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Representations for optimal stopping under dynamic monetary

utility functionals

Volker Krätschmer∗ and John Schoenmakers∗

Abstract

In this paper we consider the optimal stopping problem for general dynamic monetary utility
functionals. Sufficient conditions for the Bellman principle and the existence of optimal stopping
times are provided. Particular attention is payed to representations which allow for a numerical
treatment in real situations. To this aim, generalizations of standard evaluation methods like policy
iteration, dual and consumption based approaches are developed in the context of general dynamic
monetary utility functionals. As a result, it turns out that the possibility of a particular generalization
depends on specific properties of the utility functional under consideration.
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1 Introduction

Dynamic monetary utility functionals, or DMU functionals for short, can be seen as generalizations of
the ordinary conditional expectation, the usual functional which is to be maximized in standard stopping
problems, which occur for instance in the theory of pricing of American (Bermudan) options in a complete
market. It is well known that in an incomplete market the price of an American option is determined
by the so called upper and lower Snell envelope which in turn are obtained via optimal stopping of the
reward process with respect to two particular mutually conjugate DMU functionals (cf. e.g. [15]). From an
economic point of view, dynamic monetary utility functionals functionals may be seen as representations
of dynamic preferences in terms of utilities of financial investors.
By changing sign, a DMU functionals becomes a dynamic risk measure (e.g. in [21]) which represents
preferences in terms of losses instead of utilities in fact. Therefore, technically, the study of DMU func-
tionals is basically equivalent to the study of dynamic risk measures which became an increasing research
field in the last years. A realistic dynamic risk assessment of financial positions should allow for updating
as time evolves, taking into account new information. The notion of dynamic risk measures has been

∗Partially supported by the Deutsche Forschungsgemeinschaft through SFB 649 “Economic Risk” and DFG Research
Center Matheon “Mathematics for Key Technologies” in Berlin. Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin, {kraetsch,schoenma}@wias-berlin.de .
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established to provide a proper framework (cf. e.g. [3], [8], [10], [11], [14]). It is based on an axiomatic
characterization extending the classical axioms for the concept of one-period risk measures in [2] to the
dynamic multiperiod setting. From the very beginning one crucial issue was to find reasonable conditions
of mutual relationships between the risk functionals, so-called dynamic consistency, leading to different
concepts (cf. e.g. [3], [8], [10], [11], [30], [31], [33], [34]). The mostly used one is often called strict time
consistency, and it is linked with a technical condition for dynamic risk measures known as recursiveness.
This condition will play an important technical role in our investigations.
Recently, dynamic monetary utility functionals (as being dynamic risk measures with changed sign) have
been incorporated into different topics such as, for example, the dynamics of indifference prices (see [21],
[9]), and the pricing of derivatives in incomplete financial markets (cf. e.g. [30], [15], [28]). In this respect
we want to emphasize the contributions in [15] and [28] as being the starting point of this paper. There the
superhedging of American options is analyzed as solutions of optimal stopping problems in the context of
coherent dynamic monetary utility functionals. We want to extend these considerations to more general
monetary utility functionals. For instance, we will not necessarily assume translation invariance which
has been recently questioned as a suitable condition for risk assessment since it tacitly supposes certainty
on discounting factors by the investors (cf. [13]).
Within a time discrete setting we shall look for a minimal set of conditions for the dynamic monetary
utility functionals which guarantee solutions for the related optimal stopping problems at different times.
For classical stopping problems with respect to ordinary conditional expectations the starting point for any
solution representation is the Bellman principle. This suggests to investigate when the Bellman principle
holds for the general optimal stopping problems. The above mentioned condition of recursiveness in
connection with a specific regularity condition will turn out to be sufficient.
Beyond the considerations of the general optimal stopping, the main contribution of this paper is the
development of iterative methods and other representations for solving them. Based on these methods we
naturally construct simulation based solution algorithms which allow for solving such stopping problems
in practice. In contrast to meanwhile industrial standard approaches for Bermudan options, hence the
ordinary stopping problem in discrete time (among others, [1], [6], [22], [24], [32]), we have not seen yet a
comprehensive generic approach for treating generalized optimal stopping problems numerically. In this
respect this paper intends to be a first step in this direction.
The paper is organized as follows. In Section 2 the concept of dynamic monetary utility functionals
is introduced. In Section 3 we investigate the Bellman principle and the existence of optimal stopping
strategies. In Section 4 a generalization of the policy iteration method of [22] is presented. Section 5,
Section 6, and Section 7 generalize, respectively, the additive dual method of [29]-[17], the multiplicative
dual of [20], and the consumption based approach in [4]-[5]. In Section 8 we shall provide a simulation
setting to utilize the results of sections 4-7 to construct approximations of the optimal values of the
investigated stopping problems. More technical proofs are given in Appendix A.

2 Dynamic monetary utility functionals

Let
(
Ω, (Ft)t∈{0,...,T},F , P

)
be filtered probability space with {0, 1}−valued P |F0, and let X be a real

vector subspace of L0(Ω,F , P) containing the indicator mappings 1A of subsets A ∈ F . It is assumed that
for any X ∈ X and A ∈ F it holds 1AX ∈ X, A ∈ F . Moreover, for any X, Y ∈ X and it holds X ∧ Y ∈ X
and X ∨ Y ∈ X. Hence in particular X is a vector lattice.
A family of mappings Φ := (Φt)t∈{0,...,T} with Φt : X → X ∩ L0(Ω,Ft, P) being monotone, i.e. Φt(X) ≤
Φt(Y ) for X, Y ∈ X with X ≤ Y P−a.s.. is called a dynamic monetary utility functional or shortly
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DMU functional.
We shall say that (Φt)t∈{0,...,T} is recursively generated if there is some family (Ψt)t∈{0,...,T} of mappings
Ψt : X ∩ L0(Ω,Ft+1, P) → X ∩ L0(Ω,Ft, P) with FT+1 := F such that

ΨT = ΦT , and Φt = Ψt ◦ Φt+1 for t = 0, ..., T − 1.

In this case the mappings Ψt will be given the name generators of (Φt)t∈{0,...,T} .
Let us introduce some further notations. Henceforth Tt will stand for the set of the finite stopping times
τ with τ ≥ t P−a.s., whereas H will denote the set of adapted processes Z := (Zt)t∈{0,...,T} such that
Zt ∈ X ∩ L0(Ω,Ft, P) for t ∈ {0, ..., T}.
The following conditions on (Φt)t∈{0,..,T} will play an important role in the context of optimal stopping
of DMU functionals studied later on.

(C1) Φt(X) ≤ Φt(Y ) P−a.s. for t ∈ {0, ..., T − 1}, X, Y ∈ X with Φt+1(X) ≤ Φt+1(Y ) P−a.s. (time
consistency).

(C2) Φt(1AX) = 1AΦt(X) P−a.s. for t ∈ {0, ..., T}, A ∈ Ft, and X ∈ X (regularity).

(C3) Φt(X + Y ) = Φt(X) + Y P−a.s. for t ∈ {0, ...T}, and X, Y ∈ X with Y being Ft−measurable
(conditional translation invariance).

(C4) Φt = Φt ◦ Φt+1 P−a.s. for t ∈ {0, ..., T − 1} (recursiveness).

(C5) Φt(0) = 0 P−a.s. for t ∈ {0, ..., T} (normalization).

(C6) Φt(Y X) = Y Φt(X) P−a.s. for t ∈ {0, ..., T}, X ∈ X and Y ∈ X ∩ L0(Ω,Ft, P) with Y ≥ 0 P−a.s.
as well as XY ∈ X (conditional positive homogeneity)

(C7) For each X ∈ X with X ≥ 0 P−a.s. there exist a function g : [0,∞) → R+ such that limε↓0 g(ε) = 0,
and

Φt (X ∨ ε) ≤ Φt (X) + g(ε) for t ∈ {0, ..., T}. (1)

Remark 2.1 In this paper we frequently use one of the following implications. Their proofs are simple
and therefore omitted.

• Recursiveness implies that (Φt)t∈{0,..,T} is recursively generated, where the generators are the re-
strictions Φt|X ∩ L0(Ω,Ft+1, P) for t = 0, ..., T.

• Let (Φt)t∈{0,..,T} be recursively generated by (Ψt)t∈{0,..,T}. Then,

– If Φt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X∩L0(Ω,Ft, P), then (Φt)t∈{0,..,T} is recursive.

– If Ψt(X) = X P−a.s. for t ∈ {0, ..., T} and X ∈ X ∩ L0(Ω,Ft, P), then (Φt)t∈{0,..,T} is
recursive.

– iii) If for any X ∈ X and A ∈ Ft it holds Ψt(1AX) = 1AΨt(X), then Φ is regular.

Example 2.2 The functional Φ given by the conditional expectations Φt := E[· | Ft] is a basic example
for a DMU functional. It satisfies all the conditions (C1)-(C7).
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It is natural to generalize the usual martingale concept to the notion of ”Φ−martingale” for a given DMU
functional Φ as defined below. The notion of Φ−martingales will be used for different representations of
optimal stopping problems in Sections 5,6.

Definition 2.3 M := (Mt)t∈{0,...,T} ∈ H is aid to be a Φ−martingale if Φt(Mt+1) = Mt P−a.s. for
every t ∈ {0, ..., T − 1}. Note that for recursive Φ, M ∈ H is a Φ−martingale if and only if Φt(Ms) =
Mt P−a.s. for every s, t ∈ {0, ..., T − 1} with s > t.

Let us discuss some further examples of DMU functionals. First of all we want to consider the relationship
with the so called dynamic risk measures.

Example 2.4 DMU functionals may be viewed as generalizations of dynamic risk measures. Recall, a
family (ρt)t∈{0,...,T} is a dynamic risk measure if and only if (−ρt)t∈{0,...,T} is a conditionally translation
invariant monetary utility functional. The property of translation invariance suggests to restrict consider-
ations to normalized functionals because of Φt(X−Φt(X)) = 0. In the normalized case Φt(Y ) = Y P−a.s.
for every t ∈ {0, ..., T} and any Y ∈ X∩L0(Ω,Ft, P), and in view of Remark 2.1 Φ is recursively generated
if and only if it is recursive.
We shall call the normalized conditional translation invariant Φ to be convex/concave if the mappings
Φt (t ∈ {0, ..., T}) are simultaneously convex/concave. If Φ is convex/concave, then

Φt : X → X ∩ L0(Ω,Ft, P), X 7→ −Φt(−X)

defines a concave/convex normalized conditional translation invariant DMU functional called the conju-
gate of Φ. The conditions of recursiveness and regularity are satisfied by Φ if and only its conjugate Φ
fulfills them. Conditional translation invariance of convex/concave Φ implies the regularity condition for
the restriction of Φ to X∩L∞(Ω,F , P) (cf. [21], where this restriction is essential for the proof). Moreover,
regularity is even valid on the entire space X if lim

n→∞
Φt ((X − n)+) = 0 P−a.s. for every t ∈ {0, ..., T}

and any nonnegative X ∈ X. Indeed, one may conclude from Lemma 6.5 in [23] that

Φt(X) = ess inf
m∈N

ess sup
n∈N

Φt(X+ ∧ n−X− ∧m)

holds for t ∈ {0, ..., T} and X ∈ X.
In the context of dynamic risk measures the property of recursiveness plays an important role. On the
one hand it is intimately linked with the property of time consistency which has a specific meaning in
expressing dynamic preferences of investors. For a thorough study the reader may consult e.g. [14] or
[3]. On the other hand optimal stopping with dynamic risk measures may be related to specific financial
applications.

The next large class of DMU functionals concerns the so called g-expectations. They are prominent
examples of nonlinear functionals satisfying martingale type properties like recursiveness.

Example 2.5 Let (Gs)s≥0 be the augmented filtration on Ω associated with the filtration generated
by a standard d−dimensional Brownian motion (Bs)s≥0 with B0 := 0, and let for S > 0 the function
g : Ω× [0, S]× R× Rd → R satisfy

(i) There is some constant C > 0 such that

|g(·, t, y1, z1)− g(·, t, y2, z2)| ≤ C (|y1 − y2|+ ‖z1 − z2‖) P−a.s.

for every t ∈ [0, S] and arbitrary (y1, z1), (y2, z2) ∈ R×Rd, where ‖ · ‖ denotes an arbitrary norm on
Rd;
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(ii) (g(·, s, y, z))s∈[0,S] is an adapted P−square integrable process for (y, z) ∈ R× Rd;

(iii) g(·, s, y, 0) = 0 P−a.s. for s ∈ [0, S] and y ∈ R.

Such a function g can be used as driver of a backward stochastic differential equation (abbreviated: BSDE)

Ys = X +

S∫
s

g(·, r, Yr, Zr) dr −
S∫

s

Zr dBr for s ∈ [0, S],

where X ∈ L2(Ω,GS , P). As shown is [25] there always exists a unique couple
(
Y X

s

)
s∈[0,S]

and
(
ZX

s

)
s∈[0,S]

of adapted respectively 1− and d−dimensional processes satisfying

EP

 S∫
0

|Y X
s |2 ds

 , EP

 S∫
0

‖ZX
s ‖2 ds

 < ∞,

and solving the BSDE. Now it is natural to define the family (Eg[·|Gs])s∈[0,S] via

Eg[· | Gs] : L2(Ω,GS , P) → L2(Ω,Gs, P), X 7→ Y X
s ,

known as (a family of) conditional g-expectations, where Eg[· | G0] is just called g-expectation.
For g ≡ 0 we retrieve the usual (conditional) expectation of a square integrable random variable. For
applications of conditional g-expectations in finance the reader is referred to [12] and [26].
Let us now pick some observation times 0 =: s0 < s1 < ... < sT := S, and define

(
Ω, (Ft)t∈{0,...,T},F , P

)
and Φ := (Φt)t∈{0,...,T} by Ft := Gst

,F := FT , and Φt := Eg[· | Gst
]. Drawing on basic properties of

conditional g-expectation as derived by Peng in [25], Φ is always a regular recursive DMU functional
fulfilling Φt(X) = X P−a.s. for t ∈ {0, ..., T} and Ft−measurable X.
Furthermore Φ is conditional translation invariant if and only if g(ω, s, ·, z) is constant for every ω ∈
Ω, s ∈ [0, S] and z ∈ Rd (for the if part see [25], for the only if part cf. [19]). In this case Φ is even a
convex normalized conditionally translation invariant DMU functional if and only if in addition

g(·, ·, ·, λz1 + (1− λ)z2) ≤ λg(·, ·, ·, z1) + (1− λ)g(·, ·, ·, z2) P⊗dt− a.s.

for z1, z2 ∈ Rd and λ ∈ [0, 1] (cf. [19]).

We shall finish the section with some nonstandard examples.

Examples 2.6 Let X = L∞(Ω,F , P).

1. For strictly increasing U1, ..., UK : R → R with U1(0) = ... = UK(0) = 0 and positive α1, ..., αK , let
Φ be recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑

k=1

αkU−1
k (EP[Uk(X) | Ft]) for t ∈ {0, ..., T} and X ∈ L∞(Ω,Ft, P).

Obviously the functional Φ is regular. Moreover, if
K∑

k=1

αk = 1, it satisfies Φt(X) = X P−a.s. for

t ∈ {0, ..., T} and X ∈ L∞(Ω,Ft, P), hence Φ is recursive. In the case of K = α1 = 1, Φt is defined
in literally the same way as its generator Ψt.
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2. For nonvoid sets Q1, ...,QK of probability measures on F which are equivalent with P, and positive
α1, ..., αK , let Φ be recursively with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑

k=1

αk ess sup
Q∈Qk

EQ[X|Ft] for t ∈ {0, ..., T}.

Similar as in the previous example Φ is regular by construction, and is recursive if in addition
K∑

k=1

α1 = 1. Further, Φ is conditionally translation invariant, conditionally positively homogeneous,

and convex. Moreover, if K = α1 = 1, and if the set Q1 is stable under pasting (see [15] for the
concept), Φt is defined in literally the same way as its generator Ψt (cf. [15], Theorem 6.53).

3 The optimal stopping problem

We will study the following stopping problem

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ), t ∈ {0, ..., T}, (2)

for Z ∈ H. We refer to the process Y ∗ as the (Φ−)Snell envelope of Z. Below we consider two important
aspects. Firstly, we investigate the existence of optimal stopping times and secondly, we try to find
Bellman principles. The crucial step to guarantee optimal stopping times is provided by thHorst, U*e
following Lemma.

Lemma 3.1 Let Z := (Zt)t∈{0,...,T} ∈ H, let for some fixed t ∈ {0, ..., T − 1} exist some τ∗t+1 ∈ Tt+1

such that Φt+1(Zτ∗t+1
) = ess sup

τ∈Tt+1

Φt+1(Zτ ). Defining the event Bt :=
[
Φt(Zt)− Φt(Zτ∗i+1

) ≥ 0
]

and τ∗t :=

t1Bt
+ τ∗i+11Ω\Bt

, we obtain Bt ∈ Ft, τ∗t ∈ Tt, and under the conditions of time consistency and regularity

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt(Zτ∗t+1
).

Proof:
Bt ∈ Ft, τ∗t ∈ Tt follows from Ft−measurability of the outcomes of Φt. Furthermore we may observe
Zτ∗t

= 1Bt
Zt + 1Ω\Bt

Zτ∗i+1
. Then the application of (C1) yields

Φt(Zτ∗t
) = 1Bt

Φt(Zτ∗t
) + 1Ω\Bt

Φt(Zτ∗t
)

(C2)
= Φ(1Bt

Zt) + Φ(1Ω\Bt
Zτ∗t+1

)
(C2)
= 1Bt

Φt(Zt) + 1Ω\Bt
Φt(Zτ∗t+1

)

= Φt(Zt) ∨ Φt(Zτ∗t+1
).

Next let us define the mapping σ : Tt → Tt+1 by σ(τ) := (t + 1)1[τ=t] + τ1[τ>t]. Then we obtain for τ ∈ Tt

Φt(Zτ ) = Φt(1[τ=t]Zt + 1[τ>t]Zσ(τ))
(C2)
= 1[τ=t]Φt(Zt) + 1[τ>t]Φt(Zσ(τ)) ≤ Φt(Zt) ∨ Φt(Zσ(τ)).

By assumption Φt+1(Zσ(τ)) ≤ Φt+1(Zτ∗t+1
) P−a.s. so that condition (C1) implies

Φt(Zτ ) ≤ Φt(Zt) ∨ Φt(Zσ(τ))
P
≤ Φt(Zt) ∨ Φt(Zτ∗t+1

) = Φt(Zτ∗t
),

which completes the proof.
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Since τ :≡ T is always the optimal stopping time in FT , we may apply sequentially Lemma 3.1 to obtain
the following result concerning the existence of optimal stopping times.

Theorem 3.2 Let Z := (Zt)t∈{0,...,T} ∈ H. Then under conditions of time consistency and regularity
there exists for any t ∈ {0, ..., T} some τ∗t ∈ Tt such that

Φt(Zτ∗t
) = ess sup

τ∈Tt

Φt(Zt).

The sequence (τ∗t )t∈{0,...,T} of optimal stopping times may be chosen such that τ∗T = T, and

1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}.

Let us now turn over to recursively generated DMU functionals.

Corollary 3.3 Let (Φt)t∈{0,...,T} be recursively generated with generators (Ψt)t∈{0,...,T} satisfying the
property Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T−1} and X, Y ∈ X∩L0(Ω,Ft+1, P) with X ≤ Y P−a.s..
Then Theorem 3.2 may be restated under regularity only.

Proof:
The assumptions on the generators (Ψt)t∈{0,...,T} imply the time consistency condition (C1).

In order to construct optimal stopping times a recursive relationship between the optimal values of the
stopping problems at different dates will turn out to be very useful. For this reason we shall restrict
ourselves to recursively generated DMU functionals generated by the functionals (Ψt)t∈{0,...,T} .
The following theorem is a direct consequence of Lemma 3.1 and Corollary 3.3.

Theorem 3.4 Let (Φt)t∈{0,...,T} be regular and recursively generated with generators satisfying the prop-
erty Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T − 1} and X, Y ∈ X ∩ L0(Ω,Ft+1, P) with X ≤ Y P−a.s.
Then we have the Bellman principle: It holds:

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨Ψt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)

for any Z ∈ H and every t ∈ {0, ..., T − 1}.

For a recursive DMU functional (Φt)t∈{0,...,T} the generators are just the restrictions Φt|X∩L0(Ω,Ft+1, P)
for t ∈ {0, ..., T − 1}, and the Bellman principle may be strengthened in the following way.

Corollary 3.5 Let (Φt)t∈{0,...,T} be a DMU functional which is regular and recursive, and whose gener-
ators Φt|X ∩ L0(Ω,Ft+1, P), t ∈ {0, ..., T − 1}, satisfy the monotonicity assumption in Corollary 3.3. It
then holds,

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)
for any Z ∈ H and every t ∈ {0, ..., T − 1}.
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Example 3.6 Let us consider the issue of pricing and hedging American contingent claims in an incom-
plete arbitrage free financial market with reference probability measure P and the set Q of equivalent
martingale measures, and let X consist of all X ∈ L0(Ω,F , P) such that sup

Q∈Q
EQ[|X|] < ∞. Then the

functional
Φt : X → X ∩ L0(Ω,Ft, P), X 7→ ess sup

Q∈Q
EQ[X | Ft],

and its conjugate Φ
Φt(X) = ess inf

Q∈Q
EQ[X | Ft]

are recursive (e.g. see [15], Proposition 6.45, Theorem 6.53) and play a key role in the following sense:
For any Z ∈ H the stopping problems (2) according to Φ and Φ correspond to the upper and lower Snell
envelopes of Z w.r.t. Q respectively. Moreover, the initial value of the lower and upper snell envelope are
just the lower and upper hedging price, respectively. Further, the optimal stopping time according to the
lower hedging prices corresponds to optimal exercise strategy for the buyer of the option. For details see
for example [15], Theorems 7.13, 7.14.

Example 3.7 Let Φ be a finite subfamily of conditional g-expectations. Then in view of Example 2.5
combined with Corollaries 3.3, 3.5 we may find for any Z ∈ H some family (τ∗t )t∈{0,...,T} of stopping times
τ∗t ∈ Tt satisfying τ∗T = T as well as 1[τ∗t >t]τ

∗
t = 1[τ∗t >t]τ

∗
t+1, and

Φt(Zτ∗) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
τ∈Tt+1

Φt+1(Zτ )

)
= Φt(Zt) ∨ Φt(Zτ∗t+1

)

for t ∈ {0, ..., T − 1}.

Example 3.8 The DMU functionals introduced in Examples 2.6 admit families of optimal stopping times
as in Corollary 3.3 and satisfy the Bellman principle due to Theorem 3.4.

4 Iterative solution of optimal stopping problems

Throughout this section we fix a recursively generated regular DMU functional (Φt)t∈{0,...,T} with gener-
ators (Ψt)t∈{0,...,T} satisfying Ψt(X) ≤ Ψt(Y ) P−a.s. for t ∈ {0, ..., T} and X, Y ∈ X ∩ L0(Ω,Ft+1, P)
with X ≤ Y P−a.s.. Then in view of Corollary 3.3, for any Z ∈ H there exists a family (τ∗t )t∈{0,...,T} of
stopping times τ∗t ∈ Tt with

τ∗T = T, and 1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, ..., T − 1}, (3)

such that
Y ∗

t = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zτ∗t
) for every t ∈ {0, ..., T}. (4)

Our goal is to develop an iterative procedure which converges to (4). In fact we shall generalize the policy
iteration method in [22] for classical optimal stopping with conditional expectations to optimal stopping
of regular recursive DMU functionals.
Let us define (τt)t∈{0,...,T} to be a time consistent stopping family if

τt ∈ Tt, τT = T, and 1[τt>t]τt = 1[τt>t]τt+1 for t ∈ {0, ..., T − 1}.
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The policy iteration step starts with any time consistent stopping family (τt)t∈{0,...,T} and corresponding
process (Yt)t∈{0,...,T} with Yt := Φt(Zτt

), being an approximation of (Y ∗
t )t∈{0,...,T} . In order to improve

this approximation we consider the process
(
Ỹt

)
t∈{0,...,T}

defined by Ỹt := maxt≤s≤T Φt(Zτs), and the

new stopping family

τ̂T := T, τ̂t := inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max
s+1≤u≤T

Φs(Zτu)}, 0 ≤ t ≤ T − 1. (5)

Obviously, the stopping family (τ̂t)t∈{0,...,T} is also time consistent . By the next theorem, a generalization

of Theorem 3.1 in [22] in fact, the process
(
Ŷt

)
t∈{0,...,T}

, defined by Ŷt := Φt(Zτ̂t
), improves the initial

approximation (Yt)t∈{0,...,T} of (4).

Theorem 4.1 We have the inequalities

Yt ≤ Ỹt ≤ Ŷt ≤ Y ∗
t , t ∈ {0, ..., T}.

The proof of Theorem 4.1 is similar to the proof in [22]. However, it has to be focussed that it is sufficient
that the DMU functional under consideration is regular and recursively generated. For the convenience
of the reader the proof is therefore provided in Appendix A (while also comprising the structure of
argumentation in [22] slightly).
In view of Theorem 4.1 the idea is to construct recursively a sequence of pairs(

(τ (m)
t )t∈{0,...,T}, (Y

(m)
t )t∈{0,...,T}

)
m∈N0

where (τ (m)
t )t∈{0,...,T} is a time consistent stopping family for any m ∈ N0 such that Y

(m)
t = Φt(Zτ

(m)
t

),

and τ
(m+1)
t = inf{s ∈ {t, ..., T} | Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτ

(m)
u

)} for t ∈ {0, ..., T − 1}.

Next we start with some time consistent stopping family (τ (0)
t )t∈{0,...,T}, for example, a canonical choice

is τ0
t := t. Then due to Theorem 4.1, we have

Y
(0)
t ≤ Y

(m)
t ≤ Ỹ

(m+1)
t ≤ Y

(m+1)
t ≤ Y ∗

t for m ∈ N0, t ∈ {0, ..., T}, (6)

where Ỹ
(m+1)
t := max

t≤s≤T
Φt(Zτ

(m)
s

).

The iteration procedure may be stopped after at most T iterations, yielding an optimal stopping family.

Proposition 4.2 For t ∈ {0, ..., T} we have

Y
(m)
t = Y ∗

t if m ≥ T − t.

Hence τ
(m)
t is an optimal stopping time for the corresponding stopping problem at time t, if m ≥ T − t,

and in particular (τ (m)
t )t∈{0,...,T} is an optimal stopping family for m ≥ T.

Proof:
The proof may be done by adapting the proof of Proposition 4.4 in [22] in a similar way as is done for
proving Theorem 4.1 and therefore omitted. Indeed, a closer inspection of the proof of Proposition 4.4 (in
[22]) shows that only regularity, the fact that the DMU functional is recursively generated by a monotonic
system (Ψt), and the Bellman principle (see Theorem 3.4) is essential.
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Examples 4.3

1. Referring to Example 3.6, Proposition 4.2 guarantees that the proposed iteration method provides
a scheme to calculate super hedging prices and optimal exercises of discounted American options.

2. In view of Example 2.5 and Examples 2.6 the associated stopping problems may be solved iteratively
by the introduced method. In particular we have a numerical scheme for optimal stopping with g-
expectations.

5 Additive dual upper bounds

In this section the DMU functional Φ is assumed to be regular, conditional translation invariant, and
recursive. In fact, regularity implies normalization (take A = ∅), which implies by conditional translation
invariance Φt(Z) = Z for Ft−measurable Z, hence recursiveness. For clearness we will underline recur-
siveness nonetheless. For such a Φ we propose an additive dual representation for the stopping problem
(2), in terms of Φ−martingales introduced in Definition 2.3. As such this generalization may be seen as a
generalization of the representation of [29], and [17] for the standard stopping problem. We first extend
the classical additive Doob decomposition theorem.

Lemma 5.1 Let Φ be a regular, conditional translation invariant, and recursive DMU functional. Then
for any Z := (Zt)t∈{0,...,T} ∈ H there exists a unique pair (M,A) ∈ H ×H of a Φ−martingale M and a
predictable process A, such that M0 = A0 = 0, and

Zt = Z0 + Mt + At for t ∈ {0, ..., T}, P−a.s. (7)

Proof:
Define A recursively by A0 := 0, and At+1 := At + Φt(Zt+1) − Zt for t ∈ {0, ..., T − 1}. Then of course
A ∈ H and A is predictable. Next define M ∈ H via Mt := Zt − Z0 − At for t ∈ {0, ..., T}. Obviously
M0 = 0, and by conditional translation invariance (property (C3)),

Φt(Mt+1)
3)
= Φt(Zt+1)− Z0 −At+1 = Φt(Zt+1)− Z0 − (At + Φt(Zt+1)− Zt) = Zt − Z0 −At = Mt.

So M is a Φ−martingale and (7) holds. Now let (M ′, A′) ∈ H × H be another pair as stated. Then for
t ∈ {0, ..., T − 1} we may conclude by conditional translation invariance,

0 = Φt(M ′
t+1 −M ′

t) = Φt(Zt+1)− Zt + A′t −A′t+1,

in particular A′t+1 = A′t + Φt(Zt+1)− Zt. Hence by induction A′ = A, and so M ′ = M.

The next lemma may be regarded as a generalization of Doob’s optional sampling theorem. It is proved
in Appendix A.

Lemma 5.2 Let Φ be a regular, conditional translation invariant, and recursive DMU functional, and let
M be any Φ−martingale. Then for every Z := (Zt)t∈{0,...,T} ∈ H, each t ∈ {0, ..., T}, and each stopping
time τ ∈ Tt, we have

Φt(Zτ ) = Φt(Zτ + MT −Mτ ).
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Remark 5.3 Under the assumptions of Lemma 5.2 the statement

Φt(Zτ ) = Φt(Zτ + Mτ )−Mt,

that one might expect at a first glance, does not hold.

The Doob type Lemmas 5.1,5.2, and the Bellman principle Theorem 3.4, provide the ingredients to
establish the following additive dual representation.

Theorem 5.4 Let Φ be a regular, conditional translation invariant, and recursive DMU functional, and
MΦ

0 be the set of all Φ−martingales M with M0 = 0. For Z := (Zt)t∈{0,...,T} ∈ H let M∗ ∈ MΦ
0 be the

Φ−martingale of the decomposition of Y ∗ in (2) according to Lemma 5.1. Then

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) = ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)
= Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)

for t ∈ {0, ..., T}.

Proof:
Let A∗ := (A∗t )t∈{0,...,T} denote the predictable part of the decomposition of Y ∗ according to Lemma 5.1.
Since M∗ is a Φ−martingale, we have for t ∈ {0, ..., T}

0 = Φt(M∗
t+1)−M∗

t

(C3)
= Φt(M∗

t+1 −M∗
t )

(C3)
= Φt(Y ∗

t+1)− Y ∗
t −

(
A∗t+1 −A∗t

)
.

This implies A∗t+1 − A∗t = Φt(Y ∗
t+1)− Y ∗

t ≤ 0 due to the Bellman principle. Hence A∗ has nonincreasing
paths. Furthermore, by the Bellman principle Φt(Zt) = Zt ≤ Y ∗

t holds for every t ∈ {0, ..., T}. We thus
have

Zt −M∗
t + M∗

T = Zt + Y ∗
T − Y ∗

t + A∗t −A∗T ≤ Y ∗
T + A∗t −A∗T for t ∈ {0, ....T}.

Since A∗ is nonincreasing, Φ is conditional translation invariant and recursive, and M∗ is a Φ−martingale,
it follows that

Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)

(C3)

≤ Φt (Y ∗
T −A∗T ) + A∗t

(C3)
= Y ∗

0 + Φt(M∗
T ) + A∗t = Y ∗

0 + M∗
t + A∗t = Y ∗

t (8)

for t ∈ {0, ..., T}. Finally, using Lemma 5.2 and (8) we have for any t ∈ {0, ..., T} and M ∈MΦ
0 ,

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ + MT −Mτ ) ≤ ess inf
M∈MΦ

0

Φt

(
max

t≤j≤T
(Zj −Mj + MT )

)
≤ Φt

(
max

t≤j≤T
(Zj −M∗

j + M∗
T )
)
≤ Y ∗

t .

Example 5.5 Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free financial
market, and let Z := (Zt)t∈{0,...,T} be a nonnegative adaptive process satisfying sup

t∈{0,...,T}
sup
Q∈Q

EQ[Zt] < ∞.

The process Z may be viewed as a discounted American Option. Then both the DMU functional Φ
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defined by Φt(·) := ess sup
Q∈Q

EQ[· | Ft] and its conjugate Φt(·) = ess inf
Q∈Q

EQ[· | Ft], t ∈ {0, ..., T}, are regular,

translation invariant, and recursive. Let us further denote by X0 the set of X ∈
⋂

Q∈Q
L1(Ω,FT , Q) which

satisfy sup
Q∈Q

EQ[X] = 0. Then by Theorem 5.4 the superhedging price and the lowest arbitrage-free price

of Z may be represented by

inf
X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
and inf

X∈X0
Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) + X)

]
,

respectively.

Examples 5.6 Theorem 5.4 may be applied immediately to the following regular, translation invariant,
and recursive functionals (see also Remark 2.1).

1. Let Φ be a family of g-expectations as in Example 2.5 with driver g : Ω× [0, S]×R×Rd → R such
that g(ω, s, ·, z) is constant for (ω, s, z) ∈ Ω× [0, S]× Rd.

2. The DMU functional Φ recursively defined as in Examples 2.6, 2..

6 Multiplicative dual upper bounds

The additive dual representation for the standard stopping problem has a multiplicative version which is
due to [20]. We will develop in this section a multiplicative dual representation for the stopping problem
(2) when the DMU functional Φ is recursive and positively homogeneous. Note that from any positively
homogeneous recursively generated DMU functional we may obtain a recursive one, by multiplication with
a constant. To our aim we need an extension of the multiplicative Doob decomposition theorem.
As we do not want to burden the presentation with too much technicalities, we restrict our selves in this
section to the case where X = L∞(Ω,F , P).

Lemma 6.1 Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional. Let δ > 0,

and Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ δ P−a.s. for any t ∈ {0, ..., T}. Then there exists a unique pair
(N, U) ∈ H ×H of some Φ−martingale N and a predictable process U such that N0 = U0 = 1 and

Zt = Z0NtUt P a.s.

for t ∈ {0, ..., T}.

Proof:
Define processes U and N recursively by U0 := N0 := 1 and

Ut+1 := Ut
Φt(Zt+1)

Zt
, Nt+1 := Nt

Zt+1

Φt(Zt+1)
for t ∈ {0, ..., T − 1}.

Observe that U and N are well defined since by assumption Φt(Zt) ≥ Φt(δ) = δ due to monotonicity of
Φ. Obviously, U is predictable, N is a Φ−martingale, and it follows easily by induction that Zt = Z0NtUt

for all t ∈ {0, ..., T}.
Now let (N ′, U ′) ∈ H × H be another pair as stated. We will show that N ′

t = Nt, U
′
t = Ut P−a.s. for

t ∈ {0, ..., T} by induction. The case t = 0 is trivial. So let t ∈ {0, ..., T − 1} such that N ′
t = Nt, U

′
t =
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Ut P−a.s.. Firstly, Φt(Nt+1) = Nt = N ′
t = Φt(N ′

t+1) P−a.s. since N, N ′ are Φ−martingales. Therefore
by conditional positive homogeneity (C6)

Z0Ut+1Nt = Z0Ut+1Φt(Nt+1)
(C6)
= Φt(Zt+1)

(C6)
= Z0U

′
t+1Φt(N ′

t+1) = Z0U
′
t+1Nt.

Thus U ′
t+1 = Ut+1 P−a.s. due to Z0Nt > 0 P−a.s., and

Z0Ut+1Nt+1 = Zt+1 = Z0U
′
t+1N

′
t+1 = Z0Ut+1N

′
t+1 P−a.s..

Since Z0Ut+1 > 0 P−a.s. we have Nt+1 = N ′
t+1 P−a.s.

The next Lemma is a multiplicative version of Lemma 5.2. For a proof see Appendix A.

Lemma 6.2 Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional, and let Z :=
(Zt)t∈{0,...,T} ∈ H with Zt ≥ 0 P−a.s. for any t ∈ {0, ..., T}. If N := (Nt)t∈{0,...,T} denotes any
Φ−martingale satisfying Nt > 0 P−a.s., then

Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
for t ∈ {0, ..., T} and τ ∈ Tt.

Obviously, under the assumptions of this section Φ satisfies the Bellman principle (see Theorem 3.4),
which allows us to establish a multiplicative dual representation for the stopping problem (2).

Theorem 6.3 Let the DMU functional Φ be as in Lemma 6.1, let MΦ
+1 be the set of all Φ−martingales

N with N > 0 and N0 = 1, and let Z ∈ H with Z ≥ 0. We then may state for every t ∈ {0, ..., T} the
following:

(i)

Y ∗
t = ess sup

τ∈Tt

Φt(Zτ ) ≤ inf
N∈MΦ

+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(ii) If Φ satisfies in addition condition (C7), we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
.

(iii) If Z is as in Lemma 6.1 we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjN
∗
T

N∗
j

)
= Φt

(
max

t≤j≤T

ZjN
∗
T

N∗
j

)
,

where N∗ ∈MΦ
0 is the Φ−martingale in the multiplicative decomposition of Y ∗ in (6.1).

Proof:
Statement (i) is an immediate consequence of Lemma 6.2.
For the proof of statement (ii) let us consider an arbitrary ε > 0. The process Zε, defined by Zε

t := Zt ∨ ε
induces the process Y ε∗ via Y ε∗

t := ess sup
τ∈Tt

Φt(Zε
τ ) which fulfills the assumptions of Lemma 6.1. Therefore
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we may find a pair (Uε, Nε) consisting of a predictable process Uε and a Φ−martingale Nε ∈ MΦ
+1

satisfying
Y ε∗

t = Y ε∗
0 Nε

t Uε
t P a.s. for t ∈ {0, ..., T}.

Due to conditional positive homogeneity of Φ, the predictability of Uε, and since Nε is a Φ−martingale
we may conclude

1 = Φt

(
Nε

t+1

Nε
t

)
= Φt

(
Y ε∗

t+1U
ε
t

Y ε∗
t Uε

t+1

)
=

Uε
t

Uε
t+1

Φt(Y ε∗
t+1)

Y ε∗
t

for t ∈ {0, ..., T − 1}.

In view of the Bellman principle this implies

Uε
t+1

Uε
t

=
Φt(Y ε∗

t+1)
Y ε∗

t

≤ 1 for t ∈ {0, ..., T − 1}.

Hence Uε has nonincreasing paths. Furthermore Zε
t = Φt(Zε

t ) and so in particular, Zε
t ≤ Y ε∗

t due to the
Bellman principle. Combining, we obtain for t ∈ {0, ..., T},

Φt

(
max

t≤j≤T

Zε
j Nε

T

Nε
j

)
≤ Φt

(
max

t≤j≤T

Y ε∗
j Nε

T

Uε
j

)
= Φt

(
max

t≤j≤T

Y ε∗
T Uε

j

Uε
T

)
≤ Uε

t Φt

(
Y ε∗

T

Uε
T

)
= Uε

t Φt (Y ε∗
0 Nε∗

T ) = Uε
t Y ε∗

0 Φt (Nε∗
T ) = Y ε∗

t . (9)

Now let a common function g satisfy (1) in condition (C7) for all Zε
j , j = 0, ..., T. By regularity and

condition (C7) it then holds

Y ε∗
t := ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Zε
τ ) = ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Zε
j )

≤ ess sup
τ∈Tt

T∑
j=t

1[τ=j] (Φt(Zj) + g(ε)) = Y ∗
t + g(ε).

Hence with (9) we obtain

Y ∗
t + g(ε) ≥ ess inf

N∈MΦ
+1

Φt

(
max

t≤j≤T

ZjNT

Nj

)
(i)

≥ Y ∗
t for every t ∈ {0, ..., T}.

The proof of (ii) is completed by sending ε → 0.
Now let Z and δ > 0 be as in Lemma 6.1 and take ε such that 0 < ε < δ. We so have Zε = Z and then
statement (iii) follows from statement (i) and using (9) in the proof of (ii) (which holds independently of
condition (C7)).

Examples 6.4 Theorem 6.3 may be applied in the following situations.

1. Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free financial market,
and let Z := (Zt)t∈{0,...,T} be a nonnegative adaptive process satisfying sup

t∈{0,...,T}
sup
Q∈Q

EQ[Zt] < ∞.
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The process Z may be viewed as a discounted American Option with respect to the recursive
conditional positive homogeneous DMU functional Φt(·) := ess sup

Q∈Q
EQ[· | Ft]. Furthermore, let us

denote by X+1 the set of X ∈ L∞(Ω,FT , P) with X > 0 P−a.s. such that sup
Q∈Q

EQ[X] = 1. Then

the superhedging price and the lowest arbitrage-free price of Z may be represented by

inf
X∈X+1

Φ0

(
max

t∈{0,...,T}

ZtX

Φt(X)

)
and inf

X∈X+1
Φ0

(
max

t∈{0,...,T}

ZtX

Φt(X)

)
,

respectively (see also Example 5.5).

2. As another application of Theorem 6.3 we may consider the DMU functionals in Examples 2.6, 2,
since they are obviously recursive and positively homogeneous.

7 Consumption based representation

Throughout this section, Φ is a regular conditional translation invariant recursive DMU functional. For
such a functional we will propose a representation for the stopping problem (2) which can be seen as
generalization of the consumption upper bound in [4] and [5]. Due to the fact that Φ satisfies the Bellman
principle we can proof the following theorem.

Theorem 7.1 For any Z ∈ H we have

Y ∗
t := ess sup

τ∈Tt

Φt(Zτ ) = Φt

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+

 , t ∈ {0, ..., T},

with empty sums being defined zero.

Proof:
We shall proceed by backward induction over t. The case t = T is trivial. So let us assume for any

t ∈ {1, ..., T} that Y ∗
t = Φt

(
ZT +

T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+

)
is valid. Then due to Bellman principle Y ∗

t−1 =

(Zt−1 − Φt−1(Y ∗
t ))+ + Φt−1 (Y ∗

t ) , which implies by assumption and recursiveness property (C4)

Y ∗
t−1 = (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1

Φt

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


= (Zt−1 − Φt−1(Y ∗

t ))+ + Φt−1

ZT +
T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


Then the application of conditional translation invariance yields

Y ∗
t−1 = Φt−1

(Zt−1 − Φt−1(Y ∗
t ))+ + ZT +

T−1∑
j=t

(Zj − Φj(Y ∗
j+1))

+


= Φt−1

ZT +
T−1∑

j=t−1

(Zj − Φj(Y ∗
j+1))

+

 ,
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which completes the proof. The interesting feature of the representation in Theorem 7.1 is that if we
replace Y ∗ on the right-hand-side by a lower (upper) approximation we obtain an upper (lower) bound
for Y ∗ on the left-hand-side.

8 Numerical approaches for optimal stopping of some specific
DMU functionals

In this section we sketch how the different representations developed in Sections 4-7 may be utilized
for constructing (upper and/or lower) approximations of the of the optimal value of stopping problem
(2). In order to enable a feasible algorithm or simulation procedure for optimal stopping of a particular
DMU functional we naturally presume that we have a feasible algorithm or simulation procedure for the
functional itself at hand. In this respect we underline that numerical (simulation) methods for specific
DMU functionals is an interesting issue in it’s own right but considered to be beyond the scope of this
article. Another natural assumption is that we have some underlying process with some kind of Markovian
structure which can be simulated straightforwardly. More specifically, we assume that we are in the
following setting.

Setting for solving general optimal stopping problems by simulation

i) The filtration (Ft)t∈{0,...,T} is generated by some underlying stochastic process S := (St)t∈{0,...,T}
in some multi-dimensional state space, e.g. Rd.

ii) The process Z := (Zt)t∈{0,...,T} under consideration satisfies Zt = h(t, St) for some known nonnega-
tive measurable function h. For ease of exposition, h is assumed to be bounded.

iii) The DMU functional Φ = (Φt)t∈{0,...,T} is regular, recursively generated by (Ψt)t∈{0,...,T} with
generators satisfying Ψt(X) = X if X ∈ Ft, for any t ∈ {0, ..., T}. Hence in particular Φ is recursive
with Φt(X) = X of X ∈ Ft for t ∈ {0, ..., T}.

iv) For any t ∈ {0, ..., T} we have Φt(X) being σ{St}−measurable if X is σ{St, ...ST }−measurable (We
might think of S being Markovian w.r.t. the functional Φ). This condition is e.g. guaranteed in the
case that for any u, t ∈ {0, ..., T} with u ≤ t we have Ψt(X) is σ{Su, ..., St}−measurable whenever
X is σ{Su, ..., St+1}−measurable.

v) For any t ∈ {0, ..., T}, we may compute Φt(X) ∈ σ{St} if X ∈ σ{St, ...ST } by some kind of simulation
method.

In the standard case, where Φ represents the ordinary conditional expectation and S is Markovian in
the ordinary sense, iii), iv), and v) are obviously fulfilled. A canonical way of evaluating conditional
expectations is (Monte Carlo) simulation from a particular state (t, St) (particularly in higher dimensions).
In general there are many interesting examples, for instance, within the class of g−expectations:

Example 8.1 Let Φ be a family of g−expectations as in example 2.5 with Brownian motion B = (Bs)s≥0

and driver g : Ω×[0, S]×R×Rn → R being of the form g(ω, s, y, z) := f(Ss, y, z). Here f : Rn×R×Rd → R
is any Lipschitz function with f(·, 0) ≡ 0, and (Ss)s≥0 is an n−dimensional diffusion process with dynamics
given by the SDE,

dSs = µ(Ss) dt + σ(Ss) dBs.
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Under some further conditions of regularity for µ, σ and f, it may be verified that Φ satisfies assumption
iv) (cf. [18], Theorem 6.2). Furthermore simulation algorithms as required in assumption v) are already
available (see e.g. [16], [27]).
Moreover, if f does not depend on y, and is sublinear in z, then there is some set Q of probability measures
which are absolutely continuous w.r.t. P such that Φ admits the following robust representation

Φt(X) = ess sup
Q∈Q

EQ [X | σ{S1, ..., St}] ,

where the essential supremum is attained (see [7], proof of Theorem 3.1).

Below we will outline the implementation of the above simulation setting for different solution represen-
tations proposed in Sections 4-7.

Policy iteration

The policy iteration method in Section 4 may be readily applied if the time consistent stopping family
(τt) we start with is such that {τt = t} ∈ σ{St}. For example we just take the trivial family τt = t,
t ∈ {0, ..., T}. Then the iteration procedure will be analogue to the one spelled out in [22]. In short, given
an input stopping family (τt), simulate a set of N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T.
Determine on each outer trajectory S(n), the improved stopping time τ̂0. For this, one needs to simulate for
each time s = 0, 1, .. a set of M (inner) trajectories (mS

(n)
u )u=s,...,T , m = 1, ...,M to check by simulation

whether the event {
Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτu

)
}

in (5) is true. If s(n) is the first time where (5) is valid, we put τ̂
(n)
0 = s(n) on trajectory n. Finally we

compute Φ0(Zbτ0) from the sample Z
(n)bτ0

, n = 1, ..., N.

Dual upper bounds

We consider the construction of an additive dual upper bound for a regular, recursive DMU functional,
which is translation invariant. Let us assume that we are given a proxy Yt = U(t, St) of the Snell envelope
Y ∗

t = U∗(t, St). Note that the Snell envelope is indeed of this form due to assumptions i), ii), and iv).
For instance, for the DMU functional in Example 3.6, a proxy may be constructed by approximating the
Snell envelope with respect to a more simple functional, replacing the representing set Q of probability
measures by a smaller subset or even a singleton. Let MY be the Doob Φ-martingale of Y and consider
the upper bound

Y up
0 = Φ0( max

0≤t≤T

(
Zt + MY

T −MY
t

)
)

= Φ0

(
max

0≤t≤T

(
h(t, St) +

T−1∑
s=t

[U(s + 1, Ss+1)− Φs (U(s + 1, Ss+1))]

))
.

Similar as in [1] we are going to construct an approximation of this upper bound by a nested simulation.
We simulate N (outer) trajectories S(n), n = 1, ..., N, from t = 0 to T, and for each outer trajectory n,

and time s, s < T, a set of M (inner) two step trajectories (mS
(n)
u )u=s,s+1, m = 1, ...,M. On a fixed
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outer trajectory S(n) we then construct for each s an approximation of Φ(n)
s (U(s + 1, Ss+1)) by the inner

sample U(s + 1, 1S
(n)
s+1), ..., U(s + 1, MS

(n)
s+1), and next determine

ζ(n) := max
0≤t≤T

(
h(t, S(n)

t ) +
T−1∑
s=t

[
U(s + 1, S

(n)
s+1)− Φ(n)

s (U(s + 1, Ss+1))
])

.

We thus end up with the sample ζ(1), ..., ζ(N) of the random variable ζ := max
0≤t≤T

(
Zt + MY

T −MY
t

)
, from

which finally Y up
0 = Φ0(ζ) may be estimated.

Multiplicative and consumption upper bounds

From the simulation methods sketched above it will be clear in principle how to construct a multiplicative
upper bound for a positively homogeneous DMU functional, and how to construct an upper (lower) bound
due to the consumption representation in Theorem 7.1 for a translation invariant functional when a lower
(upper) bound of the Snell envelope is given.

Concluding remark

In this article different representations for the optimal stopping problem with respect to general DMU
functionals are presented. It is shown that these representations allow for a numerical treatment of the
generalized stopping problem. A detailed analysis of the numerical algorithms sketched in Section8, which
will depend on particular properties of the functional under consideration, remains to be done in future
work.

A Appendix

Proof of Theorem 4.1:
The inequalities Yt ≤ Ỹt and Ŷt ≤ Y ∗

t are obvious for any t ∈ {0, ..., T}. So inequality Ỹt ≤ Ŷt is left to
show. We shall use backward use induction.
Due to the definition of Ỹ and Ŷ , we have ỸT = ŶT = ΦT (ZT ). Suppose that Ỹt ≤ Ŷt holds for any
t ∈ {1, ..., T}. We then have to show that Ỹt−1 ≤ Ŷt−1. For this we first show sequentially

(1) 1[τ̂t−1=t−1]Ŷt−1 = 1[τ̂t−1=t−1]Φt−1(Zt−1).

(2) 1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs
).

(3) Φt−1(Zτt−1) ≤ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs)
}

.

Due to the definition of τ̂t−1 we have on the set {τ̂t−1 = t − 1}, Φt−1(Zt−1) ≥ max
t≤s≤T

Φt−1(Zτs), and on

the set {τ̂t−1 > t− 1}, Φt−1(Zt−1) < max
t≤s≤T

Φt−1(Zτs). Thus we may conclude immediately from (1)-(3)

Ŷt−1 ≥ max
{

Φt−1(Zt−1), max
t≤s≤T

Φt−1(Zτs
)
}
≥ max

{
Φt−1(Zτt−1), max

t≤s≤T
Φt−1(Zτs

)
}

= Ỹt−1,
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as required.

proof of (1):
By regulation condition (C2) we may find sequentially

1[τ̂t−1=t−1]Ŷt−1 = Φt−1(1[τ̂t−1=t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1=t−1]Zt−1) = 1[τ̂t−1=t−1]Φt−1(Zt−1),

which proves (1).

proof of (2):
1[τ̂t−1>t−1]Zτ̂t−1 = 1[τ̂t−1>t−1]Zτ̂t due to time consistency of (τ̂t)t∈{0,...,T}. Hence the regularity condition
implies

1[τ̂t−1>t−1]Ŷt−1 = Φt−1(1[τ̂t−1>t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1>t−1]Zτ̂t) = 1[τ̂t−1>t−1]Φt−1(Zτ̂t)

= 1[τ̂t−1>t−1]Ψt−1(Ŷt).

By the induction hypothesis we have Ŷt ≥ Ỹt, so we may conclude by monotonicity of Ψt−1,

1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1]Ψt−1(Ỹt) ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Ψt−1(Φt(Zτs
)) = 1[τ̂t−1>t−1] max

t≤s≤T
Φt−1(Zτs

).

Thus (2) is shown.

proof of (3):
Using regularity condition (C2) we obtain

Φt−1(Zτt−1) = 1[τt−1=t−1]Φt−1(Zτt−1) + 1[τt−1>t−1]Φt−1(Zτt−1)
= Φt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt−1).

1[τt−1>t−1]Zτt−1 = 1[τt−1>t−1]Zτt
due to time consistency of (τt)t∈{0,...,T}. Hence the application of regu-

larity again yields

Φt−1(Zτt−1) = sdarticleΦt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt
)

= 1[τt−1=t−1]Φt−1(Zt−1) + 1[τt−1>t−1]Φt−1(Zτt
),

obviously implying (3), and hence completing the proof.

Proof of Lemma 5.2:
We shall show the statement of Lemma 5.2 via backward induction. The case t = T is trivial since
TT = {T}. So let us assume that for any t ∈ {1, ..., T}, we have Φt(Zσ) = Φt(Zσ + MT −Mσ) for every
σ ∈ Tt. Let us fix an arbitrary τ ∈ Tt−1, and define σ(τ) := t1[τ=t−1] +τ1[τ>t−1] ∈ Tt. Then by assumption
Φt(Zσ(τ)) = Φt(Zσ(τ) + MT −Mσ(τ)), which implies via regularity and recursiveness,

1[τ>t−1]Φt−1(Zτ ) = 1[τ>t−1]Φt(Zσ(τ)) = 1[τ>t−1]Φt−1 ◦ Φt(Zσ(τ))

= 1[τ>t−1]Φt−1

(
Φt(Zσ(τ) + MT −Mσ(τ))

)
= 1[τ>t−1]Φt−1(Zσ(τ) + MT −Mσ(τ))

(C2)
= 1[τ>t−1]Φt−1(Zτ + MT −Mτ ).
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Moreover, by regularity, conditional translation invariance, and the Φ−martingale property of M we have,

1[τ=t−1]Φt−1(Zτ + MT −Mτ )
(C2)
= 1[τ=t−1]Φt−1(Zt−1 + MT −Mt−1)

(C3)
= 1[τ=t−1] (Zt−1 −Mt−1 + Φt−1(MT ))
= 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zt−1).

which completes the proof.

Proof of Lemma 6.2:
We shall show the statement of the lemma by backward induction. The case t = T is trivial since

TT = {T}. Let us assume that for t ∈ {1, ..., T} the equality Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
is valid for every

τ ∈ Tt.
Consider an arbitrary τ ∈ Tt−1, and define σ(τ) := 1τ=t−1t + 1τ>tτ ∈ Tt. By the induction assumption

we have Φt

(
Zσ(τ)NT

Nσ(τ)

)
= Φt(Zσ(τ)), so that regularity condition (C2) and recursiveness imply

1[τ>t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ>t−1]Φt−1

(
Zσ(τ)NT

Nσ(τ)

)
= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)NT

Nσ(τ)

))

= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)

))
= 1[τ>t−1]Φt−1

(
Zσ(τ)

) (C2)
= 1[τ>t−1]Φt−1 (Zτ ) .

Moreover, by regularity (C2), conditional positive homogeneity (C6), and the fact that N is a Φ−mar-
tingale, it holds

1[τ=t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ=t−1]Φt−1

(
Zt−1NT

Nt−1

)
(C6)
= 1[τ=t−1]

Zt−1

Nt−1
Φt−1(NT ) = 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zτ ).
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