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Abstract. A contour integral method recently proposed byWeideman [IMA J. Numer. Anal., 30
(2010), pp. 334–350] for integrating semidiscrete advection-diffusion PDEs is improved and extended
for application to some of the important equations of mathematical finance. Using estimates for the
numerical range of the spatial operator, optimal contour parameters are derived theoretically and
tested numerically. An improvement on the existing method is the use of Krylov methods for the
shifted linear systems, the solution of which represents the major computational cost of the algorithm.
A parallel implementation is also considered. Test examples presented are the Black–Scholes PDE
in one space dimension and the Heston PDE in two dimensions, for both vanilla and barrier options.
In the Heston case efficiency is compared to ADI splitting schemes, and experiments show that the
contour integral method is superior for the range of medium to high accuracy requirements.
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1. Introduction. In this paper we focus on initial value problems for linear
systems of ODEs

(1.1) ut = Au+ b(t) (0 ≤ t ≤ T ), u(0) = u0,

that arise from semidiscretizations of some of the prominent PDEs of mathematical
finance. In particular, we consider the well-known Black–Scholes model as well as its
more challenging two-dimensional generalization, the Heston model, for both vanilla
and barrier options.

Them×m real matrix A in (1.1) represents a discrete approximation to an elliptic
operator A, and the m × 1 real vectors u(t), u0, b(t) represent, respectively, the
semidiscrete solution values at time t, the initial values, and boundary contributions.
For the meaning of these variables in the finance context, we refer to sections 3 and 4
below. In this paper we use semidiscretizations based on finite differences, and hence
A is assumed to be large and sparse.

Linear systems such as (1.1) can be integrated in time with, for example, Runge–
Kutta methods, multistep methods, or operator splitting schemes. In the last decade
or two, however, an alternative technique based on Laplace transformation and con-
tour integration has gained popularity. We refer to [5, 7, 8, 22, 23] for general systems
and to [13] for a specific application to mathematical finance.

We start with a brief introduction of the method. Let û(z) and b̂(z) denote,
respectively, the Laplace transforms of u(t) and b(t). Define I as the m×m identity
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matrix. Then, by taking the Laplace transform of (1.1), one obtains

û(z) =
(
zI −A

)−1(
u0 + b̂(z)

)
,

provided z is not part of the spectrum of A. The inverse is given by the Bromwich
integral

(1.2) u(t) =
1

2πi

∫
Γ

eztû(z) dz,

a formula also associated with the names of Dunford and Taylor in the PDE context.
The contour Γ is a simple, closed, positively oriented curve that encloses both the
spectrum of A and all the singularities of b̂(z).

Talbot was one of the first authors to suggest the numerical integration of (1.2)
as a computational tool for solving PDEs [27]. The key idea was to deform the
contour Γ so that it starts and ends at Re z = −∞, while winding counterclockwise
around the spectrum of A and the singularities of b̂(z). Such a contour is effective
for computation, because the factor ezt causes rapid decay of the integrand in (1.2).
Functions of rapid decay are known to be well suited for fast and accurate integration
by the simple trapezoidal or midpoint rules [16, 17, 26].

On a suitably parameterized contour, say,

Γ : z = z(φ), −∞ < φ <∞,

formula (1.2) takes the form

(1.3) u(t) =
1

2πi

∫ ∞

−∞
ez(φ)tû

(
z(φ)

)
z′(φ) dφ.

Approximation of this integral by the trapezoidal rule yields

(1.4) u(t) ≈ h

2πi

∞∑
k=−∞

ezktz′k ûk,

where h is the uniform node spacing, and

(1.5) φk ≡ kh, zk ≡ z(φk), z′k ≡ z′(φk), ûk ≡ û(zk).

For the midpoint rule, use φk =
(
k + 1

2

)
h.

In a practical computation the series is truncated. If one further assumes that
the contour Γ is symmetric with respect to the real axis, the quadrature sum (1.4)
can be approximated by

(1.6) u(t) ≈ h

π
Im

⎧⎨⎩
N−1∑′

k=0

ezktz′k ûk

⎫⎬⎭ .

The primed sigma indicates that the first term in the sum should be halved (not
implemented when the midpoint rule is used). The vectors ûk are solved from the N
linear systems

(1.7)
(
zkI −A

)
ûk = u0 + b̂(zk), k = 0, 1, . . . , N − 1.
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Solving these so-called shifted linear systems represents the major computational cost
of the algorithm. In comparison, the cost of the vector sum (1.6) is negligible. It is
therefore important to use efficient strategies for solving these linear systems.

The first strategy is based on the observation that the systems (1.7) are indepen-
dent and can therefore be solved in parallel. This has been pointed out in [7, 8, 22, 23]
and elsewhere. A second approach, new in this context as far as we know, is the use
of methods based on Krylov subspace iteration. These methods can be efficient for
shifted systems such as (1.7) since only one Krylov basis has to be constructed for all
the shifted systems. This strategy works best if the right-hand sides are independent
of z, which is seldom the case because of the presence of b̂(z) in (1.7). In the next
paragraph, we discuss a possible modification for circumventing this difficulty. The
details of this Krylov method are given in the appendix.

One situation where the right-hand side is independent of z is when b̂(z) = 0, i.e.,
b(t) = 0 for all t > 0. In this case the solution to (1.1) reduces to u(t) = exp(At)u0,
and then (1.6) represents a method for computing the matrix exponential times a given
vector. When b(t) is nonzero but sufficiently simple, a modification again allows one
to compute essentially the matrix exponential times a vector. To demonstrate this,
consider the special case that arises in our application, namely, b(t) = b1 − e−rtb2.
Here b1 and b2 are constant vectors and r is a constant scalar. In this case the solution
to (1.1) can be expressed as

(1.8) u(t) = exp(At) c−A−1b1 + e−rt(rI +A)−1b2,

where

(1.9) c = u0 +A−1b1 − (rI +A)−1b2.

The term exp(At) c can be approximated by (1.6), with the right-hand side of
(1.7) replaced by c. Since this right-hand side is independent of z, the Krylov iteration
mentioned above can be applied directly. Another positive aspect of this reformulation
is that the placement of the contour is not restricted by the location of the singularities
of b̂(z), but only by the eigenvalues of A. The price one pays for this is the additional
computation of A−1b1 and (rI + A)−1b2. Of course, if either of the matrices A or
rI +A is singular or poorly conditioned, this approach is not viable.

A good choice of contour, Γ, and a suitable parametrization is key to the success
of the contour integral method. Talbot suggested a cotangent contour, but simpler
contours such as parabolas and hyperbolas have since been proposed and analyzed
[5, 6, 7, 8, 14, 15, 23]. Here we extend the work of [32], and particularly [31], by
considering parabolas of type

(1.10) Γ : z = α+ μ
(
iφ+ 1

)2
, −∞ < φ <∞,

with α and μ real parameters, and μ > 0.
A parabolic contour is the natural curve when solving systems (1.1) with matrices

A that satisfy a resolvent condition with respect to a region bounded by a critical
parabola

(1.11) Π : x = a− by2, x ≡ Re z, y ≡ Im z,

with a and b real, and b > 0. In section 3 we derive such a resolvent condition for
the Black–Scholes equation. This information is essential for estimating the optimal
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parameters α and μ in the contour (1.10), as well as the step-size h in the quadrature
rule (1.6). In the case of the Heston PDE, no such resolvent condition is known at
present. We offer suggestions, however, for approximating it so that the parameters
α, μ, and h are still reasonably close to optimal.

The outline of the paper is as follows. In section 2 we discuss the selection of
the parameters α and μ and the step-size h. Applications to the PDEs of finance are
presented in section 3 (Black–Scholes) and section 4 (Heston). In the latter case we
compare the contour integral method to state-of-the-art alternating direction implicit
(ADI) methods with regard to accuracy and efficiency. In section 5 we compare the
method proposed here with a related contour integral method discussed in [13]. Fi-
nally, in section 6 we present conclusions and discuss various issues for future research.

2. Parameter selection. The accuracy of the contour integral method critically
depends on good choices for α and μ in (1.10), as well as h in (1.6). In this section we
show that α is determined by the critical parabola (1.11), while the optimal values of
μ and h depend on (1.11) as well as the values of N and t.

Parameter tuning like this was done in [31, 32]. We shall follow a similar approach
here, except we consider an arbitrary critical parabola (1.11). By contrast, in [31]
and [32] the cases a = 0, b = 1 and a = 0, b → ∞ were considered, respectively.
Generalizing this work, we therefore consider the conformal map

(2.1) z = α+ μ
(
i w + 1

)2
, w = φ+ i ψ,

with φ and ψ real. For fixed ψ and −∞ < φ < ∞, this defines a parabola in the
z-plane, symmetric with respect to the real axis. A few examples are shown in the
left diagram of Figure 2.1. When ψ = 0 the parabola coincides with the contour of
integration Γ; cf. (1.10).

2.1. Choice of α. As a preliminary step for the parameter tuning we need to
map (2.1) to the critical parabola (1.11). Writing z = x+ iy, one gets from (2.1)

x = α+ μ
(
(1− ψ)2 − φ2

)
, y = 2μφ(1 − ψ).

Solving for (1− ψ)2 from x = a− by2 gives

(2.2) (1 − ψ)2 =
μφ2 + a− α

μ
(
1 + 4 bμ φ2)

.

The right-hand side is independent of φ, provided

μφ2 + a− α = γ
(
1 + 4 bμφ2

)
for some positive constant γ. Comparing coefficients of φ2 yields γ = 1/(4b), and
comparing the remaining terms yields

(2.3) α = a− 1

4b
.

Taking the square root in (2.2) and selecting the minus sign for the correct orientation
gives

(2.4) ψ = 1− 1

2
√
μb
.

In summary, if α is given by (2.3) and ψ takes the constant value (2.4), then (2.1)
maps to the parabola (1.11). The discussion of the next subsection should make it
clear why this is the appropriate choice of α.
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Re z

Im zψ=c
−

ψ=0

ψ=c
+

ψ=1

Γ

Π

ψ=c
−

ψ=0

ψ=c
+

ψ=1

Re w

Im w

Fig. 2.1. Schematic representation of the conformal map (2.1). In the left figure Γ refers to
the parabola (1.10), Π refers to (1.11), and c+ and c− are the values defined by (2.8) and (2.11)
respectively. The width of the strip on the right determines the size of the discretization error in
the trapezoidal/midpoint rule; cf. (2.6).

2.2. Discretization and truncation errors. The optimal values of μ and h are
determined by analyticity properties of the integrand of (1.3). For this we need error
estimates for the trapezoidal or midpoint rules when integrating analytic functions
on the real line, a topic that has been investigated in [16, 17, 26] and elsewhere. Here
we cite a theorem of Martensen [16], originally stated for the trapezoidal rule but
trivially modified for the midpoint rule, namely,∫ ∞

−∞
f(φ) dφ = h

∞∑
k=−∞

f(φk) +DE(h),

where the discretization error, DE(h), is bounded by

(2.5) |DE(h)| ≤ 2M(c)

e2πc/h − 1
, M(c) ≡

∫ ∞

−∞
|f(φ+ ic)| dφ.

It is assumed in [16] that f(φ) is real-valued, and its analytic continuation f(φ+ iψ)
is absolutely integrable on ψ = c and analytic in the strip ψ ∈ (−c, c). Thus, the
wider this strip of analyticity, the quicker the convergence.

It is relatively straightforward to extend this estimate to the case where f(φ) is
complex vector-valued. This is the situation for the integral (1.3), where the integrand
has different analytic properties in the upper and lower half-planes. The error bound
is modified to DE(h) = DE+(h) +DE−(h), where

(2.6) |DE+(h)| ≤
M(c+)

e2πc+/h − 1
, |DE−(h)| ≤

M(c−)

e−2πc−/h − 1
,

and analyticity of the integrand is assumed in ψ ∈ (c−, c+), with c− < 0, c+ > 0.
To illustrate how these error estimates are applied to the approximation (1.3)–

(1.4), we refer to Figure 2.1, which shows a schematic representation of the conformal
map (2.1). The lower half-plane ψ < 0 maps to the exterior of the parabola (1.10),
and the strip 0 < ψ < 1 maps to its interior. When ψ → 1 the parabola degenerates
into the half-line x ≤ α, y = 0.

Estimate of DE+: We apply the definition of M(c) in (2.5) to (1.3) to obtain

(2.7) M(c+) ≤ 1

2π
max

−∞<φ<∞
{‖(z(w)I −A)−1‖‖a(z(w))‖}∫ ∞

−∞

∣∣ez(w)tz′(w)
∣∣ dφ,
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where w = φ + ic+. Here a is either the right-hand side of (1.7) or the vector c
in (1.9).

To make the denominator in the error bound (2.6) large, we would like to maximize
c+. We cannot let c+ → 1, however, as the term M(c+) may become large as we do
so. To see this, consider the term in braces in (2.7), and in particular the resolvent
norm, ‖(z(w)I − A)−1‖. As c+ is increased, the parabola z(φ + ic+) will intersect
the spectrum of A and the resolvent norm will blow up. If A is a normal matrix, this
will determine the maximum possible value of c+. If A is nonnormal, however, the
resolvent norm may already be huge for much smaller values of c+.

This situation was discussed in [20] and [29, sect. 12]. It was shown that for a
model advection-diffusion problem there exists a critical parabola, like Π in (1.11),
inside of which the resolvent norm can be large, but outside of which it is relatively
small. We therefore need to restrict the value of c+ so that the parabola z(φ + ic+)
does not enter the inner region. In order to maximize c+, we therefore map z(φ+ ic+)
to Π.

Characterizing the critical parabola Π was done in [20, 29] in terms of pseudospec-
tra and the numerical range. For the matrix A, the numerical range (or field of values)
is defined by

W (A) =
{
u∗Au | u ∈ C

m, u∗u = 1
}
.

The following bound, taken from [29, sect. 17] and [30], confirms that the resolvent
norm may be large if z → W (A):

‖(zI −A)−1‖2 ≤ 1

dist(z,W (A))
, z /∈W (A).

In the applications of the next two sections we shall estimateW (A) and hence identify
an appropriate Π that encloses it.

In order to map z(φ+ ic+) to Π we use the analysis of subsection 2.1 and deduce
from (2.4) that the optimal choice of c+ is

(2.8) c+ = 1− 1

2
√
μb
.

The corresponding value of α is given by (2.3).
With this choice of c+ the denominator in (2.6) becomes, as h→ 0,

(2.9) e2πc+/h − 1 = O
(
e

2π
h

(
1− 1

2
√

μb

))
.

The integral in (2.7) can be estimated as

(2.10)

∫ ∞

−∞

∣∣ez(w)tz′(w)
∣∣ dφ = O

(
eat
)
,

since Π intersects the real axis at z = a. We combine the exponential contributions
in (2.9) and (2.10) and ignore the algebraic terms in (2.7). Then (2.6) yields the
following estimate for the discretization error:

DE+ = O
(
ed+
)
, d+ ≡ a t− 2π

h

(
1− 1

2
√
μb

)
.
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We have assumed in the above analysis that the singularities of b̂(z) are con-
tained in the interior of Π, so that they place no additional restrictions on the width
of the strip. For the other cases, we suggest a simple modification at the end of
subsection 2.3. Note that when the implementation (1.8) is employed this is not an
issue.

Estimate of DE−: Next, consider ψ < 0. Since the integrand of (1.3) is analytic
in this half-plane, one can in principle let ψ → −∞. The resolvent norm is in this
case not a limiting factor, as it is assumed relatively small in the region outside Π. In
this case, however, the estimate analogous to (2.10) is∫ ∞

−∞

∣∣ez(w)tz′(w)
∣∣ dφ = O

(
eαt+μt(1−c−)2),

the right-hand side of which grows unboundedly as c− → −∞. The optimal value of

c− can be obtained by considering also the factor e−2πc−/h − 1 in the denominator of
the right-hand side of (2.6), as was shown in [31]. Combining these two exponential
contributions yields

eαt+μt(1−c−)2

e−2πc−/h − 1
∼ e g(c−), g(c−) = αt+ μt(1− c−)

2 +
2πc−
h

.

The function on the right has a unique minimum at

(2.11) c− = 1− π

μth
.

By computing the corresponding value of g(c−), the discretization error, DE−, can
be estimated as

DE− = O
(
ed−
)
, d− ≡ α t− π2

μth2
+

2π

h
.

Estimate of TE: An additional error, the truncation error, is committed in the
truncation of (1.4) to (1.6). This is estimated as simply the magnitude of the first
omitted term, which is approximately

TE = O
(
edT
)
, dT ≡ α t+ μt(1 − (hN)2).

2.3. Optimal strategy. For the three error components to be asymptotically
equal, one requires

d+ = d− = dT ,

which represent two equations for the two parameters (μ, h). We sketch the solution
procedure briefly.

By setting d− = dT and solving the resulting quadratic equation for μt, one
obtains

(2.12) μt =
π

h (1± hN)
.

The plus sign ensures that c− in (2.11) is negative, and hence the formula for dT
simplifies to

dT = α t+
π

h
− πN.
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Setting d+ equal to this quantity yields, after simplification,

(2.13)
π√
μb

= (α− a)th+ π(3 − hN).

Squaring both sides and making use of (2.3) and (2.12) yields a quadratic equation
for h, namely,

(2.14)
(
4 πNb− t

)2
h2 − 8 bπ

(
5 t+ 12 πNb

)
h+ 144 b2π2 = 0.

Elementary analysis shows that for all positive t, N , and b, this equation has two
positive real roots, h1 and h2, with 0 < h1 < h2. The exception occurs when the
coefficient of the quadratic term vanishes, in which case there is a single positive root,
h1. In squaring (2.13) a spurious root was introduced, and further analysis shows
that it is h2 that should be discarded. We summarize as follows.

Proposition 2.1 (optimal parameter selection). Given values t, a, b, and N ,
solve (2.14). The smaller root, h = h1, defines the step-size in the quadrature method
(1.6). Substitute this value of h into (2.12) and take the plus sign to obtain the
parameter μ. Together with the value α given by (2.3), this defines the contour of
integration Γ in (1.10).

It is instructive to compare (2.14) to the results of [31, 32]. First, as b→ ∞ (i.e.,
eigenvalues on the real axis) it is readily checked that one obtains the formulas for h
and μ from [32]. Second, if b = 1, we recover the results of [31].

It is also instructive to look at asymptotic values of these parameters. We have,
for the optimal h and μ,

h =
3

N
+O(N−3/2), μt =

πN

12
+O(N1/2),

and the common value of d+ = d− = dT satisfies

(2.15) d = −2

3
πN +O(N1/2).

To leading order this indicates a convergence rate of the form O
(
exp(− 2

3 πN)
)
, also

derived in [32]. We remark that this estimate of the convergence rate is independent
of the size of the matrix A.

The implied constant in the estimate (2.15) depends on
√
t/b. One can expect

the accuracy to deteriorate as t→ ∞, and similarly as b→ 0. On the other hand, the
situation b→ ∞ should yield relatively higher accuracy.

Note that a numerical verification of (2.15) is not entirely straightforward, since
this estimate is valid in the limit N → ∞. As discussed in the next section, it is not
possible to take N larger than 15 or so before roundoff error becomes a factor in a
practical computation.

We conclude by recalling that in subsection 2.2 we have assumed that the sin-
gularities of b̂(z) are contained in the interior of Π. In the applications below it can

happen that singularities of b̂(z) are located outside Π, but on the negative real axis.
In such cases we shall simply take a = 0 when determining the contour of integration
(1.10). That is, we translate the critical parabola Π so that it includes the singular-

ities of b̂(z). This is justified by the fact that the optimal parameters as determined
by (2.12) and (2.14) and the optimal convergence rate given by (2.15) depend only
on b, not on a.
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2.4. Summary of two implementations. The above discussion leads us to the
following two recommendations for implementing the contour integral method. The
first is useful for parallel implementation, and the second is intended for serial imple-
mentation by Krylov iteration. For both implementations we assume that the numer-
ical range of the matrix A is contained in a parabola (1.11), and that the values of a
and b can be estimated. The user supplies values of N and t in addition to a and b.

Implementation I:
1. Compute b̂(z) and its singularities. If they are not in the interior of (1.11),

increase the value of a until they are.
2. Compute α, μ, and h as described in Proposition 2.1.
3. Compute the nodes zk and the weights z′k for k = 0, 1, . . . , N − 1 according

to (1.5) and (1.10).
4. Solve the shifted systems (1.7) for the transforms ûk by some direct method.

This can be done in parallel, as described in the appendix.
5. Compute the vector sum (1.6) to obtain an approximation to u(t).

In the second implementation the special situation b(t) = b1− e−rtb2 is assumed.
In addition, it is assumed that neither A nor rI +A are ill-conditioned matrices.

Implementation II:
1. Compute A−1b1, (rI +A)−1b2 and c as defined in (1.9).
2. As in step 2 of Implementation I.
3. As in step 3 of Implementation I.
4. Solve the shifted systems (1.7), with right-hand side equal to c. The Krylov

iteration of the appendix is used for this.
5. Use the vector sum (1.6) to compute an approximation to the term exp(At)c

in (1.8) and hence an approximation to u(t).
In step 3 of the first implementation, the user has the freedom to use either

the trapezoidal or midpoint nodes φk. In the second implementation, the use of the
trapezoidal rule is recommended; see the appendix.

3. The Black–Scholes PDE. Our first application is the Black–Scholes PDE,

(3.1)
∂u

∂t
(s, t) =

1

2
σ2s2

∂2u

∂s2
(s, t) + rs

∂u

∂s
(s, t)− ru(s, t) (s > L, 0 < t ≤ T ).

Here r ≥ 0 and σ > 0 denote given real constants that represent the interest rate and
the volatility, respectively. L ≥ 0 represents a given lower barrier, and T > 0 is the
given maturity time of the option.

The Black–Scholes PDE constitutes the seminal model in financial option pricing
theory; cf. [2, 24, 28, 33], for example. It is a time-dependent advection-diffusion-
reaction equation, with spatial variable s. Initial and boundary conditions for (3.1)
are determined by the specific option under consideration. The solution value u(s, t)
then represents the fair price of this option when the underlying asset price equals s
at time T − t.

We note that (semi)analytical pricing formulas have been established for most
options in the Black–Scholes framework. Nevertheless, numerical solution of equation
(3.1) remains a worthwhile exercise, since it forms the starting point for many (non-
trivial) generalizations in contemporary financial mathematics. We consider one such
generalization in section 4.

To render the numerical solution of (3.1) feasible, it is common to restrict the
spatial domain to a bounded set [L, S] with fixed S taken sufficiently large. We shall
assume boundary conditions of Dirichlet type.
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The Black–Scholes PDE can be written in terms of the elliptic operator A defined
by

(3.2) (Au)(s) = 1

2
σ2s2u ′′(s) + rsu ′(s)− ru(s) (L ≤ s ≤ S)

for u ∈ D(A) = {u | u : [L, S] → C is twice continuously differentiable and u(L) =
u(S) = 0}. Note that it is not necessary to consider the weak form here. Let 〈·, ·〉 be
the standard inner product on D(A). To determine suitable contours of integration,
we study the numerical range of A, defined by

W (A) = {〈Au, u〉 | u ∈ D(A) and 〈u, u〉 = 1} .
The following theorem shows that the numerical range of A is bounded by a parabola
Π of the form (1.11).

Theorem 3.1. Let the operator A be given by (3.2). Then

W (A) ⊂
{
z | z = x+ iy , x ≤ a− by2, with a =

3

8
σ2 − 3

2
r , b =

1

2
σ2/(r − σ2)2

}
whenever r �= σ2. Further, if r = σ2, then

W (A) ⊂
{
z | z = x+ iy , x ≤ −9

8
r , y = 0

}
.

Proof. Let u ∈ D(A) with 〈u, u〉 = 1. Integration by parts yields∫ S

L

s2u ′′(s)ū(s) ds = −
∫ S

L

s2|u ′(s)|2 ds− 2

∫ S

L

su ′(s)ū(s) ds.

Using this, we get

〈Au, u〉 = −1

2
σ2P + (r − σ2)Q− r,

where

P =

∫ S

L

s2|u ′(s)|2 ds, Q =

∫ S

L

su ′(s)ū(s) ds.

A second integration by parts implies that Q = −Q̄−1 and thus ReQ = − 1
2 . Next, by

the Cauchy–Schwarz inequality there holds |Q| ≤ √
P and, consequently, (ImQ)2 ≤

P − 1
4 . Write x = Re 〈Au, u〉 and y = Im 〈Au, u〉. Then we obtain

x = −1

2
σ2P +

1

2
σ2 − 3

2
r and y2 ≤ (r − σ2)2

(
P − 1

4

)
.

This readily leads to the result of the theorem.
Further theoretical analysis complemented by numerical experiments suggest that

the bound of Theorem 3.1 on W (A) is sharp. Note, however, that in the discussion of
section 2 we have considered the numerical range of the matrix A, not the operator
A. The latter is typically easier to estimate, with Theorem 3.1 being a good exam-
ple. Here we shall make the assumption that for all practical semidiscretizations the
numerical range of the matrix A forms a reasonable approximation to the numerical
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range of the operator A, at least in the important region near the intersection of the
boundary of W (A) and the real axis. In view of the parabolic bound of Theorem 3.1,
the contour integral method with parabolic contour from sections 1 and 2 is thus
naturally suited for the Black–Scholes PDE.

We consider a standard semidiscretization of the Black–Scholes PDE, defined by
the usual central second-order finite difference (FD) schemes for the advection and
diffusion terms. For ease of formulation, we use a uniform spatial grid sj = L+ j ·Δs
(j = 1, 2, . . . ,m), Δs = (S−L)/(m+1). Then a semidiscrete system (1.1) is obtained
with m×m tridiagonal matrix A given by

(3.3) A = tridiag

(
σ2s2j

2(Δs)2
− rsj

2Δs
, − σ2s2j

(Δs)2
− r ,

σ2s2j
2(Δs)2

+
rsj
2Δs

)
.

As a prototype example we take a European call option. For many other more
exotic options only the initial and boundary conditions change, and our method can
be applied directly. We provide an example of this in section 4. If K ∈ (0, S) denotes
the given strike price, then the price of a European call option corresponds to L = 0
and the initial condition

u(s, 0) = max(0, s−K) (0 ≤ s ≤ S)

and the Dirichlet boundary conditions

u(0, t) = 0 (0 ≤ t ≤ T ),

u(S, t) = S − e−rtK (0 ≤ t ≤ T ).

The initial vector u0 in (1.1) is obtained by direct evaluation of the above initial
condition at the spatial grid points s1, s2, . . . , sm. For 0 ≤ t ≤ T , the vector b(t) is
given by

b(t) = b1 − e−rtb2, b1 = (0, 0, . . . , 0, γS)T, b2 = (0, 0, . . . , 0, γK)T,

where

γ =
σ2s2m
2(Δs)2

+
rsm
2Δs

.

As a first numerical illustration we apply the method to the semidiscrete Black–
Scholes PDE formulated above with m = 200 grid points and N = 1, 2, 3, . . . , 30.
We use Implementation I with the midpoint nodes; see subsection 2.4. The Laplace
transform of b(t) is

b̂(z) =
1

z
b1 − 1

z + r
b2 ,

which has singularities at z = 0 and z = −r. The singularity z = 0 is outside the
numerical range W (A) whenever a = 3

8σ
2 − 3

2r < 0. When this happens, a = 0 is
used in our implementation, as explained in the last paragraph of subsection 2.3. For
the (direct) solution of the linear systems (1.7), we employ here MATLAB’s backslash
operator; see the appendix.

We arbitrarily fix r = 0.06, t = T = 1, K = 80, S = 200 and consider two values
for the volatility: σ = 0.20 and σ = 0.05. Figure 3.1 shows the numerical results,
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Fig. 3.1. Contour integral method (Implementation I, midpoint rule) for the Black–Scholes
PDE with r = 0.06, t = T = 1, K = 80, L = 0, S = 200. Number of spatial grid points: m = 200.
Top row: σ = 0.20. Bottom row: σ = 0.05. Left column: eigenvalues of the semidiscrete Black–
Scholes matrix A (pluses), analytical bound for the numerical range of the operator A (dashed line),
and contours for N = 8, 12, 16, 20 (solid lines) with points zk (bullets). Right column: temporal
error in the maximum norm vs. N = 1, 2, 3, . . . , 30.

where the top row represents σ = 0.20 and the bottom row σ = 0.05. The left column
displays the contours (solid lines) for the sample values N = 8, 12, 16, 20 together with
the actual points zk (bullets) used. Here, as N increases, the contours move to the
right. Subsequently, the parabola from Theorem 3.1 that bounds W (A) is included
(dashed line). Finally, the eigenvalues of the semidiscrete matrix A that lie in the
displayed domain are shown (pluses).

Using the software package EigTool [35], we estimated also the numerical range
W (A) of the actual semidiscrete matrix A, and this was found in both cases to agree
well with the parabolic region given by Theorem 3.1. (To avoid clutter in Figure 3.1,
we have not displayed this result.) For σ = 0.05 the parabola is much wider than for
σ = 0.20, which is also obvious by considering the values of b from Theorem 3.1: these
are b ≈ 0.38 and b = 50, respectively. This indicates that if σ = 0.05 the operator A
(or matrix A) deviates much more from normality than if σ = 0.20.

The right column of Figure 3.1 shows the temporal error, measured in the maxi-
mum norm, which is defined as the difference between the exact solution value u(T )
to the semidiscrete system and its approximation obtained with our contour integral
method, i.e., the error in (1.6). Note that this error does not contain the error due
to semidiscretization. We are interested here in studying the error in (1.6) by itself,
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Fig. 3.2. Temporal errors of the contour integral method (Implementation I, midpoint rule)
when N = 12 for the Black–Scholes PDE with t = T = 1, K = 80, L = 0, S = 200. Error levels are
10−8, 10−7, . . . , 100 counting from top to bottom. Number of spatial grid points: m = 200.

to validate our theory of section 2. In sections 4 and 5 we shall also incorporate the
spatial error.

We computed a reference value for u(T ) by formula (1.8) using the expm command
in MATLAB to obtain the matrix exp(At) for t = T . We remark that this command
is in general far more expensive than the contour integral approach; see the appendix.

From Figure 3.1, it is clear that the temporal errors decay rapidly when N ≤ 15
and the convergence rate is geometric: the errors behave like O

(
exp(−ωN)

)
with

(near) constant ω > 0. We compute, by least-squares approximation, that ω ≈ 2.06
(for σ = 0.20) and ω ≈ 1.87 (for σ = 0.05). The theoretical value ω = −(d+/N) satis-
fies ω ≈ 2.08 (for σ = 0.20) and ω ≈ 1.88 (for σ = 0.05), and hence these are in good
agreement. Subsequent experiments show that the temporal errors are essentially
independent of the number of spatial grid points m as mentioned below (2.15).

Note that beyond N = 16 the temporal errors start to increase. This is caused by
roundoff errors and the inherent ill-conditioning of the Laplace inversion formula. For
financial applications this is not a critical issue, however, as this phenomenon occurs
only in the region of very high accuracies which are in general not required in finance.
We mention that roundoff error control could be incorporated by employing similar
strategies to those in [31].

To gain further insight into the accuracy of our contour integral method, we have
applied it with N = 12 in the case of a 40×40 grid of values (r, σ) ∈ [0, 0.2]×[0.01, 0.4].
Figure 3.2 shows a contour plot of the temporal errors. We observe that the errors are
always less than 10−4 under the mild condition that σ ≥ 0.05, r ≤ 0.2. This accuracy
is sufficient for most applications in finance. Note that if σ tends to zero, for fixed
r > 0, then the error increases. This is also expected in view of the theory of section 2
and the fact that b = 1

2σ
2/(r − σ2)2 approaches zero.

4. The Heston PDE. As a second application we consider the Heston PDE [9].
This equation forms a prominent, two-dimensional extension of the Black–Scholes
PDE. In addition to standard European call options, we also consider in this sec-
tion European down-and-out barrier options. They represent a popular type of ex-
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otic, path-dependent option. Closed-form analytical pricing formulas for these exotic
options are not known in the literature for general parameter choices in the Hes-
ton model.

Let u(s, v, t) denote the fair price of a European-style option if at time T − t the
underlying asset price equals s and its variance equals v. Heston’s stochastic volatility
model for the asset price yields that u satisfies the PDE

(4.1)
∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ ρσsv

∂2u

∂s∂v
+

1

2
σ2v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru

for 0 < t ≤ T , s > L, v > 0; see [9, 24]. The parameter κ > 0 is the mean-reversion
rate, η > 0 is the long-term mean, σ > 0 is the volatility-of-variance, ρ ∈ [−1, 1] is
the correlation between the two underlying Brownian motions, and r is the interest
rate. We assume here that 2κη > σ2, which is known as the Feller condition. Further,
we have assumed without loss of generality that the market price of volatility risk
is equal to zero. For a standard European call option L = 0, whereas for European
down-and-out call options L > 0.

To render the numerical solution feasible, the spatial domain is restricted to a
bounded set [L, S] × [0, V ] with fixed S, V chosen sufficiently large. The initial
condition for (4.1) becomes

(4.2) u(s, v, 0) = max(0, s−K) (L ≤ s ≤ S , 0 ≤ v ≤ V ).

Next, Dirichlet boundary conditions are given by [9, 34]

u(L, v, t) = 0 (0 ≤ v ≤ V , 0 ≤ t ≤ T ),(4.3a)

u(S, v, t) = S − e−rtK (0 ≤ v ≤ V , 0 ≤ t ≤ T ),(4.3b)

u(s, V, t) = s− L (L ≤ s < S , 0 ≤ t ≤ T ).(4.3c)

Note that at the boundary v = 0 no condition is specified. From the assumption
2κη > σ2 it follows that this is an outflow boundary.

For the Heston problem (4.1)–(4.3) we consider the second-order FD discretization
described in detail in [11]. Here a Cartesian grid with nonuniform meshes in both
the s- and v-directions is applied such that relatively many mesh points lie in the
neighborhood of s = K and v = 0, respectively. This is motivated by the observations
that the initial function (4.2) possesses a discontinuity in its first derivative at s = K
and that for v ≈ 0 the Heston PDE is advection-dominated. Further, it is natural
to have many grid points near (s, v) = (K, 0) as in practice this is the region in the
(s, v)-domain where one wishes to obtain option prices.

On the grid under consideration each spatial derivative appearing in (4.1) is re-
placed by its corresponding second-order central FD scheme, except for the region
v > 1 and at the boundary v = 0. In the region v > 1, a second-order upwind scheme
for ∂u/∂v is applied whenever the flow in the v-direction is towards v = V . This is
done so as to avoid spurious oscillations in the FD solution when σ is close to zero.
At the outflow boundary v = 0, the derivative ∂u/∂v is approximated using a second-
order upwind scheme as well. All other spatial derivative terms in the v-direction
vanish at v = 0, due to the factor v occurring in (4.1), and hence these terms do not
require further treatment.

The above FD discretization yields an initial value problem for a (large) system
of ODEs (1.1). The vector b(t) depends on the boundary conditions (4.3) and is again
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Fig. 4.1. Contour integral method (Implementation I, midpoint rule) for the Heston PDE with
κ = 1.5, η = 0.04, σ = 0.3, ρ = −0.9, r = 0.025, t = T = 1, K = 100, L = 0, S = 8K, V = 5.
Number of spatial grid points: m = 50 × 25. Left: eigenvalues of the semidiscrete Heston matrix
A (pluses), analytical bound for the numerical range of the 1

2
s2V uss term (dashed line), numerical

range of A (bold dashed line), and contours for N = 8, 12, 16, 20 (solid lines) with points zk (bullets).
Right: temporal error vs. N = 1, 2, 3, . . . , 30.

of the type b1 − e−rtb2 with fixed vectors b1, b2 as in section 3. As a consequence,
the solution vector u(t) to the semidiscrete Heston PDE (1.1) is given by (1.8).

For the numerical illustrations throughout this section we consider the Heston
parameter values from [1] given by

κ = 1.5, η = 0.04, σ = 0.3, ρ = −0.9, r = 0.025,

and we further take T = 1, K = 100, S = 8K (if L = 0), S = 14K (if L > 0), and
V = 5 as in [11].

For the parameter selection in our contour integral method, an estimate for the
numerical range of the PDE operator (or its semidiscrete version) is required. In the
case of the Heston PDE such information is not available at present. By numerical
experimentation we have found that a reasonable first indication in many (but not
all) instances of the Heston PDE is given by the numerical range of the 1

2s
2V uss term,

which is provided by Theorem 3.1 upon setting r = 0 and σ =
√
V .

As an initial numerical example we consider application of the method of sec-
tions 1 and 2 to the semidiscrete Heston problem (4.1)–(4.3) outlined above for a
European call option with 50 × 25 grid points (s, v). We employ Implementation I
with the midpoint nodes and use formula (1.8), evaluated in MATLAB with the expm
function, as a reference formula to compute temporal errors. Figure 4.1 displays re-
sults analogous to Figure 3.1. In the left subfigure we have also included the actual
numerical range of A estimated with EigTool (bold dashed line); a natural scaled ver-
sion of the Euclidean norm was used here that takes into account the nonuniformness
of the grid. The actual numerical range is somewhat larger than the estimate we use.
From the right subfigure it is clear that the convergence rate is again geometric; the
temporal error behaves as O

(
exp(−ωN)

)
with ω ≈ 1.76 (for N ≤ 15). If a more

accurate estimate for the numerical range of the Heston PDE operator becomes avail-
able, the parameter estimates of section 2 can be made closer to optimal and more
accurate results can be expected.

As the first main numerical example we apply our contour integral method to
the semidiscrete Heston problem for a European call option with 1000 × 500 grid
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points (s, v). We consider total errors, measured in the maximum norm, versus cpu-
time. The total error is defined as the difference between the vector of exact option
prices u(si, vj , T ) at the spatial grid points and the approximation vector obtained
by the numerical method, restricted to a natural region of interest taken here as
1
2K < s < 3

2K and 0 < v < 1. Notice that in contrast to the temporal error, the total
error also contains the error due to semidiscretization. To compute total errors, we
use the closed-form analytical pricing formula of [9].

We consider here the following implementations of the contour integral method.
The efficient solution of the linear systems (1.7) and other computational details are
discussed in the appendix.

• Contour–Parallel : Implementation I executed in parallel on 8 processors.
Midpoint nodes are used and the systems (1.7) are solved by MATLAB’s
backslash operator.

• Contour–Krylov : Implementation II executed on a single processor. Trape-
zoidal nodes are used and the systems (1.7) are solved by preconditioned
Krylov iteration.

• Contour : Same as Contour–Parallel, except executed on a single processor.

In [11] the numerical solution of the semidiscrete Heston problem has been investi-
gated by applying ADI time-stepping schemes. Here we compare our contour integral
method to the modified Craig–Sneyd (MCS) scheme, with parameter θ = 1

3 , which
was found to be an effective method. For details and further references to this and
other ADI-type schemes, we refer the reader to [11, 12]. Application of ADI schemes
to the semidiscrete Heston problem leads to linear systems with matrices that are
fixed over the successive time-steps and possess a small bandwidth. In view of this,
these systems are efficiently solved using a priori LU factorization. We remark that
designing an effective parallel version of ADI schemes is a nontrivial task, and hence
we executed the MCS scheme only on a single processor.

Figure 4.2 displays total errors versus cpu-time for the various implementations.
Contour–Parallel and Contour–Krylov have been applied for 2 ≤ N ≤ 20 and Contour
for 2 ≤ N ≤ 12. The MCS scheme was applied with a range of constant step-sizes
Δt satisfying 0.001 ≤ Δt ≤ 1. We remark that damping, as discussed in [11], was not
used. Note that the error curves level off at a value slightly greater than 10−4. This is
where the error due to the space discretization starts to dominate the temporal error.

In Figure 4.2 we observe that the implementations Contour–Parallel and Contour–
Krylov are both much more efficient than the direct implementation Contour. Further,
we find that Contour–Parallel is slightly more efficient than Contour–Krylov. We note
that the “kink” in the Contour–Parallel curve is caused by the number of processors
used; with more processors this curve will continue going straight down.

Figure 4.2 also reveals that Contour–Parallel and Contour–Krylov are both more
efficient than MCS at smaller accuracies. The break-even point lies roughly in the
range 10−4–10−3.5. Based on additional numerical evidence, this break-even point is
expected to persist for larger numbers of spatial grid points. We mention that the
other three Heston examples considered in [11] also yield a break-even point roughly
in the range 10−4–10−3.5.

Our second main numerical example concerns a European down-and-out call op-
tion. For this exotic option a closed-form analytical pricing formula under the Heston
model is not available in the literature whenever ρ �= 0. We shall therefore study the
efficiency of the various implementations by considering temporal errors rather than
total errors. We take the same example as the preceding one, except now we select a
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Fig. 4.2. Total errors vs. cpu-time of the contour integral method and the MCS scheme with
θ = 1

3
for the Heston PDE and standard European call option with κ = 1.5, η = 0.04, σ = 0.3,

ρ = −0.9, r = 0.025, t = T = 1, K = 100, L = 0, S = 8K, V = 5. Number of spatial grid points:
m = 1000 × 500. Explanation of the implementations Contour, Contour–Krylov, and Contour–
Parallel is given in the text.
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Fig. 4.3. Temporal errors vs. cpu-time of the contour integral method and the MCS scheme
with θ = 1

3
for the Heston PDE and European down-and-out call option with κ = 1.5, η = 0.04,

σ = 0.3, ρ = −0.9, r = 0.025, t = T = 1, K = 100, L = 80, S = 14K, V = 5. Number of spatial
grid points: m = 1000 × 500. Explanation of the implementations Contour, Contour–Krylov, and
Contour–Parallel is given in the text.

barrier L = 80. To compute a reference value for u(T ) we have used the implementa-
tion Contour–Parallel with N = 18. We note that temporal errors are computed here
on the region of interest max{ 1

2K,L} < s < 3
2K and 0 < v < 1. Figure 4.3 displays

the results. We conclude that the observations made with respect to Figure 4.2 for
a standard European call option remain valid in the case of its exotic, down-and-out
variant. In particular, we arrive at approximately the same break-even point, in the
range 10−4–10−3.5, for Contour–Parallel and Contour–Krylov with MCS.
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5. Comparisons with a related method. A contour integral method similar
to (1.6) has been proposed for the (generalized) Black–Scholes equation by Lee and
Sheen [13]. We briefly summarize the similarities and differences between these two
methods.

The method of [13] is essentially identical to the method (1.6), as both methods
are based on the ideas of [14, 23, 32] and others. The difference lies in the choice of
contour and the parameter selection for this contour. In [13] a hyperbolic contour,
originally proposed in [23], was used. The parameter selection for this contour was
based on the formulas of [32].

We are not convinced, however, that the parameter selection strategy used in
[13] is optimal. This strategy was based on the formulas of [32], but those formulas
were derived for a hyperbolic contour with a different parameterization. It should
be possible to use the ideas presented here and in [31, 32] to obtain the optimal
parameters for that parameterization. This is not entirely straightforward, however,
as the mapping used in [13] is more complicated than our (2.1).
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(b)

Fig. 5.1. Total error in the contour integral method (a) proposed here (Implementation I,
trapezoidal rule) and (b) proposed in [13]. The problem is the Black–Scholes PDE with r = 0.05,
σ = 0.3, t = T = 1, K = 50, L = 0, S = 200. Number of spatial grid points: m = 4000.

Similarly, it is not clear that a hyperbolic contour is preferable to a parabolic one.
In [13] the hyperbolic contour was used based on the assumption that the resolvent of
the operator can be bounded with respect to a sectorial region. Certainly in the case
of the Black–Scholes operator (3.2) the results of Theorem 3.1 show that a parabolic
region is more natural. Moreover, when one looks at the proposed contours in [13]
they move unboundedly into the right half-plane as the volatility σ → 0, which will
cause a loss of accuracy and increased sensitivity to roundoff errors.

We offer a numerical comparison of the two methods in Figure 5.1. The test
example corresponds to Example 4.1 in [13], a European put option problem with
parameters listed in the caption of the figure. The parameters in the method of [13]
were chosen according to Table 3 of that paper. We used Implementation I of the
method proposed here with the trapezoidal rule; see subsection 2.4.

The explicit solution of the problem under consideration is known [2] and was
used to compute the total error in the method. With the given parameter values the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTOUR INTEGRAL METHOD FOR BLACK–SCHOLES 781

grid spacing amounts to Δs = 0.05, and with this spacing the spatial error is just
less than 10−5, as can be seen in the figure. The method proposed here achieves this
accuracy using N ≥ 7, while N ≥ 11 is required for the method of [13]. As mentioned
above, however, improved parameter selection may reduce the error shown in curve
(b), but that has yet to be accomplished.

6. Conclusions. In this paper we considered the numerical solution of linear
systems of ODEs derived from semidiscretization of time-dependent PDEs, with em-
phasis on applications in mathematical finance. Our method is similar to a recently
proposed method by Lee and Sheen [13], but based on a parabolic rather than a hy-
perbolic contour. Using a parabolic contour is natural when the numerical range of
the PDE operator can be bounded suitably by a parabola. Indeed, numerical com-
parisons presented in section 5 revealed higher accuracy than the results reported
in [13].

One contribution of this paper is the generalization of the results of [31, 32] for
the estimation of the optimal parameters that determine the parabolic contour plus
the step-size of the quadrature rule. These results are quite general and cover many
pricing problems of mathematical finance, with various exotic options. The only re-
quirement is that the problem can be modeled by a PDE, the semidiscretization of
which leads to a linear system of ODEs (1.1) with matrix A whose numerical range
can be bounded by a parabola. Of course, many PDEs outside the field of mathe-
matical finance are also covered by this theory. In addition, the semidiscretization
can be based on second-order finite differences (as considered here), higher-order dif-
ferences, finite elements, or spectral methods. In fact, if the discretization is based
on higher-order methods, then one can expect a better correspondence between the
numerical ranges of the matrix A and the operator A, at least in the critical region
around the real axis. This should justify even better the practice of using the nu-
merical range of A (instead of A) in our parameter selection strategy. Indeed, in
[31] a spectral method was used to solve a model advection-diffusion equation with
excellent results.

A second contribution of the paper is an investigation into efficient methods for
solving the shifted linear systems (1.7), which represent the major computational
cost of the method. The fact that these systems are independent and can be solved
in parallel has been a major selling point for the contour integral method; cf. [7,
8, 22, 23]. Here we went one step further: by actually implementing the method
on a multiprocessor machine we could quantify the advantage; see Figures 4.2 and
4.3. Similarly, the fact that Krylov iteration methods could be efficient for solving the
shifted systems (1.7) has been mentioned in the literature. As far as we know, however,
the algorithm described in the appendix is the first attempt at actually incorporating
a version of Krylov iteration into the contour integral method to solve PDEs.

In our numerical tests we considered both the Black–Scholes and Heston equa-
tions. For both PDEs we approximately established the geometric convergence rate
predicted by the theory of section 2. For the Heston PDE we performed further
comparisons with recently studied ADI methods [11]. It was found that the contour
integral method, with both parallel and Krylov implementations, is more efficient in
terms of execution time than the ADI methods at higher accuracy requirements. In
the Heston application, the actual break-even point was found to be in the error range
10−4–10−3.5, which is within the typical accuracy specifications of financial applica-
tions. In other applications, where higher accuracy is required, the contour integral
method will fare relatively better in such timing comparisons. For lower accuracies,
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the ADI methods are superior. More conventional methods, such as ADI, are also
expected to perform better for strongly advection-dominated problems.

With further research the contour method is likely to be improved so that the
break-even point could occur at even lower accuracies. On the numerical side, the
Krylov method of the appendix is just a starting point and improvements can be
expected. On the theoretical side, better estimates of the numerical range of the
Heston operator may lead to better parameter selection (as described in section 2)
and hence increased accuracy.

Appendix. Here we discuss strategies for the efficient solution of the linear
systems (1.7), which represent the major computational cost of the contour integral
method.

First, one could use a sparse direct method based on some preordering algorithm.
For a small improvement, note that the preordering algorithm plus accompanying
symbolic analysis need to be executed only once, since the sparsity pattern of the
coefficient matrices in (1.7) does not change. As pointed out in the introduction,
this approach is suitable for implementation as a parallel for-loop on a multiprocessor
machine, since there is no exchange of information between these linear systems.
In the numerical experiments reported here, we have used the sparse direct solver
for unsymmetric systems in T. Davis’ package UMFPACK [3, 4], accessed via the
backslash operator in MATLAB (version R2010a). For the parallel implementation,
we have used MATLAB’s Parallel Toolbox on an 8 processor machine (Intel Xeon
E5462 / 2.8 GHz processors, RAM 31.5 GB).

An alternative, serial implementation is to use iterative rather than direct meth-
ods for the solution of (1.7). One of the advantages of iterative methods is that they
can be stopped when a required error tolerance is reached; by contrast, direct methods
have to run to completion regardless of accuracy requirements. Financial applications
typically require only low to moderate accuracy, which makes an iterative method
more attractive.

It is further known that the class of solvers based on Krylov subspace iteration
is effective for shifted linear systems such as (1.7). This is because all the matrices
zkI −A share the same Krylov basis, and hence this has to be constructed only once;
see [18, 25]. Technically this statement is true only if all the systems have the same
right-hand side, which is why we proposed the alternate implementation (1.8). We
shall therefore consider the shifted systems in the form

(A.1)
(
zkI −A

)
uk = c, k = 0, 1, . . . , N − 1,

where c does not depend on k. In our application, c is defined in (1.9). We have
dropped the hat on ûk to simplify notation.

For most iterative methods, including Krylov iteration, some form of precondi-
tioning is required to accelerate convergence. Following [18], we use z0I − A as a
common preconditioner for the systems (1.7), i.e.,

(z0I −A)−1(zkI −A)uk = (z0I −A)−1c.

It is slightly more efficient to use a real matrix as preconditioner as opposed to one
with a complex diagonal. For this implementation we therefore recommend the use
of the trapezoidal rule (real z0) as opposed to the midpoint rule (complex z0).

The preconditioned system can be written as

(A.2)
(
(zk − z0)B + I

)
uk = d,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTOUR INTEGRAL METHOD FOR BLACK–SCHOLES 783

where

B = (z0I −A)−1, d = (z0I −A)−1c.

By applying � (≤ m) steps of the standard Arnoldi procedure to the m ×m matrix
B with initial vector d, a relation of the form

(A.3) V T
� B V� = H�

is obtained, where V� and H� are realm×� and �×�matrices, respectively [21, p. 155].
H� is upper-Hessenberg, and V� has orthonormal columns, with the normalized version
of d as its first column.

The full orthogonalization method enforces the following projection condition
on (A.2):

V T
�

(
(zk − z0)B + I

)
V� yk = V T

� d.

Here V� yk represents the approximation to uk; for details, see [21, p. 159]. By making
use of (A.3) and the orthogonality properties of V�, one obtains(

(zk − z0)H� + I
)
yk = δe1,

where δ = ‖d‖2 and e1 is the unit vector in the first coordinate direction. When
� � m this �× � Hessenberg system is solved cheaply for k = 1, . . . , N − 1, and the
required approximations to uk are computed as V� yk.

In the Arnoldi iteration that leads to (A.3), it is necessary to compute matrix-
vector products of the form B v, which means solving (z0I −A)w = v for several v.
This is done by an a priori LU factorization of z0I − A, again using the algorithms
from UMFPACK.

We remark that while the matrix z0I − A is a good preconditioner for zkI − A
when k is 1 or 2, it may not be the case for larger values of k. However, it is not
necessary to compute the systems corresponding to large k to the same absolute
accuracy as the systems corresponding to small k. This is because of the damping
factor ezkt in (1.6). Similarly, it is not clear what the best stopping criterion is for
the Arnoldi iteration in the present context. By experimentation we have found that
the simple choice � = N + 1 is in many cases sufficient to guarantee that the error in
the solution of the shifted linear systems is on the same order of magnitude (or less)
as the approximation error of the contour integral method discussed in section 2. A
theoretical justification is still lacking, however.

We recall that our implementation based on (1.8) is effectively a method for
computing the matrix exponential times a given vector. The question arises why one
does not use a standard method for the computation of the matrix exponential, such
as one of the methods described in [10, 19]. First, we point out that several of these
methods, including the one implemented in MATLAB’s expm function, cannot utilize
the sparsity of the matrix. Second, there exist Krylov-based methods that can exploit
the sparsity, but the issue of preconditioning does not seem fully resolved yet. We
have tried, for example, the (unpreconditioned) Krylov method described in [19], and
it was not as effective as the method outlined above.
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