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 THE SPATIAL STRUCTURE OF BUBBLE PINCH-OFF*

 M. A. FONTELOSt, J. H. SNOEIJERÍ, AND J. EGGERS§

 Abstract. We have previously found [J. Eggers. M. A. Fontelos, D. Leppinen, and J. H. Snoeijer,
 Phys. Rev. Lett., 98 (2007), 094502] that the pinch-off of a gas bubble in an inviscid environment is
 controlled by scaling exponents which are slowly varying in time. To leading order, these results did
 not require the spatial profile of the interface near break-up. Here we refine our previous analysis by
 computing the entire shape of the neck. The neck shape is characterized by similarity functions that
 are also slowly varying on a logarithmic scale. We compare these results to experiments and find
 agreement within the experimentally accessible range. More detailed confirmation of the asymptotic
 analysis is provided by the excellent agreement with numerical simulations of the bubble pinch-off.
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 1. Introduction. In this paper, we address the collapse of a cavity or the pinch
 off of a bubble in a body of fluid whose viscosity is sufficiently small as to be negligible.
 A typical experimental situation is shown in Figure 1.1: an air bubble is released
 from a pipette submerged under water. As the bubble rises, it pinches off at a point,
 preserving radial symmetry [23]. The purpose of the present paper is to find the
 asymptotic form of the profile around the pinch-point as the minimum neck radius
 goes to zero. For the rest of this paper, we will assume that the pinch-point is located
 at the origin z = 0.

 Fig. 1.1. The pinch-off of an air bubble in water. The air is released from a nozzle whose outer
 radius is fío = 1-57. The time between two successive panels is 0.5ms. [Reprinted with permission
 from Thoroddsen, Etoh, and Takeora, Phys. Fluids, 19 (2007), 042101. Copyright 2007, American
 Institute of Physics.]

 Another important case is that of a cavity [8] that is produced near the surface
 of water, for example by the impact of a solid object. Recently, there has been a
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 flurry of experiments using the bubble [4, 16, 18, 23] or the cavity geometry [2, 8]
 in water. In the presence of perturbations, axisymmetry can be broken significantly
 [18, 2], However, if the bubble is sufficiently small, the shape is perfectly axisym
 metric down to the smallest experimentally observed scale of a few /im. It was also
 confirmed experimentally that the air inside the bubble, as well as the viscosity of the
 surrounding fluid, has a negligible effect on the dynamics [23]. However, even in water,
 a tiny satellite bubble about 5/im in diameter is observed after break-off occurs. If the
 viscosity of the surrounding fluid or the density of the gas is increased, the dynamics
 changes [23]. In particular, the size of satellite bubbles becomes substantial [15].

 A naive expectation would have been that the pinch-off of a bubble in water is
 governed by the same scaling laws as the "inverse" case of a drop of water pinching
 off in air, for which the minimum drop radius scales like ho cx i'2//3, where t' = to — t
 and to is the pinch-off time [6, 7], This scaling law follows from the simple physical
 picture of pinch-off being driven by surface tension and resisted by inertia [22], If
 7 is the surface tension and p the density, ("/t'2/p)l^?' is the only local length scale.
 Surprisingly, the scaling exponent a for bubble pinch-off was found to be close to 1/2,
 the value proposed by [20] and [21]. This implies faster pinch-off than anticipated, and
 surface tension must become subdominant, inertia being the only remaining factor.

 In [12] it was shown that the scaling behavior of bubble pinch-off is described by
 a scaling exponent a(r) = 1/2 + 1/(4-^7"), where r = — lni'. The approach to the
 asymptotic limit 1/2 is therefore exceedingly slow. When evaluating at experimentally
 accessible time scales, one indeed obtains values significantly larger than 1/2 and
 consistent with experimental values of 0.56 [18] and 0.57 [23] reported in the literature.
 Note that there is no dimensional argument for the value of 1/2: as surface tension
 drops out of the leading order balance, the equation of motion becomes invariant
 under a change in time scale. This also implies that there is no intrinsic time scale
 by which to make t' dimensionless, and thus r is defined only up to a constant shift
 To- The value of To is nonuniversal and set by the initial condition.

 The results of [12] were obtained by considering local quantities near the pinch
 point alone, namely the minimum radius and the curvature. In the present paper we
 reveal the surprising spatial profile of the neck. We show that the pinch region is
 characterized by similarity profiles, which themselves are logarithmically dependent
 on time. We find that the profile is symmetric around the pinch-point, while away
 from the neck the radius increases as a power law with an exponent that is once more
 slowly varying in time. Both features are consistent with experimental observations
 and are verified in more detail using numerical simulations. As an added benefit of our
 analysis, we obtain subleading expressions for the time dependence of the exponent
 for the neck radius.

 2. Description of the dynamics.

 2.1. Source distribution. We would like to solve the inviscid, irrotational,
 axisymmetric flow problem outside a cavity, which we model as being at constant
 pressure. The axis of symmetry is aligned with the direction of gravity, as shown,
 for example, in the experimental images of Figure 1.1. The velocity u can thus be
 written as

 (2.1)  u = V$, A<3? = 0.
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 Our approach is based on representing the velocity potential by point sources dis
 tributed along the centerline of the cavity of length 2L [1]:

 (2.2) *=[L
 J-L yj{z- 02 + r2

 It remains to be seen whether a given flow can be represented in the form (2.2).
 However, we stress that (2.2) is an exact solution of (2.1), with vanishing flow at
 infinity. When used in slender-body theory, the kernel of the integral in (2.2) is
 usually expanded in a parameter e characterizing the slenderness, while we avoid such
 an expansion for the moment.

 We assume that there are no overhangs, so the shape of the cavity can be repre
 sented by the local radius h(z,t). As usual, the motion of the surface is determined
 by the kinematic boundary condition

 (2.3) dfh + h uz = ur\r=/j(, ¿) i
 where the prime denotes the derivative with respect to the spatial argument. Using
 (2.2), the velocity on the surface is given by

 (2.4a) =
 J~L s/(z - £)2 + li2(z,t)

 (2.4b) ur{z,t) = -fL «WM
 J-L - ff +

 Integrating Euler's equation from infinity (where the pressure is assumed to van
 ish) to the surface, one obtains

 (2-5) d^ + (\/^)2/2 = -p/p\r=h(zt),
 where p is the pressure on the exterior of the surface. Thus if po is the pressure in the
 cavity, by Laplace's formula [19] we have p — po = —7« + pgZ, where k is (twice) the
 mean curvature, p is the fluid density, g is the acceleration of gravity, and Z denotes
 the depth from the fluid surface. Thus we arrive at the following equation for the
 source distribution C(z,t):

 (2.6) [L i w&'W . »• + "?- v.l., r J-L \/{z- 02 + h'2(z,t) 2 P P
 Equations (2.3), (2.4), and (2.6) form a closed system of equations for h(z,t) and

 C(z, i), which can be studied numerically. Although the system comes from the ansatz
 (2.2), which is usually associated with slender-body theory, this system is formally an
 exact solution of the full inviscid, irrotational flow problem that we set out to solve.
 However, a problem with the representation (2.2) is that not all smooth irrotational
 flows can be represented in that way. For example, if one places a delta function 011
 the axis inside the cavity, this produces a perfectly acceptable flow on the outside
 of the cavity yet cannot be written in the form (2.2) with a smooth C. This means
 not all initial conditions can be realized by using the formulation (2.3), (2.4), (2.6).
 In particular, there is a problem in describing the motion of a closed surface, as the
 following example of a steadily moving spherical bubble shows.
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 The main problem in describing the flow field around a closed cavity in the form
 (2.2) arises near the end of the cavity, where the shape is no longer slender. How this
 problem can be dealt with in a perturbation expansion [17] has been demonstrated.
 However, this issue is not relevant to the dynamics of pinching, which is a localized
 phenomenon, independent of flow conditions away from the pinch-point. We therefore
 avoid the description of a closed bubble, but rather allow for a finite bubble radius at
 the boundaries of the computational domain. Under these conditions our simulations
 of (2.3), (2.4), (2.6) indicate that C(z,t) remains smooth at all times before the real
 pinch-off singularity occurs. As far as we are aware, this system has not been derived
 or studied before.

 2.2. Slender body. To make analytical progress, we wish to derive an approx
 imation of (2.3), (2.4), (2.6) that is valid for slender cavities. We define ho as the
 minimum radius of the cavity, which we take to occur at z = 0, and A measures the
 width of the pinch region:

 (2.7) ho = h(0,t), A  -(  2h2 \1/2
 V(W(0,i),

 Throughout, we will be making the approximation that ho is much smaller than A.
 This suggests the introduction of the small aspect ratio parameter

 (2.8) e(r) =/i0/A.

 We will now perform a systematic expansion in e to derive a simplified integral equa
 tion, previously introduced by us [12] on the basis of intuitive arguments. Corrections
 to the leading slender-body asymptotics will be smaller by a factor of the order of
 the aspect ratio e(r), as expected. We will see below that /¿o(r) ss e~T~^ and
 e(r) « e-^/2, so the aspect ratio is indeed small in the limit of r = — lni' —> oo. In
 particular, uz = dz<& ~ e(r)dr$> -C drQ = ur, so only the radial part of the velocity
 field needs to be considered in (2.6).

 The integral for ur (cf. (2.4)) is dominated by local contributions, as one finds by
 considering the substitution r¡ = (z — £)/h(z), which gives

 (2.9) ur(z) = -— / ^dr,. —L r
 h(z) y in

 C(z — rjh(z))

 h(z)Jz+L (1 + 772)i

 To find the leading order contribution as well as corrections, we expand C according
 to Taylor's theorem:

 (2.10) C(z — rjh(z)) = C(z) — C'{z)r¡h{z) + C"(zo)rj2h2(z)/2,

 where zo = z — i)oh(z) for some rjo in (—77,77). Since A is the width of the profile, it
 is safe to assume that C"¡C is of order 1/A2 and C"/C' is of order 1/A uniformly.

 We now introduce (2.10) into (2.9) and estimate the integrals corresponding to
 each term in (2.10). Hence we have to evaluate

 jZ TiT^'
 dr] hz hz

 (1 +r/2)f ~ Jí+k V2 J-00 V2 z2 - L2 ~ L2
 and

 L +k (1+T72)2
 V —dr) ~ 2 ln(/i/L),
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 and therefore

 (2.11) ur(z) «- C'{z)Ä + C"(zo)h(z) In .
 The second term on the right-hand side of (2.11) is much smaller than the third

 term,

 2C>(z)hz/L^2A/L=A0(J_\<<0(1_
 C"(zo)h\nh In h \ln hj V116,

 if I-oI < L. The third term, on the other hand, is smaller than the leading term by a
 factor of

 C"h In h Ihnlnho 1 , , .
 (2-12) -IcJT *-2^ = r
 where we have used |eln/io| « Te-^/2 1. Hence we conclude

 M*> = -^(1+ «(0>.
 The quality of this leading order approximation,

 (2.13) Ur(z) « -2C(z)/h(z),

 is tested in Figure 2.2 below. For the analysis to follow, it is convenient to use the
 cross-sectional area ira(z,t) of the cavity, rather than the radius, to describe the
 slender approximation:

 (2.14) a(z, t) = h2(z, t).
 Accordingly, we set ao = hg. Inserting (2.13) into (2.3) and neglecting uz, one obtains
 ä = — AC, where a dot denotes the time derivative. Finally, once more neglecting u,
 relative to ur, we arrive at

 (2.15) [L - SM -f hK + 4sz + ^°. J-L yj(z - 02 + a{z,t) 2a p p
 which is accurate up to corrections of order e.

 As for the study of the pinch-off singularity, two observations are in order [12].
 First, the contribution to the integral is local, so we can effectively set L —> oo. This
 results from the spatially localized form of the acceleration ä, as discussed in section 3
 and calculated in section 4. Second, surface tension as well as gravity is irrelevant to
 the asymptotic problem. Namely, the asymptotic behavior of the cross-sectional area
 is ao cx t'. This means that the first term on the right-hand side of (2.15) diverges like
 i/_1, while the surface tension contribution diverges only like « h-1 ~ t'-l>2, and
 gravity as well as the cavity pressure remain of order one. Thus the last three terms
 from the right-hand side of (2.15) can be dropped as far as the asymptotic behavior
 is concerned. As a result, for most of the paper we will be dealing with the simplified
 equation

 f J —a

 ä(£,t)d£ a2
 (2.16) , , - „ .

 oo y/{z - £)2 + a(z,t) 2a
 As we will see below, (2.16) performs very well in describing real experimental data
 close to pinch-off. We reiterate that (2.16) remains invariant if time is multiplied by
 any constant. For all our numerical tests, we will approximate the integral on the left
 by the integral between — L and L, as in (2.15).
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 2.3. Numerical simulation. We solve (2.3), (2.4), (2.6) using a fully implicit
 method, using a numerical scheme developed originally by [11]. The solution is de
 scribed in terms of the two fields h and C. In the case of (2.16), the formulation
 is in terms of a and ó. The time stepping is of second order, and the step size is
 controlled by comparing a step of size At with two steps of size At/2. Adaptive
 spatial refinement is of course crucial and is performed whenever the minimum ho
 has changed a certain small percentage. The grid spacing around the pinch-point is
 based on the width of the profile as determined from the previous solution. After a
 new grid is found, the old solution is interpolated to the nodes of the new grid. The
 integrals are evaluated simply over the computational domain, and no other boundary
 conditions are imposed. Since the phenomenon we describe is local, the precise form
 of the boundary conditions is not expected to have significant impact on the results.

 As long as surface tension is finite, our method works well up to a minimum
 radius of ho « 1(P4 at least. However, eventually instabilities become more and more
 difficult to control; this is to be expected, since surface tension drops out from the
 leading order balance close to the pinch-point and is thus less and less effective at
 regularizing any short-wavelength instabilities. We therefore opt for a stronger form
 of regularization, which remains effective for very small ho- To this end, we add
 a correction to the equation, which is small on the scale of the expected pinching
 solution but which is of higher order in the derivative. This is achieved by adding a
 term eregC"h2 to the left-hand side of (2.6). Clearly, this term is going to dominate
 over the integral in the limit of large wave numbers, and thus fixes the ill-posedness.
 The second derivative is multiplied by h2, to make sure it stays of roughly constant
 size relative to u2, which is driving the motion toward pinch-off.

 Namely, ur scales like C/h according to (2.11). In the simplest approximation
 [12], C « ä ~ t'°, and h2 ~ t\ which means that u2 ~ t'~l. On the other hand, the
 width of the profile scales like A ~ i'1/2, and one obtains C"/h2 ~ t'~l as well. The
 prefactor ereg, which we typically choose to be 10~3, ensures that the stabilizing term
 is very small. This is confirmed directly from the simulation and holds true uniformly
 in space and time. We also checked that a variation of ereg by a factor of 10 did not
 affect the results significantly.

 A typical numerical result of the full system of equations (2.3), (2.4), (2.6) is
 shown in Figure 2.1. The half-width of the domain was L = 4. The initial condition
 was chosen symmetric about the origin, and we neglected the effects of surface tension
 and gravity. In the simulations reported here, the initial cavity radius Ro was chosen
 as the length scale. Since pinch-off is provoked by an inward pointing initial velocity
 field of maximum value Vo « 0.91, a typical time scale of the simulation is T = Ro/Vq.
 However, we have not normalized time by this value, since all quantitative comparisons
 are made allowing for an arbitrary scale factor in the time scale.

 For the rest of this paper, we will study the profile in the neighborhood of the
 point at which the radius goes to zero; see Figure 2.1. This permits us to use the
 slender-body description (2.16) as a starting point, both for our analytical arguments
 and for numerical tests. To confirm the quality of approximation of the latter, we
 took the radial velocity ur as used in the simulation of Figure 2.1, and compared
 it to its counterpart in the slender-body approximation. In Figure 2.2 we show this
 comparison for a profile very close to pinch-off. To be able to show more of the profile,
 we use a logarithmic scale. As expected, the agreement is extremely good and is lost
 only if the distance from z = 0 becomes of order one.

 We also compared a simulation of the asymptotic equation (2.16) directly to
 experiment. We chose L = 2, and once more used a symmetric initial condition, while
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 h{z, t)

 Fig. 2.1. A sequence of profiles leading to pinch-off, obtained by integrating (2.3), (2.4), (2.6)
 numerically. Surface tension and the external pressure po are chosen to vanish, and L = 4. The
 initial conditions are h(z, 0) = 0.7 — 0.3cos(7tz/L) and C(z, 0) = 0.2cos(nz/L). A positive source
 strength corresponds to a radial velocity field pointing inward, provoking pinch-off.

 logll.W

 Fig. 2.2. Comparison of the radial velocity field as given by (2.4) (solid line) with the local
 approximation (2.13) (dashed line) for |t'| = 10-5.

 the experiment was very similar to that of Figure 1.1. A bubble of sulfur hexafluoride
 was released from an underwater nozzle of radius i?o = 0.235 cm [3]. A sequence of
 four profiles, with a time distance of 1.5 x 10_4s between them, is shown in Figure 2.3
 as the solid lines. This is compared to the simulation, at corresponding values of the
 dimensionless radius hmin/Ro (dashed lines). This does not yet fix the axial length
 scale, which was adjusted in the simulation by multiplying the z-axis by a constant
 factor. However, this was done only once, using the profile closest to pinch-off; the
 same factor was used for all the other profiles. The comparison is very convincing,
 emphasizing once more the practical validity of our approximations: use of the leading
 order expansion in the slenderness, as well as neglect of gravity and surface tension.
 Each of these approximations is, of course, also justified in an asymptotic sense as
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 Fig. 2.3. A comparison between a sequence of experimental profiles of a bubble of sulfur hexa
 fluoride pinching off in water [3]. The lines are the measured bubble radii in cm at a rate of 6688
 frames per second; the dashed lines come from a simulation of (2.16). The initial conditions are
 a(z, 0) = 0.7 + 0.3(z/L)4 and ä(z, 0) = 0.1 ((z/L)2 — 1). The four theoretical profiles have been timed
 to give the correct minimum radius; the axial scale of the profile has been adjusted once, using the
 last profile; and the other profiles use the same axial scale.

 pinch-off is approached. Note as well that the experimental profile is extremely close
 to being symmetric about the pinch-point, even though the experiment is not up-down
 symmetric. In section 4 below we will calculate the asymptotic shape of the profile
 explicitly, thus confirming that it is indeed symmetric. All comparisons to numerical
 data to be reported below, used to check the validity of our asymptotic analysis, will
 be based on the simulation shown in Figure 2.3.

 2.4. Strategy. In the following sections, we will analyze (2.16) using asymp
 totics. The idea is to write the solution in the form

 Thus the main time dependence is in the scale factors cto(i') and A(£'), while the
 subleading time dependence is expected to be captured by the dependence of A on
 T = — In t'. The corresponding similarity form for ä(z, t) is

 In previous examples of drop pinch-off [10], the scales ao, A were simply power laws.
 In the present case, these scales acquire logarithmic corrections. As a consequence
 the aspect ratio e will turn out to vary as

 (2.17)  a(z, t) = a0(t')A(r), r), r] = z/A(t').

 (2.18)  ä(z,t) = ä0(t')4>(ri,T).

 (2.19)
 1/2

 e = ~
 A

 which goes to zero as r —> oo. Indeed, the neck becomes increasingly slender upon
 approaching the pinch-point, ensuring that the analysis is self-consistent.
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 The similarity functions and their time dependences will be computed using the
 following steps:

 (a) First, in section 3, we focus on the time dependence of ao, A. This time
 dependence can be found from expanding a(z,t) and ä(z, t) around the mini
 mum at 2 = 0, yielding a dynamical equation for ao(t) and A(t). Solving this
 system, we find that ao = and A2 = \fet'¡4 (see (3.12) below).

 (b) In the following section 4 we derive a simplified local expression for the integral
 on the left of (2.16), using the time dependence of the scale factors found in
 (a). The result is (4.8).

 (c) We then determine the similarity profiles A(r/, r) and <p(i], r) as they appear
 in (2.17) and (2.18). This is first done based on the local approximation (sec
 tion 5), by taking the distinguished limit of keeping ij fixed as r —> oc. This
 provides the "inner" part of the neck profile. The acceleration ä converges to
 a Lorentz peak at fixed r;.

 (d) Finally, in section 6 we find the "outer" profile of ä, away from the central
 region where it has a sharp peak. This asymptotics applies to the case where

 2> 1.

 3. The time dependence. Our aim is to explain the observed scaling behavior
 of the minimum cross section ao = ao(0 = a(0, t), as well as of the axial length scale A
 of the profile, which can be characterized by the inverse curvature A = (2«o/«(,')1/2: cf.
 (2.7). By definition, we write a'¿ = a'¿(t) = (d¿a)(Q,t.) for the curvature of the profile
 a(z,t) at the pinch-point. As shown later, and confirmed numerically in Figure 3.1,
 to leading order ä(z,t) behaves as

 Fig. 3.1. Convergence of the central peak of á toward (3.1). The heavy line is the Lorentz curve
 1/(1 +T]2). The solid (\t'\ = 10-6,) and dotted (\t'\ = 10-3J lines are the result of a numerical
 simulation of (2.16), reseated, according to (3.1). The initial conditions are the same as in Figure
 2.1. Note that the acceleration becomes negative in the tails of the peak; this will be explained in
 section 6 (cf. (6.6)/
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 But this means that, by evaluating (2.15) and its second derivative at z = 0, we obtain
 a closed system of equations for ao and A. The quadratic decay of (3.1) ensures that
 contributions to the integral are local, as anticipated above.

 Using (3.1), we can evaluate the integral at z = 0 explicitly:

 (3.2)  j°° ÖQ(t)d£ ÖQ(t) í 1 + y/l — Qq/A2\
 J-oo (l + (£/A)2) y/Z2 + a0 V1 - ao/A2 \1 - y/l-ao/A2 J

 We rewrite the aspect ratio ao/A2 = a'¿/2, so that for a'¿ -C 1 and z = 0, (2.16)
 simplifies to

 (3-3) =

 Next, taking the second derivative of (2.16), we obtain from a similar calculation

 (3.4) aSla(4-)-2^ « e3a'¿ J ao a o 2üq

 As seen from a calculation analogous to that of the appendix, (3.3) and (3.4) are
 accurate up to corrections of order of the square of the aspect ratio, and thus consistent
 with our earlier approximations.

 Following [12], we now rewrite (3.3), (3.4) as equations for the local (time
 dependent) exponents

 (3.5) 2a = — 9Tao/ao, 25 = — dTa'¿/a'¿.

 Note that (3.5) is equivalent to taking the slope of a log-log plot but differs from
 ho oí t'a if a is time-dependent. The result is

 (3.6) [aT + a - 2a2) In ^= -a2,
 (3.7) (ST + 6 - 262) In = 2a - 3a2 - 2aö +  2aT

 where the subscript denotes the r-derivative. The time dependence of a{{ is found
 from integrating

 (3.8) ln(ao)r = -25.

 Compared to our earlier work [12], in (3.6) and (3.7) we have now computed all
 constants inside the logarithms. This is possible using the explicit shape of the accel
 eration profile (3.1), to be derived below; we conclude that Ti = 8 and F2 = 8/e3 in
 the notation of [12].

 The behavior of the third order system (3.6)-(3.8) in the limit r —> 00 is de
 termined by the neighborhood of the fixed point (a, 6, v) = (1/2,0,0). Putting
 a(r) = 1/2 + u(t) and v(r) = l/ln(aó'), the leading order behavior of (3.6)-(3.8)
 becomes

 (3.9) uT=u + v/ 4, 5t = —5 — v/ 4, vT = 2 5v2.

 The linearization around the fixed point thus has the eigenvalues 1, 0, and —1. As
 explained, for instance, by [13] and [24], the positive eigenvalue corresponds to a
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 Fig. 3.2. Approach of the exponents to their asymptotic value, obtained from a numerical
 simulation of (2.16). The initial conditions are the same as in Figure 2.1. The solid line is a — 1/2;
 the dotted line is 6. The two dashed lines are the predictions (3.11), but with a shift in the value of
 T, which is the same for the two curves.

 change of the unknown origin of time and lias no dynamical significance. On the
 other hand, the vanishing eigenvalue is the origin of the slow approach to the fixed
 point observed for the present problem. The derivatives uT and ST are of lower order
 in the first two equations of (3.9), and thus to leading order u = 6 and v = — A5. This
 means that the last equation of (3.9) can be simplified to

 (3.10) ST = —8<53.

 The high (third order) nonlinearity explains the extremely slow approach to the scaling
 limit.

 The approach to fixed-point behavior is best found by expanding (3.6)-(3.8) in
 powers of r-1/2, fractional powers providing the right balance:

 <311) » = 5 + 37? -¿ + 0<'-3/2>- s=I7? + °(--3/2)

 Knowing the constants (cf. equations (4) and (5) in [12]), we were able to
 calculate the exponents to order 1/r, going beyond the previously known result. In
 particular, (3.11) implies that the coefficients are universal at this order.

 We also explored full numerical solutions to (3.6)-(3.8). Owing to the positive
 eigenvalue, initial conditions must be chosen from a two-dimensional subspace to reach
 the fixed point. However, in spite of having an additional adjustable parameter, the
 numerical solution did not significantly expand the range over which exponents could
 be predicted. Therefore, in Figure 3.2 we show only the comparison between the
 expansion (3.11) and the exponent values obtained from a numerical simulation of
 (2.16). The time dependence of a and S differs only at order 1/r, so it is only with
 the new result (3.11) at hand that we can perform a meaningful comparison of both
 a and S. Equation (2.16) is invariant under a rescaling of time, i.e., a shift in r. Such
 a shift in r is therefore determined by the initial conditions and has to be adjusted in
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 a comparison of the exponents, as we did in Figure 3.2; of course, the shift was the
 same for both curves.

 Our theory was validated further by [14], who simulated bubble breakup in a
 variety of systems, such as the wake of an impacting disk and gas bubbles detaching
 from an orifice. The value of a was plotted as a function of a'¿, which for all cases
 displayed the universal behavior of (3.6). To achieve a comparison without adjustment
 of parameters, [14] relied on the calculation of the constant Ti, first performed in the
 present paper. Interestingly, the time scales over which these quantities evolve were
 found to differ by orders of magnitude, depending on the physical realization of the
 collapse. This once more reflects the invariance under a rescaling of time of the
 asymptotic regime.

 Note that (3.11) is also consistent with previously published experiments, where
 exponents were determined from fitting a straight line to a doubly logarithmic plot
 over a limited range. As a result of the limited experimental time resolution, values of
 alpha slightly larger than 1/2 were reported. For example, [23] found a = 0.57 ±0.03,
 where smaller values of a were reported if the time resolution was increased for the
 same experiment (cf. Figures 5 and 10 in [23]). The width of the profile was also
 investigated in detail, and its scaling exponent was consistently found to be very close
 to 1/2, in agreement with (3.13) below.

 The expansion (3.11) yields estimates for the leading order time dependencies of
 various key quantities:

 ®o = Cot'e ^, äo = — Coe ^ ( 1 4- i ,
 (3.12) V

 = (' + 2^r + 1
 where Co is a prefactor which depends on initial conditions. Inserting this back into
 (3.3), one finds the approximation

 Ö / [7, \

 (3.13) üq « -^=e-v^, and thus A = ( —t'

 We conclude that the aspect ratio e = ho/A indeed behaves as anticipated in (2.19),
 so our calculation is self-consistent. In particular, neglected terms are exponentially
 small (in terms of r) compared to terms in the series expansion (3.11).

 4. Local approximation. Now we compute the spatial structure of the pinch
 region, that is, the similarity function A(r¡, r) in (2.17). This will also yield the
 corresponding profile of ¿¿, which is a Lorentzian according to (3.1). To this end we
 derive a localized version of the integral equation (2.16), which captures the leading
 order asymptotics of the problem. The key is to recognize that significant accelerations
 ä(z,t), which determine the region over which there are significant contributions to
 the integral in (2.16), occur only over the scale A. We localize the integral by isolating
 this region and splitting the integral according to

 (4.1) r , *«•,"* =r...«+r...«+r J-oo \f(z- £)2 + a(z,t) J-A+z JA+Z J-oo

 Now we consider the integrals on the right-hand side of (4.1) one by one.
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 The first integral on the right-hand side of (4.1) can be rewritten as

 A — / —

 f v^T) ä(z + £y/a(z,t),t)d£ (42) /
 V £ + 1

 If 2 is of order A, it follows from (3.1) that the limits of (4.2) can be approximated as

 A/\Ja(z, t) fa A/ho = e_1 oc e^/2,

 where we have used (2.19). This is large in the limit r —» oo that we are interested
 in. Now we expand the numerator of the integrand in (4.2) according to

 J' , (4.3) ä(z + £y/a(z,t),t) = ä(z,t) + ä"(z,t)a(z,t)— + 0(l; ).

 Using the integral

 r 7= =21n(e-1 + y/e-2 + l), J-e-i y/^ + l V >
 the contribution of the first term of (4.3) to (4.2) is

 / 4A2 \ , 1
 (4.4) .

 The second term of (4.3), using

 2

 /-e- V^+l  _1 + \/e 2 + 1 - In 1 + yje~2 + 1^ ,

 leads to

 (4 5) ä"(z,t)A2 _ äp A2
 2eTv/ri'

 Clearly, (4.5) is small compared to (4.4) in the limit r —oo, and so only the first
 term of the expansion (4.3) needs to be considered. The fourth order correction is
 even smaller.

 Next we evaluate the second integral on the right-hand side of (4.1). Using the
 form (3.1) of a(z,t), the integral can be estimated as

 (4.6) / ¿jgi r äoA2
 /»OO

 J A-\~Z  V(z - 02 + a{z,t) Ja+z £3 2(A + z)2 2

 if z is of order A. Clearly, (4.6) is small compared to the leading contribution (4.4)
 as e —> 0. An identical argument holds for the third integral on the right-hand side of
 (4.1). In summary, we have found that (4.4) is the leading contribution to (4.1), and
 so we have

 f
 (4-7) /

 J — C

 i(£,i)d£

 V(z - 02 + a(z,t)
 —ä(z, t) In e2.
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 log10(z/A + 0.1)

 2 3

 Fig. 4.1. Comparison between the local description (4.8) (small circles) and the integral equa
 tion (2.16) (solid line). The initial conditions are the same as in Figure 2.1. The scale is logarithmic,
 and a snapshot is taken for |t'|-6

 But this means that the localized version of (2.16) becomes

 which is the formulation that is the basis for the calculations of the next section.

 The description (4.8) is superficially similar to the scalar equation for the min
 imum radius given in [21] or [2] but differs in two important aspects. First, the
 logarithm of the aspect ratio In e is replaced by the logarithm of the minimum radius
 itself; this yields an incorrect time dependence for the exponent a; cf. (3.11). Second,
 (4.8) is an equation for the entire profile a(z, t), not just for the minimum. As seen in
 Figure 4.1, the description is extremely good over a wide span in the rescaled variable,
 provided one is sufficiently close to pinch-off.

 5. Neck profile: Inner region. The spatial variable 2 is only a parameter in
 (4.8), which thus can easily be solved. Namely, transforming the independent variable
 according to dt = dT/t', and the dependent variable according to d = a/aT, we find
 the linear equation

 (5.1) dT-d= 1- 1
 In e2(r)

 Now using ln(e2(r)) = —yjr + Inand expanding, we have

 (5.2) dT -d = ^ + 0(r"3/2),

 where for ease of notation we have put u = 1 — 1/(2y/r). Taking only leading order
 corrections in r into account, (5.2) can be integrated to give

 (5.3)  d= -C1(z)eT - */+ 0(r~3/2).
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 One more integration then gives

 dr'
 (5.4) Ina(z,t) & C2{z) - f

 Jt„ <~'l  (z)eT' + v'

 To compute the similarity form (2.17) of a(z,t), we need to evaluate (5.4) at a
 constant value of the similarity variable q = z/A oc z/\ft . Thus in the limit of t' —> 0,
 we have to consider (5.4) for z —> 0. The constant of integration C2(z) describes the
 initial condition for the profile on a spatial scale of order unity; in the limit, its
 argument is replaced by z = 0. The constant of integration Ci(z), on the other
 hand, is rescaled by a time-dependent factor and encodes the form of the profile in
 similarity variables. We must have Ci(0) = 0, because otherwise the integral in (5.4)
 would remain finite, and a(0,f) would not go to zero at the singularity, as required.
 For C\ vanishing at the origin, on the other hand, we find from (5.4)

 pT 1 / pT

 (5.5) lnao « C2(0) - — « C2(0) - / (l + 1/(2V^7)) dr' J Ti) V J Ta
 — —T — \Zt + In C0,

 where the notation for the arbitrary constant Co has been chosen in accordance with
 the notation of section 2.4. As expected, (5.5) agrees with the earlier calculation of
 the scale factors; cf. (3.12).

 Now we determine the spatial form of the similarity profile. The expansion of C\
 around 2 = 0 is C\ = Bz2 + 0{zi). Since this is evaluated at constant the third
 order term is smaller than the leading term by a factor of \fF and can be dropped.
 To evaluate the integral in the limit C\ —» 0, we integrate by parts, to produce an
 integral that is of lower order in r. Namely, setting E = In (Ci + ve~T), we find that

 dñ) d~ » + 0(t-3/2) ( ' ' 8t~ C^ + u '
 and thus

 (5.7) In a(z,t) « —hi
 ^ J T(

 T f—i

 -dr' + const.
 To

 Remembering that C\eT ~ Bz2ft' = eBr¡2/4, the first term in (5.7) becomes

 (5 8) - « ~r + ln(1 ± eB'l2/^)
 v v

 The remaining integral in (5.7) can now be evaluated by expanding the integrand in
 powers of C\ and using v « 1 to leading order. The result is

 <5-9> ^ + ih ^ + 0(c'e')21 ■
 The integral over the first term gives —yfr/2, which contributes to the correct
 value of the scaling factor «(>. The integral over the exponential can be estimated as

 (5.10) J'  CieT , 2Cier y
 -dr « oc

 2

 r 3/2 ^

 for r —> oo. But this, at constant //. is clearly of lower order than the nonuniversal
 constants that contribute to (5.7). Thus in summary we obtain from (5.7)

 (5.11) fina(z,t) « — T + ln(l + eBi/2/A) — y/r/2,
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 Fig. 5.1. The asymptotic behavior of a sequence of experimental profiles [23], 52, 27, and
 7 ßs away from pinch-off, plotted on a logarithmic scale. The thick line shows a slope of one for
 comparison. The inset shows the slope of the profile, determined in the range 100'6 < h/hmin < 10.
 The time scale used to nondimensionalize t was chosen, somewhat arbitrarily, as 500 /us.

 and therefore

 (5.12)  a(z, t) = a0A(r7, r) « a0 [l + ??2]1+ -

 Here we have made use of the fact that A2 = 2ao/a'¿, and thus B — 4/e.
 In particular, this means that the profile h(z,t) behaves like a power law with

 exponent /j a 1 + 1/(2y/r) for large values of r]. The interesting and subtle feature
 here is that fx is varying logarithmically in time. We first attempted to confirm this
 prediction directly from experimental data; cf. Figure 5.1. It is seen clearly that fi is
 indeed greater than unity, and that it is decreasing in time. However, both the limited
 temporal and spatial resolution do not permit a fully quantitative comparison. We
 therefore determined the exponent of the profile (5.12) from the simulation described
 before, which follows ho through six orders of magnitude. The result (cf. Figure
 5.2) shows good agreement with the predicted exponent, but only for large values
 of r; as usual, transients are very slow to decay. For typical values of r as found
 experimentally, deviations between simulations and asymptotics are quite large.

 The spatial dependence of ä = aT/t' = a/{vt') is easily found from (5.3):

 Now, with a and ä in hand, (4.8) can be used to find the similarity form of ä, as
 defined by (2.18):

 In the limit of large r, this reduces to (3.1), as required, and as confirmed in Figure
 3.1. Convergence in the tails of the peak, however, is slow, and the acceleration
 actually becomes negative. This is because the spatial integral over the acceleration
 must vanish, as we show now.

 (5.13)
 Ci{z)eT — 1

 ä0 (l +t/2)^7 .

 (5.14)  ä = ä0<p(r/,T) = ¿¿o(l + r)2)
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 Fig. 5.2. The asymptotic slope /i of the profile, determined from a doubly logarithmic plot. We
 used a numerical simulation of (2.16), with initial conditions as in Figure 2.1. A linear regression
 was performed in the range 10 < h/hmin < 100. For large r, n agrees well with the theoretical
 prediction ß Rs 1 + l/(2</r), allowing for a shift in time as usual.

 6. Neck profile: Outer region. The above arguments, based 011 the local
 equation (4.8), predict the spatial structure of the profile in the inner region. By
 this we mean that the limit t —> 00 is taken, keeping the similarity variable 77 fixed.
 However, we will now show that this is not sufficient to get a global picture of the
 universal behavior near pinch-off. Instead, one has to introduce an outer region of
 the neck profile, where we describe the profile at a fixed size in the spatial variable
 2. For this, it is necessary to go back to the original equation (2.16), and to invert
 the integral kernel. Thus, writing (2.16) in similarity variables as in (2.17), (2.18), we
 obtain, using the result of the previous section,

 (6.1) /
 J — C

 4>(Cr)dC Vt

 V(v~02 +a(vtn/'2)/t' (1 + Bi;2)1

 The right-hand side of (6.1) is valid for any finite //. But this means that rjt'1'2 goes
 to zero in the limit r -> 00, so can replace a(r)t')/t' ss ao/t' ss e~^ and solve (6.1)
 by Fourier transform.

 Using (A.4), we find

 (6.2) m =
 2A'o(fcev/?/2)'

 where

 (6.3) s(k) = [ —j—¡-dr) and 4>(k) = í <f>{r¡) cos(kq)dq.
 J-oo (1 + Brj2) v? J - 00
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 Fig. 6.1. The scaling function (f>(rj) corresponding to ä, defined by (2.18), is shown on a
 logarithmic scale. The profile was computed for t' = 10-6. We used a numerical simulation of
 (2.16), with initial conditions as in Figure 2.1. In the center, there is a Lorentzian peak, but <¡>
 becomes negative for large arguments. In the inset, the decay of </> is compared to (6.9), which
 is shown as the dot-dashed line. The argument 1 + 77 inside the logarithm was chosen simply for
 convenience, to be able to show part of the central region as well as the tail.

 The inverse Fourier transform then gives the real space profile

 (6.4)  •KM = ^ /_
 '°° s(k) cos(krj)

 /— , „ drv
 -oo Ko(ke^/*)

 In the limit t —>■ oo, s(fc) becomes

 (6.5)
 7T fc_

 s(/c) = ——e su
 V y/B

 and even the general case can be done in terms of Bessel functions. Since we want
 to compute <¡>(rj) for large arguments, we are interested in the limit of small k in
 which s becomes a constant and Ko(ke^/2) « — lnffce^/2) = yff/2 — In k. For
 k <C e_N/T/'2, the constant can be neglected. Thus the first observation we can make
 is that 0(0) = 0, so it follows from (6.3), putting k = 0, that

 Clearly, our initial approximation (5.14), which predicts a positive acceleration, cannot
 apply uniformly: for large arguments 0 must be negative, to ensure a vanishing total
 area under the graph of <p. This is confirmed in Figure 6.1, where <p is seen to be
 positive in the center but negative for large arguments. To find the behavior in the
 outer region, we consider the case r)e~^l2 3> 1, for which (6.4) becomes

 (6.6)  and thus

 (6.7)

 With a change of variables, and integrating by parts, we find

 7?(ln77)2'

 7r
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 In the last step we have neglected the slow y-dependence inside the logarithm, allowing
 us to perform the integral. This means we finally have

 (6-9) —7=7T—'/e_v/f/2> 1,
 4rjV B (In T])2

 so 0 is negative as expected, to be consistent with (6.6). The asymptotic behavior
 (6.9) is compared to a numerical simulation in Figure 6.1, showing good agreement.

 Thus to summarize, when the profile is considered at constant r], the result is
 (5.14). This approximation holds for r¡ <C e^''1 and can be considered as the inner
 part of the similarity profile. In the opposite limit of // ev/?/"2, one instead finds
 the outer profile (6.9). According to (6.6), the area of both parts adds up to zero.

 7. Discussion. We have analyzed the collapse of an axisymmetric cavity in
 an inviscid fluid. It was found that the minimum neck radius, ho, has a universal
 dynamics that is intimately coupled to the axial length scale, A. This dynamics
 can be expressed in terms of an effective exponent that has a very slow logarithmic
 evolution, according to (3.11). We were able to calculate the exponents to higher order
 than in our previous paper [12]. For example, this permits distinguishing between the
 time dependence of the two exponents a and S.

 However, the main results of this paper relate to the spatial structure of the
 profile, which were previously unknown. As seen from (5.12), the "near" tail of the
 profile is again characterized by an exponent which depends logarithmically on time.
 However, (5.12) does not describe the profile in a finite region of space as t —> to
 This distinguishes the asymptotics of bubble pinch-off from other, superficially sim
 ilar pinch-off problems, like the break-off of a fluid drop in air [9]. Instead, another
 asymptotic region needs to be investigated to find the "far" tail (6.9). Each asymp
 totic result has in this paper been checked quantitatively by comparison to numerical
 simulation.

 We also went into great detail to test our numerical simulations, as well as our
 analytical results, directly against experiment. The agreement with numerical simu
 lation is very good; this remains true if terms of leading order in the slenderness have
 been dropped. Our asymptotic results for scaling exponents agree with experiment
 as well, but their time dependence can be detected only as far as their trend is con
 cerned, since one is restricted to a limited number of decades. Typical experimental
 values for the exponent a are about 0.56 [4, 16, 18, 23, 2, 8], although the precise
 value depends on initial conditions [2] and on the frame rate [23]. To interpret these
 findings in terms of our theory requires an estimate of r = — lni', and we have at
 best an educated guess for the time scale in which to express t'. However, at higher
 frame rates, but otherwise under the same experimental conditions, the exponent a
 decreases. The exponent of the width A, on the other hand, remains very close to
 1/2 [23]. For the exponent //. characterizing the tail of the self-similar profile, we were
 able to detect a decreasing trend (cf. Figure 5.2), in agreement with theory.

 Perhaps the best dimensionless parameter with which to parameterize the pinch
 process is the aspect ratio (2.8), for which a'¿ ~ e2. To leading order we found that
 sJt ~ — In (i¡¡. so that we can express the exponent as

 (7-!) ,w,n+0
 2 —4 ln(ciQ) VIn a'¿

 as inferred readily from (3.6). This interpretation is consistent with experiments by
 [2], where cavities of different aspect ratios were created by forcing a disk through a
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 water surface: higher impact velocities provide increasingly slender cavities. Indeed,
 the exponent was found to decrease logarithmically with the impact velocity, to values
 that approach 1/2. We thus believe that such experiments explore different parts of
 a universal collapse that is governed by the square of the aspect ratio a

 Appendix. Linear stability. It is instructive to perform a linear stability
 analysis around a cylindrical cavity, based on the equations of motion derived above.
 To maintain a stationary cavity of radius ho, one needs a cavity pressure of po = 7//¿o
 in (2.15). We set h = ho + eh, and thus a = ao + 2hoth, where ho is the unperturbed
 cavity radius. Since C = 0(th), we have to linear order

 (A.1) /
 J — (

 CdS, 7 ( eh
 '-00 y/(z - £)2 + ao P \ho

 where we have used

 1 h

 1 J" e

 (A'2) K h(l + Ä*)l/3 (1 + /l'2)3/2
 for the mean curvature. The corresponding linearized version of (2.3) is

 Cd£ r

 (A-3> -5-/  2 *

 00 V(z ~ 02 + ao

 Expanding the perturbation into plain waves, we set = ewt cos kz. The integrals
 can now be done using using the Fourier transforms
 (A.4)
 f°° cosk£d£ X , f°° cosk£d£ 2k „ ,, , .
 / = 2Ko(kho) cos kz, / — 0 = —K\(kho)coskz,
 J-00 y/(z - W + «0 J-00 ^(Z-Z)2 + ao «O
 where i^o, ^1 are modified Bessel functions of the second kind. Thus, combining (A.l)
 and (A.3), we find

 (A.5) =

 with the characteristic frequency ui0 = s/j/iph^). Reassuringly, this result is identical
 to the exact result as found in, e.g., [5]. If, on the other hand, the linearization is
 performed using the slender-body equation (2.15), the result is

 <A-6) "2="»(1-("'»)!)sö(k)
 Both (A.5) and (A.6) show that the instability is cut off at short wavelengths, owing
 to surface tension. Namely, for kho > 1 the growth rate becomes complex.

 Acknowledgments. We are very grateful to Justin Burton and Peter Taborek
 for making their unpublished data available to us, which is shown in Figure 2.3, and
 to Siggi Thoroddsen for providing us with the data shown in Figure 5.1. We also
 thank John Lister for useful remarks and criticism, and Stephan Gekle for pointing
 out an incorrect prefactor.

 REFERENCES

 [1] H. Ashley and M. Landahl, Aerodynamics of Wings and Bodies, Addison-Wesley, Reading,
 MA, 1965.



 M. A. FONTELOS, J. H. SNOEIJER, AND J. EGGERS

 R. Bergmann, D. van der Meer, M. Stijnman. M. Sandtke. A. Prosperetti. and
 D. Lohse, Giant bubble pinch-off, Phys. Rev. Lett,, 96 (2006), 154505.

 J. C. Burton and P. Taborek, Bifurcation from bubble to droplet behavior in inviscid pinch
 off, Phys. Rev. Lett., 101 (2008), 214502.

 J. C. Burton, R. Waldrep. and P. Taborek, Scaling and instabilities in bubble pinch-off,
 Phys. Rev. Lett., 94 (2005), 184502.

 S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York, 1961.
 Y.-J. Chen and P. H. Steen, Dynamics of inviscid capillary breakup: Collapse and pinchoff

 of a film bridge, J. Fluid Mech., 341 (1997), pp. 245-267.
 R. F. Day. E. J. Hinch. and J. R. Lister, Self-similar capillary pinchoff of an inviscid fluid,

 Phys. Rev. Lett., 80 (1998), pp. 704-707.
 V. Duclaux, F. Caille, C. Duez, C. Ybert. L. Bocquet. and C. Clanet, Dynamics of

 transient cavities, J. Fluid Mech., 591 (2007), p. 1.
 J. Eggers, Universal pinching of 3D axisymmetric free-surface flow, Phys. Rev. Lett., 71

 (1993), pp. 3458-3460.
 J. Eggers, Drop formation—An overview, ZAMM Z. Angew. Math. Mech., 85 (2005), pp. 400

 410.

 J. Eggers and T. F. Dupont, Drop formation in a one-dimensional approximation of the
 Navier-Stokes equation, J. Fluid Mech., 262 (1994). pp. 205-221.

 J. Eggers. M. A. Fontelos. D. Leppinen. and J. H. Snoeijer, Theory of the collapsing
 axisymmetric cavity, Phys. Rev. Lett., 98 (2007), 094502.

 S. Filippas and R. V. Kohn, Refined asymptotics for the blowup of ut — 6u = up, Comm. Pure
 Appl. Math., 45 (1992), pp. 821-869.

 S. Gekle, J. H. Snoeijer. D. Lohse. and D. van der Meer, Approach to universality in
 axisymmetric bubble pinch-off, Phys. Rev. E, 80 (2009), 036305.

 J. M. Gordillo and M. A. Fontelos, Satellites in inviscid breakup of bubbles, Phys. Rev.
 Lett., 98 (2007), 144503.

 J. M. Gordillo, A. Sevilla. J. Rodríguez-Rodrigues, and C. Martinez-Bazan, Axisym
 metric bubble pinch-off at high Reynolds numbers. Phys. Rev. Lett., 95 (2005), 194501.

 R. A. Handelsman and J. B. Keller, Axially symmetric potential flow around a slender
 body, J. Fluid Mech., 28 (1967), pp. 131-147.

 N. C. Keim. P. M0ller. W. W. Zhang, and S. r. Nagel, Breakup of air bubbles in water:
 Memory and breakdown of cylindrical symmetry, Phys. Rev. Lett., 97 (200G), 144503.

 L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, UK, 1984.
 M. S. Longuet-Higgins, B. R. Kerman, and K. Lunde, The release of air bubbles from an

 underwater nozzle, J. Fluid Mech., 230 (1991), p. 365.
 H. N. Oguz and A. Prosperetti, Dynamics of bubble growth and detachment from a needle,

 J. Fluid Mech., 257 (1993), p. 111.
 D. H. Peregrine, G. Shoker, and A. Symon, The bifurcation of liquid bridges, J. Fluid

 Mech., 212 (1990), pp. 25-39.
 S. T. Thoroddsen, E. G. Etoh. and K. Takeara, Experiments on bubble pinch-off, Phys.

 Fluids, 19 (2007), 042101.
 J. J. L. Velazquez. V. A. Galaktionov. and M. A. Herrero, The space structure near a

 blow-up point for semilinear heat equations: A formal approach, Comput. Math. Math.
 Phys., 31 (1991), pp. 46-55.


	Contents
	p. 1696
	p. 1697
	p. 1698
	p. 1699
	p. 1700
	p. 1701
	p. 1702
	p. 1703
	p. 1704
	p. 1705
	p. 1706
	p. 1707
	p. 1708
	p. 1709
	p. 1710
	p. 1711
	p. 1712
	p. 1713
	p. 1714
	p. 1715
	p. 1716

	Issue Table of Contents
	SIAM Journal on Applied Mathematics, Vol. 71, No. 5 (2011) pp. i-vi, 1557-1848
	Front Matter
	A THEORETICAL FRAMEWORK OF X-RAY DARK-FIELD TOMOGRAPHY [pp. 1557-1577]
	ON AN INVERSE PROBLEM FROM MAGNETIC RESONANCE ELASTIC IMAGING [pp. 1578-1605]
	þÿ�þ�ÿ���T���R���A���V���E���L���I���N���G��� ���W���A���V���E���S��� ���I���N��� ���T���H���E��� ���B���U���F���F���E���R���E���D��� ���F���I���T���Z���H���U���G���H�������N���A���G���U���M���O��� ���M���O���D���E���L��� ���[���p���p���.��� ���1���6���0���6���-���1���6���3���6���]
	A MOLLIFICATION APPROACH FOR INVERTING THE SPHERICAL MEAN RADON TRANSFORM [pp. 1637-1652]
	INSTABILITY OF LOCAL DEFORMATIONS OF AN ELASTIC ROD: NUMERICAL EVALUATION OF THE EVANS FUNCTION [pp. 1653-1672]
	ENHANCED SAMPLING OF MULTIDIMENSIONAL FREE-ENERGY LANDSCAPES USING ADAPTIVE BIASING FORCES [pp. 1673-1695]
	THE SPATIAL STRUCTURE OF BUBBLE PINCH-OFF [pp. 1696-1716]
	FROST HEAVE IN COLLOIDAL SOILS [pp. 1717-1732]
	IMAGING OF LOCAL SURFACE DISPLACEMENT ON AN INFINITE GROUND PLANE: THE MULTIPLE FREQUENCY CASE [pp. 1733-1752]
	ANALYSIS OF WETTING AND CONTACT ANGLE HYSTERESIS ON CHEMICALLY PATTERNED SURFACES [pp. 1753-1779]
	WAVEFORM DESIGN FOR SYNTHETIC-APERTURE RADAR IMAGING THROUGH DISPERSIVE MEDIA [pp. 1780-1800]
	GLOBAL DYNAMICS OF A TRITROPHIC MODEL FOR TWO PATCHES WITH COST OF DISPERSAL [pp. 1801-1820]
	A MATHEMATICAL MODEL FOR FORCE GENERATION AT THE KINETOCHORE-MICROTUBULE INTERFACE [pp. 1821-1848]
	Back Matter



