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Abstract

The unique existence of a weak solution to the homogeneous closed

Dirichlet problem is proven for a mixed elliptic-hyperbolic equation. Equa-

tions of this kind arise in models for electromagnetic wave propagation in

cold plasma. A class of open boundary value problems for the equation is

shown to possess strong solutions. MSC2000 : 35M10, 35D05, 82D10.
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1 Introduction

Boundary value problems for mixed elliptic-hyperbolic equations may be either
open or closed. In the former case, data are prescribed on a proper subset
of the boundary, whereas in the latter case, data are prescribed on the entire
boundary. It is shown in Sec. 3 of [21] that if κ = 1/2, the closed Dirichlet
problem is over-determined for the equation

(

x− y2
)

uxx + uyy + κux = 0 (1)

on a typical domain, where u (x, y) is required to be twice-continuously differ-
entiable on the domain. However, this equation arises in a qualitative model for
electromagnetic wave propagation in an idealized cold plasma; physical reason-
ing suggests that the closed Dirichlet problem should be well-posed in a suitable
function space, at least for some choice of lower order terms. See Sec. 1 of [21] for
a discussion, in which the problem of formulating a closed Dirichlet-like problem
that is well-posed in an appropriate sense is characterized as an “outstanding
and significant problem for the cold plasma model.”

Using methods introduced by Lupo, Morawetz, and Payne [17] for equations
of Tricomi type, we show in Sec. 2 the weak existence of a unique solution to
a homogeneous closed Dirichlet problem for the self-adjoint (κ = 1) form of eq.
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(1). This extends a result result [23] in which the existence of solutions having
various degrees of smoothness was shown in certain cases to which uniqueness
proofs did not seem to apply. At the same time, it extends the unique-existence
arguments in [17] to an equation which is not of Tricomi type.

Another well known problem in elliptic-hyperbolic theory is the determina-
tion of natural conditions for boundary geometry; see the discussions in [1],
[19], [20], [25], [26], and [27]. Heuristic approaches to determining boundary
geometry tend to focus on physical [18] or geometric [24] analogies for the spe-
cific equation under study. In his theory of symmetric positive systems [6],
Friedrichs proposed intrinsic mathematical criteria for the well-posedness, or
admissibility, of boundary conditions. But Friedrichs’ conditions are also tied
to the specifics of the particular symmetric positive equation under study and
are algebraic rather than explicitly geometric. In this note we require boundary
arcs to be starlike with respect to an appropriate vector field. This approach
to boundary geometry was introduced by Lupo and Payne [16], but algebraic
conditions in certain very old results can be reinterpreted as the requirement
of a starlike boundary; see, e.g., [11]. Our results provide further evidence that
domain boundaries which are starlike in this generalized sense are natural for
elliptic-hyperbolic boundary value problems.

In Sec. 3 we investigate the solvability of open boundary value problems for
a class of symmetric positive systems on star-shaped domains. The boundary
conditions are mixed in the sense that a Dirichlet condition is placed on part of
the boundary and a Neumann condition is placed on another part. However, our
methods also apply to the case in which either a Dirichlet or a Neumann condi-
tion is imposed over the entire elliptic boundary. Because the boundary value
problems considered in Sec. 3 are open, the results of that section may be less
interesting than those of Sec. 2 in the physical context of the cold plasma model.
But open boundary conditions can be expected to imply more smoothness on
the part of solutions than is obtained from closed boundary conditions, and
we show the existence of solutions which are strong in the sense of Friedrichs.
Strong solutions to boundary value problems in the cold plasma model were also
discussed in Sec. 3 of [23], but briefly and inadequately. Section 3 of this note
revises and extends (to the open case of mixed and Neumann problems) the
treatment of strong solutions in [23]. The existence question for weak solutions
to open boundary value problems in the cold plasma model was considered in
[22] and [37].

1.1 Remarks on the physical model

Plasma is the natural state of matter at temperatures on the order of 10,000
K or more. However, reasonably dense plasmas also exist at much lower tem-
peratures, for example in interstellar media (see, e.g., [4]). In the cold plasma
model, the temperature is assumed to be zero in order to neglect the fluid prop-
erties of the medium, which is then treated as a linear dielectric. Somewhat
surprisingly, this assumption is a useful first approximation to the products
of tokamaks: low-density plasmas which are remarkably free of expected high-
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temperature phenomena such as collisions and wall effects; see the remarks in
the introduction to [33] and the more detailed discussions in [35]. More gen-
erally still, the cold plasma model approximates the effects of small-amplitude
electromagnetic waves, propagating with phase velocities which are sufficiently
large in comparison to the thermal velocity of the particles.

In the case of wave propagation through an underlying static medium having
axisymmetric geometry, equations of the form (1) model the tangency of a flux
surface to a resonance surface. At the point of tangency, plasma heating might
occur even in the cold plasma model. In two dimensions, flux surfaces (level
sets of the magnetic flux function) can be represented by the lines x = const.,
and a resonance surface (frequencies at which the field equations change from
elliptic to hyperbolic type) by the curve x = y2. It has been observed [35]
that in such cases a plasma heating zone could lie at the origin of coordinates.
This conjecture is supported by numerical [21] and classical [28] analysis which
suggests that the origin is a singular point of eq. (1). For discussions of the
physical context of the equation studied in this note, see Sec. V of [35] and
Sec. 4 of [36], in which eq. (1) with κ = 0 is used as a qualitative model for
erratic heating effects by lower hybrid waves in the plasma. See also [28], in
which a model for electrostatic waves in a cold anisotropic plasma with a two-
dimensional inhomogeneity yields, by a formal derivation, an equation for the
field potential which is similar to (1); precisely, the equation derived in [28] is
eq. (44) of Remark iii), Sec. 3, below, with particular choices of σ(y), κ1, and
κ2. See Ch. 2 of [34] for a recent, general treatment of electromagnetic waves in
cold plasma.

In the sequel we assume that Ω is a bounded connected domain of R2 having
at least piecewise differentiable boundary with counterclockwise orientation;
additional conditions will be placed on the domain where required.

2 Weak solutions to closed boundary value prob-

lems

Following Sec. 3 of [17] we define, for a given C1 function K (x, y) , the space
L2 (Ω; |K|) and its dual. These spaces consist, respectively, of functions u for
which the norm

||u||L2(Ω;|K|) =

(
∫

Ω

|K|u2dxdy

)1/2

is finite, and functions u ∈ L2 (Ω) for which the norm

||u||L2(Ω;|K|−1) =

(
∫

Ω

|K|−1u2dxdy

)1/2

is finite. Analogously, we define the space H1
0 (Ω;K) to be the closure of C∞

0 (Ω)
with respect to the norm

||u||H1(Ω;K) =

[
∫ ∫

Ω

(

|K|u2x + u2y + u2
)

dxdy

]1/2

. (2)
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Using a weighted Poincaré inequality to absorb the zeroth-order term, we write
the H1

0 (Ω;K)-norm in the form

||u||H1
0
(Ω;K) =

[
∫ ∫

Ω

(

|K|u2x + u2y
)

dxdy

]1/2

. (3)

Various lower-order terms have been associated to eq. (1) in the literature on
the cold plasma model, as such terms do not have explicit physical significance.
We put the equation into the self-adjoint form

Lu ≡ [K (x, y)ux]x + uyy = f (x, y) (4)

for the type-change function K (x, y) = x− y2; the inhomogeneous term f (x, y)
is assumed known.

In accordance with standard terminology, we will refer to the curveK = 0 on
which eq. (4) changes type as the sonic line. This terminology is borrowed from
fluid dynamics; in the context of the cold plasma model, the sonic transition
occurs at a resonance frequency.

Following Lupo, Morawetz, and Payne [17], we define a weak solution of eq.
(4) on Ω, with boundary condition

u(x, y) = 0 ∀ (x, y) ∈ ∂Ω, (5)

to be a function u ∈ H1
0 (Ω;K) such that ∀ξ ∈ H1

0 (Ω;K) we have

〈Lu, ξ〉 ≡ −

∫ ∫

Ω

(Kuxξx + uyξy) dxdy = (f, ξ) ,

where ( , ) denotes L2 inner product. In this case the existence of a weak
solution is equivalent to the existence of a sequence un ∈ C∞

0 (Ω) such that

||un − u||H1
0
(Ω;K) → 0 and ||Lun − f ||H−1(Ω;K) → 0

as n tends to infinity.
Following Lupo and Payne (Sec. 2 of [16]), we consider a one-parameter

family ψλ (x, y) of inhomogeneous dilations given by

ψλ (x, y) =
(

λ−αx, λ−βy
)

,

where α, β, λ ∈ R
+, and the associated family of operators

Ψλu = u ◦ ψλ ≡ uλ.

Denote by D the vector field

Du =

[

d

dλ
uλ

]

|λ=1

= −αx∂x − βy∂y. (6)
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An open set Ω ⊆ R
2 is said to be star-shaped with respect to the flow of D if

∀ (x0, y0) ∈ Ω and each t ∈ [0,∞] we have Ft (x0, y0) ⊂ Ω, where

Ft (x0, y0) = (x(t), y(t)) =
(

x0e
−αt, y0e

−βt
)

.

If a domain is star-shaped with respect to a vector field D, then it is possible
to “float” from any point of the domain to the origin along the flow lines of the
vector field. If these flow lines are straight lines through the origin (α = β) , then
we recover the conventional notion of a star-shaped domain. By an appropriate
translation, the origin can be replaced by any point (xs, ys) in the plane as a
source of the flow. In that case we obtain a translated function F̃t for which

lim
t→∞

F̃t (x0, y0) = (xs, ys) ∀ (x0, y0) ∈ Ω.

Moreover, whenever a domain is star-shaped with respect to the flow of a vector
field satisfying (6), the domain boundary will be starlike in the sense that

(αx, βy) · n̂ (x, y) ≥ 0,

where n̂ is the outward-pointing normal vector on ∂Ω. See Lemma 2.2 of [16].
In equivalent notation, given a vector field V = − (b, c) and a boundary arc Γ
which is starlike with respect to V, the inequality

bn1 + cn2 ≥ 0 (7)

is satisfied on Γ.
We employ an integral variant of the abc method, introduced by Didenko

[5] and developed by Lupo and Payne [15]. Denote by v a C1 solution to the
boundary value problem

Hv = u in Ω (8)

with v vanishing on ∂Ω\{0, 0},

lim
(x,y)→(0,0)

v (x, y) = 0, (9)

and
Hv = av + bvx + cvy. (10)

Assume that: Ω is star-shaped with respect to the flow of the vector field V =
− (b, c) ; b = mx and c = µy; µ and m are positive constants and a is a negative
constant. Arguing as in step 1 of the proof of Lemma 3.3, [17], which treats
the harder case of a nondifferentiable coefficient, we conclude that v exists. We
have the integral identities

(Iu, Lu) ≡ (v, Lu) = (v, LHv) . (11)

A good choice of the coefficients a, m, and µ on the right-hand side of this
identity will allow us to derive an energy inequality, which will be used to prove
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weak existence via the Riesz Representation Theorem; see Ch. 2 of [2] for a
general treatment of these kinds of arguments.

The following is a small but crucial extension of [23], Theorem 5.

Lemma 1. Suppose that x is non-negative on Ω and that the origin of
coordinates lies on ∂Ω. Let Ω be star-shaped with respect to the flow of the
vector field V = − (b, c) for b = mx and c = µy, where µ is a positive constant
and m exceeds 3µ. Then for every u ∈ C∞

0 (Ω) there exists a positive constant
C for which

||u||L2(Ω;|K|) ≤ C||Lu||H−1(Ω;K),

where K(x, y) = x− y2 and L satisfies (4).

Proof. Let v satisfy eqs. (8)-(10) on Ω for a = −M, where M is a positive
number satisfying

M =
m− 3µ

2
− δ

for some sufficiently small positive number δ. Integrate the integral identities
(11) by parts, using Prop. 12 of [23] and the compact support of u. We have

∫ ∫

Ω

v · LHv dxdy =
1

2

∮

∂Ω

(

Kv2x + v2y
)

(cdx− bdy)

+

∫ ∫

Ω

ωv2 + αv2x + 2βvxvy + γv2ydxdy, (12)

where ω = 0,

α = K

(

cy − bx
2

− a

)

+
1

2
b+

1

2
Kyc

=
(m

2
− µ− δ

)

x+ δy2,

β = 0,

and

γ = −a−
cy
2

+
bx
2

=M −
µ−m

2
= m− 2µ− δ > µ− δ.

On the elliptic region Ω+, K > 0 and

(m

2
− µ− δ

)

x >
(µ

2
− δ

)

x ≥ δx

provided we choose δ so small that µ/4 ≥ δ. Then on Ω+,

α ≥ δ
(

x+ y2
)

≥ δ
(

x− y2
)

= δK = δ|K|.

On the hyperbolic region Ω−, K < 0 and

α =
(m

2
− µ

)

x+ δ
(

y2 − x
)

≥
µ

2
x+ δ (−K) ≥ δ|K|.
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We find that if δ is sufficiently small relative to µ, then

(v, LHv) ≥ δ

∫ ∫

Ω

(

|K|v2x + v2y
)

dxdy. (13)

The upper estimate is immediate, as

(v, LHv) = (v, Lu) ≤ ‖v‖H1
0
(Ω;K) ‖Lu‖H−1(Ω;K) . (14)

Combining (13) and (14), we obtain

‖v‖H1
0
(Ω;K) ≤ C ‖Lu‖H−1(Ω;K) . (15)

The assertion of Lemma 1 now follows from (8) by the continuity of H as a map
from H1

0 (Ω;K) into L2 (Ω; |K|) . This completes the proof of Lemma 1.

Theorem 2. Let Ω be star-shaped with respect to the flow of the vector field
−V = (mx, µy) , where m and µ are defined as in Lemma 1. Suppose that x is
nonnegative on Ω and that the origin of coordinates lies on ∂Ω. Then for every
f ∈ L2

(

Ω; |K|−1
)

there is a unique weak solution u ∈ H1
0 (Ω;K) to the Dirichlet

problem (4), (5) where K = x− y2.

Proof. The proof follows the outline of the arguments in [17], Sec. 3. Defining
a linear functional Jf by the formula

Jf (Lξ) = (f, ξ) , ξ ∈ C∞
0 (Ω) ,

we estimate

|Jf (Lξ) | ≤ ||f ||L2(Ω;|K|−1)||ξ||L2(Ω;|K|) ≤ C||f ||L2(Ω;|K|−1)||Lξ||H−1(Ω;K),

using Lemma 1. Thus Jf is a bounded linear functional on the subspace of
H−1 (Ω;K) consisting of elements having the form Lξ with ξ ∈ C∞

0 (Ω) . Ex-
tending Jf to the closure of this subspace by Hahn-Banach arguments, the Riesz
Representation Theorem guarantees the existence of an element u ∈ H1

0 (Ω;K)
for which

〈u, Lξ〉 = (f, ξ) ,

where ξ ∈ H1
0 (Ω;K) . There exists a unique, continuous, self-adjoint extension

L : H1
0 (Ω;K) → H−1 (Ω;K) . Thus standard arguments imply that a sequence

of smooth, compactly supported approximations un of u ∈ H1
0 (Ω;K) converges

in norm to an element f̃ of H−1 (Ω;K) . Taking the limit

lim
n→∞

〈u− un, Lξ〉 =
(

f − f̃ , ξ
)

,

we conclude that, because the left-hand side vanishes for all ξ ∈ H1
0 (Ω;K) , the

right-hand side must vanish as well. Taking the difference of two weak solutions,
we find that this difference is zero in H1

0 (Ω;K) by the linearity of L and the
weighted Poincaré inequality [17].
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The unique-existence proofs of this section use similar estimates to those
used in the proofs in Sec. 4 of [23] for existence alone. But the likelihood that
the estimates would turn out to be similar appeared to be small on the basis
of previous literature, and is rather surprising. In Sec. 5.1 of [23] it is shown
that the estimates used to prove weak existence do not extend in an obvious
way to proofs of uniqueness for the case K = x, in which the resonance curve is
collinear with the flux line. Based on the physical discussion on p. 42 of [35], the
collinear case would appear to be simpler than the case treated here, in which
the two curves are tangent at an isolated point. But the cautionary example
of [23], Sec. 5.1, which suggests the difficulty of modifying the weak-existence
methods to prove uniqueness in the case K = x, happens to fail in the case
K = x − y2. As we have shown in this section, a modification of the weak
existence estimates will in fact lead to a uniqueness proof for weak solutions to
(4), (5) in the self-adjoint case.

3 Strong solutions to open boundary value prob-

lems

Consider a system of the form
Lu = f (16)

for an unknown vector

u = (u1 (x, y) , u2 (x, y)) ,

and a known vector
f = (f1 (x, y) , f2 (x, y)) ,

where (x, y) ∈ Ω ⊂ R
2. The operator L satisfies

(Lu)1 = K (x, y) u1x + u2y + zeroth-order terms, (17)

(Lu)2 = u1y − u2x. (18)

As in the preceding section, K (x, y) is continuously differentiable, negative on
Ω−, positive on Ω+, and zero on a parabolic region (the sonic curve) separating
the elliptic and hyperbolic regions. If (f1, f2) = (f, 0) , the components of the
vector u are continuously differentiable, and u1 = ux, u2 = uy for some twice-
differentiable function u(x, y), then the first-order system (16)-(18) reduces to a
second-order scalar equation such as (4). Because the emphasis in this section is
on the form of the boundary conditions, the presence or absence of zeroth-order
terms will not affect the arguments provided the resulting system is symmetric
positive.

We say that a vector u = (u1, u2) is in L2 if each of its components is
square-integrable. Such an object is a strong solution of an operator equation
of the form (16), with given boundary conditions, if there exists a sequence uν
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of continuously differentiable vectors, satisfying the boundary conditions, for
which uν converges to u in L2 and Luν converges to f in L2. Strong solutions
can be shown to be unique.

Sufficient conditions for a vector to be a strong solution were formulated by
Friedrichs [6]. An operator L associated to an equation of the form

Lu = A1ux +A2uy +Bu, (19)

whereA1, A2, and B are matrices, is said to be symmetric positive if the matrices
A1 and A2 are symmetric and the matrix

Q ≡ B∗ −
1

2

(

A1
x +A2

y

)

is positive-definite, where B∗ is the symmetrization of the matrix B :

B∗ =
1

2

(

B +BT
)

.

The differential equation associated to a symmetric positive operator is also said
to be symmetric positive.

Boundary conditions for a symmetric positive equation can be given in terms
of a matrix

β = n1A
1
|∂Ω + n2A

2
|∂Ω, (20)

where (n1, n2) are the components of the outward-pointing normal vector on ∂Ω.
The boundary is assumed to be twice-continuously differentiable. Let N (x̃, ỹ),
(x̃, ỹ) ∈ ∂Ω, be a linear subspace of a vector space V , where u : Ω ∪ ∂Ω → V
and N (x̃, ỹ) depends smoothly on x̃ and ỹ. A boundary condition u ∈ N is
admissible if N is a maximal subspace of V and the quadratic form (u, βu) is
non-negative on ∂Ω.

A set of sufficient conditions for admissibility is the existence of a decompo-
sition ([6], Sec. 5)

β = β+ + β−, (21)

for which: the direct sum of the null spaces for β+ and β− spans the restriction
of V to the boundary; the ranges R± of β± have only the vector u = 0 in
common; and the matrix µ = β+ − β− satisfies

µ∗ =
µ+ µT

2
≥ 0. (22)

These conditions imply that the boundary condition

β−u = 0 on ∂Ω (23)

is admissible for eq. (16) and the boundary condition

wTβT
+ = 0 on ∂Ω (24)
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is admissible for the adjoint problem

L∗w = g in Ω.

The linearity of the operator L and the admissibility conditions on the matrices
β± imply that both problems possess unique, strong solutions.

Boundary conditions are semi-admissible if they satisfy properties (22) and
(23). A symmetric positive equation having semi-admissible boundary condi-
tions possesses a unique weak solution in the ordinary sense: a vector u ∈ L2(Ω)
such that

∫

Ω

(L∗w) · u dΩ =

∫

Ω

w · f dΩ

for all vectors w having continuously differentiable components and satisfying
(24).

Writing the higher-order terms of eqs. (17), (18) in the form

Lu =

(

K (x, y) 0
0 −1

)(

u1
u2

)

x

+

(

0 1
1 0

)(

u1
u2

)

y

, (25)

we will derive admissible boundary conditions for the system (16)-(18).
Slightly generalizing the type-change function of Sec. 2, we chooseK (x, y) =

x−σ(y), where σ(y) ≥ 0 is a continuously differentiable function of its argument
satisfying [22]

σ(0) = σ′(0) = 0, (26)

σ′(y) > 0 ∀y > 0, (27)

and
σ′(y) < 0 ∀y < 0. (28)

Let the operator L in (16) be given by

(Lu)1 = [x− σ(y)] u1x + u2y + κ1u1 + κ2u2, (29)

(Lu)2 = u1y − u2x, (30)

where κ1 and κ2 are constants.
By the elliptic portion ∂Ω+ of the boundary we mean points (x̃, ỹ) of the

domain boundary on which the type-change function K (x̃, ỹ) is positive and by
the hyperbolic portion ∂Ω−, boundary points for which the type-change function
is negative. The sonic portion of the boundary consists of boundary points on
which the type change function vanishes.

In this section we prove a revision and extension of [23], Theorem 9:

Theorem 3. Let Ω be a bounded, connected domain of R2 having C2 bound-
ary ∂Ω, oriented in a counterclockwise direction. Let ∂Ω+

1 be a (possibly empty
and not necessarily proper) subset of ∂Ω+. Translate the vector field constructed
in eq. (6) away from the origin. Let ∂Ω+\∂Ω+

1 be starlike with respect to the

10



vector field V + = − (b(x, y), c(x, y)) ; let ∂Ω+
1 be starlike with respect to the vec-

tor field V +
1 = (b(x, y), c(x, y)) ; let ∂Ω\∂Ω+ be starlike with respect to the vector

field V − = (b(x, y),−c(x, y)) . Let b(x, y) and c(x, y) satisfy

b2 + c2K 6= 0 (31)

on Ω, and the inequalities:

2bκ1 − bxK − b+ cyK − cσ′(y) > 0 in Ω; (32)

(2bκ1 − bxK − b + cyK − cσ′(y)) (2cκ2 + bx − cy)

− (bκ2 + cκ1 − cxK − c− by)
2
> 0 in Ω; (33)

K (bn1 − cn2)
2
+ (cKn1 + bn2)

2 ≤ 0 on ∂Ω\∂Ω+. (34)

Let L be given by (29), (30). Let the Dirichlet condition

− u1n2 + u2n1 = 0 (35)

be satisfied on ∂Ω+\∂Ω+
1 and let the Neumann condition

Ku1n1 + u2n2 = 0 (36)

be satisfied on ∂Ω+
1 . Then eqs. (16), (29), (30) possess a strong solution on Ω

for every f ∈ L2(Ω).

Proof. Multiply both sides of eq. (16), (29), (30) by the matrix

E =

(

b −cK
c b

)

. (37)

Condition (31) implies that E is invertible on Ω, and conditions (32), (33) imply
that the resulting system is symmetric positive.

Because ∂Ω+\∂Ω+
1 is starlike with respect to V +, condition (7) is satisfied

there. On ∂Ω+
1 we have, analogously,

bn1 + cn2 ≤ 0 (38)

and on ∂Ω\∂Ω+,
− bn1 + cn2 ≥ 0. (39)

For all points (x̃, ỹ) ∈ ∂Ω, decompose the matrix

β (x̃, ỹ) =

(

K (bn1 − cn2) cKn1 + bn2

cKn1 + bn2 − (bn1 − cn2)

)

into a matrix sum having the form β = β+ + β−.
On ∂Ω+\∂Ω+

1 , decompose β into the submatrices

β+ =

(

Kbn1 bn2

Kcn1 cn2

)

11



and

β− =

(

−Kcn2 Kcn1

bn2 −bn1

)

.

Then β−u = 0 under boundary condition (35). We have

µ∗ = (bn1 + cn2)

(

K 0
0 1

)

,

so condition (7) implies that the Dirichlet condition (35) is semi-admissible on
∂Ω\∂Ω+

1 .
On ∂Ω+

1 , choose

β+ =

(

−Kcn2 Kcn1

bn2 −bn1

)

and

β− =

(

Kbn1 bn2

Kcn1 cn2

)

.

Then β−u = 0 under the Neumann boundary condition (36), and

µ∗ = − (bn1 + cn2)

(

K 0
0 1

)

is positive semi-definite under condition (38).
On ∂Ω\∂Ω+, choose β+ = β and take β− to be the zero matrix. Then

µ = µ∗ = β and
µ11 = K (bn1 − cn2) .

Because µ11 is non-negative by (39), µ∗ is positive semi-definite by inequality
(34), and no conditions need be imposed outside the elliptic portion of the
boundary. Semi-admissibility follows.

In fact, admissibility also follows, as we proceed to show.
On ∂Ω+\∂Ω+

1 the null space of β− is composed of vectors satisfying the
Dirichlet condition (35), which is imposed on that boundary arc. The null
space of β+ is composed of vectors satisfying the adjoint condition (36). On
∂Ω+

1 , this relation is reversed. In order to show that the direct sum of these null
spaces spans the two-dimensional space V|∂Ω+ , it is sufficient to show that the
set

{(

1
n2/n1

)

,

(

1
−Kn1/n2

)}

is linearly independent there. Setting

c1

(

1
n2/n1

)

+ c2

(

1
−Kn1/n2

)

=

(

0
0

)

,

we find that c1 = −c2 and

− c2

(

n2
2 +Kn2

1

n1n2

)

= 0. (40)
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Equation (40) can only be satisfied on the elliptic boundary if c2 = 0, implying
that c1 = 0. Thus the direct sum of the null spaces of β± on ∂Ω+ is linearly
independent and must span V over that portion of the boundary.

On ∂Ω\∂Ω+, the null space of β− contains every 2-vector and the null space
of β+ contains only the zero vector; so on that boundary arc, their direct sum
spans V .

On ∂Ω+\∂Ω+
1 , the range R+ of β+ is the subset of the range R of β for

which
v2n1 − v1n2 = 0 (41)

for (v1, v2) ∈ V ; the range R− of β− is the subset of R for which

Kv1n1 + v2n2 = 0 (42)

for (v1, v2) ∈ V . Analogous assertions hold on ∂Ω+
1 , in which the ranges of R+

and R− are interchanged. Because if n1 and n2 are not simultaneously zero the
system (41), (42) has only the trivial solution v2 = v1 = 0 on ∂Ω+, we conclude
that R+ ∩R− = {0} on ∂Ω+.

On ∂Ω\∂Ω+, R− = {0}, so R+ ∩R− = {0} trivially.
The invertibility of E under condition (31) completes the proof of Theorem

3.

Remarks. i) Although the conditions of Theorem 3 are derived from purely
mathematical considerations, mixed boundary value problems do arise in various
contexts of plasma physics [12]. In any case, by taking ∂Ω+

1 to be either the
empty set or all of ∂Ω+, Theorem 3 implies the existence of strong solutions
for either the open Dirichlet problem or the open Neumann problem for the
cold plasma model. Because only the open Dirichlet problem was considered in
Theorem 9 of [23], Theorem 3 of this note extends that result to the open cases
of the Neumann and mixed Dirichlet-Neumann problems.

ii) A misprint in eq. (45) of [23] has been corrected in eq. (29). In Theorem
3, condition (31) has been added to the list of hypotheses in Theorem 9 of [23],
the redundant condition (57) removed, and an error in eq. (59) corrected by
eq. (34) of the present note. The assumption that the boundary is piecewise
smooth, which was default hypothesis in [23], seems to be too weak in general
for strong solutions; see, however, [13], [14], [29], [30], and [31].

iii) Only conditions (32) and (33) have anything to do with the cold plasma
model. Otherwise, Theorem 3 is about interpreting Friedrichs’ theory in the
context of starlike boundaries. For example, the argument leading to eq. (40)
suggests that the Tricomi problem is strongly ill-posed under the hypotheses of
the theorem, whatever the type-change function K. This is because in the Tri-
comi problem, data are given on both the elliptic boundary and a characteristic
line; but on characteristic lines, K satisfies

K = −
n2
2

n2
1

. (43)
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Substituting this equation into eq. (40), we find that the equation is satisfied
on characteristic lines without requiring the constants c1 and c2 to be zero.

However, the theorem is less restrictive if the operator in (16) is given by

(Lu)1 = [x− σ(y)] u1x − u2y + κ1u1 + κ2u2,

(Lu)2 = −u1y + u2x, (44)

where, again, κ1 and κ2 are constants. This variant also arises in the cold
plasma model (see [21] and [28]) and is analogous to the variant of the Tricomi
equation yuxx− uyy = 0, studied in various contexts by Friedrichs [6], Katsanis
[11], Sorokina [31], [32], and Didenko [5]. In that case, choose

E =

(

b cK
c b

)

.

Obvious modifications of conditions (32) and (33) guarantee that the equation

ELu = Ef

will be symmetric positive. Condition (31) must be replaced by the invertibility
condition

b2 − c2K 6= 0,

which is restrictive on the subdomain Ω+ rather than on Ω− as in (31). Most
importantly, the discussion leading to Table 1 of [11] now applies, with only
minor changes, and one can obtain a long list of possible starlike boundaries
which result in strong solutions to suitably formulated problems of Dirichlet or
Neumann type. In particular, one can formulate a Tricomi problem which is
strongly well-posed.

The hypotheses of Theorem 3 are rather formal. We expect them to be harsh,
as the known singularity at the origin should restrict the kind of smoothness
results that we can prove. But the hypotheses do not seem to be vacuous, with
the possible exception of condition (34). Thus we show that in fact condition
(34) is always satisfied on the characteristic boundary.

Proposition 4. Let Γ be a characteristic line for eq. (16), with the higher-
order terms of the operator L satisfying (25). Then the left-hand side of in-
equality (34) is identically zero on Γ.

Proof. We have, using eq. (43),

(cKn1 + bn2)
2
= c2K2n2

1 + 2Kcbn1n2 + b2n2
2

= −c2K2n
2
2

K
+ 2Kcbn1n2 − b2Kn2

1 = −K
(

c2n2
2 − 2cbn1n2 + b2n2

1

)
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= −K (cn2 − bn1)
2
.

Substituting the extreme right-hand side of this equation into the second term
of (34) completes the proof.

We conclude that condition (34) can be interpreted as the geometric require-
ment that the hyperbolic boundary be subcharacteristic.

On the basis of the observations in Remark iii), we reformulate Theorem 3
for an arbitrary type-change function − that is, for a smooth function K (x, y)
which is positive on all points in a subset Ω+ of Ω, negative on all points of
a subset Ω− of Ω, and zero on a smooth curve G ∈ Ω separating Ω+ and Ω−,
where

Ω = Ω+ ∪ Ω− ∪G.

The proof of Theorem 3 will also prove:

Corollary 5. Let Ω be a bounded, connected domain of R2 having C2 bound-
ary ∂Ω, oriented in a counterclockwise direction. Let ∂Ω+

1 be a (possibly empty
and not necessarily proper) subset of ∂Ω+. Suppose that EL is a symmetric pos-
itive operator, where L satisfies (25) (with the possible addition of lower-order
terms) and E satisfies (37) with condition (31). Let ∂Ω+\∂Ω+

1 be starlike with
respect to the vector field V + = − (b(x, y), c(x, y)) ; let ∂Ω+

1 be starlike with
respect to the vector field V +

1 = (b(x, y), c(x, y)) ; let ∂Ω\∂Ω+ be starlike with
respect to the vector field V − = (b(x, y),−c(x, y)) . Let the union ∂Ω\∂Ω+ of
the parabolic and hyperbolic boundaries be subcharacteristic in the sense of (34).
Then the mixed boundary value problem given by eq. (16), with condition (35)
satisfied on ∂Ω+\∂Ω+

1 and condition (36) satisfied on ∂Ω+
1 , possesses a strong

solution for every f ∈ L2(Ω).
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