N × N Jacobian matrix

(

∂ ~G
∂φ1

, . . . , ∂ ~G
∂φN

)

and ~GΓ−
= ∂ ~G

∂Γ−
. The solution vector is

normalized so that ‖ d
dτ
~φ(τ1)‖2l2 +

(

d
dτ
Γ−(τ1)

)2
= 1. The first continuation step from the GS at τ = 0,

where the tangent vector is not available, is performed via a standard continuation in the parameter
Γ−. Newton’s method is terminated when the L2-norm of the residual decreases below a tolerance
(typically 10−10).

In [41] it is shown that families of GSs originate at upper edges of spectral gaps for the focusing
nonlinearity Γ0 > 0 and at lower gap edges for Γ0 < 0. They bifurcate from the zero solution at the
corresponding edge, which we call the bifurcation edge. For even potentials V with one maximum and
one minimum in each period there are two distinct families of GSs, namely those symmetric about the
minimum location, so called onsite GSs, and those symmetric about the maximum location, offsite
GSs [41]. GSs centered at x = 0 can be computed via a numerical continuation in the parameter µ
starting near a selected bifurcation gap edge µ = sn. As an initial guess for GSs near sn we use the
slowly varying envelope approximation εAn(X)qn(x), X = εx, where 0 < ε2 << 1 is the distance
of µ to the gap edge: µ = sn + Ωε2 and Ω = ±1 for lower and upper gap edges, respectively. qn is
the periodic Bloch function at µ = sn and An satisfies the constant coefficient homogenized nonlinear
Schrödinger equation, see e.g. [5], Sec. IV in [41] or Sec. 3.3 in [13],

ΩAn + νA′′
n + ρΓA3 = 0, (2.3)

where ν = 1+ 2(q̃′n, qn)L2(0,d) and ρ = ‖qn‖4L4(0,d) with q̃n being a (periodic) ‘generalized Bloch func-

tion’. We use the explicitly known ground state solution of (2.3), namelyAn(X) =
√

−2Ω
ρΓ sech

(
√

−Ω
ν
X
)

.

In this sense we construct an approximation to ‘fundamental’ GSs. Choosing an excited state solution
to (2.3), a different family of GSs would result.

2.1. Numerical Continuation Results. We restrict our attention to the semi-infinite gap
(−∞, s1) and the first finite gap (s2, s3) and first compute families of both on- and offsite GSs bifur-
cating from upper gap edges s1 and s3 for Γ ≡ 1 and from the lower edge s2 for Γ ≡ −1. In all of the
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Fig. 2.1. Families of onsite gap solitons in the semi-infinite and the first finite gap for the potential (2.4) (with
x0 = 0). (a) GS continuation curves in the frequency – total power coordinates; (b)-(d) GS profiles for the points
labeled in (a).

numerical computations we use

V (x) = sin2
(

π
x− x0
d

)

, d = 10, (2.4)

where x0 = 0 for onsite and x0 = d/2 = 5 for offsite GSs. The shift x0 is introduced in order to ensure
that both onsite and offsite GSs are centered at x = 0, the interface location for the subsequent SGS
study. The first 10 edges of the spectrum σ(L) for (2.4) have been computed using the trace of the
monodromy matrix [14] to be

(s1, s2, . . . , s10) ≈ (0.2832, 0.2905, 0.7467, 0.8433, 1.0568, 1.4069, 1.4505, 2.0989, 2.1022, 2.9806).

Note that the edges s4, . . . , s10 are needed below in Figs. 3.3. Figs. 2.1(a) and 2.2(a) show families of
both onsite and offsite GSs φGS in the (µ, ‖φGS‖2L2) plane. In optics ‖φ‖2L2 is called the total power
of φ. For the labeled points Aon −Hon and Aoff −Hoff the GS profiles are also plotted. The µ-values
of the selected GSs are listed below.

Aon: µ = 0.278 Eon: µ = 0.297 Aoff: µ = 0.278 Eoff: µ = 0.297
Bon: µ = 0.16 Fon: µ = 0.293 Boff: µ = 0.16 Foff: µ = 0.293
Con: µ = 0.722 Gon: µ = 0.499 Coff: µ = 0.722 Goff: µ = 0.499
Don: µ = 0.502 Hon: µ = 0.72 Doff: µ = 0.55 Hoff: µ = 0.72

Families of SGSs bifurcating from these GSs have been computed next via the arclength continu-
ation described above holding Γ+ fixed at the corresponding GS value, i.e., either Γ+ = 1 or Γ+ = −1.
The points Aon−Hon and Aoff−Hoff have been selected as representative examples. This set includes
points near bifurcation edges, where ‖φ‖L2 → 0 as µ approaches the edge, near the opposite edges,
and also deep inside the gaps. Figs. 2.3 and 2.4 show these SGS families in the (Γ−, Eµ(φ)) plane
for the onsite and offsite case, respectively. The choice of Eµ(φ) over ‖φ‖2L2 has been made due to
a clearer identification of fold locations in the former case. The folds are shown in Sec. 3.5 to often
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Fig. 2.2. Families of offsite gap solitons in the semi-infinite and the first finite gap for the potential (2.4) (with
x0 = d/2 = 5). (a) GS continuation curves in the frequency – total power coordinates; (b)-(d) GS profiles for the
points labeled in (a).

correspond to stability changes of the SGS and in all the considered cases they are accompanied with
a change in the number of eigenvalues in the right half complex plane. The black dots in Figs. 2.3 and
2.4 correspond to the GSs from which continuation was started in both the Γ− < Γ+ and Γ− > Γ+

directions. In Fig. 2.5 we plot for illustration the profiles of several SGSs along the family Coff.

2.1.1. Observations on Numerical Results.

Occurrence of Translated Bifurcation GSs. As one can see in Fig. 2.3 (a), (c), and (f), families of
SGSs may return to the point corresponding to the bifurcation GS, i.e. (Γ−, Eµ(φ)) = (Γ+, Eµ(φGS)).
In fact, we show in Fig. 2.6 (using the families Con and Fon as examples) that the solutions cor-
responding to all these intersections of (Γ+, Eµ(φGS)) are GSs. Each return to (Γ+, Eµ(φGS)) is,
however, a GS centered at a different extremum of V . We expect that generically for a bifurcation
from an onsite GS φGS centered at x = 0 each half of the SGS family, i.e., the one bifurcating in Γ−
to the left of Γ+ and the one bifurcating to the right, the n−th return to (Γ+, Eµ(φGS)) is an onsite
GS centered at x = nd or x = −nd. This has been checked to hold in all the computed examples with
SGS families that are open curves in the (Γ−, Eµ(φ)) plane. Note that it is impossible to conclude
based on the equalities Γ− = Γ+ and Eµ(φ) = Eµ(φGS) that the solution φ must be a GS but our
numerics suggest this. Fig. 2.6 demonstrates this for the cases Con and Fon, where returns with n = 1
occur for both.

For closed SGS family curves, like the case Eoff in Fig. 2.4 this rule is not expected to hold.
Upon return of the family Eoff to (Γ−, Eµ(φ)) = (Γ+, Eµ(φGS)) the solution is, indeed, identical to
the bifurcation GS φGS centered at x = 0. As Fig. 2.7 shows, the other solution that lies on the line
Γ− = Γ+ and belongs to the Eoff family is also an offsite GS centered at x = 0 but different from φGS.
This is possible due to non-uniqueness of bound states of (1.5). Part (b) of Fig. 2.7 plots the center
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Fig. 2.3. SGS families bifurcating from the onsite GSs Aon−Hon in Fig. 2.1. Note that the curves were computed
up to |Γ−| = 30 or |Eµ(φ)| = 100, whichever occurred first, and the behavior is qualitatively the same as in the displayed
windows.

of “mass”

xCM (φ) :=

∫

R

x|φ(x)|dx
/∫

R

|φ(x)|dx

for the family and shows that the whole family Eoff consists of solutions whose center of mass does
not move far from the minimum point x = 0 of V compared, e.g., to the cases Con, Foff below.

It is an open question how many returns to (Γ−, Eµ(φ)) = (Γ+, Eµ(φGS)) occur in a given SGS
family. Note that none of the open families of SGSs in Fig. 2.4, which bifurcate from offsite GSs,
returns to (Γ+, Eµ(φGS)) in contrast with the onsite case where these returns occur, e.g. for Aon, Con,
and Fon, see Fig. 2.3. Nevertheless, we have found offsite cases where these returns do occur in the
second finite gap, e.g. at µ ≈ 0.861 and Γ+ = 1.

Homotopy between Onsite and Offsite GSs.. As one can see in Fig. 2.3 and 2.4, SGS families often
intersect the vertical line Γ− = Γ+, which describes a no-interface medium. The numerical results
show that at each of these intersections the corresponding solution φ is a symmetric GS. Clearly, for
(2.4) with x0 = 0 (used in SGS bifurcations from onsite GSs) if a GS is centered at x = nd, n ∈ Z, it
is an onsite GS and if it is centered at x = (2n+ 1)d2 , n ∈ Z, it is an offsite GS. In the case x0 = d

2

(used in SGS bifurcations from offsite GSs) if the center of a GS is at x = nd or x = (2n + 1)d2 , it
is an offsite or onsite GS respectively. Fig. 2.8 plots the GS solutions located on the vertical line
Γ− = Γ+ for the families Con and Foff. It also shows the center of mass for all the SGSs along the
families clearly visualizing that the SGS is no always shifted to the more focusing medium.

Although in Fig. 2.8 the function xCM (φ) appears to be monotonic in the arclength τ , this is not
always the case; not even for open SGS families. Fig. 2.9 shows the family Eon from Fig. 2.3 (e) for
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Fig. 2.5. Profiles of SGSs in the Coff family. (a) the SGS family in the (Γ−, Eµ(φ)) plane with 9 points labeled;
(b) and (c) profiles of the SGSs labeled in (a).

which four intersections of Γ− = Γ+ occur but three of these are GSs centered at x = d/2 = 5. Note
also that these three GSs are all different.

The numerics suggest that each shift of the SGS center from one extremum of V to another
is accompanied by a fold. Moreover, for spatially relatively broad SGSs, i.e., when µ lies near the
corresponding bifurcation edge, all folds seem to correspond to such shifts, see Fig. 2.8 and 2.10. The
same occurs also for the cases Aon, Fon, Aoff and Coff.
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Asymptotics near Bifurcation Gap Edges.. It was shown in [13] that in the vicinity of spectral
gap edges µ = sn the interval of existence Γ− ∈ (Γ+ − a(µ),Γ+ + b(µ)) with a(µ), b(µ) > 0 for SGSs
localized near x = 0 collapses as µ → sn. In detail a(µ), b(µ) → 0+ as µ → sn− for Γ+ > 0 and as
µ → sn+ for Γ+ < 0. In practice, since folds typically correspond to transitions of SGS centers to
the next extremum location of V , this means that the horizontal distance |Γ− − Γ+| of any GS point
along the SGS family to the nearest fold converges to 0 as the edge is approached. Here we show that
the same holds for SGSs localized around any point xc ∈ R. Analogously to Sec. 3.3 in [13] we use
the asymptotic representation

µ = sn + ε2Ω+O(ε4)

φ(x) = εA(X)qn(x) + ε2A′(X)q̃n(x) + ε3φ(3)(x,X) +O(ε4)
(2.5)
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Fig. 2.8. On- and offsite GSs within an SGS family. Top and bottom: SGS families for the case Con and Foff

resp. Left: total energy Eµ(φ); middle: center of mass xCM(φ); right: profiles of GSs marked on the left and in the
middle. For the case Con (where x0 = 0) profiles GSn with integer indices n ∈ Z are onsite GSs while those with
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a no interface medium (Γ− = Γ+).
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Fig. 2.9. SGS family through Eon; description as in Fig. 2.8. Notice the non-monotonous dependence of the
center of mass on the arclength in contrast to the cases in Fig. 2.8.

with X = ε(x− xc), 0 < ε << 1. Substituting this two-scale expansion in (1.5), we get at O(ε) and
O(ε2)

(L− sn)qn = 0 and (L− sn)q̃n = 2q′n (2.6)

respectively, which both have periodic solutions. At O(ε3) we have

(L− sn)φ
(3) = ΩAnqn +A′′(qn + 2q̃′n) + Γ(X + εxc)A

3q3n, (2.7)

where we have used the fact that due to the form Γ(x) = Γ+ χ[0,∞)(x) + Γ− χ(−∞,0)(x) it is Γ(x) =
Γ(εx) = Γ(X + εxc).
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To ensure the existence of a periodic solution φ(3), the Fredholm alternative needs to be applied
to (2.7) resulting in

ΩA+ νA′′ + ρΓ(X + εxc)A
3 = 0 (2.8)

with ν and µ defined in (2.3).
Due to Lemma 1.1 equation (2.8) has non-trivial localized solutions only for Γ+ = Γ−. For the SGS

families this means that as µ approaches the corresponding spectral edge sn, they lie inside narrower
and narrower vertical slabs Γ− ∈ (Γ+ − a(µ),Γ+ + b(µ)) with a(µ), b(µ) → 0 as µ approaches sn. In
other words the horizontal distance |Γ−−Γ+| of every fold to the GS bifurcation point converges to 0
as µ approaches sn. The convergence rate is, of course, expected to decrease with |n|, where n is the
signed ordinal of the fold with respect of the bifurcation GS, since the effect of the interface decreases
with increasing distance between the solution center and the interface location x = 0. In fact, one
can conjecture an exponentially fast decrease of this rate as |n| increases due to the exponential decay
rate of SGS tails. In other words, we expect that for a fixed µ with |µ− sn| << 1 the distance of the
n-th fold grows exponentially with |n|, cf. the right panel of Figure 2.10.

For GSs centered at x = 0 the first fold in each Γ− direction was followed numerically in µ in [13].
Although we have not followed other folds systematically, our numerical results are in agreement with
this asymptotic statement. Fig. 2.10 presents a part of an SGS family bifurcating from the onsite
GS at µ ≈ 0.28242, i.e., close to the edge s1 ≈ 0.28317. The first 4 folds in both directions |n| ≤ 4
occur for |Γ− − Γ+| < 0.13. The part of the family between the folds n = −4 and n = 4 consists of
solutions with centers of mass in (−20, 20). It thus contains also solutions centered relatively far from
the origin. For µ ≈ 0.28278, i.e., even closer to s1, solutions between the first 18 folds (|n| ≤ 9) have
|Γ− − Γ+| < 0.1 and centers of mass in (−50, 50). The plot of the curve (Γ−, Eµ(φ)) is even more
complicated and less readable than in Fig. 2.10.

3. Linear Stability of SGSs. One of the most important properties of the above computed
SGSs of (1.1) is their stability with respect to perturbations of initial data. Only stable SGSs can be
viewed as physically relevant states of the system. Orbital stability of bound states e−iµstφs(x) of (1.1)
with φs positive and µs in the semi-infinite gap can be checked using the Vakhitov-Kolokolov criterion

on the sign of dP (φ(·,µs))
dµ

, where P (φ(·, µs)) = ‖φ(·, µs)‖2L2(R), and on the kernel and the negative

part of the spectrum of the operator L+ (defined below in the proof of Lemma 3.1) [49, 21, 45]. In

detail, orbital stability is satisfied if dP (φ(·,µs))
dµ

< 0 and L+ has no zero eigenvalues and the number
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of its negative eigenvalues is 1. These conditions have to be in general checked numerically and, in
particular, the spectral condition on L+ is not completely trivial to check. Moreover, this test applies
only in the semi-infinite gap. In order to be able to make stability statements even about SGSs in
finite gaps, we choose to study linear stability by inspecting directly the spectrum of the linearized
operator via the numerical Evans function method.

Given a SGS e−iµstφs(x), we consider the evolution of a perturbed solution ψ(x, t) = e−iµst(φs(x)+
q(x, t)) with q(x, 0) small. Linearizing (1.1) in q and using that (µs, φs) satisfies (1.5), we obtain

i∂tq + µsq + ∂2xq − V (x)q + Γ(x)φ2s(x)(q + 2q) = 0. (3.1)

As a system for (U1, U2) := (q, q̄) this becomes

∂t

(

U1

U2

)

= L

(

U1

U2

)

(3.2)

with

L := −i

(

−∂2x − µs + V (x) − 2Γ(x)φ2s −Γ(x)φ2s
Γ(x)φ2s ∂2x + µs − V (x) + 2Γ(x)φ2s

)

(3.3)

As (3.2) is t−autonomous, the problem is separable and we can let (U1(x, t), U2(x, t)) = eλt(u1(x), u2(x))
so that we obtain the spectral problem

λ

(

u1
u2

)

= L

(

u1
u2

)

. (3.4)

Clearly, linear stability of e−iµstφs(x) is determined by the real part of σ(L).

3.1. The Spectrum of L. Although σ(L) consists of the essential spectrum σess(L) and of
eigenvalues σdisc(L), only eigenvalues dictate stability properties in this case because σess(L) ⊂ iR.
This follows from Weyl’s theorem, see Sec. XIII.4 of [42], which ensures that due to the exponential
decay of φs, the terms containing φs are a relatively compact perturbation of L and the essential

spectrum of L equals that of i
(

L−µs 0
0 −(L−µs)

)

. As this operator is skew-adjoint, its spectrum is

imaginary. Moreover, we also have that

σess(L) = i(σ(L)− µs) ∪−i(σ(L)− µs),

where the first bands of σ(L) are detailed at the beginning of Section 2.1. Fig. 3.1 plots σess(L) for
the potential (2.4) schematically.

Although σdisc(L) will be determined numerically, the following Lemma gives an upper bound on
Re(σdisc(L)). For the dynamics of (3.2) this is an upper bound on the growth rate of the perturbation.
Note, however, that the numerical method for studying σdisc(L) will not make use of this result.

Lemma 3.1. Eigenvalues λ ∈ σdisc(L) satisfy |Re(λ)| ≤ ||Γ||∞||φs||2∞.
Proof. With the new set of variables a := u1 + u2 and b := −i(u1 − u2) equation (3.4) becomes

λ

(

a
b

)

=

(

0 L−
−L+ 0

)(

a
b

)

where
L− = −∂2x + V (x)− µs − Γ(x)φ2s(x),
L+ = −∂2x + V (x)− µs − 3Γ(x)φ2s(x).

(3.5)

After multiplication of the first equation in (3.5) by ā and of the complex conjugate of the second
equation by b, integration over R and addition we obtain

λ‖a‖2L2 + λ̄‖b‖2L2 =

∫

R

−b′′(x)ā(x) + ā′′(x)b(x) + 2Γ(x)φ2s(x)ā(x)b(x)dx.
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Fig. 3.1. The essential spectrum of L for V (x) = sin2(πx/10).

Integration by parts leads to

∣

∣λ‖a‖2L2 + λ̄‖b‖2L2

∣

∣ = 2

∣

∣

∣

∣

∫

R

Γ(x)φ2s(x)ā(x)b(x)dx

∣

∣

∣

∣

≤ 2‖Γ‖∞‖φs‖2∞‖a‖L2‖b‖L2,

where the inequality follows by Cauchy-Schwarz. Finally, for Re(λ) we obtain |Re(λ)| ≤ ||Γ||∞||φs||2∞
using the inequality 2αβ ≤ α2 + β2 for α, β ∈ R.

Earlier works apply a discretization method to equation (3.1) and compute the eigenvalues of
the corresponding system directly, see e.g. [47], where GSs were studied. Yet, as pointed out in
[41, 12], this may be highly computationally costly and typically leads to spurious eigenvalues of
(3.4). Identifying those spurious values is a nontrivial and absolutely necessary task when studying
stability of solitary waves. The Evans function method was shown in [12, 41] to avoid this problem.

3.2. The Evans Function Method. The Evans function E(λ), E : C → C is a generalization
of the characteristic polynomial for a linear operator. Its zeros coincide with isolated eigenvalues of
the operator. The multiplicity of the zero equals the algebraic multiplicity of the eigenvalue. The
Evans function is defined and analytic away from the essential spectrum of L. It was introduced first
by J. Evans in his study of stability of nerve impulses [17]. For analysis of the Evans function see,
e.g. [2, 40]. It has been used for both analytical [2, 40, 44, 25] and numerical [12, 4, 3, 41, 19] studies
of stability of traveling and standing solitary waves. For problems with exponential dichotomy the
Evans function is a determinant of a matrix generated by bases of the stable and unstable manifolds
corresponding to the trivial solution u ≡ 0 of (3.4). The stable and unstable manifolds consist of
solutions that decay exponentially fast as x→ ∞ and x→ −∞, respectively. When this determinant
vanishes at a given λ, the manifolds are linearly dependent, which means that a solution exists which
decays exponentially for both x→ ∞ and x→ −∞, implying λ ∈ σdisc(L).

In [41] the numerical Evans function method was used in combination with the variation of
constants to study linear stability of GSs of (1.1) (with Γ+ = Γ−). The authors, however, did not
search systematically for eigenvalues over the whole right half plane. Instead they concentrate on real
eigenvalues and on eigenvalues bifurcating from the edges of σess(L). We show, in fact, that for a
numerically stable and accurate evaluation of E(λ) for |λ| large a change of variables and the use of
exterior algebra are necessary. With the help of these tools, which were not applied in [41], we carry
out winding number computations of E(λ) with a contour γ = δ + iR, 0 < δ << 1, parallel to the
imaginary axis in order to determine the number of eigenvalues in the whole half plane to the right
of γ. Note that thanks to an asymptotic behavior of E(λ) for |λ| → ∞, we will be able to use a finite
contour.
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3.2.1. Construction of the Evans Function for (3.4). As advertised above, the Evans func-
tion is constructed using the stable and unstable manifolds of the trivial solution u ≡ 0 of (3.4). For
|x| → ∞ the terms in (3.4) that are proportional to φ2s(x) vanish due to the exponential decay of φs
and one obtains the uncoupled Hill’s equations

− ∂2xu1 + V (x)u1 = µ+u1 (3.6a)

− ∂2xu2 + V (x)u2 = µ−u2, (3.6b)

where µ± := µs ± iλ. If µ+ /∈ σ(L), the fundamental system of (3.6a) consists of the Bloch waves

ψ
µ+

1,2(x) = p
µ+

1,2(x)e
±ik+x, with p

µ+

1,2(x+ d) = p
µ+

1,2(x), Im(k+) > 0, (3.7)

which decay exponentially fast as x→ ±∞ respectively. Similarly for µ− /∈ σ(L) the Bloch waves

ψ
µ−

1,2 (x) = p
µ−

1,2(x)e
±ik−x with p

µ−

1,2(x+ d) = p
µ−

1,2(x), Im(k−) > 0, (3.8)

that build the fundamental system of (3.6b), decay exponentially fast as x → ±∞ respectively. We
choose the following normalization of the Bloch waves in (3.7),(3.8)

p
µ+

1,2(0) = 1, p
µ−

1,2(0) = 1. (3.9)

Note that for even potentials V this normalization is possible since µ± do not lie in σ(L) and p
µ±

1,2

are thus not Dirichlet eigenfunctions of (1.8) (with k = k+ and k = k− for p
µ+

1,2 and p
µ−

1,2 respectively)

so that p
µ±

1,2(0) 6= 0. For an even V a Dirichlet eigenfunction p(x) would allow the extension of the

solution ψ(x) = p(x)eikx via symmetry from the half line on which ψ is bounded to R, producing so
a bounded solution, which is impossible since µ± /∈ σ(L).

For x→ ∞ the stable manifold of (3.4) is thus generated by
{(

ψ
µ+

1

0

)

,

(

0
ψ
µ−

1

)}

, (3.10)

and for x→ −∞ the unstable manifold of (3.4) is generated by
{(

ψ
µ+

2

0

)

,

(

0
ψ
µ−

2

)}

. (3.11)

The four vector functions in (3.10) and (3.11) are asymptotic reductions of the fundamental solution
set of (3.4) though each of the pairs is for a different asymptotic region. Note that we use the
normalization (3.9) also as a normalization of the fundamental solutions of (3.4).

Let us rewrite (3.4) as the first order system

v′ = Av, A :=









0 1 0 0
V (x)− 2Γ(x)φ2s(x) − µ+ 0 −Γ(x)φ2s(x) 0

0 0 0 1
−Γ(x)φ2s(x) 0 V (x)− 2Γ(x)φ2s(x) − µ− 0









(3.12)

for v := (u1, u
′
1, u2, u

′
2). The fundamental system of (3.12) is denoted by {v−1 , v−2 , v+1 , v+2 }. The labels

are assigned according to the above asymptotic behavior as follows

v−1 (x) ∼









ψ
µ+

2 (x)
(ψ

µ+

2 )′(x)
0
0









, v−2 (x) ∼









0
0

ψ
µ−

2 (x)
(ψ

µ−

2 )′(x)









as x→ −∞ , and (3.13a)
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v+1 (x) ∼









ψ
µ+

1 (x)
(ψ

µ+

1 )′(x)
0
0









, v+2 (x) ∼









0
0

ψ
µ−

1 (x)
(ψ

µ−

1 )′(x)









as x→ ∞. (3.13b)

Note that λ is a parameter of v±1,2. The Evans function E is then defined as

E(λ) = det(v−1 (x∗;λ), v
−
2 (x∗;λ), v

+
1 (x∗;λ), v

+
2 (x∗;λ)). (3.14)

As E is constant in x∗, its choice is arbitrary and for our purposes of stability of SGSs we choose
x∗ = 0, i.e., at the interface location, which avoids the need of numerical integrations of (3.12) across
the interface.

The basic (naive) idea of how to evaluate E(λ) is to solve (3.12) for v−1,2 up to x = x∗ with the

initial conditions given by (3.13a) evaluated at x = −L∞ << −1 and for v+1,2 up to x = x∗ with the
initial conditions given by (3.13b) evaluated at x = L∞. In Section 3.4 we discuss difficulties of this
approach.

A-priori information about the behavior of E includes the upper bound on the real part of its
zeros given by Lemma 3.1. Besides, we have the following symmetry of E and asymptotic behavior of
E(λ) for |λ| → ∞.

Lemma 3.2. The Evans function E in (3.14) satisfies E(λ̄) = E(λ).
Proof. Complex conjugation of (3.12) reveals that v(x;λ) and Pv(x; λ̄) satisfy the same differential

equation u′ = A(λ)u, where P is the permutation matrix P :=

(

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

. Because ψ
µ+(λ)
1 (x) =

ψ
µ−(λ̄)
1 (x) and ψ

µ+(λ)
2 (x) = ψ

µ−(λ̄)
2 (x), the asymptotic data (3.13) are related via complex conjugation

and the permutation P in the following way: v−1 (x, λ) ∼ Pv−2 (x, λ̄) as x → −∞ and v+1 (x, λ) ∼
Pv+2 (x, λ̄) as x→ ∞. We thus have

E(λ) = det(v−1 (x∗;λ), v
−
2 (x∗;λ), v

+
1 (x∗;λ), v

+
2 (x∗;λ))

= det
(

P (v−2 (x∗; λ̄), v
−
1 (x∗; λ̄), v

+
2 (x∗; λ̄), v

+
1 (x∗; λ̄))

)

=det
(

P (v−1 (x∗; λ̄), v
−
2 (x∗; λ̄), v

+
1 (x∗; λ̄), v

+
2 (x∗; λ̄))P2

)

= E(λ̄)

where P2 :=

(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)

and where the product rule for determinants together with the fact that

det(P ) = det(P2) = 1 were used.
Lemma 3.3. The renormalized Evans function

E(λ) :=
−1

4λ+ 1
E(λ) (3.15)

is analytic for Re(λ) > 0 and satisfies E(λ) → 1 as |λ| → ∞ for arg(λ) ∈ (−π/2, π/2).
Proof. The analyticity follows from analyticity of −1

4λ+1 and E(λ).
For |λ| large all terms except those proportional to λ become negligible in the second and fourth

equations in (3.12) leading to

v′ = Ãv with Ã =

(

0 1 0 0
−iλ 0 0 0
0 0 0 1
0 0 iλ 0

)

. (3.16)

The 4 eigenvalues of Ã are ±
√
−iλ and ±

√
iλ with eigenvectors (1,±

√
−iλ, 0, 0)T and (0, 0, 1,±

√
iλ)T

respectively. The fundamental solution set of (3.16) can thus be chosen as
{

e
√
−iλx

( 1√
−iλ
0
0

)

, e
√
iλx

( 0
0
1√
iλ

)

, e−
√
−iλx

( 1
−
√
−iλ
0
0

)

, e−
√
iλx

( 0
0
1

−
√
iλ

)}

. (3.17)
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With the convention that the complex argument of the ‘+’ square root function
√
z lies in (−π/2, π/2],

i.e., arg(
√
z) ∈ (−π/2, π/2], we get by comparing with the asymptotic behavior in (3.13a), (3.13b)

that the ordering of the vectors (3.17) agrees with the one in E(λ). Also the normalization agrees
with the one implied by (3.9). Hence the vectors in (3.17) can be used directly to evaluate E(λ) for
|λ| large. A calculation of the determinant of the vectors in (3.17) for |λ| → ∞ yields E(λ) ∼ −4λ if
arg(λ) ∈ (−π/2, π/2) and E(λ) ∼ 4λ if arg(λ) ∈ (π/2, 3π/2). The imaginary axis is excluded to avoid
the essential spectrum where our Evans function has not been defined. The renormalized function
E(λ) thus converges to 1 for arg(λ) ∈ (−π/2, π/2).

3.3. The Winding Number Method and a Choice of the Contour. The argument prin-
ciple [38] is a standard tool for counting the number of zeros of a complex function within a region of
its analyticity. Denoting by n(γ, z) the winding number [38] of a closed curve γ ⊂ C with respect to
the point z ∈ C \ γ, the argument principle states that if E is an analytic function inside γ and has
no zeros on γ, then

n(E(γ), 0) = N, (3.18)

where N is the number of zeros of E, counting multiplicities, inside γ.
Using (3.18) we can, in principle, determine the number of eigenvalues of L in the right half

complex plane by using a contour γ that encloses it. E is, however, not analytic on σess(L) ⊂ iR so
that γ has to stay a positive distance away from the imaginary axis. Although it should be possible
to extend the Evans function analytically across the essential spectrum by generalizing the analysis
of [23, 24, 25] for our periodic coefficient case, the use of the imaginary axis as a contour for the
argument principle would still be unpractical due to the expected occurrence of zeros of the extended
Evans function within the essential spectrum. This expectation is based on the analysis of constant
coefficient problems, for instance, in [24], where zeros in the essential spectrum are found and their
bifurcation from spectral edges studied.

We take γ ‖ iR with δ := dist(γ, iR) > 0. In most of the numerical computations we use δ = 0.005.
Due to the δ-gap between γ and the imaginary axis, we are thus able to detect only eigenvalues with
real part greater than δ, i.e., only ‘substantial’ instabilities. Using the symmetry from Lemma 3.2 and
the asymptotic result from Lemma 3.3, the curve γ can in practice be replaced by

γ̃ = δ + i[0, H ], (3.19)

where H > 0 is chosen for a given φs so that near Im(γ̃) = H the Evans function E(λ) is clearly
converging to 1. In most of our computations H = 20 is sufficient. In order to numerically evaluate
the winding number, we have written a simple Matlab script, see Appendix A.

It is possible that E has a zero on γ̃, which would prevent the applicability of the argument
principle. In numerics this will, however, generically result in a small value of E(λ) so that the effect
is the same as a zero near γ̃. If E attains numerically the value 0 somewhere along γ̃, the contour can
be locally deformed. This case does, however, not occur in our simulations.

Reliable computations of n(E(γ), 0) require a sufficiently fine discretization of γ̃. Needlessly fine
discretization, on the other hand, lead to intolerably long computation times. A possible solution is
the adaptive discretization suggested in Sec. 3.3 of [4] with the main idea being to ensure that the
difference in the complex argument arg(E(λ)) for neighboring points λ1,2 ∈ γ̃ is near a desired value.

3.4. Numerically Stable Evaluation of E(λ). Attempting a straightforward evaluation of
E(λ) as defined via (3.12) - (3.15), one encounters several issues with numerical stability and accuracy.
Firstly, the evaluation of the initial conditions (3.13) at some x = ±L∞, L∞ >> 1 requires computa-
tion of exponentially growing/decaying Bloch functions, where the growth/decay rate is very strong
for certain parameter values. Secondly, the solutions of (3.12) also feature exponential growth/decay.
In both of these cases parameter dependent transformations can be used to remove the exponential
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growth/decay. Next, more importantly, the system (3.12) suffers from stiffness when the growth/de-
cay rates of the two vectors in the manifold of interest (stable or unstable) are largely different. This
can be overcome by a reformulation of (3.12) in the exterior algebra. As explained below, the use of
Grassmanian preserving ODE integrators is then vital. In the following we describe these problems
and their solutions in detail.

3.4.1. Computation of the Bloch Functions in (3.13). Due to the form (3.7), (3.8) the Bloch
functions ψ

µ±

1,2 need to be, of course, computed only on the period x ∈ [0, d]. In (3.13) their values at
x = ±L∞, L∞ >> 1, which are used as initial data for (3.12), are then obtained straightforwardly due
to periodicity of p

µ±

1,2 . Two commonly used methods are available to compute the Bloch functions. The
first possibility is to solve (1.8) with ω(k) = µ± fixed as a quadratic eigenvalue problem in (k, pµ±)
on x ∈ [0, d] with periodic boundary conditions. To avoid the need for solving quadratic eigenvalue
problems, we opt for the second traditional method, which is Floquet theory [33, 14], in which (3.6a)
and (3.6b) are solved on [0, d] as initial value problems and k± are determined from eigenvalues of the
monodromy matrix, i.e., from Floquet multipliers. Even on the bounded domain [0, d] the exponential
growth of ψ

µ±

1,2 , however, leads to a strong enhancement of error when |Im(k±)| is large. As shown
below, this occurs, in particular, for |µ±| large when arg(µ±) is not close to π or −π.

For |µ| large the equation −∂2xw + V (x)w = µw reduces effectively to

−∂2xw = µw

with the fundamental system {e±
√
−µx}. With the definition of the ‘+’ square root

√
z, z ∈ C such

that arg(
√
z) ∈ (−π/2, π/2], the solution e

√
−µx grows fast when |µ| is large and arg(µ) is not close

to ±π. In (3.6) and with the choice of the contour along the upper half of the imaginary axis as in
(3.19) this happens for µ− (= µs − iλ) when |λ| is large. In (3.8) we thus get a large Im(k−). For
µ+ (= µs + iλ) the contour (3.19) leads to arg(µ+) near π for |µ+| large so that no strong growth
occurs in ψ

µ+

1,2 , i.e., Im(k−) is close to 0.

To achieve sufficient accuracy of ψ
µ−

1,2 , we use a change of variables that removes the exponential

growth. Rewriting (3.6b) as a first order system for v := (u2, u
′
2)

T , we have

v′ = Bv, B :=

(

0 1
V (x)− µ− 0

)

. (3.20)

The Bloch functions of (3.20) are

v(1)(x) =
(

ψ
µ−

1 (x), (ψ
µ−

1 )′(x)
)T
, v(2)(x) =

(

ψ
µ−

2 (x), (ψ
µ−

2 )′(x)
)T
,

which due to (3.8) have the form

v(1)(x) = q(1)(x)eik−x, v(2)(x) = q(2)(x)e−ik−x, (3.21)

where

q(1)(x) =

(

p
µ−

1 (x)
(p

µ−

1 )′(x) + ik−p
µ−

1 (x)

)

and q(2)(x) =

(

p
µ−

2 (x)
(p

µ−

2 )′(x)− ik−p
µ−

2 (x)

)

. (3.22)

To remove the exponential growth, we introduce ṽ(j)(x) := v(j)(x)e−
√−µ−x such that

ṽ′ = (B −
√

−µ−I)ṽ. (3.23)

Via standard Floquet theory [14] the Bloch functions

ṽ(1,2)(x) = q(1,2)(x)eik̃1,2x (3.24)
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of (3.23) can be computed by solving (3.23) on x ∈ [0, d] and finding the eigenvalues of the monodromy

matrix, i.e. the characteristic multipliers ρ̃1,2 = eik̃1,2d. As a ‘side effect’ the change of variables v → ṽ
has doubled the decay rate in v(1), which possibly results in extremely small values of ṽ(1) near
x = d such that for |µ−| large it is numerically impossible to recover accurate information about ṽ(1).
We, therefore, use (3.23) to compute only v(2). The corresponding ṽ(2) is identified as the solution
belonging to the larger characteristic multiplier, i.e., |ρ̃(2)| > |ρ̃(1)|, and k̃2 is then obtained from
k̃2 = −i log(ρ̃(2))/d. The periodic part q(2) is computed from (3.24). Finally, k− is given by

k− = i
√

−µ− − k̃2.

The missing Bloch function v(1), or equivalently ψ
µ−

1 , is readily available via symmetry. For
ψ
µ−

1,2 = p
µ−

1,2(x)e
±ik−x equation (3.6b) becomes

− (∂x + ik−)
2p

µ−

1 + V (x)p
µ−

1 = µ−p
µ−

1 , (3.25a)

− (∂x − ik−)
2p

µ−

2 + V (x)p
µ−

2 = µ−p
µ−

2 (3.25b)

with periodic boundary conditions on x ∈ [0, d]. The substitution k− → −k− and x → −x in the
second equation reveals that

p
µ−

2 (x) = p
µ−

1 (−x).

Note that p
µ−

1 is unique up to a normalization, i.e., µ− is a simple eigenvalue of (3.25a) since otherwise
for k− 6= 0 one could generate via the above symmetry at least four linearly independent solutions
of (3.6b). The case k− = 0 yields a periodic Bloch function and can thus only occur for µ− ∈ σ(L)
[33, 14], which is not our case since Im(µ−) = −Re(λ) 6= 0

3.4.2. Dealing with the Stiffness of (3.12). In Sec. (3.2.1) the Evans function is defined
using the bases {v−1 , v−2 } and {v+1 , v+2 } of the unstable and stable manifolds respectively of the trivial
solution of (3.12). In practice v−1,2 need to be computed from x = −L∞ << −1 up to x = x∗ and v+1,2
from x = L∞ >> 1 down to x = x∗. In the unstable manifold v−1 and v−2 have different growth rates.
For large |x|, where the terms proportional to φ2s(x) are negligible, the rates are e

Im(k+)x and eIm(k−)x

respectively. When Im(k+) and Im(k−) differ strongly, the problem is stiff and the fast growing
solution dominates the dynamics and in a numerical simulation the error is enhanced in the direction
of this more unstable mode so that the solution growing more slowly cannot be accurately computed.
The functions v−1 and v−2 thus do not remain linearly independent in the numerical x−evolution
although they are linearly independent initially, see (3.13a). An analogous situation occurs for v+1
and v+2 of the stable manifold. We saw in Sec. 3.4.1 that for the selected vertical contour this large
difference of growth rates occurs, in particular, for Im(λ) large, where Im(k−) is large and Im(k+) is
close to zero.

A traditional approach to a problem with linear dependence is to apply orthogonalization. Or-
thogonality for all x is, however, not generally satisfied by solutions of (3.12), (3.13), and as explained
in [3, 12], orthogonalization may destroy the analyticity of E = E(λ). This is inadmissible when we
intend to employ the argument principle. An alternative is the use of exterior algebra as first proposed
in [37] for solving stiff linear ODE systems. More recently it has been used in spectral problems, for
example, in [4, 3, 12, 19]. For theoretical background on exterior algebra see, e.g., [20, 6, 50].

Let {e1, . . . , en} be an orthonormal basis for Cn. We first define the wedge (exterior) product via
the properties of distributivity and associativity

ei ∧ (aej + ek) =aei ∧ ej + ei ∧ ek
(aei + ej) ∧ ek =aei ∧ ej + ej ∧ ek
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and antisymmetry

ei ∧ ej = −ej ∧ ei.

Then the distinct and nonzero members of {ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n} form a
basis of the vector space of all k-forms a(1) ∧ . . .∧ a(k) with a(j) ∈ Cn, j = 1, . . . , k, which is generally
denoted by

∧k
(Cn) and has dimension

(

n
k

)

. Let b(j) =
∑n

i=1 bijei with j = 1, · · · , n, and B := (bij).
Then (see [50], Proposition 3.3)

b(1) ∧ . . . ∧ b(n) = detB e1 ∧ . . . ∧ en. (3.26)

For example, for a, b ∈ Cn, a =
∑n

i=1 aiei, b =
∑n

i=1 biei one thus has

a ∧ b =
n−1
∑

i=1

n
∑

j=i+1

(aibj − ajbi)ei ∧ ej .

Furthermore, for u ∈
∧j

(Cn) and v ∈
∧k

(Cn) one obtains u ∧ v ∈
∧j+k

(Cn). In particular, for
j = n− k we get u ∧ v ∈ ∧n

(Cn). In this case (see [3], Section 5)

u ∧ v = 〈ū,Σv〉e1 ∧ . . . ∧ en, (3.27)

where 〈·, ·〉 is the standard inner product on C(
n

k) with conjugation of the first argument and Σ is an
orthogonal matrix.

Applying (3.26) to our Evans function problem with k = 2, n = 4, we get

E(λ)e1 ∧ . . . ∧ e4 =
−1

4λ+ 1
v−1 (x∗;λ) ∧ v−2 (x∗;λ) ∧ v+1 (x∗;λ) ∧ v+2 (x∗;λ)

=
−1

4λ+ 1
V −(x∗;λ) ∧ V +(x∗;λ),

where V ± := v±1 ∧ v±2 . Because V ± ∈ ∧2(C4), the rule (3.27) applies and

E(λ) =
−1

4λ+ 1
〈V −,ΣV +〉. (3.28)

Indeed, E(λ) = 0 if and only if v−1 , v
−
2 , v

+
1 , and v

+
2 are linearly dependent (see e.g. [50], Lemma 3.4).

In [3] it is shown that the form of Σ for this case is

Σ =





0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0



 (3.29)

provided the basis for
∧2

(C4) has been selected as e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4.
Evolution equations for V ± are obtained by linearity of the wedge product

V ±′

= v±
′

1 ∧ v±2 + v±1 ∧ v±′

2 = Av±1 ∧ v±2 + v±1 ∧ Av±2 .

As described in Section 2 of [3], denoting by ajk the (j, k) entry of A, this induces the matrix

A(2) =







a11+a22 a23 a24 −a13 −a14 0
a32 a11+a33 a34 a12 0 −a14

a42 a43 a11+a44 0 a12 a13

−a31 a21 0 a22+a33 a34 −a24

−a41 0 a21 a43 a22+a44 a23

0 −a41 a31 −a42 a32 a33+a44






,
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such that

V ±′

= A(2)V ±. (3.30)

An alternative to solving (3.12) for each of v−1 and v−2 from x = −L∞ to x = x∗ and v+1 and v+2
from x = L∞ to x = x∗ is thus to solve (3.30) for V − from x = −L∞ to x = x∗ and for V + from
x = L∞ to x = x∗. The 2-dimensional manifolds of (3.12) are represented by lines in (3.30) and in
this way we avoid the linear dependence problem discussed above. The initial conditions for (3.30) at
x = ±L∞ are determined by the wedge product of respective vectors in (3.13).

Decomposability and preservation of the Grassmanian.. It is not true that every k−form can be
written as a single wedge product of k elements of Cn. In other words not every k−form represents a
k−dimensional subspace of Cn. If this is satisfied, i.e., if U ∈ ∧k(Cn) can be written as

U = u(1) ∧ . . . ∧ u(k)

with u(j) ∈ Cn, j = 1, . . . , k, then U is decomposable [20, 6, 3].
In our setting V ± are decomposable initially at x = ±L∞ by construction, but in a numerical

integration of (3.30) this property may not be preserved so that at x = x∗ the computed solution no
longer represents the 2-dimensional stable or unstable manifold respectively. Restricting to n = 4, k =
2, the following result holds. A 2-form U ∈ ∧2(C4) is decomposable if and only if U ∧U = 0 [20]. For
the coefficients it means

I(U) :=
1

2
〈Ū ,ΣU〉 = U1U6 − U2U5 + U3U4 = 0.

The quadratic quantity I(U) is called the Grassmanian. It is a strong invariant of (3.30) if ΣA(2) +
(ΣA(2))T = 0, see [3], which holds in our case, where A(2) is constructed from A defined in (3.12).

A number of methods are available that preserve strong quadratic invariants [22]. As discussed
in Section 3.4.3, we, however, solve (3.30) after the change of variables

Ṽ ± := e±νxV ± (3.31)

with ν = Im(k+)+Im(k−). With (3.31) we have I(Ṽ ±) = I(V ±)e±2νx and d
dx
(I(Ṽ ±)) = d

dx
(I(V ±))±

2νI(Ṽ ±) = ±2νI(Ṽ ±) so that I is only a weak invariant of the equation for Ṽ ±, namely equation
(3.32). This means that if I(Ṽ ±(x0)) = 0 at some initial point x0, then I(Ṽ

±(x)) = 0 ∀x ∈ R. Weak
invariants are generally impossible to numerically preserve exactly. Approximate preservation can be
achieved by projection methods [22]. In our case the numerical solution is projected onto the manifold
M := {U ∈ C

6 : I(U) = 0}. We solve (3.32) via the standard 4-5th order Runge-Kutta method of
Matlab (ode45) and execute the projection at regular x−intervals, usually of length δP = 0.2 (i.e. the
frequency of the projections within one period of the potential V is d/δP = 50), see Sec. 3.5.1 for
more details on the choice of δP .

Renaming the solution vector of (3.32) to w, the projection constitutes the following optimization
problem. Given a numerical approximation w̃ (at some point x), find w ∈ M such that

‖w − w̃‖ = min
U∈M

‖U − w̃‖,

where ‖ · ‖ denotes the Euclidean norm in C6. Defining the Lagrange function ‖w − w̃‖2/2− ζI(w),
we get the following nonlinear problem for the Lagrange multiplier ζ

I(w̃ + ζI ′(w̃)T ) = 0,

which we solve via Newton’s iteration

ζ(n+1) = ζ(n) −
[

d
dζ
(I(w̃ + ζI ′(w̃)T ))(ζ(n))

]−1

I(w̃ + ζ(n)I ′(w̃)T ),
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where

d
dζ
(I(w̃ + ζI ′(w̃)T ))(ζ) = w̃2

1 + 2ζw̃1w̃6 + w̃2
6 + w̃2

2 − 2ζw̃2w̃5 + w̃2
5 + w̃2

3 + 2ζw̃3w̃4 + w̃2
4.

In Section 3.5.1 we show that the accuracy of the Evans function increases with increasing pro-
jection frequency d/δP .

3.4.3. Removing the Exponential Growth in (3.30). Based on the asymptotic behav-
ior (3.13) of the solutions v±1,2 and linearity of the wedge product, we get that V − behaves like

e(Im(k+)+Im(k−))x for x large negative and V + behaves like e−(Im(k+)+Im(k−))x for x large positive.
This exponential growth in the backward and forward x direction for V ± respectively leads to diffi-
culties with numerical accuracy when Im(k+) + Im(k−) is large. Clearly, for values of λ close to zeros
of E the growth is eliminated in the respective opposite asymptotic regions (at x >> 1 for V − and at
x << −1 for V +) as the stable and unstable manifolds are close to being linearly dependent. In the
intermediate part of the domain (e.g. near x = x∗) the growth is possibly largely limited. At other
values of λ the growth may, however, remain large for all x. We, therefore, perform the numerics of
(3.30) under the transformation

Ṽ ± := e±(Im(k+)+Im(k−))xV ±.

The new variables satisfy

Ṽ ±′

=
(

A(2) ± (Im(k+) + Im(k−))I
)

Ṽ ±. (3.32)

Linearity of the wedge product yields

E(λ) =
−1

4λ+ 1
V −(x∗;λ) ∧ V +(x∗;λ) =

−1

4λ+ 1
Ṽ −(x∗;λ) ∧ Ṽ +(x∗;λ).

3.5. Numerical Results on Stability of SGSs. This section presents results of Evans function
computations for the spectral problem corresponding to linear stability of the SGS families in Figs.
2.3 and 2.4. In several examples the NLS (1.1) is then also evolved numerically in time with the
selected SGS profile as the initial condition in order to demonstrate the stable or unstable behavior.

3.5.1. Accuracy of the Numerical Evans Function. The problem at hand offers a natural
test, namely E(0) = 0, which holds because 0 is an eigenvalue of L and 0 /∈ σess(L). This kernel is
caused by the phase invariance of (1.1). In the numerics we use |E(0)| as a measure of accuracy of
the numerical Evans function. There is a number of factors that may affect accuracy: (i) error in
computing the Bloch functions of (3.23); (ii) numerical error in solving (3.30) for the two manifolds;
(iii) size 2L∞ of the computational domain for (3.30); (iv) norm of the residual in computing the
SGS profile φs; (v) h and p in the FEM computation of the SGS profile; and (vi) frequency d/δP of
projections onto the Grassmanian manifold. Regarding (i) and (ii), we use Matlab’s built-in Runge-
Kutta function ODE45 with adaptive step size control and set the absolute and relative tolerance
to 10−6 and 10−8 respectively. For (iii) the value of L∞, at which the initial conditions for Ṽ ± in
(3.32) are specified, is selected so that |φ(x)| < 10−14 for |x| > L∞. The values for our 16 families are

Aon: L∞ = 176, Eon: L∞ = 155, Aoff: L∞ = 138, Eoff: L∞ = 135,

Bon: L∞ = 75, Fon: L∞ = 270, Boff: L∞ = 103, Foff: L∞ = 260,

Con: L∞ = 200, Gon: L∞ = 110, Coff: L∞ = 140, Goff: L∞ = 118,

Don: L∞ = 110, Hon: L∞ = 324, Doff: L∞ = 125, Hoff: L∞ = 250.

For (iv) we use the tolerance 10−10 on the L2 norm of the residual of (1.5). According to our
tests |E(0)| is insensitive to these parameters of (i-iv) if further refined (tolerances decreased and L∞
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Fig. 3.2. Convergence of |E(0)| in dependence on the FEM discretization parameter h in the discretization of
(1.5) and on the frequency d/δP of projections of the solution of (3.30) onto the Grassmanian manifold. The selected
SGS is one at Γ− ≈ 0.48 in the family Eoff. In (a) we used d/δP = 200 and in (b) h = 0.03.

increased). We study next sensitivity to (v) and (vi). In both cases we observe a clear convergence
of |E(0| with refinement. Fig 3.2 shows dependence of |E(0)| on h in the discretization of (1.5) and
on the projection frequency d/δP for the case of an SGS at Γ− ≈ 0.48 in the family Eoff with p = 3
fixed.

In our computations we use p = 3, h = 0.06, d/δP = 50 as the default for the discretization of
(1.5). We reduce h and/or increase d/δP until |E(0)| < 10−8. This threshold test cannot always be
passed in the vicinity of folds where only 10−6 is often achieved. In such cases it is checked that
|E(0)| < 1

10 minλ∈γ |E(λ)| for the selected contour γ as an a-posteriori test. This criterion is satisfied
in all the computations except when a zero of E lies in the vicinity of γ for the particular SGS.

Note also that with a finite difference (FD) discretization of (1.5) the values of |E(0)| are much
larger and neither convergence in dx nor in d/δP has been typically observed, which has been tested
with both 4th and 2nd order centered FD stencils. FD discretization is exptected to fail due to the
profile φ being only C1 at the interface x = 0.

3.5.2. Winding Number Computations. We present first winding number computations for
the spectral problem as discussed in Sec. 3.3. In this section we do not attempt to determine the
location of individual eigenvalues (if any) in the right half complex plane.

The selection of the contour and its discretization is described in Sec. 3.3. We stress again that
due to the small gap between the contour γ and the imaginary axis we are able to capture only
eigenvalues with Re(λ) > Re(γ). In all the computations in Fig. 3.4 and 3.5 Re(γ) = 0.005 was used.
In Fig. 3.6 several examples with a smaller distance from the imaginary axis are also presented.

Equation (3.30) was solved up to x = 0 for both V + and V −, i.e., up to the interface location.
The Evans function was thus evaluated at x⋆ = 0. After the evaluation of E along γ, the winding
number n(E(γ), 0) was computed numerically using a simple Matlab script, see Appendix A.

For an SGS along the family Aoff Fig. 3.3 shows the curve E(γ) extended symmetrically about
the real axis using Lemma 3.2. The bold segments along E(γ) in part (d) correspond to segments
of the contour γ lying close to σess(L) as marked in (c). Clearly, in the vicinity of σess(L) the Evans
function is more oscillatory than along the remaining parts of the contour.

For the selected SGS families from Fig. 2.3 bifurcating from onsite GSs the results of winding
number computations are in Fig. 3.4. Similarly, Fig. 3.5 corresponds to the SGS families from Fig.
2.4 bifurcating from offsite GSs. Full blue lines mark stable parts of the SGS families, where the
winding number is zero, and the dashed red lines mark unstable parts, where the winding number
is larger than 0. The winding number values are written next to the curve and correspond to the
adjacent segment demarcated by the black circles.
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Fig. 3.3. Evans function graph for a selected SGS. (a) The SGS family Aoff, a selected SGS at Γ− ≈ 2.063
marked; (b) Profile of the SGS marked in (a); (c) the essential spectrum σess(L) (lie segments along Re(λ) = 0) and
the contour γ (vertical dashed line) with segments close to σess(L) marked in bold red; (d) E(γ) for the SGS plotted in
(b). Bold red segments mark the image of the marked segments along γ in (c).

Except for the cases Aon, Fon, Aoff and Foff each fold apparently marks a change in the value of
the winding number. The reason why this does not happen for Aon, Fon, Aoff and Foff is that in these
cases all zeros of E have small real parts and when the zeros lie between the imaginary axis and γ,
the resulting winding number is zero. Fig. 3.6 shows three of these cases for the contour γ with
Re(γ) = 0.002, i.e. closer to the imaginary axis. The folds now more closely match winding number
changes, which in these cases all correspond to stability changes. We show, however, in Sec. 3.5.3
computations suggesting that at least in the case of real eigenvalues bifurcations of eigenvalue from
the imaginary axis happen near folds but not exactly at folds. In agreement with [41] we get that all
off-site GSs (black dots in Fig. 3.5) are unstable. For onsite GSs (black dots in 3.4) we get ‘stability’
(Re(γ) < 5 ∗ 10−3) except for Don. Previously, see e.g [31, 1], onsite GSs, including discrete GSs,
have been demonstrated to be stable via direct numerical simulations of their evolution in time. As,
however, shown in [41] onsite GSs can, in fact, be unstable when an eigenvalue bifurcates from an
edge of σess(L) away from the imaginary axis. This is caused by a resonance between the GS and an
‘internal mode’. From our selected cases Don is the only unstable one. Note that although the GS Con

is plotted as stable in Fig. 3.4, it is shown in Fig. 6 of [41] that it is unstable due to an eigenvalue λ
with Re(λ) ≈ 3.5 ∗ 10−4. This eigenvalue lies, however, well to the left of our contour. We reproduce
eigenvalues near this point in the next section.

3.5.3. Determining Eigenvalue Locations. Note that in general the method of the Evans
function combined with the argument principle and a fixed contour cannot provide information on
the strength of an instability since the precise location of eigenvalues is not known. When, however,
the resulting winding number n is odd, the symmetry in Lemma 3.2 implies that at least one of the
eigenvalues is real. Since in many of our examples n = 1, the corresponding instability is exponential.
In these cases the eigenvalue can be located by evaluating E(λ) throughout λ ∈ (0, ‖Γ‖∞‖φs‖2∞) and
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Fig. 3.4. Evans function winding number computations for selected SGS families bifurcating from onsite GSs.
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interpolating the graph to obtain roots of E. The graphs of the root λ along the SGS family Con

and along the family Boff are plotted in Fig. 3.7 and 3.8. We see that in the case Con the eigenvalue
does not bifurcate from 0 precisely at the fold but shortly before the fold is reached, while for Boff

the bifurcation appears directly at the fold.

For illustration in Fig. 3.9 we show the plot of E(λ) along λ ∈ (0, ‖Γ‖∞‖φs‖2∞) for the SGS at
the circle marker in the family Con in Fig. 3.7.

In order to locate complex eigenvalues via the Evans function, there are, in principle, two al-
ternatives: either a search algorithm employing the argument principle and contours enclosing each
search region or a direct root finding approach based on a polynomial interpolation. We use the latter
approach and select Müller’s method for finding complex zeros of complex functions [36]. Müller’s
method is a generalization of secant method in that instead of a linear interpolation it uses a quadratic
one and thus requires three points for an initial guess. We use the implementation of D.H. Cortes [8]
and terminate Müller’s iteration if |E(λ(k))| < 10−12 and |λ(k−1) − λ(k)| < 10−6 for the k-th iterate
λ(k). Selected results have also been checked with Matlab’s standard routine fminsearch,which is
based on a simplex search method.

We restrict our attention to eigenvalues in or near the slit (0, 0.005)+ iR omitted by the winding
number computations in Sec. 3.5.2 and select two examples, the families Con and Doff, for which we
perform tracking of eigenvalues along the SGS families. For the Con gap soliton we select the starting
guess triplet near 3.5 ∗ 10−4 + 0.49 ∗ i, which was reported in Fig. 6 [41] to be an eigenvalue. After
convergence we track the eigenvalue throughout the whole SGS family. The results are in Fig. 3.10.
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Varying the initial guess we have found two eigenvalues for the gap soliton: λ0 ≈ 7.8 ∗ 10−4 + 0.498i
and λ0 ≈ 0.5 ∗ 10−4 + 0.4447 ∗ i, satisfying our tolerances. The former eigenvalue is tracked in Fig.
3.10 (b) and (c) and the latter one in (d) and (e).

For the family Doff and the starting guess triplet for the gap soliton near 0.002 + 0.544 ∗ i the
computed eigenvalues are plotted in Fig. 3.11.

In both Fig. 3.10 and 3.11 the eigenvalue curves have a number of discontinuities. At these points
Müller’s iteration switches to another eigenvalue. The computations show that the slit (0, 0.005)+ iR
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Fig. 3.11. Eigenvalue computation using Müller’s method. (a) SGS family Doff with several points labeled; (b)
The real part of the eigenvalues λ0 obtained by tracking the eigenvalues of the gap soliton (labeled ’0’). The gap soliton
eigenvalue was computed with the starting guess 0.002 + 0.544 ∗ i. (c) The corresponding imaginary part.

missed by the winding number computations in many cases, indeed, contains additional eigenvalues.
Numerically locating all these eigenvalues is possibly unfeasible with existing methods.
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3.5.4. Direct Numerical PDE Evolution. For several selected SGSs we check the stability
results by direct numerical simulations of the t-dependent NLS (1.1) using the corresponding SGS
profile φ plus a small perturbation as the initial condition. In detail, we take

ψ(x, 0) = φ(x) + 0.01max
x

(φ(x)) sin2
(πx

2

)

sech
( x

10

)

,

where the second term represents an oscillatory perturbation with an expected large spectral support
in σ(L) so that many modes of the linearization problem (3.4) are excited. This perturbation is
used merely to accelerate possible instabilities since the numerical approximation alone introduces
error which has a large spectral support. The numerical integration of (1.1) was performed via a
4th order (in dt) split-step method [51] where (1.1) was rewritten as ∂tψ = Aψ + B(x, ψ)ψ with
A = i∂2x and B(x, ψ) = −iV (x) + iΓ(x)|ψ(x)|2, so that splitting into the constant coefficient linear
part ∂tψ = Aψ and the nonlinear part ∂tψ = B(x, ψ)ψ was applied. The former part was solved in
Fourier k−space and the latter one in physical x−space exactly. In all simulations the computational
box x ∈ [−100, 100 − dx] was used with 3000 grid points so that dx ≈ 0.067. The time step was
dt = 0.01. The two above mentioned conserved quantities of equation (1.1), namely the total power
‖ψ(·, t)‖2L2(R) and the total energy Eµ(ψ), are preserved with our numerical method with a typical

relative error around 10−5 and 10−4 respectively.
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Fig. 3.12. Time evolution of 2 SGSs from the family Con (Γ+ = 1). (a) the SGS family with stability marked
as in Fig. 3.4, and 2 selected labeled points: [1] with Γ− ≈ 1.451 and [2] with Γ− ≈ 1.472; (b) profiles of the 2 SGSs
[1] and [2]; (c) and (d) evolution of the modulus |ψ| for the 2 SGSs. Clearly, ψ[1] evolves unstably and ψ[2] stably in
agreement with the stability diagram (a).

Figs. 3.12,3.13 and 3.14 show the evolution of one stable and one unstable SGS along the families
Con, Goff and Fon, respectively. And Fig. 3.15 shows the evolution of the onsite GSs (Γ− = Γ+ = 1)
Don and Eon. In all cases the (in)stability of the dynamics is in agreement with the results in Figs.
3.4, 3.5, and 3.6. In the case Fon the time interval had to be chosen larger than in the other cases due
to the weaker instability: for all the SGS in the Fon family Re(λ) < 0.005 while in the other families
the unstable solutions have Re(λ) > 0.005 as follows from Figs. 3.4, 3.5, and 3.6.

Based on a physical intuition from optics one might expect that SGSs with their center in the
more defocusing half of the medium (i.e. the half with the smaller value of Γ) should be unstable due
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Fig. 3.14. Time evolution of 2 SGSs from the family Fon (Γ+ = −1). (a) the SGS family with stability marked as
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[1] and [2]; (c) and (d) evolution of the modulus |ψ| for the 2 SGSs. Clearly, ψ[1] evolves unstably and ψ[2] stably in
agreement with the stability diagram (a).

to the tendency of light to converge to the more focusing regions. Mathematically this expectation
also makes sense since the total energy (1.6) is decreased via a shift toward the more focusing region.
This is, however, only a heuristic view due to the lack of shift invariance in the system. In reality
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Fig. 3.15. Time evolution of the GSs Don and Eon (Γ+ = Γ− = 1). In Fig. 3.4 Evans function computations
show these to be unstable and stable respectively. The t−evolution agrees with these stability results.

nothing, in general, prevents the possibility of existence of a local extremum of the energy with the
extremizer localized in the less focusing region and being stable. As we can see, for instance, in the
SGS families Con and Foff by inspecting Figs. 2.8 and 3.4, there are parts of the family where this
intuition indeed fails. The segments of the families marked in Fig. 3.16 correspond to stable SGSs
centered in the less focusing half. Note that for the segment of the Foff family exiting the plot window
on the right the part that satisfies Γ− > 0 is a family of ”stable” solutions (Re(λ) < 0.005) at a
focusing/defocusing interface and centered in the defocusing medium! Similar segments of families of

0 0.5 1 1.5 2 2.5

0.005

0.01

0.015

0.02
C

on
    (Γ

+
 = 1)

Γ
−

E
µ(φ

)

−2 −1 0 1 2
−9

−8

−7

−6

−5

−4

−3

−2
x 10

−5

[1]

F
off

    (Γ
+
 = −1)

Γ
−

E
µ(φ

)

−40 −20 0 20 40
−0.04

−0.02

0

0.02

0.04

0.06

0.08

profile of φ
[1]

 in F
off

 

x
 

 

cV
φ

[1]

Fig. 3.16. Left and middle: ”stable” segments (Re(λ) < 0.005) of the SGS families Con (where Γ+ = 1) and
Foff (where Γ+ = −1), which consist of solutions centered in the less focusing part of the domain are marked in bold.
On the right: profile of the ”stable” SGS (1) at Γ− ≈ 1.41 marked along the Foff family. This SGS is at a truly
focusing/defocusing interface and concentrated mostly in the defocusing half.

SGSs centered in the less focusing half can be found, for instance, in the cases Aon, Fon, Aoff, and Coff.

4. Conclusions. Surface gap solitons (SGSs) of the cubic 1D periodic Schrödinger (PNLS) /
Gross Pitaevskii (GP) equation with a nonlinearity interface have been studied. As the computa-
tions show, bright SGSs exist even in the case of a focusing/defocusing interface. In [13] SGSs were
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constructed via a numerical parameter continuation from gap solitons (GSs) and the families were
followed up to the first fold. Here we have extended these families using the numerical arclength
continuation. As shown, the SGS families often contain GSs centered at different extrema of the
linear periodic potential or several non-identical GSs at the same extremum. For families of spatially
broad SGSs the number of folds appears to equal the number of shifts of the SGS center of mass from
one extremum of the periodic potential to the next. Asymptotic methods reveal that for SGSs bifur-
cating from GSs centered arbitrarily far from from the interface the allowed size of the jump in the
nonlinearity coefficient decays as the propagation constant/frequency approaches the corresponding
bifurcation edge of the spectral gap. Numerical arclength continuation results confirm this statement.

To inspect linear stability of SGSs we have developed a numerical Evans function method. Eigen-
values with the real part to the right of a small threshold have been detected via the complex argument
principle applied to the Evans function with a vertical contour near the imaginary axis. This is the
first time, to our knowledge, that the Evans function method combined with the argument principle
has been applied to a problem with periodic coefficients. Standard difficulties in evaluating the Evans
function in a numerically stable way have been reported and explained in detail in the context of
the problem at hand. These include firstly stiffness of the ODE linearization problem on each of the
unstable and stable manifolds, which need to be approximated for the Evans function evaluation. This
is overcome via a reformulation in exterior algebra. Secondly, a numerical approximation of solutions
with a fast exponential growth is necessary, which is performed under a change of variables. Next,
accurate winding number computations require an adaptive discretization of the contour. Finally, the
accuracy of the Evans function is shown to depend on the level of preservation of the weak Grassma-
nian invariant in the evolution of the two manifolds and on the discretization error in the solution of
the SGS profile.

The results reveal the existence of both unstable and stable SGSs, where stability does not exclude
the presence of eigenvalues with a positive real part below the threshold given by the distance of our
contour to the imaginary axis. The results on stability of GSs are in agreement with the previous
results in [41]. Interestingly, stability is possible also for SGSs centered in the less focusing medium
of the two and even when the SGS is concentrated in the defocusing half with a focusing-defocusing
interface. Direct numerical simulations of the PNLS/GP equation were performed for several SGS
examples and confirm the (in)stability statements based on Evans function computations.

An apparent shortcoming of the argument principle approach is the lack of information on eigen-
values between the imaginary axis and the vertical contour. Note that the imaginary axis cannot be
chosen as the contour even if the Evans function E is analytically extended through the essential spec-
trum, see [23, 24, 25] for an analytic extension in constant coefficient systems, due to the occurrence
of zeros of E on the imaginary axis. In order to gain insight on the region between the imaginary axis
and the vertical contour, we have tracked several complex eigenvalues there via the use of Müller’s
method. The authors plan to address numerically eigenvalue bifurcations from the essential spectrum
by using an analytic extension of the Evans function in a future paper.

All the techniques presented in this paper can be easily adapted also for problems with linear
interfaces, e.g. when the linear potential has the form V (x) = V+(x) χ[0,∞)(x) + V−(x) χ(−∞,0)(x)
with periodic V±. In fact, only periodicity of V for large enough |x| is a requirement for the techniques.
The stability method can thus be directly applied, for instance, to the linear interface SGSs in [28,
34]. In addition the form of the nonlinearity coefficient can be arbitrary. A practical advantage
of the numerical Evans function method is the possibility of a straightforward parallelization of the
computations by dividing the contour into segments.

Computation of SGSs via the arclength continuation generalizes directly to more spatial dimen-
sions. The application of the Evans function is, however, generally unfeasible as the stable and
unstable manifolds are typically infinite dimensional in more than one spatial dimension.
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Appendix A. Winding Number Code. For readers’ convenience and to motivate the use of
winding number based computations of point spectra by others, we provide here our Matlab code for
the computation of the winding number of a closed curve in the complex plane with respect to the
point 0. A remark on the choice of a starting point is included at the beginning of the code.

function wind = wind nr(E)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% winding number computation

% input: complex array E of the size [N x 1] representing a closed curve

% in the complex plane ( E(1) = E(N) )

% output: winding number wind of the curve with respect to the point 0

% beware: choice of ind st

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plots on=1;

if(plots on)

figure(1); plot(E)

xlabel('Re(E)'); ylabel('Im(E)')

end

%select a starting point for the winding number computation

%(should not be at a point where the curve E is tangent to a ray from the origin

% or where the phase is \pm \pi)
ind st=3;

%for the Evans function example with an unbounded lambda−contour where the

%first m and the last m entries of E are a line connecting the last computed value

%of E along the lambda−contour and the asymptotic value 1 of E for

% |lambda|−> oo a suitable choice of ind st is 1 < ind st < m because the complex

%phase of E changes monotonically and the phase value is not +/− pi for 1<ind st<m

%initiate the value of the phase and the winding number

phase 0 = atan2(imag(E(ind st)),real(E(ind st)));

phase = atan2(imag(E(ind st+1)),real(E(ind st+1)));

if(ind st==1)

phase old = atan2(imag(E(end−1)),real(E(end−1)));
else

phase old = atan2(imag(E(ind st−1)),real(E(ind st−1)));
end

if(phase>phase 0 && phase 0>phase old && abs(phase−phase old)<pi )

wind = 1;

elseif(phase<phase 0 && phase 0<phase old && abs(phase−phase old)<pi )

wind = −1;
end

%run along the E−curve tracking the phase and increasing or decreasing

%the winding number counter

check monot = 0;

phase old = phase 0;

for k = [ind st+1:length(E) 2:ind st]

phase=atan2(imag(E(k)),real(E(k)));
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if(check monot==1) %check if E is tangent to the ray with the angle phase 0

if(phase > phase old && phase old old < phase old && abs(phase−phase old)<pi)
wind = wind + 1;

elseif(phase < phase old && phase old old > phase old && abs(phase−phase old)<pi)
wind = wind − 1;

end

check monot = 0;

end

%check if the value phase 0 has been passed

%(i.e. if E has crossed the ray with the angle phase 0)

if(phase>phase 0 && phase old<phase 0 && abs(phase−phase old)<pi)
%counter clock−wise crossing

wind = wind + 1;

elseif(phase<phase 0 && phase old>phase 0 && abs(phase−phase old)<pi)
%clock−wise crossing

wind = wind − 1;

elseif(phase==phase 0) %need to check if phase has an extremum here

%(i.e. if E is tangent to the ray with the angle phase 0)

phase old old = phase old;

check monot = 1;

end

phase old = phase;

end

end
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