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Abstract

In this paper we develop a probabilistic micro-scale model and use
it to study macro-scale properties of axonal transport, the processes by
which materials are moved in the axons of neurons. By directly mod-
eling the smallest scale interactions, we can use recent microscopic ex-
perimental observations to infer all the parameters of the model. Then
using techniques from queueing theory, we can predict macroscopic
behavior in order to investigate three important biological questions:
(1) How homogeneous are axons at stochastic equilibrium? (2) How
quickly can axons return to stochastic equilibrium after large local
perturbations? (3) How inhomogeneous does deposition and turnover
make the axon?

1 Introduction

In all cells, one finds that proteins, membrane-bound organelles, and other
structures (e.g. chromosomes) are transported from place to place at speeds
much higher than diffusion. Though these transport processes are funda-
mental to cell function, many of the underlying mechanisms, organizational
principles, and regulatory features remain unknown. Axonal transport is
one of the best studied systems because the transport is basically one-
dimensional since axons are long and narrow. There are two speeds of axonal
transport. Fast transport goes at speeds of roughly 0.2 to 0.5 meters/day
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[20][24], while slow transport goes at approximately 1 millimeter/day, the
rate of axon growth and regeneration [5][20]. The biology and principles of
slow transport are not yet clear [5], but the basic mechanisms of fast ax-
onal transport were discovered in the 1980s [2][3][22][34]. The model in this
paper refers to fast axonal transport, which we will henceforth call axonal
transport.

The axonal transport apparatus consists of vesicles which form reversible
chemical bonds with motor proteins that bind reversibly to microtubules
which run parallel to the long dimension of the axon [1]. When the vesicle-
motor protein complex is assembled on the microtubule, the complex steps
stochastically with step size approximately 8 nanometers for kinesin and
dynein and 10 nanometers for myosin [6][10][16][31]. The vesicles enter from
the cell body on microtubules and then detach and reattach to the transport
mechanism at random times.

In this paper we propose a spatial Markov-chain compartmental model
based on these dynamics. We will assume independence of the interactions,
and exponential wait times between events. While we address the validity of
these assumptions in the Discussion section, we consider this a useful “first-
order” approximation that permits study of the dynamics from both the
perspective of individual vesicles as well as that of the full spatial system.
Such a model unifies some earlier modeling efforts and can accommodate
both qualitative and quantitative experimental data observed on multiple
scales.

In much experimental work in the 1970s and 1980s, radio-labeled amino
acids were put into the cell bodies continuously or for a few hours. The amino
acids were incorporated into proteins that were packaged into vesicles and
put on the transport system so that at later times radioactivity could be
seen moving progressively down the axons. In the continuous infusion case,
one would see a wave of radioactivity with a sharp but slowly spreading
wavefront propagating at constant velocity down the axon. In the case of
infusion for a few hours one would see at long times a slowly spreading pulse
of radioactivity that looked normally distributed. It was to understand this
behavior that Reed and Blum constructed PDE models for axonal transport
[3][25][26]. These models did not have traveling wave solutions, but the data
certainly looked like approximate traveling waves. In [27] it was shown by
a perturbation theory argument that, in the asymptotic limit where the
unbinding and binding rates k1 and k2 get large, the solution approaches
a slowly spreading traveling wave or a normal pulse. Recently, in a series
of papers, Friedman and co-workers have introduced new PDE models and
proved these results rigorously[12][13][14][15].
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Probabilistic models for axonal transport were introduced and used for
simulations already in the 1980s [30][32]. However, rigorous work began with
Lawler [21] in 1995 and was continued by Brooks [4] who used a continuous
time stochastic model to show that the distribution of an individual particle
is a spreading Gaussian at large times. Brooks also proved tail estimates for
the central limit theorem and used them to estimate the error from normal.

1.1 Summary of Results

In this paper we revise the existing probabilistic models in order to ob-
serve randomness in the system as a whole rather than exclusively from the
particle’s point of view. Our goal is to exploit experimental observations
at multiple scales in order to make predictions about the perceived homo-
geneity of material along the length of the axon. To this end, we propose
in Section 2 a continuous-time Markov chain queueing model for the axonal
transport system and estimate the order of magnitude of the various param-
eters. The precise values of the parameters will vary for different molecular
motors, for various types of cargo and for various animal species.

In Section 3 we take the individual vesicle point-of-view to recover pre-
vious results [4] [26] and show that this model does unify and extend the
existing probabilistic and PDE models. Using standard results from re-
newal theory we calculate the mean velocity and the near-Gaussian wave-
front spreading of the law of the vesicle’s location. Since we assume indepen-
dence of the particle interactions, the law of an individual is equivalent to the
distribution of an ensemble of particles released at the same time. Therefore
the PDE governing a spatial-continuum limit of the law of a single particle
is the same as the PDE studied in [26] (see Section 3.3).

Subsequently in Section 4 we adopt the full spatial system perspective to
quantify stochasticity along the length of the axon. We begin by calculating
in Proposition 4.1 the stationary distribution of a flow-through system that
has sustained input from the nucleus, while particles are removed upon
reaching the distal end. The stationary distribution has a product Poisson
structure which allows for seamless transition between spatial scales. Via
the coefficient of variation we give a precise characterization in Section 4.2 of
the experimenter’s qualitative perception of homogeneity at the millimeter
scale.

The final two sections deal with model predictions. In Section 5 we
study the non-equilibrium dynamics of recovery. Due to the product struc-
ture of the law of the transient dynamics, behavior is determined by the 2N -
dimensional ODE governing the means. From this we estimate the timescale
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of return to equilibrium as a function of the lengthscale of interest. In Sec-
tion 6 we consider the effect of deposition of material in the cell membrane.
We find that there should be an exponential loss of material along the length
of the cell, and conclude that a new biological mechanism must be discov-
ered to account for the homogeneity that is a hallmark of axonal transport
experimental observations.

2 The model and its parameters

Let L be the length of the axon, divided evenly into N lateral sections each
of length δ, equal to the step size of the motor protein. Within each section,
we disregard any further spatial geometry and take the particles to be in
one of two states:

• an on-transport state with mean lateral velocity v, or

• an off-transport state with lateral velocity 0.

We use a 2N -dimensional continuous time Markov chain to model the
particle dynamics:

• Qi(t) is the number of particles in the on-transport state in section i,

• Pi(t) is the number of particles in the off-transport state in section i.

Each Qi and Pi has the natural numbers N = {0, 1, 2, . . .} as its state space.
In the simplest model, we consider the following transitions and rates,

• Lateral transport :
(Qi, Qi+1) → (Qi − 1, Qi+1 + 1) at rate rQi(t), where r = v/δ;

• Switch from on-transport to off-transport :
(Qi, Pi) → (Qi − 1, Pi + 1) at rate k1Qi(t);

• Switch from off-transport to on-transport :
(Pi, Qi) → (Pi − 1, Qi + 1) at rate k2Pi(t);

• Production of new particles:
(Q1) → (Q1 + 1) at rate q0r;

• Removal of particles at distal end :
(QN ) → (QN − 1) at rate rQN(t).
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Figure 1: Double Chain

The lateral transport rate, r, is inversely proportional to the length scale so
that the mean number of particles per unit length is invariant with respect
to rescaling δ. The rate of production, q0r, ensures that this mean number
per unit scales with q0. A graph of the model is depicted in Figure 1.

In order to ensure the Markov property, we use exponential random
variables for the waiting times between transition events. Specifically, we
mean that after a given event we assign a new independent random variable
to each of the 3N + 2 possible next events, exponentially distributed with
the appropriate rate parameter. The system of values updates according to
the transition associated with the minimum of these waiting times. Then we
create a new set of exponential random variables and the process proceeds
as before.
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This is an exactly solvable model. The advantage of computing explicit
formulas for quantities that can be observed in experiments is that the ex-
perimental data can then be used to determine the parameter values in the
model. For the characterization of the approximate wavefront speed and
spreading in Section 3 and the homogeneity calculations in Section 4 we
need order-of-magnitude estimates for the parameters. Actual parameter
values will certainly differ depending on the particular neural tissue and
the particular particles being transported. However, we can get order-of-
magnitude estimates from existing data.

First we recall that fast transport has been observed to travel at speeds of
0.2 to 0.5 m per day. We can assume that the average velocity of particles
while physically bound to microtubules is roughly 1 m per day, or 10−6

m/s. We have already stated the assumption that the length scale of the
individual steps satisfies δ ∼ 10−8m. This implies that the rate parameter
should be r = v/δ = 102s−1.

We now turn our attention to the on-off rates rates k1 and k2. These can
be determined from experimentally observed run lengths on the transport
system. Indeed, Dixit et al. [9] show that a typical run along microtubules
for dinein and kinesin is on the order of 10−6m. We can compare this with
the theoretical run length of the model to determine off-rate k1. Within the
model, at each step on the transport mechanism the particle has a binary
decision to jump laterally along the transport with probability r/(k1 + r),
or to jump off with probability k1/(r+ k1). The number of jumps along the
transport system before jumping off is therefore geometrically distributed
on the set {0, 1, . . .} with success probability r

r+k1
. It follows that average

number of steps in the run is r
k1

and therefore the average run length is
r
k1

× 10−8 m. Setting this equal to the average experimental run length of

10−6 from [9], we see that r
k1

∼ 102, implying that k1 ∼ 1s−1. As we will see
in the computation of the stationary distribution in Section 4.1, the ratio of
the expected number of particles on the track to those off the track is k1

k2
.

Dixit [9] found that approximately 75% of the particles were motile so this
ratio is approximately equal to 3. Since k1 ∼ 1s−1 we see that k2 ∼ 1

3 .
It remains to estimate q0. We will see in Proposition 4.1 that the mean

number of particles per unit length is (1 + k1
k2
)q0 = 4q0. Of course, axons

have a large variety of diameters and larger axons will have more vesicles per
unit length so one expects a range of values for q0. However, examination
of a large number of electron micrographs of axonal cross-sections (see for
example [17], Fig. 3; [18]; [23]), which are typically 100 nm thick enables
one to estimate the number of vesicles per 100 nm segment. This number



7

is typically in the range of 10 to 100 which implies that there are 1 to 10
vesicles per “box” in our model. Therefore q0 is in the range 0.25 to 2.5, for
various axons.

We remark that we are ignoring some aspects of the physics and the
biology of axonal transport. We are not including diffusion of the vesicles
off the track. We are treating the microtubule track as though it were
a single continuous entity from one end of the axon to the other, when
it fact it consists of numerous, separated, microtubule fragments. And,
we are ignoring retrograde transport and the details of the motor proteins.
Nevertheless, this simple model will enable us to investigate the homogeneity
questions that are the main goal of this paper.

3 Dynamics from the Particle Perspective

In this section we calculate properties of the stochastic dynamics by using
standard theorems from queuing theory. In the δ → 0 limit, the law of the
location of a single particle converges to the Green’s function of a linear
partial differential equation. This enables us to obtain, as a special case,
the asymptotic behavior of the PDE models for axonal transport in various
asymptotic limits.

3.1 The active transport mode

We first consider the simple case where the particle starts at X0 = 0 and
stays exclusively in active transport mode. Let Xt ∈ {0, δ, 2δ, . . . , L} be the
lateral position of a particle at time t and let nt be the number of jumps
made by the particle as of time t. Observe, Xt = δnt.

Proposition 3.1. Let k1 = k2 = 0, and r = v/δ > 0, then Xt ∼ Pois(vt).
In particular, the mean velocity of the particle is given by 1

tE[Xt] = v. For

any given t ≥ 0, in the limit as δ → 0 the position of the particle satisfies

Xt

t
a.s.−→ v and

1√
δ

(

Xt − vt
)

t≥0

d
=⇒

√
v
(

Bt

)

t≥0

where B is a standard Brownian motion.

Proof. Since Xt = δnt where
(

nt

)

t≥0
is a Poisson process with rate r = v/δ

the set out results follow from the law of large numbers (LLN) and the
central limit theorem (CLT) for a Poisson process.
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3.2 The on/off dynamics

We now consider a particle which undergoes transitions from on-transport
to off-transport state and back. Denote again by Xt ∈ {0, δ, 2δ, . . . , L} the
lateral position of a particle at time t and let nt be the number of lateral
transition jumps made by the particle as of time t. Observe that the particle
will spend only a fraction of its time in active transport and hence the lateral
speed of the particle should be slower than before.

Proposition 3.2. Let k1, k2 > 0, and let r = v/δ > 0, then the mean

velocity of the particle satisfies 1
tE[Xt] −→

t→∞
k2

k1+k2
v.

Proof. Consider the time τ for a particle to make one step of lateral trans-
port. Before doing so a particle performs m switches from on-transport
to off-transport and back, where m is distributed as a Geometric( r

k1+r )

variable. The amounts of time a particle takes for each switch τQ→P
i from

on-transport to off-transport are iid variables with Exponential(k1+r) distri-
bution. Likewise, the amounts of time a particle takes for each switch τP→Q

i

from off-transport back to on-transport are iid variables with Exponential(k2)
distribution, and are independent of the other switching times. Then

τ =
m
∑

i=1

(

τQ→P
i + τP→Q

i

)

+ τQ→Q
m+1

with E[τ ] = (k1 + k2)/(k2r). Let nt be the number of times a particle
makes a step of lateral transport until time t. By the Renewal Theorem
1
tE[nt] →

t→∞
1

E[τ ] , and the result follows from Xt = δnt and δ k2r
k1+k2

= k2v
k1+k2

.

Proposition 3.3. Let k1, k2 > 0, and r = v/δ > 0. In the limit as δ → 0
the position of a particle satisfies

Xt

t

a.s−→
t→∞

k2
k1 + k2

v, and
√
t
(Xt

t
− k2

k1 + k2
v
)

d
=⇒
t→∞

√

2k1k2
(k1 + k2)3

vB1

where B1 ∼ Normal(0, 1).

Proof. The number of lateral transport steps (nt)t≥0 is a renewal chain with
E[τ ] = (k1 + k2)/k2r and Var[τ ] = ((k1 + k2)

2 + 2k1r)/r
2k22. By the LLN

and CLT for Renewal chains

nt

t

a.s−→
t→∞

1

E[τ ]
, and

√
t
(nt

t
− 1

E[τ ]

)

d
=⇒
t→∞

√

Var[τ ]

(E[τ ])3
B1
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and now the result follows from Xt = δnt, δ 1
E[τ ] = δ k2r

k1+k2
= k2

k1+k2
v, and

δ2
Var[τ ]

(E[τ ])3
=

δk2v

k1 + k2
+

2k1k2v
2

(k1 + k2)3
≈ 2k1k2

(k1 + k2)3
v2 for δ ≈ 0.

The fact that an individual particle starting at x = 0 will have the distri-
bution given by Proposition 3.3 at long times was also obtained by Brooks
[4] who proved tail estimates on the CLT and found that the remainder is
O( 1√

t
). In our approach, one can obtain the same error estimate using the

asymptotic analysis of renewal chains, see, for example, [7].

3.3 Connection to Partial Differential Equations Models.

In order to demonstrate the connection between our model and the PDEs
seen in [27][26][14], we make a formal calculation regarding convergence of
the law of the location of a single particle in the full system.

Let δN = 1
N and let XN (t) denote the lateral position of a particle in a

system with N boxes. Define

qN (x, t) := P{XN (t) = x, and the particle is on track}
pN (x, t) := P{XN (t) = x, and the particle is off track.}

We suppress N in the notation. By definition of the Poisson process, for
small values of h we have

q(x, t+ h) = q(x, t)(1− (k1 + r)h) + q(x− δ, t)rh+ p(x, t)k2h+ o(h)

p(x, t+ h) = p(x, t)(1− k2h) + q(x, t)k1h+ o(h).

which we may reorganize as

1

h
(q(x, t+ h)− q(x, t)) = r[q(x− δ, t) − q(x, t)]− k1q(x, t) + p(x, t)k2 +

o(h)

h
1

h
(p(x, t+ h)− p(x, t)) = −k2p(x, t) + k1q(x, t) +

o(h)

h
.

Formally, we take the Taylor expansion of q in space: q(x− δ, t) = q(x, t)−
δ∂xq(x, t) + o(δ2). Taking limits as h → 0 and δ → 0 yields the system of
PDEs

∂tq(x, t) + v∂xq(x, t) = −k1q(x, t) + k2p(x, t) (1)

∂tp(x, t) = k1q(x, t)− k2p(x, t). (2)
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When k1 = 0 = k2, the limiting PDE is simple linear transport: (∂t +
v∂x)q(x, t) = 0. The initial condition q(x, 0) = δ0(x) corresponds to the
density of a single particle at the origin at t = 0. The time evolution via
simple linear transport is translation of the delta function, while the time
evolution via the equations (1) and (2) will have a spreading profile. This is
seen in Propositions 3.1 and 3.3 since the variance of the fluctuations goes
to 0 in Proposition 3.1 but not in Proposition 3.3 as δ → 0.

In the experiments described in the introduction one sees “approximate”
traveling waves of radioactivity in the axons in the sense that there is a slowly
spreading wave front moving at constant velocity away from the cell body.
The equations (3) and (4) are linear and do not have solutions that are
bounded traveling waves. However, it was shown by a perturbation theory
argument in [27][26] that as ε → 0 the solutions of

ε(∂t + v∂x)qε(x, t) = −k1qε(x, t) + k2pε(x, t), qε(0, t) = q0 (3)

ε∂tpε(x, t) = k1qε(x, t)− k2pε(x, t). (4)

are to leading order

qε(x, t) = H(
x− at

ε1/2
, t), pε(x, t) = cH(

x− at

ε1/2
, t),

where H satisfies the heat equation

∂sH(y, s) =
κ2

2
∂yyH(y, s), H(y, 0) = χ(−∞,0),

and

a =
k1v

k1 + k2
, κ2 =

2k1k2v
2

(k1 + k2)3
. (5)

This asymptotic form is valid for small ε, that is for large k1 and k2. How-
ever, if we set q(x, t) = qε(

x
ε ,

t
ε) and p(x, t) = pε(

x
ε ,

t
ε), then q and p satisfy

(3) and (4), so the solutions of (3) and (4) behave like approximate travel-
ing waves for large t and large x whether or not k1 and k2 are large. The
results suggested by these perturbation theory arguments have been proven
rigorously by Friedman and coworkers [12][13][14][15].

In the case that radiolabeled particles enter the axon only for a short
time, 0 ≤ t ≤ T , the same perturbation analysis shows that for large times
the solution of (3) and (4), where q(0, t) = 0 for t > T is to leading order a
spreading Gaussian with mean and variance as given in Proposition 3.3. This
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corresponds to what is seen experimentally and arises asymptotically in the
solutions of (3) and (4) by convolving the asymptotic solution corresponding
to the initial condition q(x, 0) = δ0(x) with the indicator function χ[0,T ](x).

4 Dynamics from the spatial system perspective

4.1 The spatial system in equilibrium

We are now ready to characterize the steady state dynamics induced by
continually adding particles from the nucleus and removing them when they
reach the distal end of the cell.

Proposition 4.1. If the incoming rate of particles at Q0 is q0r, then the

system has the following stationary distribution

Qi ∼ Pois(q0), Pi ∼ Pois

(

k1q0
k2

)

where the {Qi} and {Pi} are mutually independent.

Proof. Given the value of the input rate Q0 = q∗ the generator of the process
(Q1, P1) in the first section is

Aq∗f(q, p) = [f(q + 1, p)− f(q, p)]rq∗ + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p + 1)− f(q, p)]k1q + [f(q + 1, p − 1)− f(q, p)]k2p

If we first use f(q, p) = Q1(t) then use f(q, p) = P1(t) and take expectations
we get a system of ODE’s governing the change in E[Q1],E[P1] over time

dE[Q1](t)

dt
= rE[Q0]− rE[Q1(t)]− k1E[Q1(t)] + k2E[P1(t)]

dE[P1](t)

dt
= k1E[Q1(t)]− k2E[P1(t)]

indicating that in equilibrium E[Q1] = E[Q0], E[P1] = E[Q1]
k1
k2
. For pur-

poses that will soon be clear we first assume that Q0 has a constant Pois(λ∗)
distribution over time rather than just being equal to λ∗. Let π(q∗, q, p) =
πλ∗

(q∗) ⊗ πλQ
(q) ⊗ πλP

(p) where πλ are Pois(λ) distributions with rates

λ∗, λQ = λ∗, and λP = λ∗
k1
k2

respectively. To show that π(q∗, q, p) is a
stationary distribution for the process (Q1, P1) we need to check that

∞
∑

q∗=0

∞
∑

q=0

∞
∑

p=0

Aq∗f(q, p)π(q∗, q, p) = 0
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for any choice of function f ∈ D(Aq∗).

∞
∑

q∗=0

∞
∑

q=0

∞
∑

p=0

Aq∗f(q, p)e
−(λ∗+λQ+λP )λ∗

q∗

q∗!

λq
Q

q!

λp
P

p!

= e−(λ∗+λQ+λP )
∞
∑

q∗=0

λ∗
q∗

q∗!

(

∞
∑

q=0

∞
∑

p=0

λq
Q

q!

λp
P

p!

(

[f(q + 1, p)− f(q, p)]rq∗ + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p + 1)− f(q, p)]k1q + [f(q + 1, p− 1)− f(q, p)]k2p
)

)

In the inner two sums, for a fixed value of q∗, the factor multiplying f(q, p)
for any q, p ∈ N

2 comes only from terms involving {q − 1, q, q + 1} and
{p − 1, p, p + 1} and equals e−(λ∗+λQ+λP ) times

λq−1
Q

(q − 1)!

λp
P

p!
rq∗ −

λq
Q

q!

λp
P

p!
rq∗ +

λq+1
Q

(q + 1)!

λp
P

p!
r(q + 1)−

λq
Q

q!

λp
P

p!
rq

+
λq+1
Q

(q + 1)!

λp−1
P

(p− 1)!
k1(q + 1)−

λq
Q

q!

λp
P

p!
k1q

+
λq−1
Q

(q − 1)!

λp+1
P

(p+ 1)!
k2(p+ 1)−

λq
Q

q!

λp
P

p!
k2p

=
λq
Q

q!

λp
P

p!

( q

λQ
rq∗ − rq∗ +

λQ

q + 1
r(q + 1)− rq +

λQ

q + 1

p

λP
k1(q + 1)

− k1q +
q

λQ

λP

p+ 1
k2(p+ 1)− k2p

)

=
λq
Q

q!

λp
P

p!

( q

λ∗
rq∗ − rq∗ + λ∗r − rq

)

since λQ = λ∗ and λP

λQ
= k1

k2
.

Summing over q∗ the factor multiplying f(q, p) becomes

e−(λQ+λP )
λq
Q

q!

λp
P

p!

∞
∑

q∗=0

e−λ∗
λ∗

q∗

q∗!

( q

λ∗
rq∗ − rq∗ + λ∗r − rq

)

= e−(λQ+λP )
λq
Q

q!

λp
P

p!

(

qr − rλ∗ + λ∗r − rq
)

= 0
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We’ve just shown that if the distribution of input particles Q0 in equi-
librium is Pois(λ∗) then the stationary distribution of Q1, P1 is independent
of the distribution of Q0 and is πλQ

⊗ πλP
where λQ = E[Q0], and λP =

E[Q0]k1/k2. It is easy to see in the above calculation that if the input Q0 was
indeed constant q0 then the stationary distribution of (P1, Q1) would again
be πλQ

⊗πλP
with rates λQ = q0 and λP = q0k1/k2 respectively. Now, since

the stationary distribution of Q1 is the input into (Q2, P2) process, the more
general calculation shows that in equilibrium the stationary distribution of
(Q2, P2) is independent of the stationary distribution for Q1 and is πλQ

⊗πλP

with rates λQ = E[Q1] = q0 and λP = E[Q1]k1/k2 = q0k1/k2 again. It
follows by induction that the stationary distributions for {(Qi, Pi)} are in-
dependent and identically distributed as πλQ

⊗ πλP
, λQ = q0, λP = q0k1/k2.

This is also an example of a clustering process satisfying the detailed balance
conditions with linear rates discussed in Sec. 8.2 of [19].

4.2 Homogeneity of the axons at equilibrium

Recall that δ = 10nm, roughly the step size of motor proteins, and that
axons can be up to one meter in length. Thus we are interested in phenomena
on all the length scales 10νδ, where ν = 1, 2, . . . 8. Let ∆ = 10νδ; we want to
determine how similar different segments of the axon of size ∆ are. Let Q∆

and P∆ denote the numbers of on-track and off-track particles in a segment
of length ∆.

In equilibrium, Q∆ and P∆ are both sums of 10ν independent Poisson
random variables with parameters λQ = q0 and λP = k1

k2
q0, respectively.

Therefore the distributions of Q∆ and P∆ are Poisson with parameters
10νλQ and 10νλP , respectively. The mean and the variance of the num-
ber of particles in the segment of length ∆ is 10ν(λQ + λP ). To see how
homogeneous different slices of length ∆ are, we consider the coefficient of
variation, c∆, which is the standard deviation divided by the mean.

c∆ =
1

√

(λQ + λP )10ν
=

1
√

(1 + k1/k2)q0∆108
.

As indicated in Section 2, q0 is in the range 0.25 to 2.5 in different axons.
For illustrative purposes here, we will assume q0 = 1. Since k1/k2 = 3,
we see that the scale-dependent coefficient of variation c∆ = 1/(2

√
108∆).

Therefore at the ten nanometer scale the coefficient of variation is simply
1/2. At the micron scale c∆ = 1/20 and at the millimeter scale c∆ = 0.5×
10−5/2. The cutoff between “high variance” and “low variance” distributions
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is usually considered to be when the coefficient of variation is near 1, so by
this standard the axon is extremely homogeneous in its length at large scales.

5 Approaching Equilibrium

We have seen above that the axon is very homogeneous at stochastic equilib-
rium on a space scale down to micrometers. One of the beautiful properties
of the system of transport with reversible binding is that if it is locally out
of equilibrium, the dynamics will automatically take it back to equilibrium.
This is of fundamental importance to the biological function of the system
because it means that the axon will automatically “repair” itself without
central control of the repair process. How good is this mechanism? If a
segment of the axon is far away from equilibrium, how long does it take
to get back close to equilibrium? We study this question first for a single
location and then use the estimates derived to scale the results to segments
of any length.

Proposition 5.1. Let (Q,P )(0) = (0, 0) and let the constants a > 0 and

p ∈ (0, 1) satisfy the relationship a2p|λ∞| > 1 where λ∞ is the equilibrium

vector of (Q,P )(t). Then there exists a t∗ such that t ≥ t∗,

P{|(Q,P )(t) − λ∞| ≥ a|λ∞|} ≤ p.

In fact, the choice

t∗ = α−1 ln
(

√

p|λ∞|
a
√

p|λ∞| − 1

)

is sufficient, where

α :=
1

2

(

k1 + k2 + r −
√

(k1 + k2 + r)2 − 4k2r
)

Proof. We begin by noting that for any given β ∈ (0, 1), we may choose
t∗ > 0 such that for all t ≥ t∗, the vector of means λ(t) := E[(Q,P )(t)]
satisfies |λ(t)− λ∞| ≤ aβ|λ∞|. Then

P{|(Q,P )(t) − λ∞| ≥ a|λ∞|} ≤ P{|(Q,P )(t) − λ(t)|+ |λ(t)− λ∞| ≥ a|λ∞|}
≤ P{|(Q,P )(t) − λ(t)| ≥ a(1− β)|λ∞|}

Applying Chebyshev’s Inequality, and observing that the variance of a Pois-
son random variable is equal to its mean, we conclude that

P{|(Q,P )(t) − λ∞| ≥ a|λ∞|} ≤ Var[|(Q,P )(t)|]
a2(1− β)2|λ∞|2 =

|λ(t)|
a2(1− β)2|λ∞|2
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Since the initial condition for both P and Q are less than their respec-
tive equilibrium values, each are monotonically increasing functions and the
above reduces to

P{|(Q,P )(t) − λ∞| ≥ a|λ∞|} ≤ 1

a2(1− β)2|λ∞|

for all t > t∗. In order to satisfy the requirement that the right hand side
must be less than p, we solve for β and find

β = 1− 1

a
√

p|λ∞|

provided that a
√

p|λ∞| > 1.
It remains to study the convergence of the mean and the appropriate

choice of t∗. The dynamics of the mean vector λ(t) are given by the ODE

λ̇(t) = −A1λ(t) + q0re1 (6)

where e1 is the unit vector (1, 0) and

A1 =

(

k1 + r −k2
−k1 k2

)

.

The solution to (6) is

λ(t) = λ∞ + e−A1t(λ(0) − λ∞)

where λ∞ = q0rA
−1
1 e1 = q0(1,

rk1
k2

). This yields the estimate

|λ(t)− λ∞| ≤
∣

∣e−A1tλ∞
∣

∣ ≤ e−αt|λ∞|

where α is the smaller of the eigenvalues of A1, namely

α =
1

2
(k1 + k2 + r −

√

(k1 + k2 + r)2 − 4k2r).

Noting that α > 0, t∗ may be chosen so that e−αt∗ ≤ aβ, i.e.

t∗ = α−1 ln(1/(aβ))
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We now suppose that the whole axon is in statistical equilibrium except
for a segment of length δ × 10νm in which we will assume that there are no
particles either on or off the track. We want to know how long will it take
for this segment to get back close to equilibrium. Of course, Proposition
5.1 covered the case ν = 0. We are interested in ν = 1, . . . , 8. We imagine
that the axon is broken up into 108−ν segments of length δ × 10νm. In this
rescaled system, the unbinding and binding rates per particle, k1 and k2
remain the same, as well as the mean on-transport velocity v. In order to
retain this mean velocity, the rate of lateral stepping must be decreased to
r̃ = r × 10−ν .

The ODE for the mean vector of the rescaled system is given by

d

dt
λ̃(t) = −Ã1λ̃(t) + q0re1 (7)

with

Ã1 =

(

k1 + r̃ −k2
−k1 k2

)

.

We note that the last term in (7) contains an r rather than an r̃. This is
because the input rate is unchanged while the exit rate is diminished.

The resulting equilibrium value is therefore rescaled as well,

λ̃∞ = q0rÃ
−1
1 e1 = q0

r

r̃

(

1

k1/k2

)

.

Both components of this vector are of order 10ν , as expected.

We will use the parameters discussed in Section 2: k1 = 1, k2 = 1
3 , v =

10−6m/s, r = 102s−1. This implies r̃ = 102−νs−1. As in our analysis in
Proposition 5.1, the time to equilibrium, t̃∗, is proportional to α̃−1 where α̃
satisfies:

α̃ =
1

2

(

k1 + k2 + r̃ −
√

(k1 + k2 + r̃)2 − 4k2r̃
)

=
2k2r̃

k1 + k2 + r̃ +
√

(k1 + k2 + r̃)2 − 4k2r̃
.

We are most interested in the cases ν ≥ 3 (the segment has length ≥ 10 mi-
crons). Then k2r̃ is small compared to k1. Ignoring constants and restricting
our attention to the leading order terms gives

α̃ ∼ k2r̃

k1 + k2 + r̃
∼ 102−νs−1
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Thus,
t̃∗ ∼ 10ν−2s.

Thus, for a 10 micron segment (ν = 3) the time to equilibrium is about
10 seconds and for a 1 millimeter segment (ν = 5) the time to equilibrium is
1000 seconds or 15 minutes. Of course, the time to get close to equilibrium
depends on the parameter p that represents what we mean by “close.”

6 Transport with Deposition

One major feature of the biology we have ignored is that some particles in
the off-transport state are actually deposed permanently in the membrane
or are used for some other purpose. Such a phenomenon is easy to add to
the model proposed above, but we must address a new qualitative feature
of the results. Namely there is an exponential loss of material as we move
toward the distal end.

✲q0r

D1

❄1/τ

P1

k1 k2

Q1

❯

❑

❄
k3

✲r

D2

❄1/τ

P2

k1 k2

Q2

❯

❑

❄
k3

D3

❄1/τ

✲r

P3

k1 k2

Q3

❯

❑

❄
k3

✲r

Figure 2: Fast Axonal Transport with Deposition
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In addition to deposition, we recognize that particles are only useful in
the membrane for a random amount of time with a given half-life, after which
they decompose and get transported back to the cell body. Neglecting this
retrograde transport, we augment the previous model as follows: at each δ-
length lateral section let Di(t) be the number of particles deposed in section
i, with N = {0, 1, 2, . . .} as the state space for Di. In addition to the previous
dynamics we also define the following transition rates

• (Pi,Di) → (Pi − 1,Di + 1) (deposition) at rate k3Pi(t)

• Di → Di − 1 (decay) at rate 1/τ where τ > 0

The constant τ in the decay rate is the average lifetime of a deposed particle.

6.1 Dynamics from the particle perspective

As before, we can use the renewal theorem to determine the average speed
of particles that are not deposed, as well as the spreading of the wavefront.

Proposition 6.1. Let k1, k2, k3 > 0, τ < ∞ and let r = v/δ > 0, then the

mean velocity of the particle that is not deposed into the membrane by time

t satisfies 1
tE[Xt] −→

t→∞
k2+k3

k1+k2+k3
v.

Moreover, in the limit as δ → 0 the position of a particle satisfies

Xt

t

a.s−→
t→∞

k2 + k3
k1 + k2 + k3

v,
√
t
(Xt

t
− k2 + k3
k1 + k2 + k3

v
)

d
=⇒
t→∞

√

2k1(k2 + k3)

(k1 + k2 + k3)3
vB1

where B1 ∼ Normal(0, 1).

Remark 1. Notice the mean velocity of particles is higher than when there
is no deposition

k2 + k3
(k1 + k2 + k3)

v ≥ k2
(k1 + k2)

v, with equality iff k3 = 0

A simple explanation for this is that particles that are still in lateral trans-
port had returned to on-transport back from off-transport before managing
to be deposed into the membrane, meaning that their time off-transport was
shorter than it would have been if they did not have to beat the exponential
clock for deposition.

Proof. When there is deposition then by time t each particle has either
already deposed, or is still performing lateral transport. A particle that is
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deposed into the membrane has velocity zero from the time of its deposition
on. A particle that can still be laterally transported must have avoided
deposition until time t.

If we proceed along the lines of the proof without deposition, then the
only difference now is that the amount of time a particle takes for each switch
from off-transport back to on-transport are i.i.d. exponential variables with
parameter k2+k3 rather than k2. Hence the amount of time τ for a particle to
make a step from one section to another has E[τ ] = (k1+k2+k3)/((k2+k3)r),
and by the Renewal Theorem the number of steps a particle that can still
be laterally transported satisfies1tE[nt] →

t→∞
(k2+k3)

(k1+k2+k3)
r.

Also Var[τ ] = ((k1 + k2 + k3)(k1 + k2 + k3 + 2k1r))/r
2(k2 + k3)

2, so the
result now follows by the Renewal LLN and CLT for nt and the fact that

δ
1

E[τ ]
= δ

(k2 + k3)r

k1 + k2 + k3
=

k2 + k3
k1 + k2 + k3

v,

and

δ2
Var[τ ]

(E[τ ])3
=

δ(k2 + k3)v

k1 + k2 + k3
+

2k1(k2 + k3)v
2

(k1 + k2 + k3)3
≈ 2k1(k2 + k3)

(k1 + k2 + k3)3
v2 for δ ≈ 0

6.2 Dynamics from the spatial system perspective

Once again we compute the stationary distribution of the flow-through sys-
tem, this time with deposition.

Proposition 6.2. Suppose the incoming rate of particles at Q0 is q0r. Then
the stationary distribution of the system is

Qi ∼ Pois(q0 ρ
i), Pi ∼ Pois

(

k1
k2 + k3

q0ρ
i

)

, Di ∼ Pois

(

k1k3τ

k2 + k3
q0ρ

i

)

where ρ = r(k2 + k3)/((r + k1)(k2 + k3)− k1k2) and {Qi}, {Pi}, and {Di}
are mutually independent.

Proof. Since (Qi, Pi) do not depend on Di the proof for the stationary dis-
tribution of (Qi, Pi) follows along the same lines as in the case when there
is no deposition. We first check the stationary distribution for the process
(Q1, P1) in the first section. For given value of Q0 = q∗ the generator of the
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process (Q1, P1) is given by

Aq∗f(Q1, P1) = [f(Q1 + 1, P1)− f(Q1, P1)]rq∗ + [f(Q1 − 1, P1)− f(Q1, P1)]rQ1

+ [f(Q1 − 1, P1 + 1)− f(Q1, P1)]k1Q1 + [f(Q1 + 1, P1 − 1)− f(Q1, P1)]k2P1

+ [f(Q1, P1 − 1)− f(Q1, P1)]k3P1

The system of ODE’s governing the change in E[Q1],E[P1] is now

∂tE[Q1]

∂t
= E[Q0]r − E[Q1]r − E[Q1]k1 + E[P1]k2

∂tE[P1]

∂t
= E[Q1]k1 − E[P1]k2 − E[P1]k3

Hence, in equilibrium

E[Q1] = E[Q0]
k2 + k3

(r + k1)(k2 + k3)− k1k2
= q0ρ

and

E[P1] = E[Q1]
k1

k2 + k3
=

k1q0
k2 + k3

ρ.

If we let λQ = E[Q1], λP = E[P1], and define the distribution π(Q0, Q1, P1) =
πq0δ(Q0) ⊗ πλQ

(Q1) ⊗ πλP
(P1), then

∑∞
q∗,q,p=0Aq∗f(q, p)π(q∗, q, p) = 0 can

be verified exactly as before. Since now the mean of Q1 differs from the
mean of Q0 by a multiplicative factor ρ < 1, and this is the mean of the
input into Q2, it follows by induction that the sequence of rates for {Qi, Pi}
Poisson random variables decays geometrically in i by a factor ρi. This
immediately implies that in equilibrium the magnitude of the variances also
decays geometrically along the line of progression of lateral transport.

To find the stationary distribution for Di note that if the number of
particles at Pi = p∗ the generator for Di is

Ap∗f(d) = [f(d+ 1)− f(d)]k3p∗ + [f(d− 1)− f(d)](1/τ)d

It is easily checked that if Pi ∼ πλPi
then πλDi

is the stationary distribution
for Di which is independent of the distribution for Pi with λDi

= k3τλPi
.

Corollary 6.3. When in equilibrium the mean and the variance of the num-

ber of particles along the axon decay exponentially, with a loss ratio

E[Qi+1]

E[Qi]
=

Var[Qi+1]

Var[Qi]
≈ exp

(

− δk1
k2 + k3

k3
v

)

(8)

and the same loss ratio holds for the off-transport and the deposed particles.
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Remark 2. Notice that the rate of loss is depends on the ratio of reaction
rates k1/k2, which we earlier estimated to be approximately 3, as well as

the ratio k3/v, and that if k1, k2 ≫ k3 then the loss rate is e−
3k3
v .

Proof. Recalling ρ = r(k2 + k3)/(r(k2 + k3)+ k1k3) and r = v/δ, we rewrite

ρ =
(

1 + δ
k1k3

v(k2 + k3)

)−1

Observing that for any small δ, the approximation (1 + δx)−1 = 1 − δx +
(δx)2 − . . . ≈ e−δx, we have Equation (8).

The same ratio holds for the other two states as well

E[Pi]/E[P0] = Var[Pi]/Var[P0] = E[Di]/E[D0] = Var[Di]/Var[D0] = ρi

6.3 Homogeneity despite deposition

It remains to estimate the rates k3 and τ from experimental data and then
make a formal calculation to address the volume of material loss due to
deposition and turnover as a function of length scale. To be precise, suppose
we want to know the percentage loss over a length ∆ = 10νδ. Then from
the Corollary 6.3 the fraction of material loss is approximately

E[Q10ν ]

E[Q1]
≈

10ν
∏

i=1

exp
(

− δ
k1

k2 + k3

k3
v

)

= exp
(

− 10ν−8 k1
k2 + k3

k3
v

)

(9)

So, for example, at the meter scale, ν = 8, and so the loss ratio is exp(−k1k3/v(k2+
k3)).

We now consider the parameters of a specific example, sodium pumps
being deposed in the cell membrane. We assume that the half life of a single
pump is approximately a week, which means τ = 6 × 105s. It remains to
estimate k3. According to [36], there are roughly 1000 sodium pumps per
micron2 of membrane surface area. If we take the diameter of the neuron to
be 5 microns, then the membrane surface area for one 10 nm slice is about
0.15 µm2. So there are roughly 150 sodium pumps per slice.

It is important to note that each vesicle carries roughly 100 sodium
pumps and so the stationary distribution for the quantity Di is on average
1/100th of the number of sodium channels which are deposed into the mem-
brane at the location i. Taking this into account and recalling our earlier
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parameter estimations, k1 = 1, k2 = 1/3, v = 10−6 and q0 = 1 we estimate
the average number of sodium pumps in the membrane of the first 10 nm
slice to satisfy 150 = 100 q0k1k3τ/(k2 + k3) which implies k3 = 1× 10−6.

From the above we see that the loss ratio at the meter scale is

exp
(

− k1
k2 + k3

k3
v

)

= e−3 ≈ 0.04 (10)

which is to say that over the length of an entire meter long axon, we expect
the concentration of sodium pumps in the membrane near the distal end to
be roughly a 1/25 of that found near the nucleus. It is striking to note that
over a length 0.1 m, however, the loss ratio is e−.3 = .74. This implies that
material loss due to deposition and turnover becomes an issue exactly over
the range of lengths of typical axons: 0.1 m to 1 m. At the lower end of
this range, the axon is very homogeneous. At the higher end, one predicts
significant inhomogeniety.

7 Discussion

In this paper, we used a spatial Markov chain model to unify several pre-
vious approaches to modeling fast axonal transport. After inferring the
orders of magnitude of the parameters of the model, we have used standard
techniques from renewal theory and linear Markov chain theory to give a
precise description of the most striking qualitative feature of axonal trans-
port: homogeneity along the length of the axon. Furthermore we predict the
timescale of recovery to this homogeneous state after removing the vesicles
from a segment as a function of the length scale of the segment.

In creating the model, we have become aware of two features of the
biology which have not been adequately studied: 1) Deposition and decay
of proteins; and 2) characterization of the process by which unbound vesicles
reattach to the transport mechanism.

Regarding deposition and decay, we mentioned in Section 6 that the
model unequivocally predicts a loss of material down the length of the axon.
Furthermore, it seems that certain biological features that we have chosen
to ignore – such as retrograde transport and a location-dependent unbinding
rate [9] – would only serve to increase the non-homogeneity. In the case of
sodium pumps, it is not immediately clear if there is a contradiction between
deposition loss and homogeneity, but we do see a sensitive dependence on
the length of the axon. Furthermore, it stands to reason that for other types
of cargo the loss may significant. We believe that this raises an interesting
biological issue, and mention a few possible mechanisms for overcoming the
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material loss: first, it is possible that proteins can be synthesized in axons
[33]; second, there may be some signal that prevents material from deposing
in a region that is already “full;” and third, it may be that for some materials
“deposition” is a reversible process.

Regarding reattachment, we note that we have modeled all event wait
times as exponential random variables, but this is certainly a simplification.
As an example, the stepping process of kinesin is a well-studied though still
not completely understood phenomenon. Much work has focused on as-
sessing the dependence of the mean rate of translocation on both the load
and the local concentration of ATP [35] [29]. Implicit in this analysis is
the assumption of exponential wait times with state dependent rate param-
eters. However, when fitting to data and matching dispersion information
the authors in [11] found it necessary to generalize the wait time distribu-
tion. This was followed by more detailed models for which it was shown that
load carrying could in fact regularize the stepping times of kinesin motors
[28] [8].

Generalizing the wait times does not significantly affect the particle per-
spective results of Sections 3.2 and 6.1. This is because renewal theory,
which depends on independence of the wait times, is robust with respect to
such changes. However, the spatial system results may be affected in that
the full process is no longer Markov. While one may still expect a some-
thing like a stationary distribution for the flow-through system (where new
particles enter from the nucleus and particles are removed from the system
at the distal end), the analysis of the approach to equilibrium may change.
In the absence of direct observation of the phenomenon, we refrain from this
more detailed analysis.

In light of this known need for generalized wait times in the stepping
process, it seems likely that detailed observation of the rebinding process
will call for new models as well. Recall that when a vesicle unbinds from
a microtubule it is unclear whether it typically rebinds to the same micro-
tubule or if it explores the region significantly via diffusion before finding
a different microtubule to bind to. In the latter case, a more appropriate
model for rebinding time would be to solve some kind of first passage time
problem and use that distribution for the rebinding wait.
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A STOCHASTIC COMPARTMENTAL MODEL FOR FAST AXONAL
TRANSPORT

LEA POPOVIC∗, SCOTT A. MCKINLEY† , AND MICHAEL C. REED‡

Abstract. In this paper we develop a probabilistic micro-scale compartmental model and use
it to study macro-scale properties of axonal transport, the process by which intracellular cargo
is moved in the axons of neurons. By directly modeling the smallest scale interactions, we can
use recent microscopic experimental observations to infer all the parameters of the model. Then,
using techniques from probability theory, we compute asymptotic limits of the stochastic behavior
of individual motor-cargo complexes, while also characterizing both equilibrium and non-equilibrium
ensemble behavior. We use these results in order to investigate three important biological questions:
(1) How homogeneous are axons at stochastic equilibrium? (2) How quickly can axons return to
stochastic equilibrium after large local perturbations? (3) How is our understanding of delivery time
to a depleted target region changed by taking the whole cell point-of-view?

1. Introduction. In all cells, one finds that proteins, membrane-bound or-
ganelles, and other structures (e.g. chromosomes) are transported from place to place
at speeds much higher than diffusion. Though these transport processes are funda-
mental to cell function, many of the underlying mechanisms, organizational principles,
and regulatory features remain unknown. Axonal transport is one of the best studied
systems because the transport is basically one-dimensional since axons are long and
narrow. There are two speeds of axonal transport. Fast transport goes at speeds of
roughly 0.2 to 0.5 meters/day [27][33], while slow transport goes at approximately 1
millimeter/day, the rate of axon growth and regeneration [6][27]. The biology and
principles of slow transport are not yet clear [6], but the basic mechanisms of fast
axonal transport were discovered in the 1980s [2][3][29][43]. The model in this paper
refers to fast axonal transport, which we will henceforth call axonal transport.

The axonal transport apparatus consists of vesicles which form reversible chemical
bonds with motor proteins that bind reversibly to microtubules which run parallel to
the long dimension of the axon [1]. When the vesicle-motor protein complex is assem-
bled on the microtubule, the complex steps stochastically with step size approximately
8 nanometers for kinesin and dynein and 10 nanometers for myosin [7][12][18][40]. The
vesicles enter from the cell body on microtubules and then detach and reattach to the
transport mechanism at random times.

In this paper we propose a spatial Markov-chain compartmental model based on
these dynamics. We will assume independence of the interactions, and exponential
wait times between events. While we address the validity of these assumptions in the
Discussion section, we consider this a useful “first-order” approximation that permits
study of the dynamics from both the perspective of individual vesicles as well as that
of the full spatial system. Such a model unifies all earlier deterministic and stochastic
modeling efforts and can accommodate both qualitative and quantitative experimental
data observed on multiple scales.

In much experimental work in the 1970s and 1980s, radio-labeled amino acids
were put into the cell bodies continuously or for a few hours. The amino acids were
incorporated into proteins that were packaged into vesicles and put on the transport
system so that at later times radioactivity could be seen moving progressively down
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the axons. In the continuous infusion case, one would see a wave of radioactivity
with a sharp but slowly spreading wavefront propagating at constant velocity down
the axon. In the case of infusion for a few hours one would see at long times a
slowly spreading pulse of radioactivity that looked normally distributed. It was to
understand this behavior that Reed and Blum constructed PDE models for axonal
transport [3][34][35]. These models did not have traveling wave solutions, but the
data certainly looked like approximate traveling waves. In [36] it was shown by a
perturbation theory argument that, in the asymptotic limit where the unbinding and
binding rates k2 and k1 get large, the solution approaches a slowly spreading traveling
wave or a normal pulse. Recently, in a series of papers, Friedman and co-workers have
introduced new PDE models and proved these results rigorously[14][15][16][17].

Probabilistic models for axonal transport were introduced and used for simula-
tions already in the 1980s [39][41]. However, rigorous work began with Lawler [28] in
1995 and was continued by Brooks [5] who used a continuous time stochastic model
to show that the distribution of an individual particle is a spreading Gaussian at large
times. Brooks also proved tail estimates for the central limit theorem and used them
to estimate the error from normal. Independently, Bressloff [4] developed a discrete
stepping model and performed an analysis under the assumption that the rate of un-
binding and binding to transport is fast relative to lateral velocity over the length
scale of interest. The author derived a characterization of the spreading wavefront of
a particle entering at the nucleus and traveling to the distal end. This model served as
the basis for later investigations by Newby and Bressloff [31, 32] wherein the authors
characterize the axonal transport system as an intermittent search for hidden targets.

In this paper we revise the existing probabilistic models in order to study ran-
domness in the system as a whole rather than exclusively from the point of view of
an individual particle. Our goal is not only to recover and generalize previous results,
but also to investigate three specific, biologically important, properties of the whole
stochastic system.

1.1. Summary of Results. In Section 2, we create a continuous-time Markov
chain queueing model for the axonal transport system. We show how to use experi-
mental data to determine (or estimate) all the parameters of the model.

In Section 3, we take the individual vesicle point-of-view. We prove the asymp-
totic forms in [36] with rigorous error estimates. We show that in the limit as the
compartment size becomes small our model becomes the probabilistic model of [5].
We also show that in the limit as the length of the axon and time become large (with
the scale of axon length on the order of the squared scale of time) our model becomes
the PDE model of [35]. Since we assume that particles are independent, the time evo-
lution of the law of an individual will reflect the behavior of an ensemble of particles
released at the same time.

In Section 4 we adopt the full spatial system perspective to quantify stochasticity
along the length of the axon. We begin by calculating in Proposition 4.1 the stationary
distribution of a flow-through system that has sustained input from the nucleus, while
particles are removed upon reaching the distal end. The stationary distribution has a
product Poisson structure which allows for seamless transition between spatial scales.

With this mathematical model, we are able to make precise statements about
three biologically important system properties. In the stationary distribution, the
number of vesicles in each slice of the axon is independent and identically distributed
(Proposition 4.1), however this in and of itself is not sufficient to account for the
sense that samples taken for different parts of the cell “look the same.” We compute in
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Section 4.2 the coefficient of variation for the number of vesicles in sections of different
length and show that the coefficient of variation is low for all but the smallest length
scales. In Section 4.3, we study the intermittent search problem posed by Newby
and Bressloff [31] from the system point of view. Efficient transport to locations that
need material must balance the speed of transport of material from the nucleus to the
distal end of the cell with the rates of dissociation from the transport apparatus. We
calculate the expected hitting time for a hidden target by all vesicles in the system.
In so doing we encounter the counterintuitive result that while increasing the velocity
of the motors while on transport increases the chance of any particular vesicle missing
the target, the expected hitting time by the system actually decreases.

This hitting time approach is natural for needed material that is sparsely dis-
tributed throughout the axon, but when the needed cargo in question is more com-
mon, the time to replenishment is better addressed through the ODE approach that
we develop in Section 4.4. Due to the product structure of the law of the transient
dynamics, this non-equilibrium behavior is determined by the 2N -dimensional ODE
governing the means. From this we estimate the timescale of return to equilibrium as
a function of the length scale of interest.

2. The model and its parameters. Let L be the length of the axon, divided
evenly into N = L/δ lateral sections each of length δ, equal to the step size of the
motor protein. Within each section, we disregard any further spatial geometry and
take the particles to be in one of two states:

· an on-transport state that steps laterally at a rate r = v/δ per section, or
· an off-transport state that does not step laterally.

We use a 2N -dimensional continuous time Markov chain {(Qi(t), Pi(t)), i = 1, . . . , N}
to model the particle dynamics, where

· Qi(t) is the number of particles at time t in on-transport state in section i,
· Pi(t) is the number of particles at time t in off-transport state in section i.

Definition 2.1. (Stochastic compartmental model) Let ({(Qi(t), Pi(t)), i = 1, . . . , N})t≥0

be a continuous time Markov chain on the state space NN×N
N with the following tran-

sitions and time dependent rates:
· (Lateral transport)
(Qi, Qi+1) → (Qi − 1, Qi+1 + 1) at rate rQi(t);

· (Switch from on-transport to off-transport)
(Qi, Pi) → (Qi − 1, Pi + 1) at rate k2Qi(t);

· (Switch from off-transport to on-transport)
(Pi, Qi) → (Pi − 1, Qi + 1) at rate k1Pi(t);

· (Production of new particles)
(Q1) → (Q1 + 1) at rate rq0;

· (Removal of particles at distal end)
(QN ) → (QN − 1) at rate rQN (t).

The lateral transport rate, r = v/δ, is inversely proportional to the length scale
so that the mean number of particles per unit length is invariant with respect to
rescaling δ. We will assume that the rate of production q0 = δρ0, for some constant
ρ0 > 0, in order for the mean number of particles in each compartment to scale with
the size δ of each compartment. This will imply that the mean number of particles
per unit length scales as ρ0. A graph of the model is depicted in Figure 1.

In order to insure the Markov property, we use exponential random variables for
the waiting times between transition events. Specifically, we mean that after a given
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Fig. 2.1. On-and-off Transport Chain

event we assign a new independent random variable to each of the 3N+2 possible next
events, exponentially distributed with the appropriate rate parameter. The system
of values updates according to the transition associated with the minimum of these
waiting times. Then we create a new set of exponential random variables and the
process proceeds as before.

The advantage of computing explicit formulas for quantities that can be observed
in experiments is that the experimental data can then be used to determine the
parameter values in the model. For the characterization of the approximate wavefront
speed and spreading in Section 3 and the homogeneity calculations in Section 4 we
need order-of-magnitude estimates for the parameters. Actual parameter values will
certainly differ depending on the particular neural tissue and the particular particles
being transported. However, we can get order-of-magnitude estimates from existing
data.

First we recall that fast transport has been observed to travel at speeds of 0.2 to
0.5 m per day. We can assume that the average velocity of particles while physically
bound to microtubules is roughly 1 m per day, or v = 10−6 m/s. We assume that the
compartment size scales as the length scale of the individual steps of the motor protein,
so δ ∼ 10−8m. This implies that the rate parameter should be r = v/δ = 100s−1.

We now turn our attention to the on-off rates rates k2 and k1. These can be de-
termined from experimentally observed run lengths on the transport system. Indeed,
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Dixit et al. [10] show that a typical run along microtubules for dinein and kinesin
is on the order of 10−6m. We can compare this with the theoretical run length of
the model to determine off-rate k2. Within the model, at each step on the transport
mechanism the particle has a binary decision to jump laterally along the transport
with probability r/(k2 + r), or to jump off with probability k2/(r+ k2). The number
of jumps along the transport system before jumping off is therefore geometrically dis-
tributed on the set {0, 1, . . .} with success probability r

r+k2
. It follows that average

number of steps in the run is r
k2

and therefore the average run length is r
k2

× 10−8m.

Setting this equal to the average experimental run length of 10−6 from [10], we see
that r

k2
∼ 100, implying that k2 ∼ 1s−1. As we will see in the computation of the

stationary distribution in Section 4.1, the ratio of the expected number of particles
on the track to those off the track is k2

k1
. Dixit [10] found that approximately 75% of

the particles were motile so this ratio is approximately equal to 3. Since k2 ∼ 1s−1

we see that k1 ∼ 1
3 .

It remains to estimate q0. We will see in Proposition 4.1 that the mean number
of particles per compartment is (1 + k2

k1
)q0 = 4q0. Of course, axons have a large

variety of diameters and larger axons will have more vesicles per unit length so one
expects a range of values for q0. However, examination of a large number of electron
micrographs of axonal cross-sections (see for example [20], Fig. 3; [21]; [30]), which
are typically 100 nm thick enables one to estimate the number of vesicles per 100 nm
segment. This number is typically in the range of 10 to 100 which implies that there
are 1 to 10 vesicles per compartment in our model. Therefore q0 is in the range 0.25
to 2.5, for various axons.

We remark that we are ignoring some aspects of the physics and the biology of
axonal transport. We are not including diffusion of the vesicles off the track. We
are treating the microtubule track as though it were a single continuous entity from
one end of the axon to the other, when it fact it consists of numerous, separated,
microtubule fragments. And, we are ignoring retrograde transport and the details of
the motor proteins. Nevertheless, this simple model will enable us to investigate the
homogeneity questions that are the main goal of this paper.

3. Dynamics from the Particle Perspective. In this section we calculate
properties of the stochastic dynamics by using stochastic convergence theorems and
stochastic averaging theorems from probability theory. We first see that, in the δ → 0
limit, the law of the location of a single particle corresponds to that of a particle with
a piecewise linear Markov motion. We then show this law can be approximated by the
Green’s function of a linear partial differential equation. This enables us to obtain,
as a special case, the asymptotic behavior of the PDE models for axonal transport in
an either rate limiting or perturbed setting.

3.1. The active transport mode. We first consider the simple case where
the particle starts at Xδ

0 = 0 and stays exclusively in active transport mode. Let
Xδ

t ∈ {0, δ, 2δ, . . . , L} be the lateral position of a particle at time t and let nδ
t be the

number of jumps made by the particle as of time t. Observe, Xδ = δnδ.

Lemma 3.1. Let k2 = k1 = 0, and r = v/δ > 0, then the position of the particle
satisfies, for any time t < ∞

sup
s≤t

∣

∣Xδ
s − vs

∣

∣ −→
δ→0

0 a.s.



6

and, for B a standard Brownian motion

1√
δ

(

Xδ
t − vt

)

t≥0
=⇒
δ→0

√
v
(

Bt

)

t≥0

in distribution on the Skorokhod space of cadlag (right continuous left limited) func-
tions.

Proof. Since nδ is a Poisson process with rate r = v/δ, defining Nt := nδ
δt we get

a Poisson process N with rate v, and we have Xδ
· = δN·/δ. Our results then follow

directly from the functional law of large numbers (FLLN) and the functional central
limit theorem (FCLT) for the Poisson process N .

3.2. The on/off dynamics. We now consider a particle which undergoes tran-
sitions from on-transport to off-transport state and back. Denote again by Xδ

t ∈
{0, δ, 2δ, . . . , L} the lateral position of a particle at time t and let nδ

t be the number of
lateral transition jumps made by the particle as of time t. Observe that the particle
will spend only a fraction of its time in active transport and hence the lateral speed
of the particle should be slower than before.

A non-compartmental stochastic model for axonal transport, introduced by Brooks
in [5], is as follows. A particle can be in one of two states:

· an on-transport state with deterministic lateral velocity v, or
· an off-transport state with lateral velocity 0.

We use a 2-dimensional Markov process to model the particle dynamics, where
· Xt be the lateral position of this particle at time t,
· ξt be the indicator for whether it is on (1) or off (0) transport at time t.

Definition 3.2. (Stochastic non-compartmental model) Let (Xt, ξt)t≥0 be a
piecewise-linear Markov process with values in (R+, {0, 1}) started at (X0, ξ0) = (0, 1)
with the following dynamics:

· (Switch from on-transport to off-transport)
(Xt, 1) → (Xt, 0) at rate k1

· (Switch from off-transport to on-transport)
(Xt, 0) → (Xt, 1) rate k2

· (Lateral travel) Xt =
∫ t

0 vξsds
The path of (Xt)t≥0 consists of alternating sequence of Exponential(k2) stretches of
time where the lateral position increases linearly with speed v, and Exponential(k1)
stretches of time where it remains constant.

Proposition 3.3. Let k2, k1 > 0, and r = v/δ > 0, then the position of the
particle converges

(Xδ
t )t≥0 =⇒

δ→0
(Xt)t≥0

in distribution on the Skorokhod space of cadlag functions.
Proof. If we let ξδ be the indicator of whether the particle in the compartmental

model is on (ξδ = 1) or off (ξδ = 0) transport, then (Xδ
t , ξ

δ
t )t≥0 is a strong Markov

process. We will see that ξδ is a continuous-time Markov chain on {0, 1} (independent
of δ), and conditionally on ξδ the transition law of X is easily expressed. Likewise,
for the non-compartmental model above, (Xt, ξt)t≥0 is a strong Markov process, with
ξ the same continuous-time Markov chain on {0, 1} as ξδ, and conditionally on ξ the
change in X is easily given in terms of its linear speed and ξ.

We will start by showing that for any t > 0, (Xδ
t , ξ

δ
t ) converges to (Xt, ξt) in

distribution as δ → 0. We then show that the finite dimensional distributions of
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(Xδ, ξδ) converge to those of (X, ξ). A tightness argument finally implies (Lemma
16.2 and Theorem 16.3 [22]) that (Xδ, ξδ) converges to (X, ξ) in distribution on the
Skorokhod space of cadlag processes.

Suppose that initially the particle is on transport at x0, so (Xδ
0 , ξ

δ
0) = (x0, 1).

The first time τ1 = inf{t > 0 : ξδt = 0} at which the particle steps off transport
has Exponential(k2) distribution, irrespective of δ. The first subsequent increment in
time σ1 = inf{t > 0 : ξδτ1+t = 0} after which the particle steps back on transport has
Exponential(k1) distribution, irrespective of δ as well. This is repeated, and ξδ is a
simple continuous-time Markov chain on {0, 1} with transition rates k2 and k1, from
1 → 0 and 0 → 1, respectively.

Until time τ1 the particle behaves as if it were in active transport (k2 = k1 = 0)
and conditionally on the value of τ1, for any 0 ≤ s ≤ τ1 the lateral change in position
over time s, Xδ

s −Xδ
0 , is δnδ

s where nδ
s is a Poisson(rs) random variable. Moreover,

by results of Proposition 3.1, conditionally on the value of τ1, we have

sup
0≤s≤τ1

∣

∣(Xδ
s −Xδ

0 )− vs
∣

∣ −→
δ→0

0 a.s.

To get the unconditioned law of Xδ
τ1 − Xδ

0 , we observe that the number of boxes
the particle traverses before it steps off nδ

τ1 has a Geometric(k2/(k2 + r)) distribution
(note that a Poisson rate r process sampled at an Exponential(k2) time independent
of the process has this distribution). Since k2/δ(k2 + r)→ k2/v, as δ → 0, Xδ

τ1−Xδ
0 =

δnδ
τ1 converges in distribution to Exponential(k2/v) variable.
Consider now the particle in the non-compartmental model. It is immediate from

the definition of the model that ξ has the same law of a continuous-time Markov chain
on {0, 1} with transition rates k2 and k1, from 1 → 0 and 0 → 1, as ξδ. Since we prove
our convergence in law results by first conditioning on the values of ξδ and ξ, we can
without loss of generality henceforth assume ξδ = ξ a.s., and drop its superscript.

Suppose that initially the particle in the non-compartmental model is on transport
at x0, so (X0, ξ0) = (x0, 1). Conditionally on τ1, for all 0 ≤ s ≤ τ1, Xs−X0 = vs and
Xτ1 − X0 = vτ1, hence unconditionally, Xτ1 − X0 is an Exponential(k2/v) random
variable. We now have both sup0≤s≤τ1

∣

∣(Xδ
s − Xδ

0 ) − (Xs − X0)
∣

∣ → 0 a.s. and

Xδ
τ1 −Xδ

0 ⇒ Xτ1 −X0.
Between times τ1 and σ1 the particle in both models stays in place, so condition-

ally on values of τ1, σ1, and of Xδ
τ1 , Xτ1 , supτ1≤s≤τ1+σ1

∣

∣(Xδ
s −Xδ

τ1)− (Xs−Xτ1)
∣

∣ ≡ 0,

andXδ
τ1+σ1

−Xδ
0 ⇒ Xτ1+σ1

−X0. At time τ1+σ1, the same process starts over from ini-
tial values (Xδ

τ1 , 1) and (Xτ1 , 1) in the compartmental and non-compartmental model,
respectively.

Let τ1, σ1, τ2, . . . , be the sequence of time increments between the consecutive
times when the particle in both models gets off and gets back on transport, let σ0 = 0
and for i ≥ 1

τi = inf{t > 0 : ξσ
i−1

+t = 0}, σi = inf{t > 0 : ξτi+t = 1}

Then (τi)i≥1 and (σi)i≥1 are independent sequences of i.i.d. Exponential(k2) and
Exponential(k1) variables, respectively. For any t > 0, let ηt be the number of times
the particle in either model gets back on transport until time t, and η′t the number of
times it gets off,

ηt = inf{k ≥ 0 :

k
∑

i=1

(τi + σi) ≤ t}, η′t = inf{k′ ≥ 0 :

k′

∑

i=1

τi +

k′−1
∑

i=1

σi ≤ t}
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Note that, η′t = ηt iff ξt = 1, and η′t = ηt + 1 iff ξt = 0. Let τ̃t be the last time
before time t that the particle changed whether it was on or off transport, that is,
τt = sup{0 ≤ s ≤ t : ξs− 6= ξs}. Then, we have

τt =

{

ηt
∑

i=1

(τi + σi) if η′t = ηt,

η′

t
∑

i=1

τi +
ηt
∑

i=1

σi if η′t = ηt + 1.

If η′t = ηt, then from time τt to t the particle is in active transport, and the same
convergence argument as before implies that conditionally on the values of τt and Xδ

τt ,

sup
τt≤s≤t

|(Xδ
s −Xδ

τt)− v(s− τt)| → 0 a.s.

Also Xδ
τt −Xδ

0 = δnδ
τt where n

δ
τt is the number of boxes the particle traverses by time

t. Conditionally on the value of ηt, n
δ
τt is a sum of ηt i.i.d. Geometric(k2/(k2 + r))

random variables, hence Xδ
τt − Xδ

0 converges in distribution to a sum of ηt i.i.d.
Exponential(k2/v) random variables. In the non-compartmental model, if η′t = ηt,
then conditionally on the values of ηt and τt, for τt ≤ s ≤ t, Xs −Xτt = v(s− τt) and
conditionally only on the value of ηt, X

δ
τt −X0 is a sum of ηt i.i.d. Exponential(k2/v)

variables. Hence, conditionally on ηt and τt, supτt≤s≤t

∣

∣(Xδ
s −Xδ

τt)− (Xs−Xτt)
∣

∣ → 0

a.s., and conditionally only on ηt, X
δ
τt −Xδ

0 ⇒ Xτt −X0.
If η′t = ηt +1, then from time τt to t the particle is in both models stays in place,

so conditionally on ηt and τt, supτt≤s≤t

∣

∣(Xδ
s −Xδ

τt)− (Xs−Xτt)
∣

∣ = 0 a.s.. Also, con-

ditionally only on the value of η′t, n
δ
τt is a sum of η′t i.i.d. Geometric(k2/(k2 + r)) vari-

ables, hence Xδ
τt−Xδ

0 converges in distribution to a sum of η′t i.i.d. Exponential(k2/v)
variables. In the non-compartmental model, if η′t = ηt + 1, conditionally only on the
value of η′t, X

δ
τt is a sum of η′t i.i.d. Exponential(k2/v) variables. Hence, conditionally

only on η′t, X
δ
τt −Xδ

0 ⇒ Xτt −X0.
Now, integrating over the possible values of ηt,η

′
t and τt, we get that for any t ≥ 0,

(Xδ
t , ξ

δ
t ) ⇒ (Xt, ξt). Convergence of finite dimensional distributions follows from an

iterative use of the Markov property of (Xδ, ξδ) and (X, ξ), and the fact that the
increments of both (Xδ, ξδ) and (X, ξ) are stationary.

In order to verify tightness, Theorem 16.11 [22], of the sequence of Markov pro-
cesses {(Xδ, ξδ)}δ>0, because (X

δ, ξδ) has stationary increments and is strongMarkov,
it will suffice to check that for any ǫ > 0

lim
h→0

lim sup
δ→0

P
{

||(Xδ
h, ξ

δ
h)− (Xδ

0 , ξ
δ
0)|| > ǫ

}

= 0

where ||(x1, ξ1)−(x2, ξ2)|| = |x1−x2|+|ξ1−ξ2| is a distance metric onR+×{0, 1}. For
any δ > 0, the first change in the continuous-time Markov chain ξδ happens after an
Exponential(k) time (where k = k2 or k = k1 depending on whether ξδ0 = 1 or ξδ0 = 0),
and is independent of δ. Hence, at time h later, P

{

ξδh 6= ξδ0
}

≤ 1 − e−kh. Moreover,
irrespective of the value of ξδ, at time h later the value of |Xδ

h−Xδ
0 | ≤ δnδ

h where nδ is
a Poisson process with rate r = v/δ. Hence, P

{

|Xδ
h −Xδ

0 | > ǫ
}

≤ δE
[

nδ
h

]

/ǫ = vh/ǫ.
Combining the two gives

P
{

||(Xδ
h, ξ

δ
h)− (Xδ

0 , ξ
δ
0)|| > ǫ

}

≤ 1− e−kh + vh/ǫ for any δ > 0,

and the desired limit follows.
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The process (Xδ, ξδ) : t ∈ [0,∞) 7→ (Xδ
t , ξ

δ
t ) ∈ δZ+ × {0, 1} is a Markov process

with cadlag paths whose generator is given by

Aδf(x, ξ) = rξ
[

f(x+ δ, ξ)− f(x, ξ)
]

+ k2ξ
[

f(x, ξ − 1)− f(x, ξ)
]

+ k1(1− ξ)
[

f(x, ξ + 1)− f(x, ξ)
]

for all f ∈ D(Aδ) = C0(δZ+ × {0, 1}).
The piecewise linear process (X, ξ) : t ∈ [0,∞) 7→ (Xt, ξt) ∈ R+ × {0, 1} is a

Markov process with continuous paths whose generator is the closure of the operator

Af(x, ξ) = vξ∂xf(x, ξ)

+ k2ξ
[

f(x, ξ − 1)− f(x, ξ)
]

+ k1(1− ξ)
[

f(x, ξ + 1)− f(x, ξ)
]

for all f ∈ D(Aδ) = C1,0(R+ × {0, 1}).
Letting ιδ : δZ+ × {0, 1} 7→ R+ × {0, 1} be an embedding, and f δ = f ◦ ιδ, then

Aδf δ → Af as δ → 0 for all f ∈ C1,0(R+ × {0, 1}) imply that the finite dimensional
distributions of (Xδ, ξδ) converge to those of (X, ξ). Verification of additional con-
ditions, see Theorem 19.25 of [22], would also imply convergence of processes with
generators {

(

Aδ,D(Aδ)
)

}δ>0 to the process with generator
(

A,D(Aδ)
)

, however, we
thought this way of showing convergence in law was not as instructive.

The fact that an individual particle will have the distribution given by Propo-
sition 3.3 as the size of the boxes decreases means that our model is a microscopic
version of the stochastic model used by Brooks [5], and that the hydrodynamic limit
of our model as δ → 0 is equal to the macroscopic stochastic model from [5].

An approximation of the particle’s position Xt is obtained in [5] to be Xt ≈
µt +

√
tσZ as t → ∞, where µ = k1v/(k2 + k1), σ = 2k2k1v

2/(k2 + k1)
3 and Z is

a standard Normal variable. That approximation is valid only for large fixed values
of t, while we next extend this result to give an approximation for the whole time
trajectory of the particle’s path. This is accomplished by the following functional
central limit theorem for the position of the particle undergoing stochastic transport.

Proposition 3.4. Let X be the position of a particle following the piecewise
linear Markov process from Proposition 3.3 started at X0 = 0 on transport, then

sup
s≤t

∣

∣

Xns

n
− k1

k2 + k1
vs
∣

∣ −→
n→∞

0 a.s. ∀t > 0

and, if B denotes a standard Brownian motion

√
n
(Xnt

n
− k1v

k2 + k1
t
)

t≥0
=⇒
n→∞

√

2k2k1v2

(k2 + k1)3
(

Bt

)

t≥0

in distribution on the space of continuous functions.

Proof. For these results we use the notion of stochastic averaging [23][24][26].
Note that the indicator process ξ for being on- or off- transport is independent of the
position X of the particle. Hence, the position of the particle X is a linear random
evolution process, Ch 12 of [11], [19], driven by the independent indicator process ξ.
The generator of (X, ξ) is the closure of the operator

Af(x, ξ) = σ(ξ)∂xf(x, ξ) + λ(ξ)
[

f(x, s(ξ)) − f(x, ξ)
]
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for all f ∈ D(A) = C1,0
0 (R+ × {0, 1}) (the space of all continuously differentiable

functions in x continuous in ξ and vanishing at infinity), where

σ(ξ) = vξ, λ(ξ) = k2ξ + k1(1− ξ), and s(ξ) = 1− ξ

(when ξ = 1: σ = v, λ = k2, s = 0 and when ξ = 0: σ = 0, λ = k1, s = 1). In other
words, if (X0, ξ0) = (0, 1) we have

Xt =

∫ t

0

vξsds, ξt =
1

2

(

1 + (−1)Y (
∫

t
0
λ(ξs)ds)

)

where Y is a rate 1 Poisson process, and Y (
∫ t

0
λ(ξs)ds) is a counting process of the

number of switches of ξ until time t.
Rescaling time and position of the process by 1/n, we get that (Xn·

n , ξn·) satisfies

Xnt

n
=

∫ t

0

vξnsds, ξnt =
1

2

(

1 + (−1)Y (n
∫ t
0
λ(ξns)ds)

)

and its generator is

Anf(x, ξ) = vξ∂xf(x, ξ) + n(k2ξ + (k1(1− ξ)))
[

f(x, s(ξ)) − f(x, ξ)
]

for all f ∈ D(An) = C1,0
0 (R+ × {0, 1}). Note that ξn· switches at rate propor-

tional to n, forming an ergodic Markov chain with stationary distribution π(1) =
k1/(k2 + k1), π(0) = k2/(k2 + k1), and

∫

σ(ξ)π(ξ) = v
∫

ξπ(ξ) = vk1/(k2 + k1). Hence,
the strong ergodic theorem implies that

Xn

n
=

1

n

∫ n

0

vξsds −→
n→∞

vk1
k2 + k1

a.s.

We can extend this to a functional statement on any finite time interval [0, t]. Fix
t > 0 and take any ∆ > 0, then there exists n∆ < ∞ a.s. such that

∣

∣

Xn

n
− vk1

k2 + k1

∣

∣ <
∆

t
, for ∀n > n∆

Now, let M = supn≤n∆
|Xn − k1/(k2 + k1)vn|, which is finite a.s. since n∆ < ∞ a.s.

Let n > M/∆. Then, for any 0 ≤ s ≤ t we have that either ns > n∆ in which case

∣

∣

Xns

n
− vk1

k2 + k1
s
∣

∣ =
∣

∣

(Xns

ns
− vk1

k2 + k1

)

s
∣

∣ <
∆

t
s ≤ ∆

or, ns ≤ n∆ in which case

∣

∣

Xns

n
− vk1

k2 + k1
s
∣

∣ =
1

n

∣

∣Xns −
vk1

k2 + k1
ns

∣

∣ <
M

n
< ∆

implying that we have sup0≤s≤t

∣

∣

1
nXns − vk1/(k2 + k1)s

∣

∣ < ∆ whenever n > M/∆.

Once we rescale the position for the particle by 1/
√
n and time by 1/n, ξ still

changes at a much faster rate than the position of the particle X . The generator of
the rescaled centered process (Xn, ξn) defined as

Xn
t :=

√
n
(Xnt

n
− k1v

k2 + k1
t
)

, ξnt := ξnt
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is the closure of the operator

Ānf(x, ξ) =
(√

nσ(ξ) − k1v

k2 + k1

)

∂xf(x, ξ) + nλ(ξ)
(

f(x, s(ξ)) − f(x, ξ)
)

on f ∈ D(An) = C1,0
0 (R × {0, 1}). We will use the stochastic averaging theorem

(Theorem 2.1 of [26]) to show that the paths of the centered rescaled process converge
in distribution to paths of a Brownian motion with a diffusion coefficient equal to
2k2k1/(k2 + k3)

3v2.
Let h(ξ) be the function

h(ξ) = v
k2k1

(k2 + k1)3
1

λ(ξ)
= v

k2k1
(k2 + k1)3

1

k2ξ + k1(1− ξ)

Then h(1) = vk1/(k2 + k1)
2, h(0) = −vk2/(k2 + k1)

2 imply that h(s(1)) − h(1) =
−v/(k2 + k1), h(s(0))− h(0) = v/(k2 + k1), which in turn imply that λ(1)

(

h(s(1))−
h(1)

)

= −vk2/(k2 + k1), λ(0)
(

h(s(0))− h(0)
)

= vk1/(k2 + k1), so that for ξ ∈ {0, 1}

λ(ξ)
(

h(s(ξ)) − h(ξ)
)

= −
(

vξ − v
k1

k2 + k1

)

Now, for any f ∈ C2
0(R) define a sequence of functions fn ∈ C1,0

0 (R× {0, 1}) by

fn(x, ξ) = f(x) +
1√
n
h(ξ)∂xf(x)

Then fn → f as n → ∞ and

Ānfn(x, ξ) =
√
n
(

vξ − v
k1

k2 + k1

)

∂xf(x) +
(

vξ − v
k1

k2 + k1

)

h(ξ)∂2
xf(x)

+
√
nλ(ξ)

(

h(s(ξ)) − h(ξ)
)

∂xf(x)

=
(

vξ − v
k1

k2 + k1

)

h(ξ)∂2
xf(x) = Āf(x)

where Ā is defined on D(Ā) = C2
0(R) by

Āf(x) =
k2k1v

2

(k2 + k1)3
∂2
xf(x)

Define a sequence of processes

εf,nt =
1√
n
h(ξnt )∂xf(X

n
t ) = fn(Xn

t , ξ
n
t )− f(Xn

t )

Then our earlier calculation implies that for any f ∈ D(Ā)

f(Xn
t )−

∫ t

0

Āf(Xn
s )ds+ εf,nt = fn(Xn

t , ξ
n
t )−

∫ t

0

Anf(Xn
s , ξ

n
s )ds

is a sequence of martingales. Since f ∈ C2
0(R), ξ

n
t ∈ {0, 1} it is clear that

sup
n

E

[
∫ t

0

∣

∣Āf(Xn
s )
∣

∣

2
ds

]

< ∞ and E

[

sup
s≤t

∣

∣εf,ns

∣

∣

]

−→
n→∞

0
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In order to apply Theorem 2.1 of [26] on stochastic averaging it is only left to show
the process Xn satisfies the compact containment condition, that is for any t > 0 and
∆ > 0 there exists a compact set K ⊂ R such that

inf
n

P{Xn
s ∈ K ∀s ≤ t} ≥ 1−∆

This follows from the fact that Xn
t + h(ξnt )/

√
n is a sequence of martingales (let

f(x) = x) with mean

E

[

Xn
t +

h(ξnt )√
n

]

= Xn
0 +

h(ξn0 )√
n

=
k2k1

(k2 + k1)3
v2√
n

and second moment (let f(x) = x2)

E

[

(

Xn
t +

h(ξnt )√
n

)2
]

=
k2k1

(k2 + k1)3
v22t+

E[h(ξnt )]

n

So, by Doob’s inequality

P

{

sup
s≤t

∣

∣

∣
Xn

s +
h(ξnt )√

n

∣

∣

∣
≥ C

}

≤ 4

C2
E

[

(

Xn
t +

h(ξnt )√
n

)2
]

=
4

C2

( k2k1
(k2 + k1)3

v22t+
E[h(ξnt )]

n

)

Noting that hmin := vmin(k2, k1)/(k2 + k1)
2 ≤ h ≤ hmax := vmax(k2, k1)/(k2 + k1)

2,
and choosing C (given on t and ∆) so that the right hand side of the inequality with
n = 1 is less than ∆, shows that with K = [−C − hmax, C − hmin] the compact
containment condition holds for (Xn)n≥1.

Now Theorem 2.1 of [26] implies that Xn ⇒ W in distribution on the Skorkhod
space of continuous functions, where W is a process with generator Ā, and conse-
quently has the same distribution as

√

2k2k1v2/(k2 + k1)3B where B is a standard
Brownian motion.

3.3. Connection to Partial Differential Equations Models. In order to
demonstrate the connection between our model and the PDEs seen in [36][35][16],
consider the process (X, ξ) of the particle following the piecewise linear Markov pro-
cess, and for any x ≥ 0, t ≥ 0 let

q(x, t) = P{Xt ∈ dx, ξt = 1}/dx, p(x, t) = P{Xt ∈ dx, ξt = 0}/dx

denote the probability densities of the particle’s location x on and off transport,
respectively, over time. Kolmogorov forward equations for (X, ξ) imply that q and p
satisfy the system of PDEs

∂tq(x, t) + v∂xq(x, t) = −k2q(x, t) + k1p(x, t) (3.1)

∂tp(x, t) = k2q(x, t)− k1p(x, t). (3.2)

When k2 = 0 = k1, the limiting PDE is simple linear transport: (∂t+v∂x)q(x, t) =
0. The initial condition q(x, 0) = δ0(x) corresponds to the density of a single particle
at the origin at t = 0. The time evolution via simple linear transport is translation of
the delta function, while the time evolution via the equations (3.1) and (3.2) will have
a spreading profile. This is clear from the macroscopic limits of (Xδ, ξδ) as δ → 0.
When k2 = k1 = 0 the particle never switches off from traveling on transport at speed
v and is deterministic, as seen in Proposition 3.1. When k2, k1 > 0 the particle follows
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a truely stochastic process (X, ξ) with a non-zero variance, as seen in Proposition 3.3
and Proposition 3.4.

In the experiments described in the introduction one sees “approximate” traveling
waves of radioactivity in the axons in the sense that there is a slowly spreading wave
front moving at constant velocity away from the cell body. Equations (3.1) and (3.2)
are linear and do not have solutions that are bounded traveling waves. It was shown
by a perturbation theory argument in [36][35] that as ε → 0 the solutions of

ε(∂t + v∂x)q
ε(x, t) = −k2q

ε(x, t) + k1p
ε(x, t), (3.3)

ε∂tp
ε(x, t) = k2q

ε(x, t) − k1p
ε(x, t). (3.4)

subject to qε(0, t) = q0, are to leading order

qε(x, t) = c1H(
x− µt

ε1/2
, t), pε(x, t) = c2H(

x− µt

ε1/2
, t),

where H satisfies the heat equation

∂sH(y, s) =
σ2

2
∂yyH(y, s), H(y, 0) = χ(−∞,0) (3.5)

µ =
k2v

k2 + k1
, σ2 =

2k2k1v
2

(k2 + k1)3
c1 =

k1
k2 + k1

, c2 =
k2

k2 + k1
.

This asymptotic form is valid for small ε, that is for large k2 and k1. However, if
we set q(x, t) = qε(xε ,

t
ε ) and p(x, t) = pε(xε ,

t
ε ), then q and p satisfy (3.3) and (3.4),

so the solutions of (3.1) and (3.2) behave like approximate traveling waves for large
t and large x whether or not k2 and k1 are large. These results have been proven
rigorously by Friedman and coworkers [14][15][16][17].

To see that our Proposition 3.4 provides another rigorous proof of these properties,
albeit using stochastic methods, consider the process (εX·/ε, ξ·/ε) (that is (

1
nXn·, ξn·)

with n = 1/ε), and let

qε(x, t) = P
{

εXt/ε ∈ dx, ξt/ε = 1
}

/dx, pε(x, t) = P
{

εXt/ε ∈ dx, ξt/ε = 0
}

/dx

be the probability densities for this process. The generator of this process is An

(n = 1/ε), so the Kolmogorov forward equations imply that qε and pε satisfy the
system of PDEs (3.3) and (3.4). Our result from Proposition 3.4 states that

P
{

εXt/ε ∈ dx
}

/dx ≈ H(
x− µt

ε1/2
, t)

for small ε > 0, whereH satisfies (3.5). Hence, qε+pε ≈ H(x−µt
ε1/2

, t), and P
{

ξt/ε = 1
}

≈
k1/(k2+k1), P

{

ξt/ε = 0
}

≈ k2/(k2+k1), gives the result that q
ε(x, t) and pε(x, t) are

well approximated by k1

k2+k1
H(x−µt

ε1/2
, t) and k2

k2+k1
H(x−µt

ε1/2
, t).

4. Dynamics from the spatial system perspective.

4.1. The spatial system in equilibrium. We are now ready to characterize
the steady state dynamics induced by continually adding particles from the nucleus
and removing them when they reach the distal end of the cell.

Proposition 4.1. Let ({(Qi(t), Pi(t)), i = 1, . . . , N})t≥0 be the number of parti-
cles in the axonal transport system with compartments of size δ, on and off transport,
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respectively. Suppose the rate of production of particles from the source is rq0 = vρ0.
Then this Markov chain has the product-form stationary distribution

(Qi, Pi) ∼ Pois(q0)⊗ Pois

(

k2q0
k1

)

where all {(Qi, Pi), i = 1, . . . , N} are mutually independent.

Proof. Since the production rate is rq0, the generator of the process (Q1, P1) is

Aq0f(q, p) = [f(q + 1, p)− f(q, p)]rq0 + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p+ 1)− f(q, p)]k2q + [f(q + 1, p− 1)− f(q, p)]k1p

If we use f(q, p) = Q1(t) and f(q, p) = P1(t), and take expectations, we get a system
of ODEs governing the change in E[Q1],E[P1] over time

dE[Q1](t)

dt
= rq0 − rE[Q1(t)]− k2E[Q1(t)] + k1E[P1(t)]

dE[P1](t)

dt
= k2E[Q1(t)]− k1E[P1(t)]

indicating that in equilibrium in the first section the mean numbers of on-transport
particles and off-transport particles are E[Q1] = q0, and E[P1] = E[Q1]

k2

k1
= q0k2/k1,

respectively. Let πq0(q, p) = πλQ(q)⊗πλP (p) be a product of two independent Poisson
distributions with rates λQ = q0, and λP = q0k2/k1 respectively. To show that
πq0(q, p) is a stationary distribution for the process (Q1, P1) we need to check that

∞
∑

q=0

∞
∑

p=0

Aq0f(q, p)πq0(q, p) = 0

for any choice of function f ∈ D(Aq0 ).

∞
∑

q=0

∞
∑

p=0

Aq0f(q, p)e
−(λQ+λP )

λq
Q

q!

λp
P

p!

= e−(λQ+λP )
∞
∑

q=0

∞
∑

p=0

λq
Q

q!

λp
P

p!

(

[f(q + 1, p)− f(q, p)]rq0 + [f(q − 1, p)− f(q, p)]rq

+ [f(q − 1, p+ 1)− f(q, p)]k2q + [f(q + 1, p− 1)− f(q, p)]k1p
)
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In the two sums the factor multiplying f(q, p) for any (q, p) ∈ N×N comes only from
terms involving {q − 1, q, q + 1} and {p− 1, p, p+ 1} and equals e−(λQ+λP ) times

λq−1
Q

(q − 1)!

λp
P

p!
rq0 −

λq
Q

q!

λp
P

p!
rq0 +

λq+1
Q

(q + 1)!

λp
P

p!
r(q + 1)−

λq
Q

q!

λp
P

p!
rq

+
λq+1
Q

(q + 1)!

λp−1
P

(p− 1)!
k2(q + 1)−

λq
Q

q!

λp
P

p!
k2q

+
λq−1
Q

(q − 1)!

λp+1
P

(p+ 1)!
k1(p+ 1)−

λq
Q

q!

λp
P

p!
k1p

=
λq
Q

q!

λp
P

p!

( q

λQ
rq0 − rq0 +

λQ

q + 1
r(q + 1)− rq +

λQ

q + 1

p

λP
k2(q + 1)

− k2q +
q

λQ

λP

p+ 1
k1(p+ 1)− k1p

)

=
λq
Q

q!

λp
P

p!

( q

q0
rq0 − rq0 + q0r − rq

)

= 0

since λQ = q0 and λP /λQ = k2/k1.
Thus, in equilibrium the input rate for (Q2, P2), which is rQ1, has a Poisson

distribution with mean rq0, and is independent of P1. Let πq0(q1)⊗πλQ(q2)⊗πλP (p2)
be a product of three Poisson distributions with rates q0, λQ = q0, and λP = q0k2/k1
respectively. To show that this is a stationary distribution for the process (Q1, Q2, P2)
we need to check that

∞
∑

q1=0

∞
∑

q2=0

∞
∑

p2=0

Aq1f(q2, p2)πq0(q1)πq1(q2, p2) = 0

for any choice of function f ∈ D(Aq1 ). For each fixed value q1, according to our
previous calculation the inner two sums give 0, so the whole sum is 0.

Thus, in equilibrium, (Q2, P2) have the distribution πλQ(q) ⊗ πλP (p) with λQ =
q0, λP = q0k2/k1 as well, and are independent from (Q1, P1). It follows by induc-
tion that the stationary distributions for {(Qi, Pi)} are independent and identically
distributed as πλQ(q) ⊗ πλP (p), with λQ = q0, λP = q0k2/k1. This is also an exam-
ple of a clustering process satisfying the detailed balance conditions with linear rates
discussed in Sec. 8.2 of [25].

We point out that the mean number of particles both on and off transport is
(1+ k2

k1
)q0 = (1+ k2

k1
)ρ0δ, scaling with the size of a compartment. To obtain the mean

number of particles per unit length we add particles in ≈ 1/δ compartments, and the
mean number of particles per unit length is (1 + k2

k1
)ρ0 independent of the choice of

compartment size.
One immediate consequence is the analogous result for the number of particles

in the stochastic non-compartmental model at any location along the axon. Namely,
suppose the particles move according to the piecewise-linear Markov process (X, ξ)
with a Poisson rate ρ0 influx of new particles at location 0. Then, at any location
0 < x < L along the axon, the numbers of particles (Q(x,x+dx), P(x,x+dx)) on and

off transport, respectively, have the stationary distribution Pois(ρ0dx)⊗Pois(k2

k1
ρ0dx)

where for any x1, . . . xk ∈ (0, L), {Qxi}1≤i≤k and {Pxi}1≤i≤k are mutually indepen-
dent. We note that this result would not have been obvious to notice without going
through the compartmental model first, yet its consequences for prediction and anal-
ysis of the long term stochastic behavior of the system are quite powerful.
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4.2. Homogeneity of the axons at equilibrium. Recall that δ = 10nm,
roughly the step size of motor proteins, and that axons can be up to one meter in
length. Thus we are interested in phenomena on all the length scales 10νδ, where
ν = 0, 1, 2, . . .8. Let ∆ = 10νδ; we want to determine how similar different segments
of the axon of size ∆ are. Let Q∆ and P∆ denote the numbers of on-track and off-track
particles in a segment of length ∆.

In equilibrium, Q∆ and P∆ are both sums of 10ν independent Poisson random
variables with parameters λQ = q0 and λP = k2

k1
q0, respectively. Therefore the distri-

butions of Q∆ and P∆ are Poisson with parameters 10νλQ and 10νλP , respectively.
The mean and the variance of the number of particles in the segment of length ∆ is
10ν(λQ + λP ). To see how homogeneous different slices of length ∆ are, we consider
the coefficient of variation, c∆, which is the standard deviation divided by the mean.

c∆ =
1

√

(λQ + λP )10ν
=

1
√

(1 + k2/k1)q010ν
.

As indicated in Section 2, q0 is in the range 0.25 to 2.5 in different axons. For illus-
trative purposes here, we will assume q0 = 1. Since k2/k1 = 3, we see that the scale-

dependent coefficient of variation c∆ = 1/(2
√
108∆). Therefore at the ten nanometer

scale the coefficient of variation is simply 1/2. At the micron scale c∆ = 1/20 and at
the millimeter scale c∆ = 0.5× 10−5/2. The cutoff between “high variance” and “low
variance” distributions is usually considered to be when the coefficient of variation is
near 1, so by this standard the axon is extremely homogeneous in its length at large
scales.

4.3. Balance between efficient transport and targeted delivery. The pre-
ceding characterization of the transport apparatus enables us to address questions
concerning whole cell function. One core issue is that intracellular transport must
simultaneously accommodate two functional demands: some material, such as the
enzymes used to construct neurotransmitters, must be transported from the soma to
the axon terminal in a timely manner; whereas other cargo, such as sodium channels,
need to be delivered to unspecified locations as needs arise throughout the length of
the cell. The tradeoff between these two goals is clear. If a typical vesicle spends the
vast majority of its time in transport mode, the mean velocity will be close to the
mean on-transport velocity, but any needs that arise in the central part of the cell
will be neglected. On the other hand, if a typical vesicle spends too much time off
transport, presumably available for use if needed locally, then it will take substantially
longer to traverse the entire cell.

Recently Bressloff and Newby [31, 32] modeled particles that are created near
the nucleus that then undergo intermittent search (being in search mode while off
transport and not in search mode when on transport) for a target hidden somewhere
along the axon. Their model is a non-compartmental individual particle model with
the additional feature that vesicles can move backwards as well as forwards. They
compute the probability that the particle is successful and conditioning on success,
the mean first hitting time. With our system-wide model we can accommodate the
observation the if a given vesicle misses the target, another vesicle with similar cargo
will pass by before too long. We will assess this hitting time under two assumptions
about the density of relevant material. Our standing assumption q0 ∼ 1 is appropriate
for types of cargo that are found densely throughout the cell. In this setting, the wait
time is essentially just the time it takes for one of several nearby vesicles to unbind
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from transport in the target region. A more interesting case is a setting where the
needed cargo is sparsely distributed, say q0 ∼ 10−3. In this setting, if the first cargo
to reach the target region fails to unbind, there will be significant time before the
next arrival. As we will see, we can still assess the trade-off intrinsic between risking
a target miss and diminishing the time of the next arrival.

To make the discussion concrete we define a target region Rn = {i∗+1, . . . , i∗+n}
where i∗ ∈ 1, . . . , N −n. At time zero, we take the system {Qi(0), Pi(0)} to be drawn
from the stationary distribution described by Proposition 4.1 conditioned on the event
that for all i ∈ Rn, Qi(0) = Pi(0) = 0. We introduce the hitting time Hn := inf{t >
0 :

∑

i∈Rn
Pi(t) > 0}, which marks the first time a particle is off transport while in

Rn. Since computing the mean of Hn is analytically intractable, we introduce another
hitting time H ′

n, stochastically dominating Hn, that nevertheless reflects the essential
tradeoff between maximizing mean velocity and making detachment from transport
likely in the target region.

Let I∗ := {i ∈ {1, . . . , i∗} |Qi(0)+Pi(0) > 0} be the set of all non-empty sections
of the cell at time 0. Among the particle in these sections some will be “successful”
in that they will detach from transport in the target region, while others will be
unsuccessful. Labeling each particle in these terms, we decompose I0 into locations
with successful particles Is∗ and unsuccessful particles Iu∗ . We are interested in the time
H ′

n at which the rightmost successful particle, that is, a particle starting from position
im = max{Is∗}, detaches while in Rn. If S = 0 then we define im = max{∅} := 0.
For the position of this particle we use the notation (Xδ

t )t≥0 from Section 3, where
Xδ

0 = δim, Xδ
t ∈ {δim, . . . , δN}, together with the indicator (ξδt )t≥0, ξ

δ
t ∈ {0, 1} of

whether the particle is on or off transport, respectively. Let

H ′
n := inf{t > 0 : (Xδ

t , ξ
δ
t ) = (δ(i∗ + 1), 1)}.

Note that H ′
n = inf{t > 0 : Xδ

t ∈ δRn}, since particles cannot skip sections, and
always enter a section on transport. If we were to analogously define a sequence of
times {Hi

n}i∈Is
∗
where for each i ∈ Is∗ , H

i
n = inf{t > 0 : Xδ

t ∈ δRn} with Xδ
0 = δi

and ξδ0 ∈ {0, 1}, then the exact first hitting time of the target region will satisfy
Hn = min{Hi

n : i ∈ Is∗}. Hence, clearly Hn ≤ Him
n ≡ H ′

n.
Since the exact distribution ofHi

n is complicated, E[Hn] is analytically intractable,
and instead we focus on finding a simple expression for E[H ′

n]. Our point is that, in
the sparse material limit (q0 small), the rightmost particle becomes increasingly likely
to be the first successful particle to detach in the target region, and Hn approaches
H ′

n.
The computation of E[H ′

n] requires computing the time it takes a particle to travel
a certain axonal distance, given by the following.

Lemma 4.2. Let the initial position of the particle be (Xδ
0 , ξ

δ
0) = (0, 1) and let

L∗ ∈ {1, . . . , L} be given where L is the total length of the axon. Then, the time
TL∗

= inf{t > 0 : Xδ
t = L∗}, satisfies

E[TL∗
] =

L∗(k2 + k1)

vk1
.

Proof. Since (Xδ
t , ξ

δ
t )t≥0 is a Markov process with generator

Aδf(x, ξ) = rξ
[

f(x+ δ, ξ)− f(x, ξ)
]

+ k2ξ
[

f(x, ξ − 1)− f(x, ξ)
]

+ k1(1− ξ)
[

f(x, ξ + 1)− f(x, ξ)
]
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it follows that M1
t := Xδ

t − rδ
∫ t

0
ξδsds and M2

t := ξδt +
∫ t

0
k2ξ

δ
sds−

∫ t

0
k1(1− ξδs )ds are

both martingales. Since both M1 and M2 have bounded increments and E[TL∗
] < ∞,

the optional stopping theorem implies that

0 = E
[

M1
0

]

= E

[

M1
TL∗

]

= L∗ − vE
[

∫ TL∗

0

ξδsds
]

⇒ E
[

∫ TL∗

0

ξδsds
]

= L∗/v

and

1 = E
[

M2
0

]

= E

[

M2
TL∗

]

= 1− k1E[TL∗
] + (k2 + k1)E

[

∫ TL∗

0

ξδsds
]

which implies

E[TL∗
] =

k2 + k1
k1

E

[

∫ TL∗

0

ξδsds
]

.

and our claim follows.
We also note that the same computation holds for the mean time a particle in

the stochastic non-compartmental model (Xt, ξt)t≥0 takes to reach a distance L∗, as
the two martingales used in the proof depend only on v and not on δ.

We next compute the hitting time H ′
n of a particle started at location im ∈ I∗.

Lemma 4.3. Let the system {(Qi(0), Pi(0)), i = 1, . . . , N} have the stationary
distribution given by Proposition 4.1 conditional on Qi(0) = Pi(0) = 0, for all i ∈ Rn.
Then

E[H ′
n] = (1 − e−λn)

[

1

rq0pn
+

k2
k1(k2 + k1)

]

+
1

k2pn

[

1−
(

r

k2 + r

)n (

1 +
nk2

k2 + r

)]

where pn = 1− ( r
k2+r )

n and λn = k2+k1

k1
q0i∗pn.

Proof. The proof of Proposition 4.1 shows that conditioning on the values of
Pi(0), i ∈ Rn does not affect the law of {(Qi(t), Pi(t)), i ≤ i∗}, hence for any t ≥ 0,
they form two mutually independent sequences of Pois(q0) and Pois(k2q0

k1
) random

variables.
Let S denote the number of successful particles between sites 0 and i∗ at time

zero. The total of number of particles at time 0 at these sites that are either on
or off transport is distributed as a Pois(k2+k1

k1
q0i∗) variable. We next compute the

probability pn that any particle once it reached the target region is “successful” in
detaching there. This probability can be written pn :=

∑n
i=1 p(i) where p(i) is the

probability it first detaches at location i∗+i. Since p(i) = ( r
k2+r )

i−1 k2

k2+r is the chance

a particle gets off transport in the i-th compartment, pn =
∑n

i=1 p(i) = 1 − ( r
k2+r )

n.
The probability that a particle is successful does not depend on which location it
was at time 0, and whether it was on or off transport at that time. Hence, S is is
distributed as a Pois(k2+k1

k1
q0i∗pn) variable, and conditioned on the value S, the set

of locations of the particles at time 0 is distributed as a set of S draws from the
uniform distribution on {1, . . . , i∗}. Since im is the maximum of S samples from a

Uniform{1, . . . , i∗} distribution we have E[im|S] = i∗ − 1
iS
∗

∑i∗−1
x=1 xS ≈ i∗

S
S+1 .

We now decompose H ′
n = H ′

e,n +H ′
o,n, where we let H ′

e,n is the time it takes a
successful particle initially at location im to enter the region Rn, and Ho,n is the time
it takes any successful particle after it enters the region to get off transport. Thus,
E[H ′

n] = E
[

H ′
e,n

]

+ E
[

H ′
o,n

]

.
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If a successful particle starts at location Xδ
0 = im ∈ {0, . . . , i∗} on transport

ξδ0 = 1, then the time it takes to enter the region Rn is by Lemma 4.2

E
[

H ′
e,n|(Xδ

0 , ξ
δ
0) = (im, 1)

]

=
(i∗ − im)δ(k2 + k1)

vk1

If it starts at location Xδ
0 = im ∈ {1, . . . , i∗} off transport ξδ0 = 1 then it takes an

additional Exponential time with mean 1/k1 for it to get back on transport at the
same location, so E

[

H ′
e,n|(Xδ

0 , ξ
δ
0) = (im, 0)

]

= E
[

H ′
e,n|(Xδ

0 , ξ
δ
0) = (im, 1)

]

+ 1
k1
, and

since we assume new particles always enter the system on transport

E
[

H ′
e,n|im

]

=
(i∗ − im)δ(k2 + k1)

vk1
+

1

k1
1im>0.

Since E[im|S] = i∗
S

S+1 , P{im > 0} = P{S > 0}, we get that

E
[

H ′
e,n

]

= E

[

1

S + 1

]

i∗(k2 + k1)

rk1
+

k2
k1(k2 + k1)

P{S > 0}

with S ∼ Pois(λn), λn = k2+k1

k1
q0i∗pn. Since E[S] = 1−e−λn

λn
, P{S > 0} = 1 − e−λn ,

we get

E
[

H ′
e,n

]

= (1− e−λn)

(

1

rq0pn
+

k2
k1(k2 + k1)

)

To calculate E
[

H ′
o,n

]

note that if a particle first gets off transport in the i-th
compartment then the time of its travel until this point is a sum of i independent
and identically distributed exponential random variables with parameter k2 + r. The
probability a successful particle first gets off transport in the i-th compartment is
p(i)
pn

. Hence, the time a successful particle takes to get off transport once it enters the
region R has the mean

E
[

H ′
o,n

]

=
n
∑

i=1

p(i)

pn

i

k2 + r
=

1

k2pn

[

1−
(

r

k2 + r

)n (

1 +
nk2

k2 + r

)]

.

and our claim follows.
To complete our analysis, we wish to characterize this result in terms of length

along the axon and independent of the stepping size δ. To this end, we fix a length ℓ
and for a given compartment size ℓ, we let n = ⌈ℓ/δ⌉, and for the start of the region
we let i∗ = ⌈ℓ∗/δ⌉. As such, as δ → 0 the limiting region becomes Rℓ = (ℓ∗, ℓ∗ + ℓ).
Then, under the assumption that q0/δ → ρ0 we have

pn → pℓ = 1− e−ℓk2/v, λn → λℓ =
k2 + k1

k1
ρ0ℓ∗pℓ

and E[H ′
n] → E[H ′] where

E[H ′] =
(

1− e−λℓ
)

[

1

vρ0pℓ
+

k2
k1(k2 + k1)

]

+
1

k2pℓ

[

1− e−
ℓk2
v (1 +

ℓk2
v

)

]

. (4.1)

It remains to interpret this result with respect to the parameter choices we have
made. First, we must set a value for the size ℓ of the target region. For this purpose
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we note that the typical size of a Node of Ranvier – a gap in the myelin sheath of a
myelinated axon where sodium channels are concentrated in the cell membrane – is
approximately one micron.1

As seen in the preceding proof there are three contributions to E[H ′], and we next
analyze them in terms of their dominance for the overall value. We begin with the
contribution from the last term, which is the time it takes for a successful particle to
detach once it has reached the target region. By our choice of ℓ, the recurring ratio
ℓ/v is one. Along with the earlier assumption that k2 = 1, the entire term simplifies
to (e−2)/(e−1) = 0.4 s. The multiplicative factor 1−e−λℓ preceding the first term of
(4.1) results from a boundary effect: when ℓ∗ is very close to zero, it is very unlikely
there are any particles already in the system between the soma and the target region.
When the target region is in the middle of the axon, this contribution from particles
in that section of the axon at time 0 is significant.

When q0 ∼ 1 as assumed earlier, then ρ0 = q0/δ ∼ 108. Then if ℓ∗ > 10−8, which
corresponds to the target region being just one motor step down the length of the
axon, we have ρ0ℓ∗ ∼ 1 and λℓ > 2.3 so 1 − e−λℓ > 0.9. Looking at the first term
inside the parenthesis, we note that vρ0 ∼ 102, while pℓ = 1 − exp(−ℓk2/v) ≈ 0.6 is
the probability that any given vesicle will be successful in detaching from transport in
the target region, so 1/(vρ0pℓ) ∼ 10−2. Meanwhile, the term k2/(k1(k2 + k1)), which
is the expected time to bind to transport if a successful particle happens to be off
transport at time 0, is 1/4 for the assumed values of k2 and k1. Therefore under the
q0 ∼ 1 assumption, both this and the final term contribute significantly to the hitting
time.

However, in the sparse material regime, say q0 ∼ 10−3, we have then ρ0 ∼ 105,
and the factor 1 − e−λℓ > 0.9 when ℓ∗ > 10−5. That is, if the target region is at
least 1/100, or at least 1000 segments, down the length of a 10−3m axon. However,
now the rate limiting factor is the wait time for the first successful vesicle to arrive
in the target region, which is captured by the term 1/vρ0p. The product vρ0 ≈ 0.1
measures the average rate at which new particles should arrive and together with the
probability of success pℓ ≈ 0.6, we now have 1/vρ0pℓ ≈ 16s. So, in the sparse material
regime the first summand in E[H ′] giving the mean time for arrival of the particles to
the target region dominates.

It is interesting to consider what happens to the arrival rate term under per-
turbations of the various parameters. In particular, we draw the reader’s attention
to changes in v. When viewing intermittent search in terms of a single particle, the
probability of finding the target is strictly decreasing in v. Higher velocity seems to be
the enemy of finding the target. Indeed, from a system point of view, this implies that
the system will require more trials before a successful particle arrives in the target
region. What the equation (4.1) gives us is the ability assess how much more quickly
the trials will happen. In fact, the function v(1 − exp(−ℓk2/v)) is increasing in v.
Therefore the entire expected wait time E[H ′] is actually decreasing in v. That is to
say, while the particles are less likely to succeed, they will be arriving more rapidly
enough to counterbalance the lost time. We believe that this kind of quantitative
analysis will prove fruitful in future study when coupled with more details of the

1We do not wish to claim this is a complete model for deposition of sodium channels in Nodes of
Ranvier, as the particulars of the biology – which may include factors like local signals that encourage
motors to detach from microtubules near the Nodes – are not fully understood. We merely wish to
use the size of the Nodes to fix our intuition about the size of a target to other important length
scales such as that of microtubules which are also a micron in length.
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biology of deposition of materials in the cell membrane.

4.4. Approaching Equilibrium. We have seen above that the axon is very
homogeneous at stochastic equilibrium on a space scale down to micrometers. One
of the beautiful properties of transport with reversible binding is that if it is locally
out of equilibrium, the on-off dynamics can return the system to equilibrium on a
much faster time scale than waiting for new material to arrive from the nucleus.
Furthermore, as is discussed in [45], one of the key goals of biophysics investigation is
the discovery of behaviors for which biochemical regulation is not necessary. This is
of fundamental importance to the biological function of the system because it means
that the axon will automatically “repair” itself without central control of the repair
process.

How good is this mechanism? If a segment of the axon is far away from equilib-
rium, how long does it take to get back close to equilibrium? To investigate this ques-
tion, we imagine that the axon is at stochastic equilibrium except for some segment
R, where the total number of particles on and off transport, Qi(0)+Pi(0) = 0, ∀i ∈ R,
is zero at time 0. Let a and ε be given small numbers and suppose that λ∞ is the
mean vector for (Qi, Pi) at stochasttic equilibrium. We want to compute (an upper
bound for) the time t∗ so that

P{|(Qi(t
∗), Pi(t

∗))− λ∞| ≥ a|λ∞|, ∀i ∈ R} ≤ ε,

that is, the probability that (Qi, Pi), ∀i ∈ R is significantly different from λ∞ is very
small. In the applications below we will choose a = 0.1 and ε = 0.05, and we will
see that a 10 micron segment can recover in about 10 seconds, while a 1 millimeter
segment will take about 1000 seconds or 15 minutes to recover. We study this question
first for a single location R = {i}, and then use the estimates derived to scale the
results to segments of any length.

Proposition 4.4. Let (Qi(0), Pi(0)) = (0, 0) and let the constants a > 0 and
ε ∈ (0, 1) satisfy the relationship a2ε|λ∞| > 1 where λ∞ = q0(1,

k2

k1
) is the equilibrium

vector of (Qi, Pi). Then there exists t∗ > 0 such that ∀t ≥ t∗,

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ ε.

In fact, the choice t∗ = α−1 ln
(

√
p|λ∞|

a
√

ε|λ∞|−1

)

is sufficient, where

α :=
1

2

(

k2 + k1 + r −
√

(k2 + k1 + r)2 − 4k1r
)

.

We note that given a particular choice of a and ε, the condition a2ε|λ∞| > 1
guarantees that there are “enough” particles.

Proof. Note that for any given β ∈ (0, 1), we may choose t∗ > 0 such that for all
t ≥ t∗, the vector of means λ(t) := E[(Qi(t), Pi(t))] satisfies |λ(t) − λ∞| ≤ aβ|λ∞|.
Then

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ P{|(Qi(t), Pi(t))− λ(t)|+ |λ(t)− λ∞| ≥ a|λ∞|}
≤ P{|(Qi(t), Pi(t))− λ(t)| ≥ a(1− β)|λ∞|}

Applying Chebyshev’s Inequality, and observing that the variance of a Poisson random
variable is equal to its mean, we conclude that

P{|(Qi(t), Pi(t))− λ∞| ≥ a|λ∞|} ≤ Var[|(Qi(t), Pi(t))|]
a2(1 − β)2|λ∞|2 =

|λ(t)|
a2(1 − β)2|λ∞|2
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Since the initial condition for both Pi and Qi are less than their respective equilibrium
values, each are monotonically increasing functions and the above reduces to

P{|(Qi(t), Pi(t)) − λ∞| ≥ a|λ∞|} ≤ 1

a2(1− β)2|λ∞|
for all t > t∗. In order to satisfy the requirement that the right hand side must be less
than ε, we solve for β and find β = 1− (a

√

ε|λ∞|)−1 provided that a
√

ε|λ∞| > 1.
It remains to study the convergence of the mean and the appropriate choice of

t∗. The dynamics of the mean vector λ(t) are given by the ODE

d

dt
λ(t) = −A1λ(t) + q0re1 (4.2)

where e1 is the unit vector (1, 0) and A1 =

(

k2 + r −k1
−k2 k1

)

.

The solution to (4.2) is λ(t) = λ∞ + e−A1t(λ(0)−λ∞) where λ∞ = q0rA
−1
1 e1 =

q0(1,
k2

k1
). This yields the estimate

|λ(t)− λ∞| ≤
∣

∣e−A1tλ∞

∣

∣ ≤ e−αt|λ∞|
where α is the smaller of the eigenvalues of A1. Noting that α > 0, t∗ may be chosen
so that e−αt∗ ≤ aβ, i.e. t∗ = α−1 ln(1/(aβ)) is an upper bound for the time to be
close to equilibrium with high probability.

In order to calculate return to equilibrium at various scales, we now suppose
that the whole axon is in statistical equilibrium except for a segment R of length
∆ = δ10ν in which we will assume that there are no particles either on or off the
track. Proposition 4.4 covered the case ν = 0. We are interested in ν = 1, . . . , 8. We
imagine that the axon is broken up into 108−ν segments of length ∆. In this rescaled
system, the unbinding and binding rates per particle, k2 and k1 remain the same, as
well as the mean on-transport velocity v. In order to retain this mean velocity, the
rate of lateral stepping must be decreased to r̃ = r10−ν .

The ODE for the mean vector of the rescaled system is given by

d

dt
λ̃(t) = −Ã1λ̃(t) + q0re1 (4.3)

with Ã1 =

(

k2 + r̃ −k1
−k2 k1

)

.

We note that the last term in (4.3) contains an r rather than an r̃. This is because
the input rate is unchanged while the exit rate is diminished. The resulting equilibrium
value is therefore rescaled as well, λ̃∞ = q0rÃ

−1
1 e1 = q0

r
r̃

(

1
k2/k1

)

= q010
ν
(

1
k2/k1

)

. Both

components of this vector are of order 10ν , as expected.
Using the parameters discussed in Section 2: k2 = 1, k1 = 1

3 , v = 10−6m/s, r =
102s−1. This implies r̃ = 102−νs−1. We choose the thresholds to be a = 0.1 and
ε = 0.05, so the constraint that a2ε|λ∞| > 1 requires that |λ∞| > 2 × 103. Since
0.25 ≤ q0 ≤ 2.5, this is indeed the case if ν > 3, i.e. if the segment has length greater
than 10 microns.

It follows from Proposition 4.4 that the time to equilibrium, t̃∗, is proportional
to α̃−1 where α̃ satisfies:

α̃ =
1

2

(

k2 + k1 + r̃ −
√

(k2 + k1 + r̃)2 − 4k1r̃
)

=
2k1r̃

k2 + k1 + r̃ +
√

(k2 + k1 + r̃)2 − 4k1r̃
.
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For the given parameter values (with |λ∞| > 5 × 103 in particular), the constant

of proportionality ln
(

√

ε|λ∞|/(a
√

ε|λ∞| − 1)
)

is contained in the interval (2.3, 2.5)

and does not have a impact on how the relaxation time scales with ν. In terms
of analyzing α̃, we note that k1r̃ is small compared to k2. To leading order, α̃ ∼
(k1r̃)/(k2 + k1 + r̃) ∼ 102−νs−1. It follows that t̃∗ ∼ 10ν−2s. Thus, for a 10 micron
segment (ν = 3) the time to recover is about 10 seconds and for a 1 millimeter seg-
ment (ν = 5) the time to recover is 1000 seconds or 15 minutes. The time to recover
depends, of course, on the parameter ε that represents what we mean by “close.” We
also note that one can compute various measures of time to recover using the PDE
models discussed in Section 3.

5. Discussion. In this paper, we created a spatial Markov chain model for study-
ing various aspects of fast axonal transport. Previous models that use PDEs treat
the velocity of transport as constant when particles are attached to the fast transport
system. Since it is known that transport along the microtubules is itself stochastic,
it is important to have a fully stochastic model. Our model allows us to unify and
extend previous work. In Section 3.2 we show that from the particle perspective as
the compartment size δ tends to zero, our model converges in distribution on the
Skorokhod space of càdlàg functions to the piecewise-deterministic model analyzed
by Brooks [5]. Namely, we show that the paths of particles in our model converge to
those of particles in a stochastic non-compartmental model. The argument proceeds
by an explicit computation of the finite-dimensional distributions and a tightness ar-
gument. In Proposition 3.4 we give a rigorous probabilistic proof of why the paths of
particles follow “approximate traveling waves” described by other authors [36, 5, 14].
This proof is based on stochastic averaging arguments which show that a functional
central limit theorem holds on the space of continuous functions for the paths of
particles as the compartment size decreases. The diffusion of particles around their
mean position can consequently be approximately described jointly for all time by a
Brownian motion with the appropriate diffusion coefficient.

In Section 2, we show how to use existing experimental data to indentify (ranges
for) all the parameters of our model. In light of this, we can use the model to
investigate several important biological questions. These are based on describing the
spatial distribution of multiple particles in our model. In Section 4.1 we derive the
stationary distribution for the number of particles in different compartments on and
off transport along the axon. This gives an explicit description of the stochasticity of
the system that is present even after a long time. In Section 4.2 we derive estimates
for how homogeneous the axon is on different spatial scales. In Section 4.3 we study a
question introduced by Bressloff, by providing a stochastic quantity which describes
the balance the system needs to achieve between rapid transport that brings new
material quickly and efficient local search that improves time of delivery to a target.
Finally, in Section 4.4, we use the model to calculate the length of time that it would
take for axonal segments of different lengths to recover to near stochastic equilibrium
after they have been depleted of vesicles.

In our stochastic compartmental model all event wait times are assumed to be
exponential random variables, but this is certainly a simplification. As an example,
the stepping process of kinesin is a well-studied though still not completely understood
phenomenon. Much work has focused on assessing the dependence of the mean rate of
translocation on both the load and the local concentration of ATP [44] [38]. Implicit
in this analysis is the assumption of exponential wait times with state dependent rate



24

parameters. However, when fitting to data and matching dispersion information the
authors in [13] found it necessary to generalize the wait time distribution. This was
followed by more detailed models for which it was shown that load carrying could
in fact regularize the stepping times of kinesin motors [37] [9]. Generalizing waiting
times would significantly affect our results. Since the particle position process is no
longer Markov, we no longer have the direct connection to the previous results stated
in Section 3.1.-3.3., nor can we use the stationary distribution employed in Section
4.1 and used for addressing the biologicals questions in Sections 4.2.-4.4. In light of
the known need for generalized wait times in the stepping process, it seems likely that
detailed observation of the rebinding process will call for new mathematical models as
well. Recall that when a vesicle unbinds from a microtubule it is unclear whether it
typically rebinds to the same microtubule or if it explores the region significantly via
diffusion before finding a different microtubule to bind to. In the latter case, a more
appropriate model for rebinding time would be to solve some kind of first passage
time problem and use that distribution for the rebinding wait.

An important aspect of the biology of axonal transport is not included in the
model presented here, namely the local deposition and eventual degradation of trans-
ported materials. For example, sodium channels and sodium pumps are synthesized
at the soma, transported down the axon and deposited in the axonal membrane, ether
uniformly as in an unmyelinated axon or at the nodes of Ranvier in a myelinated axon.
Channels and pumps are proteins with half-lives on the order of days to weeks. The
present model can be extended to include a deposition compartment at each location,
and, clearly, the processes of deposition and subsequent degradation will cause the
mean number of particles both on and off transport to be monotone decreasing as
one moves down the axon. How inhomogeneous this makes the axon will depend on
the details of deposition and degradation rates. Our preliminary calculations indi-
cate that long axons, such as the meter-long axons in human sciatic nerve, would be
quite inhomogeneous. This is an important biological issue because it is controversial
whether the machinery for protein synthesis (i.e. ribosomes) exist in axons [42]. We
have also not included retrograde transport or the fact that some axons may have
location-dependent unbinding rates [10]. All of these issues will be the subject of
future work.
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