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Abstract

We determine the exact threshold of satisfiability for random instances
of a particular NP-complete constraint satisfaction problem (CSP). This is
the first random CSP model for which we have determined a precise linear
satisfiability threshold, and for which random instances with density near
that threshold appear to be computationally difficult. More formally,
it is the first random CSP model for which the satisfiability threshold
is known and which shares the following characteristics with random k-
SAT for k ≥ 3. The problem is NP-complete, the satisfiability threshold
occurs when there is a linear number of clauses, and a uniformly random
instance with a linear number of clauses asymptotically almost surely has
exponential resolution complexity.

1 Introduction

Determining the satisfiability threshold for random k-SAT is a fundamental
problem that has received attention from several scientific communities. (See,
eg., [1] for a survey of the area.) The basic question is this: does there exist a
constant c∗k such that a uniformly random instance of k-SAT with n variables
and cn clauses will be asymptotically almost surely (a.a.s.)1 satisfiable if c < c∗k
and a.a.s. unsatisfiable if c > c∗k? Neither the existence nor the location of c∗k is
known for any k ≥ 3; Friedgut [32] proved that the threshold for k-SAT is sharp,
although the location of the threshold might be not be at the same clause density
for each value of n. We have a tight asymptotic bound on the conjectured c∗k:
2k log 2−O(k) [6] ≤ c∗k ≤ 2k log 2 [31]. For 3-SAT, the current state of research
has 3.52 [37, 45] ≤ c∗3 ≤ 4.4898 [25]. From experimental evidence, the threshold
for 3-SAT appears to be roughly 4.2 [47, 69, 20].

1A property holds asymptotically almost surely if its probability tends to 1 as the number
of variables tends to ∞.
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Research on the satisfiability threshold has extended to generalizations of
k-SAT such as the Schaefer [68] generalizations: 1-in-k SAT [3] (only one true
literal per clause), NAE-SAT [3, 5] (at least one true and one false literal per
clause), and XOR-SAT [27, 52, 26] (each clause is an exclusive-or rather than a
disjunction), and more generally, to random constraint satisfaction problems.

In a constraint satisfaction problem (CSP), we can allow variables to take
on values from a domain of size larger than 2, and we have more freedom as to
the types of constraints to use. There have been various models proposed and
studied for random constraint satisfaction problems, eg. [4, 21, 53, 56, 58]. For
such models, a major goal has typically been to determine whether it has a sharp
satisfiability threshold, and if so, to determine its location. In addition, there
has been a large body of experimental studies [35] to find the approximate
location of the satisfiability threshold and to study the difficulty of solving
random instances of various CSP models.

The primary motivation for a large number of these studies was the discovery
by Selman, et al [69] that random instances of 3-SAT with clause density near
the conjectured threshold are very difficult to solve. Researchers who develop
SAT-solvers study such problems to test and improve their solvers and to look
for insights into what can make SAT instances computationally difficult. When
these researchers expanded to CSP-solvers, they wanted to find thresholds for
other random CSP models with the expectation that this should provide a rich
source of difficult instances.

Most of this research has been on models where the constraint- and domain-
sizes are constant. There have been studies of models where one or both of these
parameters grows with n (eg. [29, 72, 73, 33, 30]). As discussed below, such
models tend to have a very different nature; eg., the thresholds typically occur
when the number of constraints is superlinear. So our focus in this discussion
is on the case where these parameters are both constant.

Most random CSP models for which the satisfiability threshold is known are
in P (eg. 2-SAT [15, 24, 36], 3-XOR-SAT[27, 26]), and hence do not provide diffi-
cult instances. We know the satisfiability threshold for a few NP-complete prob-
lems with constant sized domain and constraints, for example 1-in-k-SAT [3],
and a mixture of 2-SAT and 3-SAT when the number of clauses of size 3 is
kept small [60], and a model from [59]. However, in each of these cases, a ran-
dom instance whose number of clauses is just below the threshold, is in some
sense equivalent to random 2-SAT. This allows us to prove that such problems
are a.a.s. satisfiable by analyzing a polynomial time algorithm that solves them
with uniformly positive probability (w.u.p.p.) 2. Furthermore, instances with
density slightly above the threshold a.a.s. have short resolution proofs of un-
satisfiability. (This is straightforward to show for 1-in-k-SAT, and is proven in
[2, 59] for the other two.) It is straightforward to design polynomial time algo-
rithms that make use of such proofs to a.a.s. recognize that such instances are
unsatisfiable. Thus, while these problems are NP-hard, they are easy to solve

2A property holds with uniformly positive probability if as the number of variables tends
to ∞, the lim inf of its probability is at least some positive constant.
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when their density is near the satisfiability threshold.
In this paper, we introduce a particular NP-hard problem and determine its

satisfiability threshold. The problem is different from previous NP-hard prob-
lems whose thresholds are known in that we don’t know of any algorithm that
can solve random instances whose density is near the threshold. Furthermore,
we can prove that such instances a.a.s. have exponential resolution complexity,
which implies that resolution based algorithms will a.a.s. fail on unsatisfiable
instances. (Virtually all complete3 CSP-solvers that are commonly used in prac-
tice are resolution-based.)

This is the first random constraint satisfaction problem for which: (1) We
have determined a constant c∗ such that if the number of constraints is at most
(c∗ − ǫ)n then it is a.a.s. satisfiable and if the number of constraints is at least
(c∗ + ǫ)n then it is a.a.s. unsatisfiable. (2) We don’t know of any polynomial
time algorithm that will a.a.s. succeed on a random instance when the number
of clauses is cn for c arbitrarily close to c∗. In short, we know the location
of a satisfiability threshold around which the instances actually appear to be
difficult.

Our problem is called (3, 4)-UE-CSP. We will define (k, d)-UE-CSP in the

next section. We use U
(k,d)
n,m to denote a random instance with n variables and m

constraints. In Subsection 5.1 we will specify a precise constant c∗ = .917935...
Our main theorem is:

Theorem 1 If c < c∗ then U
(3,4)
n,m=cn is a.a.s. satisfiable. If c > c∗ then U

(3,4)
n,m=cn

is a.a.s. unsatisfiable.

In [19] the first author proves

Theorem 2 For every d ≥ 4, (3, d)-UE-CSP is NP-complete. Furthermore, it
is NP-complete under the restriction that no two constraints share more than
one variable.

The latter restriction is relevant here because random instances with a linear
number of constraints a.a.s. have that property.

In Section 4 we prove

Theorem 3 For any constant c > 0, and any k ≥ 3, d ≥ 2, the resolution

complexity of U
(k,d)
n,m=cn is a.a.s. 2Θ(n).

The proof of Theorem 1 follows along the lines of that of Dubois and Man-
dler [27, 28], who determined the satisfiability threshold for k-XOR-SAT.4 That
problem is in P - it can be solved using Gaussian elimination. However, they
did not make use of the fact that it is in P in establishing the threshold. Rather,
they applied the second moment method to prove that problems with density

3A solver is complete if it is able to recognize all satisfiable and all unsatisfiable instances.
4Unfortunately, a full version of their paper never appeared, and the short versions provide

only a sketch of the argument for k = 3 and no details for k = 4. Ditzfelbinger et. al.[26]
provide a full proof for all k ≥ 3, using a somewhat different technique.
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below the threshold are a.a.s. satisfiable. The problem (3, 4)-UE-CSP is some-
what contrived in that it is designed to have the properties of k-XOR-SAT that
allow the approach of Dubois and Mandler to work, while at the same time be-
ing NP-complete. The analysis is much more complicated than that of [27, 28].
In fact, we have to resort to a computer-aided proof which makes use of interval
analysis to rigorously determine the global maximum of a particular function.

The discussion above has focused on random CSP models in which the con-
straint size and domain size are both constant. Researchers have studied models
where the domain size grows with n [29, 34, 70, 72, 73] or where the constraint
size grows with n [33, 30]. Exact thresholds are known for some such mod-
els [72, 73, 33, 30]. In [73] it is proven that the models of [72] and [73] contain
many problems that a.a.s. have exponential tree resolution complexity, and it
is noted that the model of [33] contains problems that a.a.s. have exponential
resolution complexity. But in all of these models, the satisfiability threshold
occurs when the number of clauses is superlinear in n, and the structure of a
random constraint satisfaction problem with a superlinear number of clauses is
very different from one with a linear number of clauses. Thus, these problems
are of a very different nature than, say, the random 3-SAT problem.

In summary, random (3, 4)-UE-CSP is the first model of random constraint
satisfaction problems for which we know the exact satisfiability threshold and
which shares the following characteristics with random 3-SAT: (a) it is NP-
complete; (b) there are a linear number of constraints at the threshold; (c)
random instances near the threshold a.a.s. have exponential resolution com-
plexity; (d) the domain and constraint sizes are constant. Random 3-XOR-SAT
was close - it met all of these conditions except for (a).

Ours is also the first random CSP model with a known linear satisfiabil-
ity threshold for which it is seems that random instances with density near
that threshold are difficult to solve. There is computational evidence that such
problems really are difficult. Since the appearance of a short preliminary ver-
sion of this paper [18], random instances of (3, 4)-UE-CSP with densities close
to the satisfiability threshold have been chosen as challenging problems in ex-
perimental studies [49, 40, 41, 42, 43]. In fact, the study of [7] indicated that
the problems become difficult when the density exceeds the threshold for the
appearance of a 2-core in the underlying hypergraph (see Section 2). Random
instances of (3, 4)-UE-CSP have also been used as test cases for the SAT solver
competitions of the SAT 2004, 2005, 2007, and 2009 conferences [11, 65, 66, 67].
None of the solvers in the competition were able to solve a test instance on 1200
variables whose density was at the satisfiability threshold.

Remark: A short preliminary version of this paper appeared in a conference
proceedings [18]. There is an error in that version; specifically in the proof of
Lemma 16, which corresponds to Lemma 18 in this paper. We replaced that
proof with the much longer computer-aided proof found here.
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2 Uniquely Extendible CSPs

We define a clause to be an ordered subset of variables and a constraint to
be a list of tuples of values that we may assign to the variables of the clause.
A constraint satisfaction problem consists of a set of n variables where each
variable has a non-empty domain of possible values, a set of m clauses, and
a constraint applied to each clause. The goal is to find an assignment to the
variables such that the constraint on each clause is satisfied. One common
restriction is that every variable must have the same domain of values; that will
be the case throughout this paper. In keeping with SAT notation, we will denote
an instance of a constraint satisfaction problem as a formula. The underlying
hypergraph of a CSP is the hypergraph whose vertices are the variables and
whose hyperedges are the clauses.

The inspiration for uniquely extendible CSPs comes from the proof of the
satisfiability threshold for 3-XOR-SAT [27, 52, 26]. In XOR-SAT, each clause is
an exclusive-or of the literals, rather than a disjunction. Thus each clause can
be interpreted as a linear equation mod 2, which is why it can be solved using
Gaussian elimination.

As we mentioned above, their proof of the threshold does not rely in any
way on the Gaussian elimination algorithm. Instead, they reduce the random
formula to its 2-core, the unique maximal subformula where each variable occurs
in at least two clauses. Then, the first and second moment methods are used
to give coinciding upper and lower bounds on the satisfiability threshold for the
2-core. Standard calculations translate the satisfiability threshold for the 2-core
into a satisfiability threshold for 3-XOR-SAT.

The key property that makes this proof work is that every constraint in
XOR-SAT is uniquely extendible:

Definition 4 A constraint on k-variables is uniquely extendible if for every
truth assignment to any k− 1 of its variables there is exactly one value that can
be assigned to the remaining variable so that the constraint will be satisfied. It
is at-most-one-extendible if there is always at most one such value and at-least-
one-extendible if there is always at least one such value.

It is the property that the constraints of k-XOR-SAT are at-least-one-extendible
that permits us to consider only the 2-core. Consider the following procedure
to find the 2-core:

CORE: While the formula has any variable that occurs in at most
one clause, choose an arbitrary such variable and delete it along with
any clause that contains it.

The order in which variables are chosen to be deleted is easily seen to be
irrelevant in that it does not affect the final output of the procedure. This
proves that the 2-core is unique.

Lemma 5 Let F be an instance of a CSP such that every constraint is at-least-
one-extendible. Then F is satisfiable iff the 2-core of F is satisfiable.
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Proof Clearly, if the 2-core of F is unsatisfiable then so is F . Assume
that the 2-core of F is satisfiable. Consider running CORE on F , and suppose
that the deleted variables are x1, x2, ..., xt in that order. Start with any satisfy-
ing assignment of the 2-core. Now restore the deleted variables in reverse order,
i.e. xt, xt−1, ..., x1, each time adding the variable along with the at most one
clause that was deleted when the variable was deleted. Because the constraint
applied to the clause is at-least-one-extendible, there is a value that can be as-
signed to the variable that does not violate the constraint. This will result in a
satisfying assignment for F . �

The fact that the constraints are all at-most-one-extendible is crucial to the
fact that the first moment bound yields the exact satisfiability threshold for the
2-core of a random k-XOR-SAT formula. To be more specific: let X denote the
number of satisfying assignments. A straightforward calculation shows that if
the number of clauses is cn then E(X) = 2f(c)n+o(n), where f(c) is a continuous
monotonically decreasing function; in fact, this is true for virtually all models of
random CSP’s where the domain size is constant (of course, f(c) depends on the
model). We define c+ to be the solution of f(c) = 0 and note that if c > c+ then
E(X) = 2−Θ(n) and so the problem is a.a.s. not satisfiable. For most problems,
c+ is strictly greater than the actual satisfiability threshold. Usually this can
be seen by observing a “jackpot phenomena” where the presence of at least one
satisfying assignment a.a.s. implies the presence of an exponential number of
them.

This is most easily seen in the random instance before it is stripped to
the 2-core. Standard arguments show that such an instance will a.a.s. have at
least ǫ(c)n variables of degree zero, for some ǫ(c) > 0. Clearly, any satisfying
assignment remains satisfying after changing the values of any of those variables.
So a.a.s. X > 0 implies X ≥ 2ǫ(c)n. By continuity, we can choose some c < c+

such that ǫ(c) > 2f(c) > 0. Markov’s Inequality implies that Pr(X ≥ 2ǫ(c)n) <
E(X)/2ǫ(c)n = 2f(c)n+o(n)−ǫ(c)n < 2−f(c)n. Therefore a.a.s. X < 2ǫ(c)n, and
so a.a.s. X = 0; i.e. the formula is a.a.s. unsatisfiable. This implies that the
satisfiability threshold (if it exists) is at most c < c+.

Stripping to the 1-core will eliminate this particular jackpot, but a similar
jackpot will remain. There will a.a.s. be a linear number of clauses with two
variables that don’t appear in any other clauses. For any satisfying assignment,
there will always be a way to jointly change the values of those two variables
so that the assignment is still satisfiable. So once again we a.a.s. have X > 0
implies X ≥ 2Θ(n).

But if we strip to the 2-core then these, and all similar jackpots, are elimi-
nated. To see this, consider any satisfying assignment. If we change the assign-
ment of any one variable, then the constraint on every clause it is in will become
violated because they are all at-most-one-extendible. So we must change the
values of at least one other variable in each of those clauses. Because every
variable lies in at least 2 clauses (as we are in the 2-core) each such change will
cause the constraint on another clause to be violated. Expansion properties of
random formulas ensure that this pattern spreads until many variables must be
changed - far too many to create a jackpot of the type described above. Of
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course, this doesn’t imply that c+ will be the actual satisfiability threshold, but
it shows that a common simple argument fails to prove that it is not.

Observing that unique satisfiability played a crucial role in this proof, we are
inspired to define a more general class of problems which may also be amenable
to similar analysis.

Definition 6 (UE-CSP) A UE-CSP instance is a constraint satisfaction prob-
lem where every constraint is uniquely extendible.

Definition 7 ((k, d)-UE-CSP) An instance of (k, d)-UE-CSP is an instance
of UE-CSP where we restrict every clause to have size k and every variable to
have domain {1, ..., d}.

A straightforward induction on k yields that there are only two different
uniquely extendible constraints of size k with d = 2, and that they are equivalent
to the two different possible parities for a k-XOR-SAT constraint. In other
words, (k, 2)-UE-CSP is exactly k-XOR-SAT, and thus is in P.

In addition, both (k, 3)-UE-CSP and (2, d)-UE-CSP are in P [19]. On the
other hand, Theorem 2 states that (3, d)-UE-CSP is NP-complete for any d ≥
4 [19]. In this paper, we focus on the simplest NP-complete case: (3, 4)-UE-CSP.

3 The Random Model

For each appropriate n,m, we define Ω
(k,d)
n,m to be the set of (k, d)-UE-CSP in-

stances with m clauses on variables {v1, ..., vn} and a uniquely extendible con-

straint on each clause. We define U
(k,d)
n,m to be a uniformly random member of

Ω
(k,d)
n,m . When m is defined to be some function g(n), we often write U

(k,d)
n,m=g(n).

As is common in the study of random problems of this sort, we will be most in-
terested in the case where m = cn for some constant c. This model is equivalent
to first choosing a uniformly random hypergraph on n vertices and m hyperedges
to be the underlying hypergraph of the (k, d)-UE-CSP instance, and then for
each hyperedge, arbitrarily ordering the vertices of the hyperedge and choosing
a uniformly random uniquely extendible constraint of size k and domain size d.

Alternatively, we can consider a second random model. Define U
(k,d)
n,p to

be an instance of (k, d)-UE-CSP on n variables where each of the
(

n
k

)

clauses

occurs in U
(k,d)
n,p with probability p and a uniformly random constraint is applied

to each clause.
From results of [12, 50] on random structures, the two models are asymp-

totically equivalent in the sense that

lim
n→∞

Pr
(

U (k,d)
n,m has property A

)

= lim
n→∞

Pr
(

U (k,d)
n,p has property A

)

if A is a monotone (increasing or decreasing) property and m and
(

n
k

)

p are
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“close” to each other. Formally, m is “close” to
(

n
k

)

p if

m =

(

n

k

)

p + O

(
√

(

n

k

)

p(1 − p)

)

,

and p is “close” to m

(n

k)
if

p =
m
(

n
k

) + O





√

√

√

√

m
((

n
k

)

−m
)

(

n
k

)3



 .

So in particular, Theorem 1 implies that U
(3,4)
n,p=d/n2 has a sharp threshold of

satisfiability at d∗ = 6c∗.

We need another random model with which to analyze the 2-core of U
(3,4)
n,m .

Let Ψn,m denote the subset of Ω
(3,4)
n,m in which every variable lies in at least

2 clauses, and let U∗
n,m denote a uniformly random member of Ψn,m. The

following lemma allows us to work in the U∗
n,m model.

Lemma 8 For any n,m, n′,m′, if we condition on the event that the 2-core of

U
(3,4)
n,m=cn has n′ variables and m′ clauses, then that 2-core is a uniformly random

member of Ψn′,m′ .

Proof This is a straightforward variation of the proof of Claim 1 in
the proof of Lemma 4(b) from [57], which is itself a very standard argument.
Consider a formula F and its 2-core Fc. Assume Fc has n′ variables and m′

clauses. Replace Fc in F by a arbitrary member of Ψn′,m′ , F ′
c. Call this new

formula F ′. Note that F ′
c is the 2-core of F ′ and that F ′ and F have the same

number of clauses. Thus, the probability a random formula is equal to F is the
same as the probability it is equal to F ′, and this implies the probability that
the 2-core of a random formula is Fc is equal to the probability that the 2-core
is F ′

c. �

4 Resolution Complexity

While the uncertainty of the P versus NP question means that we cannot state
definitively whether an efficient algorithm exists to either solve an instance of
(k, d)-UE-CSP or prove no solution to the instance exists, we can state that
there is no efficient resolution based algorithm, such as DPLL, that will correctly
handle unsatisfiable instances of (k, d)-UE-CSP for k ≥ 3.

The vast majority of SAT- and CSP-solving algorithms that are commonly
used in practice will recognize an unsatisfiable problem by implicitly producing
a resolution proof that it is unsatisfiable (see [53] for the definition of resolution
proof). The resolution complexity of a boolean formula is the length of the short-
est resolution proof that it is unsatisfiable. (If the formula is satisfiable then the
resolution complexity is ∞.) Thus, the resolution complexity of an unsatisfiable

8



formula is a lower bound on the time that it will take an algorithm to solve the
problem. In a seminal paper, Chvátal and Szemerédi[16] proved that a random
instance of 3-SAT with a linear number of clauses a.a.s. has exponentially high
resolution complexity. This partially explains the aforementioned observation of
Selman et al[69] that SAT-solving algorithms take a very long time on random
instances whose density is near the satisfiability threshold.

Mitchell[54] discusses two natural ways to extend the notion of resolution
complexity to the setting of a CSP. These two measures of resolution com-
plexity are denoted C−RES and NG−RES. The latter appears on the
surface to be the most natural extension in that it extends resolution rules
to the setting of a CSP and then carries them out. C−RES, on the other
hand, converts a CSP to a boolean CNF-formula and then carries out CNF-
resolution on that formula. Mitchell shows that for every CSP instance I,
C−RES(I) ≤ poly(NG−RES(I)) whereas there are many choices for I for
which the converse it not true. Furthermore, all commonly used resolution-type
CSP algorithms correspond nicely to the C−RES complexity of the input, but
there are some that do not correspond to the NG−RES. For that reason, we
focus in this paper on the C−RES complexity, as did Mitchell in [53]. But
note that the above inequality implies that Theorem 3, which we restate below,
also holds for the NG−RES complexity.

Theorem 3 For any constant c > 0, and any k ≥ 3, d ≥ 2, the C−RES
resolution complexity of a uniformly random instance of (k, d)-UE-CSP with n
variables and cn clauses is a.a.s. 2Θ(n).

Proof From techniques developed in [9, 53, 59, 53], a.a.s. the shortest
C−RES resolution proof of unsatisfiability of a constraint satisfaction problem
on n variables has exponential size if there exists constants α, ζ > 0 such that
a.a.s. the following three conditions hold.

1. Every subformula on at most αn variables is satisfiable.

2. Every subproblem on v variables, where 1
2αn ≤ v ≤ αn, has at least ζn

variables of degree at most 1, where the degree of a variable is the number
of clauses containing that variable.

3. If x is a variable of degree at most 1 in a CSP F then, letting F ′ be
the subproblem obtained by removing x and its clause, every satisfying
assignment of F ′ can be extended to a satisfying assignment of F by
assigning some value to x.

Because our random model for UE-CSP applies one uniquely extendible con-
straint to each clause, the third condition is trivially true. The following lemma
from [59] states a useful property of random formulae with a linear number
of clauses: a.a.s. every subproblem on at most αn variables has a low clause
density. A similar lemma is proven in [53] and several other papers.

Lemma 9 ([59]) Let c > 0 and k ≥ 2 and let H be a random k-uniform
hypergraph with n vertices and m = cn edges. Then for any δ > 0, there exists

9



α = α(c, k, δ) > 0 such that a.a.s. H has no subgraph with 0 < h ≤ ⌊αn⌋ vertices
and at least

(

1+δ
k−1

)

h edges.

Let F ′ be a minimally unsatisfiable subformula of F with at most h ≤ ⌊αn⌋
variables. Then F ′ cannot have a variable of degree less than 2 because condition
3 above is trivially true for UE-CSP. Thus, F ′ must have at least

(

2
k

)

h edges.

However, if k > 2, there exists δ = δ(k) > 0 such that 2
k > 1+δ

k−1 . As a result,
a.a.s. every subformula on h variables, and in particular F ′, will be satisfiable.

By the same argument, let ζ = 1− (1+δ)k
2(k−1) , and F ′ must have at least ζn variables

of degree at most 1. �

5 The Satisfiability Threshold for (3, 4)-UE-CSP

In this section we formally define c∗ and prove Theorem 1, our main theorem.
The proof will proceed as follows: first the variables of degree 0 and 1 are

stripped away to produce the 2-core. Then the satisfiability threshold on the
2-core is proven using the first and second moment methods, and this threshold
on the 2-core yields the threshold for the original problem. The upper bound for
satisfiability is a simple use of the first moment method, but the lower bound is
more challenging. Applying the second moment method produces a complicated
summation. Following the example of [27], the summation is approximated by
a multiple integral, and then the Laplace Method is used to approximate the
integral. In order to apply the Laplace Method, we must determine the global
maximum of a certain function (see Lemma 18). We do so with a computer
aided proof using interval analysis, which we present in the appendix.

5.1 Determining c∗

Since we will be working with the 2-core, we need to determine how its density
relates to that of the original formula.

Lemma 10 Let U
(3,4)
n,m=cn be a uniformly random instance of (3, 4)-UE-CSP with

n variables and m = cn clauses. If c < minx>0
x

3(1−e−x)2 = 0.818469 . . ., a.a.s.

U
(3,4)
n,m=cn has no non-empty 2-core. Otherwise, a.a.s. the 2-core of U

(3,4)
n,m=cn has

Θ(n) variables and γ(c) + o(1) times as many clauses as variables with

γ(c) =
x(1 − e−x)

3(1 − e−x − xe−x)
,

where x is the largest solution to

x = 3c(1 − e−x)2.

Proof Recall the CORE procedure from Section 2. Note that it es-
sentially works on the underlying hypergraph of the random instance. Cores

10



of random uniform hypergraphs are well-studied (see, for example, [63, 51,
57, 13, 46, 64, 22]). From [13], the 2-core of a k-uniform random hyper-
graph on n vertices and cn edges has a.a.s. (1 − e−x − xe−x)n + o(n) vertices

and a.a.s. (1 − e−x)
k
cn + o(n) hyperedges where x is the largest solution to

x = ck(1 − e−x)k−1, and if there is no positive solution to x = ck(1 − e−x)k−1

then the 2-core is a.a.s. empty. Setting k = 3 and rearranging completes the
proof. �

Below, we will prove that the satisfiability threshold for the 2-core of random
(3, 4)-UE-CSP is at clause density 1. Thus we define:

Definition 11 c∗ = .917935... is defined to be the unique solution to γ(c) = 1.

5.2 The First and Second Moment Arguments

Here we prove that c = 1 is the satisfiability threshold for U∗
n,m=cn; i.e. random

(3, 4)-UE-CSP with minimum degree at least 2. Lemmas 8 and 10 then imply
Theorem 1. We need to prove two sides of the threshold:

Lemma 12 For every c > 1, U∗
n,m=cn is a.a.s. unsatisfiable.

Lemma 13 For every c < 1, U∗
n,m=cn is a.a.s. satisfiable.

Theorem 1 then follows:
Proof of Theorem 1 Let F be a random instance of U

(3,4)
n,m=cn. Expose

n′,m′, the number of variables and constraints in the 2-core of F . By Lemma
10, a.a.s. m′ = (γ(c) + o(1))n′. By Lemma 8, the 2-core of F , after conditioning
on the values of n′,m′, has the same distribution as U∗

n′,m′ . Therefore, the
theorem follows from Lemmas 12,13 and the definition of c∗. �

The proof of the first lemma is straightforward:
Proof of Lemma 12 We apply what is, in this field, a very standard first

moment argument. Consider a random instance F chosen from Ψn,m=cn, and
let N denote the number of satisfying assignments of F . We will show that
E(N) = o(1); this implies that a.a.s. N = 0; i.e., that a.a.s. F is unsatisfiable.

Consider any assignment σ of values to the variables of F . Since each con-
straint is uniquely extendible, for each possible setting of two variables in a
clause, there is exactly one possible value for the third variable. Because the
random model considered includes all possible uniquely extendible constraints
and because there are 4 possible values for the third variable, the probability
that a particular constraint is satisfied by σ is 1

4 . As there are 4n choices for σ,
we have

E(N) = 4n4−m = 4(1−c)n = o(1),

since c > 1. �

The next proof is much more complicated, and takes up most of the work
in this paper. As mentioned above, we follow the proof of the corresponding
theorem in [27], applying a second moment argument. Unfortunately, our larger
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domain size yields a larger set of constraints to choose from and much more
complicated calculations than those in [27].

Proof of Lemma 13 As in the proof of Lemma 12, consider a random
instance F chosen from Ψn,m=cn, and let N denote the number of satisfying
assignments of F . Again, we have E(N) = 4(1−c)n. The main step of this proof
is to compute the second moment of N obtaining:

E(N2) = E(N)2(1 + o(1)). (1)

Because N is non-negative, a well known application of the Cauchy-Swartz
inequality implies

Pr(N > 0) ≥ E(N)2

E(N2)
,

and so (1) implies Lemma 13.
Following the technique of [27], the proof will compute E(N2) by putting

E(N2)
E(N)2 into the form

∫ b1

a1

∫ b2

a2

∫ b3

a3

g(x1, x2, x3)enh(x1,x2,x3)dx1 dx2 dx3

where g is polynomial in n and h has a unique maximum in the range of the
integrals. Then we use the Laplace Method to approximate the triple integral.

Let the 4n possible assignments be σ1, . . . , σ4n , and let Ni be the indicator
variable that σi is a satisfying assignment. Then N = N1 + · · · + N4n and
N2 =

∑

i,j NiNj . Since NiNj = 1 if and only if F is satisfied by both σi and σj ,
this indicates that we must focus on counting the number of instances satisfied
by two assignments to the variables.

Similarly to [27], let σ and τ be arbitrary assignments to the variables, let
#C be the total number of instances in Ψn,m, and let #Cσ,τ be the total number
of instances in Ψn,m that are satisfied by both σ and τ . Then,

E(N2) =
1

#C
∑

σ,τ

#Cσ,τ .

Let q be the number of different uniquely extendible constraints on three
ordered variables. So for each clause, we will have q choices for the constraint
that we assign to that clause. As is done in [27], we can think of the m clauses as
inducing a distribution of 3m “places” to the n variables such that each variable
receives at least 2 “places”. In addition, we add the restriction that for each
triple of “places” corresponding to a clause, no two “places” are assigned to the
same variable. We define:

• S(i, j, 2), known as a generalized Stirling number of the second kind, is
the number of ways to partition i elements into j sets such that each set
has at least 2 elements.

12



• Λ3m,n is the probability that, in the above partition, no two elements from
any one triple appear in the same set.

So, #C = qmS(3m,n, 2)n!Λ3m,n.
Consider a clause and a random constraint on that clause. We need to

determine the probability that both assignments σ and τ satisfy the constraint.
Place an arbitrary ordering on the variables of the clause, and let α, β, and γ be
the values assigned to those variables by σ, and let α′, β′, and γ′ be the values
assigned to those variables by τ . In addition, let zαβ be the unique value that
the constraint forces the third variable to be if the first variable is assigned α
and the second variable is assigned β.

If the values of the three variables are unchanged between σ and τ , i.e. if
α = α′, β = β′, and γ = γ′, then the probability that both assignments satisfy
a random constraint is the same as the probability that a random constraint
assigns the third variable γ if the first two are assigned α and β respectively.
Every constraint of size 3 will permit a tuple of the form (α, β, zαβ), and there
are 4 possible choices for zαβ . Exactly 1

4 of the constraints will have zαβ = γ.
As a result,

Pr(zαβ = γ) =
1

4
.

Thus, both assignments will satisfy a proportion of 1
4 of the possible constraints.

Note that the uniquely extendible property means that if exactly one of the
clause’s variables changes value between σ and τ , for example if α = α′, β = β′,
and γ 6= γ′, then the constraint cannot be satisfied by both σ and τ .

Suppose one variable, assume w.l.o.g. the first variable, is assigned the same
value by σ and τ and each of the other two variables is assigned a different value
in τ from what it is assigned in σ, i.e. α = α′, β 6= β′, and γ 6= γ′. In this case,
we need to determine

Pr(zαβ = γ ∧ zαβ′ = γ′) = Pr(zαβ′ = γ′|zαβ = γ)Pr(zαβ = γ).

Every constraint of size 3 that permits the tuple (α, β, γ) will also permit a
tuple of the form (α, β′, zαβ′) with zαβ′ 6= γ. There are 3 choices for zαβ′ , and
by symmetry, each is equally likely. So exactly 1

3 of the constraints will have
zαβ′ = γ′. Thus,

Pr(zαβ′ = γ′|zαβ = γ)Pr(zαβ = γ) =
1

3
· 1

4
.

As a result, both assignments will satisfy a proportion of 1
12 of the possible

constraints.
Finally, suppose none of the variables of the clause receives the same value

in τ as it does in σ. If α 6= α′, β 6= β′ and γ 6= γ′, then

Pr(zαβ = γ ∧ zα′β′ = γ′) = Pr(zαβ = γ ∧ zαβ′ 6= γ′ ∧ zα′β′ = γ′)

= Pr(zα′β′ = γ′ | zαβ = γ ∧ zαβ′ 6= γ′)

× Pr(zαβ′ 6= γ′|zαβ = γ)Pr(zαβ = γ)

13



Consider only the tuples (α, β, zαβ), (α, β′, zαβ′), and (α′, β′, zα′β′) permitted
by the constraint. There are 4 choices for zαβ, and exactly 1

4 of the constraints
will have zαβ = γ. For each constraint that contains the tuple (α, β, γ), there are
exactly 3 choices for zαβ′ , and 2 of these choices are not γ′. By a straightforward
symmetry argument, each is equally likely. As a result, 2

3 of the constraints that
contain the tuple (α, β, γ) will not contain the tuple (α, β′, γ′). Finally, for every
choice of zαβ and zαβ′ there are 3 equally likely choices for zα′β′ . The reason
is that we fix the set of 3-tuples that start with α, and then the number of
ways we can choose the set of tuples that starts with α′ is equal to the number
of derangements on 4 elements, and by symmetry each derangement is equally
likely.

As a result, the expression above yields:

Pr(zαβ = γ ∧ zα′β′ = γ′) =
1

3
· 2

3
· 1

4
.

So both assignments will simultaneously satisfy a proportion of 1
18 of the possible

constraints.
Using the same notation as [27], let Ik = {0, 1

k ,
2
k , . . . ,

k−1
k , 1}, and let α ∈ In

be the proportion of variables having the same value in both assignments. To
enumerate all pairs of assignments, we must count the number of choices for
the αn variables and count the possible assignments to the variables. This gives
∑

α∈In

(

n
αn

)

4n3(1−α)n pairs of assignments.
To enumerate all satisfied instances for one pair of assignments, let r ∈ I3m

be the proportion of 3m “places” in the second assignment that receive one of
the αn variables. Note that if α = 0 then r = 0, and if α = 1 then r = 1.
Otherwise, because each variable occurs in at least two places, we must have

r ≥ 2α
3c and 1 − r ≥ 2(1−α)

3c .
Let Tk be the number of clauses with 3 − k of these αn variables. Recall

that T1 = 0. For each choice of T0, T2, T3, we need to
(a) count the ways to choose the clauses for T0, T2, T3:

(

m

T0

)(

m− T0

T2

)

;

(b) for each clause, count the number of ways we can choose a constraint for the
clause given the number of variables in the clause that receive the same value
in τ as in σ:

( q

18

)T3
( q

12

)T2
(q

4

)T0

;

(c) for each of the T2 clauses that have exactly one of the αn variables, count
the 3 positions for the αn variables:

3T2 ;

(d) finally, distribute the variables amongst the “places”. Recall that S(i, j, 2)
counts the number of ways to partition i elements into j sets such that each set
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has at least 2 elements. Also, we let Λ3m,n(α, r, T0, T2, T3) denote the probability
that this distribution of “places” is such that each clause contains three distinct
variables. So the total number of choices for this step is:

S(r3m,αn, 2)(αn)!S((1 − r)3m, (1 − α)n, 2)((1 − α)n)!Λ3m,n(α, r, T0, T2, T3).

As a result, for a given α, r, T0, T2, and T3, the number of instances of Ψn,m

satisfied by a pair of assignments that fit the given parameters is
(

n

αn

)

4n3(1−α)n

(

m

T0

)(

m− T0

T2

)

( q

18

)T3
( q

12

)T2
( q

4

)T0

3T2

×S(r3m,αn, 2)(αn)!S((1−r)3m, (1−α)n, 2)((1−α)n)!Λ3m,n(α, r, T0, T2, T3).

Let t ∈ Im = {0, 1
m , 2

m , . . . , m−1
m , 1} be the proportion of m clauses in which

all 3 variables have the same assignment. Thus,
T0 = tm
T2 = 3rm− 3T0 = 3rm− 3tm
T3 = m− T0 − T2 = m− 3rm + 2tm.

Note that T2 ≥ 0 implies r ≥ t and T3 ≥ 0 implies t ≥ 3r−1
2 . Note also that

if α = 0 then r = 0, T0 = T2 = 0 and T3 = m. Likewise, if α = 1 then r = 1,
T0 = m and T2 = T3 = 0.

Definition 14 (a) We say that (α, r, t) ∈ In×I3m×Im is feasible if it satisfies

0 ≤ α ≤ 1, 2α
3c ≤ r ≤ 1 − 2(1−α)

3c , max(0, 3r−1
2 ) ≤ t ≤ r where if α = 0

then r = t = 0, and if α = 1 then r = t = 1.

(b) We say that (α, r, t) is extremal if it is feasible and either α = 0, α =

1, r = 2α
3c , r = 1 − 2(1−α)

3c , t = max(0, 3r−1
2 ) or t = r.

Setting Λα,r,t
3m,n = Λ3m,n(α, r, T0, T2, T3), substituting and factoring out com-

mon terms yields that E(N2) is the sum over all feasible (α, r, t) of:

F (α, r, t) =
1

S(3m,n, 2)n!Λ3m,n
×
(

n

αn

)

4n3(1−α)n

×
(

m!

(m− 3rm + 2tm)!(3rm− 3tm)!(tm)!

)

33rm−3tm

×
(

1

4

)m(
1

3

)2m+tm−3rm

2m−3rm+2tm

×S(r3m,αn, 2)(αn)!S((1 − r)3m, (1 − α)n, 2)((1 − α)n)!Λα,r,t
3m,n.

We will treat the cases where α, r, t are close to the endpoints of their ranges
separately. So we will take a constant ζ > 0 (to be specified in Section 6.4) and
we define:

I+n = In ∩ [ζ, 1 − ζ], I+3m = I3m ∩
[

2α + ζ

3c
, 1 − 2(1 − α) + ζ

3c

]

,

I+m = Im ∩
[

max

(

0,
3r − 1

2

)

+ ζ, r − ζ

]

.
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In Section 6.4 we will prove:

Lemma 15 Let c > 2
3 (1 + 2ζ). The sum of F (α, r, t) over all feasible α, r, t not

satisfying α ∈ I+n , r ∈ I+3m, t ∈ I+m, is o(42n−2m).

In Section 6.4 we choose a ζ small enough that 2
3 (1 + 2ζ) < 0.818469 . . ., the

threshold for a non-empty 2-core. Thus, we can assume c > 2
3 (1 + 2ζ) and so

Lemma 15 yields

E(N2) = o(E(N)2) +
∑

α∈I+
n

∑

r∈I+
3m

∑

t∈I+
m

F (α, r, t).

Notation: We use f ∼ g to mean that f = g + o(g).
In the next few steps, we will use similar techniques as [27] to approxi-

mate E(N2). First, we will apply approximations for the S terms of F . Given
Lemma 15, we can restrict the analysis to c > 2

3 (1 + 2ζ) and points satisfying

α ∈ I+n , r ∈ I+3m, t ∈ I+m. In this domain, each of the S terms is of the form
S(i, j, 2) where j > ζn > ζ

3c i and j < i
2 − ζ

2n < i
2 (1 − ζ

2 ). To approximate the
S terms, we use Lemma 24 which will be presented in Section 6.5. This lemma
appears in [27] but with a typographical error. The lemma is also a specific case
of the general results in [39]. It gives the following approximation that holds
uniformly as i → ∞ for all δ1i < j ≤ i

2 (1− δ2) for any positive constants δ1 and
δ2:

S(i, j, 2) ∼ 1

j!

(

i

z0e

)i

(ez0 − 1 − z0)jΦ(i, j) (2)

where z0 is the positive real solution of the equation

j

i
z0 =

ez0 − 1 − z0
ez0 − 1

(3)

and where

Φ(i, j) =

√

ij

z0j(i− j) − i(i− 2j)
.

If we rewrite (3) as i
j = z0(e

z0−1)
ez0−1−z0

, note that the right hand side is a monotoni-

cally increasing function of z0. Also, limz0→0
z0(e

z0−1)
ez0−1−z0

= 2 and limz0→∞
z0(e

z0−1)
ez0−1−z0

=
∞. Given these facts, the following observation is straightforward.

Observation 16 The function z0 = z0(i, j), defined by (3), is a continuous
and differentiable function of i and j in the domain i > 2j > 0. In addition,
the limit of z0(i, j) as (i, j) approaches (2j′, j′), for any j′ > 0, exists and is 0.
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For α ∈ I+n , r ∈ I+3m, t ∈ I+m, we have j, i − 2j > ζn in each of the following
three approximations, and so they hold uniformly as n → ∞ for all such α, r, t.

S(3m,n, 2)n! ∼ (ex − 1 − x)nx−3me−3m(3m)3mΦ(3m,n)
S(r3m,αn, 2)(αn)! ∼ (ez − 1 − z)αnz−r3me−r3m(r3m)r3mΦ(r3m,αn)

S((1 − r)3m, (1 − α)n, 2)((1 − α)n)! ∼ (ey − 1 − y)(1−α)ny−(1−r)3m

e−(1−r)3m((1 − r)3m)(1−r)3m

Φ((1 − r)3m, (1 − α)n)

for some x, y, z > 0 such that

ex − 1 − x

ex − 1
− x

3c
=

ey − 1 − y

ey − 1
− y(1 − α)

3c(1 − r)
=

ez − 1 − z

ez − 1
− zα

3cr
= 0. (4)

To complete our approximation of F (α, r, t), we apply Stirling’s formula,
i! ∼ iie−i

√
2πi, to m!, (m − 3rm + 2tm)!, (3rm − 3tm)!, (tm)!. For t ∈ I+m, we

have m−3rm+2tm, 3rm−3tm, tm≥ ζm and so this is an asymptotically tight
approximation as n → ∞. We then group the non-exponential and exponential
terms and simplify. Lemma 15 along with the uniformity of our approximations
for the S(i, j, 2) terms and of Stirling’s approximation, allow us to write E(N2)
in the form:

E(N2) ∼ o(E(N)2) +
∑

α∈I+
n

∑

r∈I+
3m

∑

t∈I+
m

g(α, r, t)enf(α,r,t) (5)

where

g(α, r, t) = (Φ(3m,n)Λ3m,n)−1Φ(r3m,αn)Φ((1 − r)3m, (1 − α)n)Λα,r,t
3m,n

× 1
√

(2π)3nm2α(1 − α)(1 − 3r + 2t)(3r − 3t)t

f(α, r, t) =
1

n
[n ln 4 + (1 − α)n ln 3 −m ln 4 −m(2 + t− 3r) ln 3

+ m(1 − 3r + 2t) ln 2 + m(3r − 3t) ln 3 − nα lnα

− n(1 − α) ln(1 − α) −m(1 − 3r + 2t) ln(1 − 3r + 2t)

−m(3r − 3t) ln(3r − 3t) −mt ln t + αn ln(ez − 1 − z)

− r3m ln z − r3m + r3m ln(r3m) + (1 − α)n ln(ey − 1 − y)

− (1 − r)3m ln y − (1 − r)3m + (1 − r)3m ln((1 − r)3m)

−n ln(ex − 1 − x) + 3m lnx + 3m− 3m ln(3m)] .

By considering each term of f separately, and from Observation 16, we have:

Observation 17 For all c > 2
3 , f(α, r, t) is continuous and differentiable in

the domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , and max
{

0, 3r−1
2

}

< t <
r. Furthermore, for every point (α1, r1, t1) on the boundary of this domain
lim(α,r,t)→(α1,r1,t1) f(α, r, t) exists.

17



We fix c and replace m with cn. Combining common terms, and dividing f
through by n gives

g(α, r, t) = (Φ(3cn, n)Λ3m,n)−1Φ(r3cn, αn)Φ((1 − r)3cn, (1 − α)n)Λα,r,t
3m,n

× 1

(2πn)3/2c
√

α(1 − α)(1 − 3r + 2t)(3r − 3t)t
(6)

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 + t− 3r) ln 3

+ c(1 − 3r + 2t) ln 2 − α lnα− (1 − α) ln(1 − α)

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t) − ct ln t

+ r3c ln r + (1 − r)3c ln(1 − r) + α ln(ez − 1 − z) − r3c ln z

+ (1 − α) ln(ey − 1 − y) − (1 − r)3c ln y − ln(ex − 1 − x)

+ 3c lnx, (7)

and thus,

E(N2)

E(N)2
∼
∑

α∈I+
n

∑

r∈I+
3cn

∑

t∈I+
cn

g(α, r, t)en(f(α,r,t)−2(1−c) ln 4).

To analyze this sum, we will need a few technical lemmas about f and g.
We begin with the key - determining a global maximum for f :

Lemma 18 For all 2
3 ≤ c < 1, the unique global maximum of f(α, r, t) in the

domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , and max{0, 3r−1
2 } < t < r occurs

at f(14 ,
1
4 ,

1
16 ) = 2(1 − c) ln 4. Furthermore, for all .67 ≤ c ≤ 1, there exists a

constant b = b(c) such that at every extremal (α, r, t), f approaches a limit that
is less than 2(1 − c) ln 4 − b.

The proof of this lemma is computer-aided. We provide an outline in Section 6,
and then more details in the appendix.

The analysis of g is not as delicate. The proofs of the following lemmas
appear in Section 6. First, we show that g is bounded:

Lemma 19 There exists a constant ν, independent of n, such that for all α ∈
I+n , r ∈ I+3m, and t ∈ I+m we have g(α, r, t) ≤ ν.

Next we provide an approximation of g(α, r, t) when α, r, t are near the crit-
ical point from Lemma 18.

Lemma 20 If α = 1
4 + o(1), r = 1

4 + o(1), t = 1
16 + o(1) then

g(α, r, t) = Φ(3cn, n) × (πn)−
3
2

26

9c
(1 + o(1)).
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By these lemmas, it is straightforward (see Section 6) to show that the mass
of the sum will occur when α, r, t are near 1

4 ,
1
4 ,

1
16 and so we can replace g(α, r, t)

by its approximation from Lemma 20, obtaining:

E(N2)

E(N)2
∼
∑

α∈I+
n

∑

r∈I+
3cn

∑

t∈I+
cn

Φ(3cn, n) × (πn)−
3
2

26

9c
en(f(α,r,t)−2(1−c) ln 4). (8)

Next, we replace the summation with an integral. The summation is essentially
a Riemann sum, and as n tends to infinity, the error term from approximating
the summation with an integral tends to 0.

E(N2)

E(N)2
∼ Φ(3cn, n) × (πn)−

3
2

26

9c

∑

α∈I+
n

∑

r∈I+
3cn

∑

t∈I+
cn

en(f(α,r,t)−2(1−c) ln 4)

∼ Φ(3cn, n) × (πn)−
3
2

26

9c
× n× 3cn× cn

×
∫ 1−ζ

ζ

∫ 1− 2(1−α)+ζ

3c

2α+ζ
3c

∫ r−ζ

max{0, 3r−1
2 }+ζ

en(f(α,r,t)−2(1−c) ln 4)dt dr dα

< Φ(3cn, n) × n3/2 26c

3π3/2

×
∫ 1

0

∫ 1− 2(1−α)
3c

2α
3c

∫ r

max{0, 3r−1
2 }

en(f(α,r,t)−2(1−c) ln 4)dt dr dα.

Continuing with the technique of [27], we approximate this sum by using the
Laplace Method, as given in eg. [10] and [23]. The Laplace Method for a triple
integral can be stated as follows.

Lemma 21 ([23]) Let

F (n) =

∫ b1

a1

∫ b2

a2

∫ b3

a3

enh(x1,x2,x3)dx1 dx2 dx3

where

(a) h is continuous in ai ≤ xi ≤ bi,

(b) h(c1, c2, c3) = 0 for some point (c1, c2, c3) with ai < ci < bi
and h(x1, x2, x3) < 0 for all other points in the range,

(c) h(x1, x2, x3) = −1

2

3
∑

i=1

3
∑

j=1

aijxixj + o(x2
1 + x2

2 + x2
3)

with (x2
1 + x2

2 + x2
3 → 0), and

(d) the quadratic form
∑∑

aijxixj is positive definite.
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Then,
F (n) ∼ (2π)

3
2D− 1

2n− 3
2

where D is the determinant of the matrix (aij).

Just as is done in [27], we apply Lemma 21 by letting h(x1, x2, x3) =
f(α, r, t) − 2(1 − c) ln 4. By Observation 17, this satisfies point (a). Point
(b) is satisfied by Lemma 18. Point (c) is satisfied if we approximate h by the
Taylor expansion about the point α = 1

4 , r = 1
4 , t = 1

16 and take the aij ’s from
the second partial derivatives of h. Part (d) is satisfied by the following lemma
which is proved in Section 6:

Lemma 22 The quadratic form
∑∑

aijxixj is positive definite, and the de-

terminant of the matrix (aij) is D = 215

9 c2(Φ(3cn, n))2.

Now, we can apply the Laplace Method to obtain,

E(N2)

E(N)2
∼ Φ(3cn, n) × n

3
2

26c

3π3/2
× (2π)

3
2

(

215

9
c2(Φ(3cn, n))2

)− 1
2

n− 3
2

∼ 1

proving (1) and thus completing the proof of Lemma 13. �

6 Further details

Here we present most of the details that were postponed from the analysis in
the previous section. We’ll start with the straightforward derivation of (8). By
Lemma 18, f(14 ,

1
4 ,

1
16 ) is a global maximum. Therefore, there exists a function

ρ(n) = o(1) such that, defining Ψ = {(α, r, t) : |α− 1
4 |, |r− 1

4 |, |t− 1
16 | > ρ(n)}, we

have f(α, r, t) < f(14 ,
1
4 ,

1
16 ) − 10 logn/n for all (α, r, t) ∈ Ψ. This and Lemma

19 imply that there exists a constant ν independent of n such that
∑

α,r,t∈Ψ

g(α, r, t)en(f(α,r,t)−2(1−c) ln 4)

<
∑

α,r,t∈Ψ

ν en(f(
1
4 ,

1
4 ,

1
16 )−2(1−c) ln 4−10 logn/n)

≤ |I+n ||I+3cn||I+cn| × ν × n−10en(f(
1
4 ,

1
4 ,

1
16 )−2(1−c))

= o(en(f(
1
4 ,

1
4 ,

1
16 )−2(1−c))).

Thus, if for α, r, t ∈ Ψ, we replace g(α, r, t) by any constant, specifically g(14 ,
1
4 ,

1
16 ),

then it will have a negligible effect on the sum. For α, r, t /∈ Ψ, Lemma 20 im-

plies that we can also replace g(α, r, t) by g(14 ,
1
4 ,

1
16 ) ∼ Φ(3cn, n) × (πn)−

3
2
26

9c
and so obtain

E(N2)

E(N)2
∼
∑

α∈I+
n

∑

r∈I+
3cn

∑

t∈I+
cn

Φ(3cn, n) × (πn)−
3
2

26

9c
en(f(α,r,t)−2(1−c) ln 4),

which is (8). �
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6.1 The global maximum

We start with our proof that f(14 ,
1
4 ,

1
16 ) is a global maximum. Recall our

statement:

Lemma 18 For all 2
3 ≤ c < 1, the unique global maximum of f(α, r, t) in the

domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , and max{0, 3r−1
2 } < t < r occurs

at f(14 ,
1
4 ,

1
16 ) = 2(1 − c) ln 4. Furthermore, for all .67 ≤ c ≤ 1, there exists a

constant b = b(c) such that at every extremal (α, r, t), f approaches a limit that
is less than 2(1 − c) ln 4 − b.

Most of the computer-aided proof of this lemma is deferred to the appendix.
We lay down some of the initial steps here.

If we differentiate f with respect to α, r, t, we get

∂f

∂α
= Dα[(1 − α) ln 3 − α lnα− (1 − α) ln(1 − α) + α ln(ez − 1 − z)

− r3c ln z + (1 − α) ln(ey − 1 − y) − (1 − r)3c ln y]

= − ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y)

+

[

α(ez − 1)

ez − 1 − z
− 3rc

z

]

∂z

∂α
+

[

(1 − α)(ey − 1)

ey − 1 − y
− (1 − r)3c

y

]

∂y

∂α

= − ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y) by (4)

∂f

∂r
= Dr[3rc ln 3 − 3rc ln 2 − c(1 − 3r + 2t) ln(1 − 3r + 2t)

− c(3r − 3t) ln(r − t) + r3c ln r + (1 − r)3c ln(1 − r) + α ln(ez − 1 − z)

− r3c ln z + (1 − α) ln(ey − 1 − y) − (1 − r)3c ln y]

= 3c ln 3 − 3c ln 2 + 3c ln(1 − 3r + 2t) − 3c ln(r − t) + 3c ln r

− 3c ln(1 − r) − 3c ln z + 3c ln y +

[

α(ez − 1)

ez − 1 − z
− r3c

z

]

∂z

∂r

+

[

(1 − α)(ey − 1)

ey − 1 − y
− (1 − r)3c

y

]

∂y

∂r

= 3c ln 3 − 3c ln 2 + 3c ln(1 − 3r + 2t) − 3c ln(r − t) + 3c ln r

− 3c ln(1 − r) − 3c ln z + 3c ln y by (4)

∂f

∂t
= Dt[−ct ln 3 + c2t ln 2 − c(1 − 3r + 2t) ln(1 − 3r + 2t)

− c(3r − 3t) ln(r − t) − ct ln t]

= −c ln 3 + 2c ln 2 − 2c ln(1 − 3r + 2t) + 3c ln(r − t) − c ln t.
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Setting ∂f
∂α = ∂f

∂r = ∂f
∂t = 0 implies

1 − α

α
= 3

ey − 1 − y

ez − 1 − z
(9)

1 − r

r
=

3

2
· y
z
· (1 − 3r + 2t)

(r − t)
(10)

(r − t)3

(1 − 3r + 2t)2
=

3t

4
. (11)

We will show that the maximum for f is obtained by setting x = y = z.
The intuition for this is that x, y, and z correspond to the parameters for
the truncated Poisson random variables used to model the degrees of all the
variables in the 2-core, the variables in the 2-core that are not in the set of
αn variables, and the variables in the 2-core that are the set of αn variables,
respectively. Since f is considering all possible sets of size αn, it is reasonable
to guess that the expected degrees for the variables in each set are equal when
f is maximized.

Plugging x = y = z into (9), (10) and (11) gives α = 1
4 , r = 1

4 , t = 1
16 as a

point where each of the partial derivatives are 0. To confirm that this point is
in the domain of f , we note that setting α = r in (4) yields x = y = z. Thus
α = 1

4 , r = 1
4 , t = 1

16 is a stationary point of f with

f

(

1

4
,

1

4
,

1

16

)

= 2(1 − c) ln 4.

Lemma 22, proved below, establishes that this is a local maximum. In the
appendix, we will present a computer-aided proof that it is a global maximum.
As part of the proof, the computer program gives a rigorous upper bound of
f+(α, r, t) ≥ lim(α′,r′,t′)→(α,r,t) f(α′, r′, t′) for each triple α, r, t on the boundary,
and the program proves that 2(1 − c) ln 4 − f+(α, r, t) ≥ b where b > 0 is a
constant independent of α, r, and t, but it may be dependent on c.
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6.2 Proof of Lemma 22

Recall the statement:

Lemma 22 The quadratic form
∑∑

aijxixj is positive definite, and the de-

terminant of the matrix (aij) is D = 215

9 c2(Φ(3cn, n))2.

Proof The second partial derivatives of f are:

fαα = − 1

α
− 1

1 − α
+

ez − 1

ez − 1 − z

∂z

∂α
− ey − 1

ey − 1 − y

∂y

∂α

fαr =
ez − 1

ez − 1 − z

∂z

∂r
− ey − 1

ey − 1 − y

∂y

∂r

fαt = 0

frα =
−3c

z

∂z

∂α
+

3c

y

∂y

∂α

frr = − 3c

r − t
+

3c

r
+

3c

1 − r
− 9c

1 − 3r + 2t
− 3c

z

∂z

∂r
+

3c

y

∂y

∂r

frt =
3c

r − t
+

6c

1 − 3r + 2t
ftα = 0

ftr =
3c

r − t
+

6c

1 − 3r + 2t

ftt = − 3c

r − t
− c

t
− 4c

1 − 3r + 2t

where, from (4),

∂z

∂α
=

−z(ez − 1)2

α(ez − 1)2 + 3rc(ez(ez − 1 − z) − (ez − 1)2)

∂z

∂r
=

αz(ez − 1)2

r[α(ez − 1)2 + 3rc(ez(ez − 1 − z) − (ez − 1)2)]

∂y

∂α
=

y(ey − 1)2

(1 − α)(ey − 1)2 + 3(1 − r)c(ey(ey − 1 − y) − (ey − 1)2)

∂y

∂r
=

−(1 − α)y(ey − 1)2

(1 − r)[(1 − α)(ey − 1)2 + 3(1 − r)c(ey(ey − 1 − y) − (ey − 1)2)]
.

Since x = y = z at the maximum and setting K = c(ex−1)2

(ex−1)2+3c(ex−xex−1) , we
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have

fαα(
1

4
,

1

4
,

1

16
) = −16

3
− 16K

fαr(
1

4
,

1

4
,

1

16
) = 16K

fαt(
1

4
,

1

4
,

1

16
) = 0

frα(
1

4
,

1

4
,

1

16
) = 16K

frr(
1

4
,

1

4
,

1

16
) = −24c− 16K

frt(
1

4
,

1

4
,

1

16
) = 32c

ftα(
1

4
,

1

4
,

1

16
) = 0

ftr(
1

4
,

1

4
,

1

16
) = 32c

ftt(
1

4
,

1

4
,

1

16
) = −128

3
c.

Thus,

(aij) =





16
3 + 16K −16K 0
−16K 24c + 16K −32c

0 −32c 128
3 c



 .

The quadratic form is positive definite if the following determinants are all
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positive (see, e.g., [8] p. 152).

|a11| =
16

3
+ 16K

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

=

(

16

3
+ 16K

)

(24c + 16K) − (16K)2

= 162
((

1

3
+ K

)(

3

2
c + K

)

−K2

)

= 28
(

c

2
+

K

3
+

3cK

2

)

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

=

(

16

3
+ 16K

)∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

− (−16K)

∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

= 16

((

1

3
+ K

)[

210c2 +
211Kc

3
− 210c2

]

−(−K)

[

−211Kc

3

])

= 215
(

Kc

9
+

K2c

3
− K2c

3

)

=
215

9
Kc.

From (4), ex = 1 + 3cx
3c−x . Using this, we can simplify K.

K =
c(ex − 1)2

(ex − 1)2 + 3c(ex − 1 − xex)

=
c(3cx)2

(3cx)2 + 3c(3cx)(3c− x) − 3cx(3c− x)2 − (3cx)2(3c− x)

=
3c2

x(3c− 1) − 3c(3c− 2)

= c× 3cn2

xn(3cn− n) − 3cn(3cn− 2n)

= c(Φ(3cn, n))2. (12)

Thus, K ≥ 0, which yields that the determinants above are all positive and so
the quadratic form is positive definite. This establishes that the determinant D

of (aij) is 215

9 Kc, as required. �
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6.3 Approximating g

First we prove our bound on g. Recall that

g(α, r, t) = (Φ(3cn, n)Λ3m,n)−1Φ(r3cn, αn)Φ((1 − r)3cn, (1 − α)n)Λα,r,t
3m,n

× 1

(2πn)3/2c
√

α(1 − α)(1 − 3r + 2t)(3r − 3t)t

where

Φ(i, j) =

√

ij

z0j(i− j) − i(i− 2j)
,

and where Λ3m,n is the probability that if we distribute 3m objects from m
triples into n sets such that set receives at least 2 objects, then we do not have
two objects from the same triple in the same set. Λα,r,t

3m,n is a similar probability
but with the distribution further restricted by α, r, and t. Our main job is to
approximate the Λ terms:

Lemma 23 Let α = 1
4 + o(1), r = 1

4 + o(1), and t = 1
16 + o(1), then

Λ3m,n = Λα,r,t
3m,n + o(1).

Proof We recast the setting slightly, focusing only on what is relevant
to this lemma: we consider a random partition of 3m elements into n buckets,
where the elements come in m triples, and the partition is uniform conditional
on each bucket containing at least two elements. Λ3m,n is the probability that
no bucket contains two elements from one triple.

Now suppose that we split the buckets into two groups A,B with |A| =
αn, |B| = (1 − α)n, and fix

• the total number of elements that land in the buckets of A is 3rm;

• the number of triples, all of whose elements lie in A, is tm.

Λα,r,t
3m,n is the probability, under this conditioning, that no bucket contains two

elements from one triple.
To approximate Λ3m,n, we will first expose the number of elements in each

bucket, and then we will expose which elements go into the buckets. Let Bi

denote the number of elements in bucket i, and let

Υ =

n
∑

i=1

Bi(Bi − 1).

Having exposed the bucket sizes, we take a uniformly random partition of the
elements into parts matching the bucket sizes. Let Y denote the number of
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pairs of elements that lie in the same triple and in the same bucket. There are
3m pairs that lie in the same triple, and so

E(Y ) = µY = 3m×
∑

i≥1

Bi(Bi − 1) × 1

(3m)(3m− 1)

∼ 1

3m
× Υ

=
1

3m
Υ.

For each j ≥ 2 a straightforward calculation shows that the expected num-
ber of j-tuples of pairs that are counted by Y is E(Y )j + o(1); the o(1) term
comes from the small probability that all three elements of a triple lie in the same
bucket, and from the fact that the 1

(3m)(3m−1) term becomes 1
(3m)(3m−1)...(3m−2j+1)

rather than
(

1
(3m)(3m−1)

)j

. Thus, the “method of moments” (see, eg. Section

6.1 of [44]) implies that Y is asymptotically distributed like a Poisson and so

Λ3m,n = Pr(Y = 0) = e−µY + o(1).

For Λα,r,t
3m,n, we take the same approach, first dealing with the buckets in A

and then with those in B. Let B′
i denote the the number of elements in bucket

i (and note that since this is a different experiment, we do not necessarily have
Bi = B′

i). Then let

ΥA =
∑

i∈A

B′
i(B

′
i − 1); ΥB =

∑

i∈B

B′
i(B

′
i − 1).

The number of triples with all three elements in A is tm, and as discussed in
Section 5, no triples have two elements in A. So letting YA denote the number
of pairs of elements that lie in the same triple and in the same bucket of A, we
have:

E(YA) = µA = 3tm×
∑

i∈A

B′
i(B

′
i − 1) × 1

(3rm)(3rm − 1)

∼ t

3r2m
× ΥA

∼ 1

3m
ΥA.

From Section 5, the number of triples with all three elements in B is T3 =
m − 3rm + 2tm and the number with two elements in B is T2 = 3rm − 3tm.
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So, defining YB analogously to YA, we have:

E(YB) = µB = (3(m− 3rm + 2tm) + (3rm− 3tm)) ×
∑

i∈B

B′
i(B

′
i − 1)

× 1

(3(1 − r)m)(3(1 − r)m− 1)

∼ 1 − 2r + t

3(1 − r)2m
× ΥB

∼ 1

3m
ΥB.

Again, the method of moments yields:

Λα,r,t
3m,n = Pr(YA = 0)Pr(YB = 0) = e−µA−µB + o(1).

We will show below that a.a.s. Υ = ΥA+ΥB +o(1) and so µY = µA+µB +o(1),
thus yielding the lemma.

To study Υ,ΥA,ΥB, we will apply Poissonization to allow us to treat Bi, B
′
i

as independent variables. (See Section 5.4 of [55] for a discussion of this tech-
nique.) Let Z(µ) denote a Poisson variable with mean µ and let Z≥2(µ) denote
the same variable but truncated as being at least two; i.e., Pr(Z≥2(µ) = i)
is 0 for i < 2 and is Pr(Z(µ) = i)/Pr(Z(µ) ≥ 2) otherwise. Let b1, ..., bn
be independent variables distributed like Z≥2(3m/n) and let b be the random
vector (b1, ..., bn) conditional on the event E that b1 + ... + bn = 3m. It is
straightforward to show that this vector has the same distribution as the vector
(B1, ..., Bn). Indeed, for any x1, ..., xn ≥ 2 that sum to 3m, the probability that
(B1, ..., Bn) = (x1, ..., xn) is

(

3m

x1, ..., xn

)

1

S(3m,n, 2)
,

and the probability that (b1, ..., bn) = (x1, ..., xn) is

1

Pr(E)

n
∏

i=1

Pr(Z(3m/n) = xi)

Pr(Z(3m/n) ≥ 2)
=

1

Pr(E)Pr(Z(3m/n) ≥ 2)n

n
∏

i=1

e−3m/n (3m/n)xi
xi!

=
e−3m(3m/n)3m

Pr(E)Pr(Z(3m/n) ≥ 2)n
× 1
∏n

i=1 xi!
.

These probabilities are both proportional to 1/
∏n

i=1 xi! and hence are both
equal.

Let x1, ..., xn be a sequence of n independent variables distributed like Z≥2(3m/n).
Note that Pr(E) = Θ(n−1/2). Therefore, if a property fails with probability
o(n−1/2) for x1, ..., xn then it holds a.a.s. for B1, ..., Bn. (In fact, for monotone
properties, one can show that if it holds a.a.s. for x1, ..., xn then it holds a.a.s.
for B1, ..., Bn, but we won’t need this here.) Let Υ∗ =

∑n
i=1 xi(xi − 1). It is

straightforward to show, eg. by Azuma’s Inequality, that Υ∗ is highly concen-
trated around it’s mean; eg. that Pr(|Υ∗−E(Υ∗)| ≥ n2/3) ≪ n−1/2. Therefore,
a.a.s. |Υ −E(Υ∗)| < n2/3.
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The same analysis shows that a.a.s. ΥA, ΥB are concentrated around E(Υ∗
A),

E(Υ∗
B), where Υ∗

A, Υ∗
B are defined in the same manner except that the means of

the truncated Poisson are 3rm/αn, 3(1−r)m/(1−α)n rather than 3m/n. Since

α = r+ o(1), we have E(Υ∗
A) = |A|

n E(Υ∗) + o(1),E(Υ∗
B) = |B|

n E(Υ∗) + o(1) and
so a.a.s. Υ = ΥA + ΥB + o(1) as required. �

Remark: It seems fortuitous that we obtained µA + µB ∼ µY here. Had
this not occurred, we still would have had Λ3m,n = L× Λα,r,t

3m,n + o(1), for some

constant L which would have yielded E(N2)
E(N)2 ∼ L. This, in turn would have

showed that the probability of satisfiability is at least a constant. Then, a
standard application of Friedgut’s Theorem [32] would have shown that the
probability of satisfiability is indeed 1−o(1). (See, eg. [1] for a similar argument.)

This now easily yields Lemma 20:

Lemma 20 If α = 1
4 + o(1), r = 1

4 + o(1), t = 1
16 + o(1) then

g(α, r, t) = Φ(3cn, n) × (πn)−
3
2

26

9c
+ o(1).

Proof This follows immediately from Lemma 23 and a straightforward
simplification. �

We close this section with the proof of Lemma 19:

Lemma 19 There exists a constant ν, independent of n, such that for all
α ∈ I+n , r ∈ I+3m, and t ∈ I+m we have g(α, r, t) ≤ ν.

Proof We will consider the terms of g(α, r, t) separately. Recall that
I+n = [ζ, 1 − ζ] for some constant ζ. As a result, 1√

2πnα(1−α)
< 1 when α ∈ I+n .

Similarly, 1√
4π2m2(1−3r+2t)(3r−3t)t

< 1 when t ∈ I+m.

Next we consider the Φ terms of g. Let χ(i, j) =
√

j(i−2j)
z0j(i−j)−i(i−2j) where

i
j = z0(e

z0−1)
ez0−1−z0

, then Φ(i, j) = χ(i, j) ×
√
2πi√

2π(i−2j)
. We define χ(z0) = χ(i, j)
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where

χ(i, j) =

√

j(i− 2j)

z0j(i− j) − i(i− 2j)

=

√

√

√

√

√

z0(ez0−1)
ez0−1−z0

− 2

z0

(

z0(ez0−1)
ez0−1−z0

− 1
)

− z0(ez0−1)
ez0−1−z0

(

z0(ez0−1)
ez0−1−z0

− 2
)

=

√

√

√

√

z0(ez0 − 1) − 2(ez0 − 1) + 2z0

z0(ez0 − 1) + z20

(

ez0−z0ez0−1
ez0−1−z0

)

=

√

√

√

√

z0(ez0 − 1) − 2(ez0 − 1 − z0)

z0(ez0 − 1) − z20

(

z0(ez0−1)
ez0−1−z0

− 1
)

= χ(z0).

As a result, we have

Φ(r3cn, αn) = χ(z) ×
√

2π(3rcn)
√

2π(3rcn− 2αn)
(13)

Φ((1 − r)3cn, (1 − α)n) = χ(y) ×
√

2π(3(1 − r)cn)
√

2π(3(1 − r)cn− 2(1 − α)n)
(14)

Φ(3cn, n) = χ(x) ×
√

2π(3cn)
√

2π(3cn− 2n)
. (15)

It is straightforward to confirm that limz0→0 χ(z0) = 1, limz0→∞ χ(z0) = 1,
χ(z0) has a minimum at z0 ≈ 4.2, and 0.84 < χ(z0) < 1 for all positive z0.
In addition, each of the square root terms in (13) and (14) is Θ(

√
n) because

r ∈ I+3m. Also, Φ(3cn, n)−1 is O(1). (It is Θ(1) if c is 2
3 +Θ(1), and it is Θ(n−1/2)

if c is 2
3 + O(n−1). However, r ∈ I+3m implies c is 2

3 + Θ(1).) As a result, we

have Φ(r3m,αn)Φ((1−r)3m,(1−αn))
Φ(3m,n) = O(1).

Finally, we consider the Λ terms of g. Clearly, Λ3m,n > 0, and in the proof of
Lemma 23 it is implied that Λ3m,n equals a constant independent of n (because
Υ is a.a.s. Θ(n), E(Y ) = Θ(1), and thus Pr(Y = 0) = Θ(1)). This proves that
Λα,r,t

3m,n

Λ3m,n
= O(1), and that completes the proof. �
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6.4 The border regions

In this subsection, we handle the values of α, r, t that are close to the borders
of the feasible region; i.e. we prove Lemma 15:

Lemma 15 Let c > 2
3 (1 + 2ζ). The sum of F (α, r, t) over all feasible α, r, t not

satisfying α ∈ I+n , r ∈ I+3m, t ∈ I+m, is o(42n−2m).

Proof Recall that m = cn for a fixed constant c, and so we can choose
ζ to be arbitrarily small in terms of c. Note that if c < 2

3 (1 + 2ζ) then the
lemma does not hold because the global maximum at α = 1

4 , r = 1
4 , t = 1

16 has

an r coordinate smaller than 2α+ζ
3c .

In this proof, we will approximate F (α, r, t) as in (5), except that we must be
careful about certain terms. In particular, when we are too close to the border,
some of the terms can be so small that our asymptotic approximations are not
sufficiently close; so instead we will use the following absolute bounds.

The first are:

i! ≥
(

i

e

)i

, (16)

i! <

(

i

e

)i √
2πi + 2, (17)

and

(

n

k

)

≤
(ne

k

)k

. (18)

The next two bounds are on S(i, j, 2)j!. Recall that this is the number
of ways to partition i labeled elements into j labeled buckets such that each
bucket has at least 2 elements. The first bound is easily obtained by omitting
the restriction that each bucket contain at least two elements:

S(i, j, 2)j! ≤ ji. (19)

The second is obtained by first choosing 2 elements for each bucket, and
then distributing the remaining elements. Clearly, different choices can yield
the same partition, and so this is an overcount:

S(i, j, 2)j! ≤
(

i

2j

)

(2j)!

2j
× ji−2j . (20)

Now we turn to the border regions. We consider 8 cases, and note that some
(α, r, t) will lie in more than one case. In the first two cases, we prove that the
sum of the triples that satisfy those cases is o(42(n −m)), and this proves the
lemma for these cases.
Case 1: α = 0 or α = 1.

If α = 0, we must have r = t = 0, and F (0, 0, 0) = 2(2−c)n3(1−2c)n. If α = 1,
we must have r = t = 1, and F (1, 1, 1) = 4n−m.
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In the cases that follow, we will assume 0 < α < 1.
Case 2: α > (1 − ζ).

This case is easily dealt with, since the number of pairs of assignments which
agree on exactly αn variables is 4n

(

n
n−αn

)

3n−αn. So F (α, r, t) is bounded by the
number of such pairs, times the probability that the first one is satisfied, which,
from bound (18), is at most:

4n
(

en

ζn

)ζn

3ζn4−m = 4n−m

(

3e

ζ

)ζn

< o(42(n−m)/n3),

for ζ sufficiently small. So the sum of F (α, r, t) over the O(n3) triples (α, r, t)
satisfying Case 2 is o(42(n−m)).

For the remaining cases, we will approximate F (α, r, t) as in (5), except
that we must be careful about certain terms. In particular, when we are too
close to the border, some of the terms can be so small that our asymptotic
approximations are not sufficiently close; so instead we will use the absolute
bounds from above. In each case below, we will note how much this increases
the bound over that obtained in (5).

Case 3: α < ζ.
Instead of using the approximation

(

n
αn

)

∼ α−αn(1−α)−(1−α)n 1√
2πnα(1−α)

,

we use (18) to get the bound
(

n
αn

)

<
(

e
α

)αn
. If we first consider the exponential

terms, this replacement results in an increase over the bound in (5) by a factor
of

eαnα−αn

α−αn(1 − α)−(1−α)n
= eαn(1 − α)(1−α)n

< eγn.

So the bound on the exponential terms in (7) is increased by at most a constant
γ > 0 which can be made arbitrarily small by taking ζ to be sufficiently small.
The replacement also removes the term (2πnα(1 − α))−1/2 from (6). In the
proof of Lemma 19 this term is bounded by 1, so this change does not alter the
bound of Lemma 19.

Next we replace the term S(r3m,αn, 2)(αn)!. If r is small enough that Case
4 below applies, we make the replacement described in that case. Otherwise, we

replace the approximation S(r3m,αn, 2)(αn)! ∼ (ez−1−z)αn
(

3rm
ez

)3rm
Φ(r3m,αn)

with the bound obtained from (19): S(r3m,αn, 2)(αn)! < (αn)3rm. We will
consider the exponential terms first. Note that this replacement results in an
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increase over the bound in (5) by a factor of

(αn)3rm

(ez − 1 − z)αn
(

3rm
ez

)3rm

= e3rcn
( zα

3rc

)3rcn

(ez − 1 − z)−αn

= e3rcn
(

ez − 1 − z

ez − 1

)3rcn

(ez − 1 − z)−αn

=
e3rcn

(ez − 1)αn

(

ez − 1 − z

ez − 1

)3rcn−αn

=

(

e

(ez − 1)
ez−1−z
z(ez−1)

)3rcn
(

ez − 1 − z

ez − 1

)(3rc−α)n

< eγn.

So the bound on the exponential terms in (7) is increased by at most a constant
γ > 0 which can be made arbitrarily small by taking ζ to be sufficiently small.
This follows from the fact that if r is reasonably large so that Case 4 below does
not apply, then as ζ and therefore α tends to 0, z tends to ∞, and limz→∞(ez −
1)

ez−1−z
z(ez−1) = e.
This change also removes the term Φ(3rm, αn) from (6), and from the proof

of Lemma 19 this change increases the bound of Lemma 19 by at most a constant
factor.

Case 4: r < 2α+ζ
3c .

Rather than using the approximation

S(r3m,αn, 2)(αn)! ∼ (ez − 1 − z)αn
(

3rm

ez

)3rm

Φ(r3m,αn),

we will use the bound obtained from (20):

S(r3m,αn, 2)(αn)! <

(

r3m

2αn

)

(2αn)!

2αn
× (αn)r3m−2αn

<
(3rm/e)3rm

((3rm− 2αn)/e)3rm−2αn
2−αn(αn)3rm−2αn

√
2π3rm + 2

with the last inequality following from bounds (17) and (16). Note that this
replacement increases the bound in (5) by a factor of

(3rm/e)3rm

((3rm−2αn)/e)3rm−2αn 2−αn(αn)3rm−2αn

(ez − 1 − z)αn
(

3rm
ez

)3rm

=

(

αne

3rm− 2αn

)3rm−2αn
z3rm

(2(ez − 1 − z))αn

< eγn.
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So the bound on the exponential terms in (7) is increased by at most a constant
γ > 0 which can be made arbitrarily small by taking ζ to be sufficiently small.
The last inequality holds because as ζ tends to 0, 3rc tends to 2α and z tends

to 0, and limz→0
z2

2(ez−1−z) = 1.

This change also replaces the term Φ(3rm, αn) in (6) with
√

2π3rm + 2, and
from the proof of Lemma 19 this change increases the bound of Lemma 19 by a
factor of O(

√
n).

Case 5: r > 1 − 2(1−α)+ζ
3c .

Rather than using the approximation

S((1 − r)3m, (1 − α)n, 2)((1 − α)n)! ∼(ey − 1 − y)(1−α)n

(

3(1 − r)m

ey

)3(1−r)m

× Φ((1 − r)3m, (1 − α)n),

we will use the bound obtained from (20):

S((1 − r)3m, 1 − αn, 2)((1 − α)n)!

<

(

(1 − r)3m

2(1 − α)n

)

(2(1 − α)n)!

2(1−α)n
× ((1 − α)n)(1−r)3m−2(1−α)n

<
(3(1 − r)m/e)3(1−r)m

((3(1 − r)m − 2(1 − α)n)/e)3(1−r)m−2(1−α)n
2−(1−α)n

×((1 − α)n)3(1−r)m−2(1−α)n
√

2π3(1 − r)m + 2

with the last inequality following from bounds (17) and (16). Note that, from
the same argument as in Case 4, this replacement increases the bound in (5) by
a factor of

(3(1−r)m/e)3(1−r)m

((3(1−r)m−2(1−α)n)/e)3(1−r)m−2(1−α)n 2−(1−α)n((1 − α)n)3(1−r)m−2(1−α)n

(ey − 1 − y)(1−α)n
(

3(1−r)m
ey

)3(1−r)m

=

(

(1 − α)ne

3(1 − r)m− 2(1 − α)n

)3(1−r)m−2(1−α)n
y3(1−r)m

(2(ey − 1 − y))(1−α)n

< eγn.

So the bound on the exponential terms in (7) is increased by at most a constant
γ > 0 which can be made arbitrarily small by taking ζ to be sufficiently small.

This change also replaces the term Φ(3(1 − r)m, (1 − α)n) in (6) with
√

2π3(1 − r)m + 2, and from the proof of Lemma 19 this change increases the
bound of Lemma 19 by a factor of O(

√
n).

Case 6: t < ζ.
To obtain (5), we applied Stirling’s formula and approximated (tm)! by

(

tm
e

)tm √
2πtm. Instead, we will apply (16) and replace it with

(

tm
e

)tm
. This

yields an upper bound on F (α, r, t) as (tm)! appears in the denominator. This
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replacement does not change the exponential terms of F (α, r, t), but it does
remove the term

√
2πtm from (6), and from the proof of Lemma 19 this change

increases the bound of Lemma 19 by at most a constant factor.

Case 7: t < 3r−1
2 + ζ.

As in Case 6, we will replace the (m−3rm+2tm)! term with
(

m−3rm+2tm
e

)m−3rm+2tm
.

As in Case 6, this replacement does not change the exponential terms of F (α, r, t),
but it does remove the term

√

2πm(1 − 3r + 2t) from (6), and from the proof of
Lemma 19 this change increases the bound of Lemma 19 by at most a constant
factor.

Case 8: t > r − ζ.

As in Cases 6 and 7, we will replace the (3rm−3tm)! term with
(

3rm−3tm
e

)3rm−3tm
.

This replacement does not change the exponential terms of F (α, r, t), but it does
remove the term

√

2πm(3r − 3t) from (6), and from the proof of Lemma 19 this
change increases the bound of Lemma 19 by at most a constant factor.

If (α, r, t) satisfy Cases 1 or 2, then the lemma holds. If they satisfy any of
Cases 3-8, then we obtain the upperbound

F (α, r, t) ≤ (1 + o(1))g∗(α, r, t)ef
∗(α,r,t)n,

where g∗(α, r, t) and f∗(α, r, t) are the result of applying the changes of Cases
3-8 to (6) and (7).

Note that g∗(α, r, t) ≤ ν × O(n) < ν × eγn where ν is the constant from
Lemma 19, and note that f∗(α, r, t) ≤ f(α, r, t) + 3γ (to achieve this extreme
bound, (α, r, t) would have to satisfy all Cases 3-5). Thus we have

F (α, r, t) ≤ (1 + o(1))ν × eγne(f(α,r,t)+3γ)n = (1 + o(1))e(f(α,r,t)+4γ)n.

Lemma 18 implies that if ζ is small enough to bound the borders of I+n ×
I+3m × I+m away from the unique global maximum point (14 ,

1
4 ,

1
16 ) then there is

some x > 0, independent of ζ, such that f(α, r, t) < 2(1 − c) ln 4 − x for any
feasible α, r, t not satisfying α ∈ I+n , r ∈ I+3m, t ∈ I+m. We take ζ small enough
to yield γ = 1

8x, thus obtaining

F (α, r, t) < (1 + o(1))e(2(1−c) ln 4− 1
2x)n,

and we insure that ζ small enough so that 2
3 (1+2ζ) < 0.818469 . . ., the threshold

for a non-empty 2-core (see Lemma 10), and thus we have c > 2
3 (1 + 2ζ).

We need to be careful about one thing: if (α, r, t) is extremal - i.e. if α = 0,

α = 1, r = 2α
3c , r = 1 − 2(1−α)

3c , t = 0, t = 3r−1
2 or t = r - then f(α, r, t)

and g(α, r, t) are undefined. In any such case, we obtain F (α, r, t) ≤ (1 +
o(1))g∗(α, r, t)ef

∗(α,r,t)n where g∗(α, r, t) < lim(α′,r′,t′)→(α,r,t) g(α′, r′, t′) × eγn

and f∗(α, r, t) ≤ lim(α′,r′,t′)→(α,r,t) f(α′, r′, t′) + 3γ. So again, Lemmas 18 and
19 imply that

F (α, r, t) < (1 + o(1))e(2(1−c) ln 4− 1
2x)n < 42n−2m− 1

4xn.
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The asymptotics in this bound come from our approximations of factorial
terms and of S(i, j, 2) terms. In all cases, we either use approximations that hold
uniformly over the given domain or we replace the approximations by bounds
that hold over the domain, and so the asymptotic approximations and upper
bounds hold uniformly. Thus we can sum them over the O(n3) triples and
obtain the lemma. �

6.5 An Approximation for Generalized Stirling Numbers

of the Second Kind

Lemma 24 Let

Γ(i, j) =
1

j!

(

i

z0e

)i

(ez0 − 1 − z0)j

√

ij

z0j(i− j) − i(i− 2j)

where z0 is the positive real solution of the equation

j

i
z0 =

ez0 − 1 − z0
ez0 − 1

.

Then
S(i, j, 2) ∼ Γ(i, j),

and the approximation holds uniformly as i → ∞ for all δ1i < j < i
2 (1 − δ2)

where δ1 and δ2 are any positive constants.

Proof Hennecart, in [39], extends the approximation by Temme [71]
for Stirling numbers of the second kind, S(i, j, 1) in the notation of this paper,
to give the following approximation for the generalized Stirling number of the
second kind S(i, j, r).

S(i, j, r) ∼ i!

j!(i− jr)!

(

i− jr

e

)i−jr
Bj(z0, r)

zi+1
0

√

jt0
φ′′ (z0)

where B(z, r) = ez −∑r−1
l=0

zl

l! , φ(z) = −i ln z + j lnB(z, r), t0 = i−jr
j , and z0 is

the positive real solution of the equation z0
B′(z0,r)
B(z0,r)

= i
j .

If we let r = 2, then B(z, 2) = ez − 1 − z, and

φ
′′

(z) =
i

z2
+ j

ez(ez − 1 − z) − (ez − 1)2

(ez − 1 − z)2
.

Since, z0
ez0−1

ez0−1−z0
= i

j , we have

ez0 =
i + iz0 − jz0

i− jz0

ez0 − 1 =
iz0

i− jz0

ez0 − 1 − z0 =
jz20

i− jz0
,
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and we can simplify φ
′′

(z0).

φ
′′

(z0) =
i

z20
+ j

(i + iz0 − jz0)jz20 − (iz0)2

(jz20)2

=
1

jz20
(z0j(i − j) − i(i− 2j)).

This yields

S(i, j, 2) ∼ i!

j!(i− 2j)!

(

i− 2j

e

)i−2j
(ez0 − 1 − z0)j

zi+1
0

×
√

jz20(i − 2j)

z0j(i− j) − i(i− 2j)
. (21)

Unfortunately, [39] states but does not prove that this approximation is uni-
form for the desired parameter values. As noted above, the [39] approximation
for S(i, j, r) was based on the [71] approximation for S(i, j, 1), and the unifor-
mity of the latter approximation was proven in [14]. The [14] proof takes the
error bounds for integer i and j of a slightly different approximation of S(i, j, 1)
by Moser and Wyman [62] and proves that these bounds also apply to the ap-
proximation of [71]. In addition, [14] extend the proof of [62] to prove that the
[71] approximation is also uniform for real and complex parameters. For the
results of this paper, we require (21) to be uniform for integer i and j as i → ∞
and for all δ1i < j ≤ i

2 (1− δ2) where δ1 and d2 are any positive constants. Sec-
tions 3 and 4 of [62] prove the error bounds for their approximation of S(i, j, 1)
for integer parameters with 0 < j < i and limi→∞(i − j) = ∞. In [17], we
provide a modification of these error bounds to S(i, j, 2), and this proves the
desired uniformity of (21).

Applying Stirling’s approximation to the i! and (i − 2j)! terms in (21), we
obtain

S(i, j, 2) ∼ 1

j!

[

(

i

e

)i (
e

i− 2j

)i−2j √
2πi

√

2π(i− 2j)

]

(

i− 2j

e

)i−2j

× (ez0 − 1 − z0)j

zi0

√

j(i− 2j)

z0j(i− j) − i(i− 2j)

=
1

j!

(

i

z0e

)i

(ez0 − 1 − z0)j

√

ij

z0j(i− j) − i(i− 2j)

= Γ(i, j).

The error terms from applying Stirling’s approximation to i! and (i − 2j)! are
O(i−1) and O((i − 2j)−1), respectively, and these approximations are asymp-
totically tight as i → ∞ with i − 2j > δ2i for δ2 a positive constant. There-
fore, we can conclude that the approximation of Lemma 24 is uniform for all
δ1i < j < i

2 (1 − δ2) as i → ∞ with δ1 and δ2 any positive constants. �
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7 Conclusion

In this paper, we present (3, 4)-UE-CSP, the first known constraint satisfaction
problem that has a random model with an exact satisfiability threshold as well
as all of the following properties of random k-SAT, k ≥ 3: The problem is NP-
complete; the problem has constant size clauses and domain; the satisfiability
threshold for the random model occurs when there are a linear number of clauses;
a random instance a.a.s. has exponential resolution complexity; and there is
no known polynomial time algorithm that, w.u.p.p., will find a solution to an
instance drawn from close to the satisfiability threshold. In forming this CSP,
we define UE-CSP as a general model of universal uniquely extendible CSPs
that naturally generalize XOR-SAT.

Interestingly, the satisfiability threshold for random (3, 4)-UE-CSP is exactly
the same as for random 3-XOR-SAT. As noted above, 3-XOR-SAT is the same
problem as (3, 2)-UE-CSP. This observation leads to the question as to whether
the location of the satisfiability threshold for random (k, d)-UE-CSP depends on
the domain size d. We conjecture that it does not; i.e. that for every k, d ≥ 2,
the satisfiability threshold for random (k, d)-CSP is the same as for k-XOR-
SAT, a threshold that was determined in [27]. [19] presents a proof for this
conjecture, subject to a hypothesis that is analogous to Lemma 18. I.e., for any
k, d, the conjecture holds so long as a natural local maximum of a particular
function is the unique global maximum. With sufficient labor, this hypothesis
could probably be proven for specific values of k, d using computer-aided interval
arithmetic analysis along the lines of that in our appendix. But proving that it
holds for all k, d would likely require a different approach.
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A The Proof that f has a unique global maxi-

mum.

In this appendix, we present the computer-aided proof of Lemma 18, which we
restate below. Let

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 + t− 3r) ln 3

+ c(1 − 3r + 2t) ln 2 − α lnα− (1 − α) ln(1 − α)

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t) − ct ln t

+ r3c ln r + (1 − r)3c ln(1 − r) + α ln(ez − 1 − z) − r3c ln z

+ (1 − α) ln(ey − 1 − y) − (1 − r)3c ln y − ln(ex − 1 − x)

+ 3c lnx,

where x, y, z > 0 are defined as

ex − 1 − x

ex − 1
− x

3c
=

ey − 1 − y

ey − 1
− y(1 − α)

3c(1 − r)
=

ez − 1 − z

ez − 1
− zα

3cr
= 0. (22)
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Lemma 18 For all 2
3 ≤ c < 1, the unique global maximum of f(α, r, t) in the

domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , and max{0, 3r−1
2 } < t < r occurs

at f(14 ,
1
4 ,

1
16 ) = 2(1 − c) ln 4. Furthermore, for all .67 ≤ c ≤ 1, there exists a

constant b = b(c) such that at every extremal (α, r, t), f approaches a limit that
is less than 2(1 − c) ln 4 − b.

Proof Recall from Observation 17 that f is continuous and differen-

tiable throughout the domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , max{0, 3r−1
2 } <

t < r. In Section 5, we proved that (i) f has one local maximum when z = y,
(ii) the point α = 1

4 , r = 1
4 , t = 1

16 is this local maximum, and (iii)

f

(

1

4
,

1

4
,

1

16

)

= 2(1 − c) ln 4. (23)

Lemma 25 in Section A.1 gives an equation in terms of z and y for all points
where the partial first derivatives of f are 0. Lemma 26 of Section A.3 proves
that at each point in the domain of f which satisfies both the equation of
Lemma 25 and z 6= y, the value of f at that point is smaller than 2(1 −
c) ln 4. To complete the proof, Lemma 32 of Section A.4 proves that at every
point (α1, r1, t1) on the boundary of the domain of f (i.e. for every extremal
(α1, r1, t1)), lim(α,r,t)→(α1,r1,t1) f(α, r, t) exists and is less than 2(1 − c) ln 4 − b
where b > 0 is a constant independent of α1, r1, and t1, but it may be dependent
of c. �

A.1 An Equation for All Stationary Points of f

We start by relating z and y at all stationary points.

Lemma 25 Every stationary point of the function f of Lemma 18 satisfies the
equation

z

y
=

3 (ey − 1)
2

+ (ez − 1)
2

2 (ey − 1)2 + 2 (ey − 1) (ez − 1)
. (24)

Furthermore, for each y > 0, there are at exactly two values for z that satisfy
(24), one when z = y and one when z > y.

Proof To find all stationary points for f in the interior of the domain,
we use the partial derivatives of f , calculated in Section 5, and from these we
know that any stationary point must satisfy all of the following equations.

1 − α

α
= 3

ey − 1 − y

ez − 1 − z
(25)

1 − r

r
=

y

z
· 3

2
· (1 − 3r + 2t)

(r − t)
(26)

(r − t)3

(1 − 3r + 2t)2
=

3t

4
(27)
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From (22), we have

ey − 1 − y

ez − 1 − z
=

y

z
· (1 − α)

α
· r

(1 − r)
· (ey − 1)

(ez − 1)
.

Plugging in (25), gives

3
y

z
· r

(1 − r)
=

ez − 1

ey − 1
, (28)

and combining (28) with (26) gives

2(r − t)

1 − 3r + 2t
=

ez − 1

ey − 1
. (29)

Combining (27) with (29) gives

(

ez − 1

ey − 1

)2

(r − t) = 3t. (30)

Solving (26) for t yields

t =
2zr(1 − r) − 3yr + 9yr2

6yr + 2z(1 − r)
,

and plugging this value for t into (30) gives

(

ez − 1

ey − 1

)2

y(1 − r) = 2z(1 − r) − 3y + 9yr. (31)

Solving (28) for r gives

r =
(ez − 1) z

3 (ey − 1) y + (ez − 1) z
, (32)

and substituting (32) for r in (31) gives

z

y
=

3 (ey − 1)2 + (ez − 1)2

2 (ey − 1)
2

+ 2 (ey − 1) (ez − 1)
.

This establishes (24). To prove the rest of the lemma, we will look at cases.
First, we can rule out the case when 0 < z < y. If 0 < z < y then the left

hand side of (24) is smaller than 1, but it is straightforward to see that the right

hand side is equal to 1 + (ey−ez)2

2(ey−1)2+2(ey−1)(ez−1) and so is always at least 1, with

equality when z = y.
Now we prove that for each y > 0, there is exactly one solution with z > y.

We will do this by fixing y and determining how each side of equation (24)
changes as z increases. We will calculate the first and second derivatives, with
respect to z, of the right hand side of (24), and we will note that the first
derivative is 0 when z = y, both derivatives are positive when z > y, and the
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first derivative grows unbounded as z tends to infinity and y is fixed. That
implies that, for any fixed y, the right hand side of (24) will cross z

y exactly
once when z > y.

The first derivative of the RHS of (24) with respect to z is

2ez(ey − 1)
(

(2(ey − 1) + 2(ez − 1))(ez − 1) − (3(ey − 1)2 + (ez − 1)2)
)

(

2 (ey − 1)
2

+ 2 (ey − 1) (ez − 1)
)2

which can be rewritten as

ez(ez − ey)(ez − 1 + 3(ey − 1))

2(ey − 1)(ez + ey − 2)2
. (33)

It is straightforward to see that (33) is negative when 0 < z < y, is positive
when z > y > 0, and grows unbounded as z > 0 increases.

The second derivative of the RHS of (24) with respect to z is

ez

2(ey − 1)(ez + ey − 2)3
((ez + ey − 2) [(ez − ey)(ez − 1 + 3(ey − 1))

+ ez(ez − 1 + 3(ey − 1)) + ez(ez − ey)]

− 2ez(ez − ey)(ez − 1 + 3(ey − 1)))

which simplifies to

ez
(

(ez + ey − 2)(ez − ey)(ez − 1 + 3(ey − 1)) + 8ez(ey − 1)2
)

2(ey − 1)(ez + ey − 2)
. (34)

It is straightforward to verify that (34) is positive when z > y > 0. �

A.2 Interval Analysis

The technique of interval analysis [61, 38] is a method to rigorously bound
the range of values that a function takes over an interval. If the endpoints
of the interval are also rigorously determined, then we have a proven upper
and lower bound on that range. Interval analysis is very useful with numerical
algorithms because we can include all errors of floating point approximation into
the interval bounds. Following standard interval analysis notation, we denote
an interval with a capital letter; eg., X = [ x, x ] is an interval where x and x
are real numbers and denote the endpoints of the interval.

If we let A = [ α, α ], R = [ r, r ], and T =
[

t, t
]

be intervals, we can use

interval analysis techniques to compute the interval Φ =
[

φ, φ
]

where Φ ⊇ {φ =

f(α, r, t) | α ∈ A, r ∈ R, t ∈ T }. If we can then prove that φ < 2(1−c) ln 4, then
we have a proof that f(α, r, t) < 2(1− c) ln 4 for all α ∈ A, r ∈ R, and t ∈ T , as
required.

In Section A.3 we prove that there are no global maxima in the interior of
the domain, except for the point α = 1

4 , r = 1
4 , t = 1

16 , and in Section A.4 we
prove that there are no global maxima on the boundary of the domain. In both
cases, the proof relies on an interval analysis program to rule out the various
cases. The specifications of the program are listed in Section A.5.
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A.3 The Interior of the Domain

The goal of this section is to rule out all possible stationary points, as defined
by (24), with z > y > 0, from being global maxima.

Lemma 26 For all 2
3 ≤ c < 1, consider any stationary point of the function f

of Lemma 18, in the domain 0 < α < 1, 2α
3c < r < 1 − 2(1−α)

3c , max
{

0, 3r−1
2

}

<
t < 4r, and with z > y. The maximum value that f can take at this point is
smaller than 2(1 − c) ln 4 − 0.1.

The proof of Lemma 26 relies on an interval analysis program, and the
analysis will be on a slightly different function. We define

F (c, α, r, t, x, y, z) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 + t− 3r) ln 3

+ c(1 − 3r + 2t) ln 2 − α lnα− (1 − α) ln(1 − α)

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y)

where

Υ(w) =
(ew − 1)w

ew − 1 − w
lnw − ln (ew − 1 − w) . (35)

Note that from (22),

Υ(x) = 3c lnx− ln(ex − 1 − x)

(1 − α)Υ(y) = (1 − r)3c ln y − (1 − α) ln(ey − 1 − y)

αΥ(z) = r3c ln z − α ln(ez − 1 − z).

F is defined exactly the same as f except that x, y, and z are parameters of F
instead of being defined by α and r, and c is an explicit parameter of F . Given
intervals for each of the parameters of F , we will determine an interval
[

φ, φ
]

⊇ {φ | φ = F (c, α, r, t, x, y, z) for c ∈ [c, c] , α ∈ [α, α] , r ∈ [r, r] ,

t ∈
[

t, t
]

, x ∈ [x, x] , y ∈
[

y, y
]

, and z ∈ [z, z]}.

Note that if [x, x],
[

y, y
]

, and [z, z] contain all values of x, y, z > 0 that satisfy
(22) for each c ∈ [c, c], α ∈ [α, α] and r ∈ [r, r] then

[

φ, φ
]

⊇ {φ | φ = f(α, r, t) for α ∈ [α, α] , r ∈ [r, r] , and t ∈
[

t, t
]

and where c ≤ c ≤ c}.
For a certain constant b, we verify for every such interval, we have 2(1−c) ln 4−
φ ≥ b. This proves that f(α, r, t) < 2(1 − c) ln 4 − b for all α ∈ [α, α], r ∈ [r, r],
t ∈

[

t, t
]

and where c ≤ c ≤ c. Our interval analysis program proves that such
a b exists and its value is between 0.010 and 0.055.

The interval analysis is as follows. First, we will place an upper bound on
the value of y at any stationary point with z > y and with 2

3 ≤ c < 1. We
define:
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Definition 27 x∗ is the largest solution to x(ex−1)
ex−1−x = 3.

From (22), it is straightforward to show that if z > y, then z > x > y, and if
c < 1 then x, and by extension y, cannot exceed x∗.

While y is defined to be larger than 0, we note that, from Observation 16,
the value of f at the domain boundary r = 2α

3c is the limit of f as y approaches
0, and from Observation 17, the limit of f at the border exists. As a result, we
have to rule out the case that the value of f exceeds 2(1 − c) ln 4 at any point
where y is arbitrarily close to 0. To do so, we will extend the interval (0, x∗) of
possible values for y to [0, x∗]. We can rewrite (24) as

2z =
3(ey − 1)2 + (ez − 1)2

ey − 1 + ez − 1
· y

ey − 1
,

and we note that as y tends to 0, z tends to the largest solution of

2z = ez − 1. (36)

We will cover the interval [0, x∗] of possible values for y with overlapping
subintervals. For each subinterval Y =

[

y, y
]

, we will compute intervals that
contain all possible values that z, x, c, α, r, and t can take at an stationary
point of f with y ∈ Y and y < z. We will then compute the maximum value
that F can take on these intervals and verify that this value is smaller than
2(1 − c) ln 4.

Given Y =
[

y, y
]

, we first compute an interval that contains all z such that:
Y contains at least one y < z where (z, y) satisfies (24) of Lemma 25. Let the
function z(y) be defined as the largest solution to (24) when y > 0 and as the
largest solution to (36) when y = 0. Given the interval Y =

[

y, y
]

, we find an
interval Z = [z, z] such that

[z, z] ⊇
{

z | z = z(y) for y ∈
[

y, y
]}

. (37)

Because z is only defined implicitly in (24) and (36), we do the following to
compute [z, z].

Let z1 = z
(

y
)

, and let z2 = z (y). Using the bisection method, we find

intervals Z1 =
[

z1, z1
]

and Z2 =
[

z2, z2
]

that contain z1 and z2, respectively.

We do not use
[

z1, z2
]

as the interval Z because to do so, we would need to

know that dz
dy > 0. A proof of this inequality appears to be challenging, so

instead we will find a δ and δ′ such that Z =
[

z1 − δ′, z2 + δ
]

satisfies (37).
From (24), Let

λ(y, z) = y

(

3 (ey − 1)2 + (ez − 1)2

2 (ey − 1)
2

+ 2 (ey − 1) (ez − 1)

)

,

and so for y > 0, z(y) is the largest solution to z = λ(y, z). Let

λI(Y, Z) = {λ(y, z) | y ∈ Y, z ∈ Z}.
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From our computation of Z1 and Z2, we know that there is a z ∈
[

z1, z2
]

such that z = λ(y, z) for some y ∈ Y (eg. z = z1 and z = z2). This implies
z ∈ λI

(

Y,
[

z1, z2
])

, and

[

z1, z2
]

∩ λI

(

Y,
[

z1, z2
])

6= ∅.

To compute bounds for Z, we will find δ, δ′, ǫ > 0 such that

[

z1 − δ′ − ǫ, z1 − δ′
]

∩ λI

(

Y,
[

z1 − δ′ − ǫ, z1 − δ′
])

= ∅
[ z2 + δ, z2 + δ + ǫ ] ∩ λI (Y, [ z2 + δ, z2 + δ + ǫ ]) = ∅.

We will prove that for every y ∈ Y , z2 +δ is an upper bound on the largest z
such that z = λ(y, z). Suppose that for some y′ ∈ Y , there is a z′ > z2 + δ such
that z′ = λ(y′, z′). From the definition of λ, we have z(y′) = z′. Because z(·) is
continuous, the intermediate value theorem states that for every z1 < z∗ < z′

there is some y∗ ∈
[

y, y′
]

⊂ Y with z(y∗) = z∗, and so z∗ = λ(y∗, z∗). Picking
z2 + δ < z∗ < min(z2 + δ + ǫ, z′) yields a contradiction to the statement

[ z2 + δ, z2 + δ + ǫ ] ∩ λI (Y, [ z2 + δ, z2 + δ + ǫ ]) = ∅.

A similar argument shows that for every y ∈ Y , z1 − δ′ is a lower bound on the
smallest z such that z = λ(y, z).

Therefore, we can set Z =
[

z1 − δ′, z2 + δ
]

. To find appropriate δ and δ′

values, we set ǫ = 2.22× 10−16, and we use binary search to find small δ and δ′

that satisfy the above properties.
Next, we combine (22) with the equations (25) and (26) that must hold at

any stationary point of f to define the following function,

c(y, z) =
3(ey − 1)y + (ez − 1)z

3 × (3(ey − 1 − y) + ez − 1 − z)
,

and given the intervals
[

y, y
]

and [z, z], we use standard interval operations to
compute

[c, c] ⊇ {c | c = c(y, z) for y ∈
[

y, y
]

and z ∈ [z, z]}.
From (22), we define the function x(c) as the largest solution to

3c =
x(ex − 1)

ex − 1 − x
. (38)

and we use x(c) to find an interval [x, x] given the interval [c, c]. Let

[x, x] ⊇ {x | x = x(c) for c ∈ [c, c]}.

Because x is only defined implicitly in (38), we use the following procedure to
compute X = [x, x].

It is straightforward to verify the x(ex−1)
ex−1−x is an increasing function when

x > 0. As a result, (38) will have at most one positive solution. Given [c, c],
we use Lemma 28 below to give positive upper and lower bounds for both x(c)
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and x(c), and then we can use binary search, starting from these bounds, to
find the intervals X1 =

[

x1, x1

]

and X2 =
[

x2, x2

]

that contain x(c) and x(c),

respectively. From (38), it is straightforward to see that dx
dc > 0, and so we can

set X =
[

x1, x2

]

.

Lemma 28 Let 3c = x(ex−1)
ex−1−x and c ≥ 2

3 . If x > 0 then 3c− 2 < x < 3c.

Proof First note that limx→0
x(ex−1)
ex−1−x = 2. So when x approaches

0, c approaches 2
3 , and we have, in the limit, x + 2 = 3c. Next note that

x < x
(

ex−1
ex−1−x

)

= 3c. To complete the proof, we show that if x > 0, the

derivative of x(ex−1)
ex−1−x is less than 1. This implies that for x > 0, 3c is sandwiched

between x and x + 2.
The derivative of x(ex−1)

ex−1−x is (ex−1)2−x2ex

(ex−1−x)2 . To show that this derivative is less

than 1, we show

(ex − 1 − x)2 − (ex − 1)2 + x2ex = −2x(ex − 1) + x2 + x2ex

= x (−2(ex − 1) + x + xex)

≥ 0.

The last inequality follows by noting that the first and second derivatives of
−2(ex − 1) + x + xex are xex − ex + 1 and xex, respectively. �

It is now straightforward to use equations that must hold at any station-
ary point of f to define intervals for the remaining parameters of F given the
intervals

[

y, y
]

and [z, z]. We use (25) to define the function

α(y, z) =
ez − 1 − z

3(ey − 1 − y) + ez − 1 − z
,

and given the intervals
[

y, y
]

and [z, z], we use standard interval operations to
compute the interval

[α, α] ⊇ {α | α = α(y, z) for y ∈
[

y, y
]

and z ∈ [z, z]}.

We use (32) to define the function

r(y, z) =
(ez − 1)z

3(ey − 1)y + (ez − 1)z
,

and given the intervals
[

y, y
]

and [z, z], we use standard interval operations to
compute the interval

[r, r] ⊇ {r | r = r(y, z) for y ∈
[

y, y
]

and z ∈ [z, z]}.

We use (30) to define the function

t(r, y, z) =
(ez − 1)2r

3(ey − 1)2 + (ez − 1)2
,
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and given the intervals [r, r],
[

y, y
]

and [z, z], we use standard interval operations
to compute the interval

[

t, t
]

⊇ {t | t = t(r, y, z) for r ∈ [r, r] , y ∈
[

y, y
]

and z ∈ [z, z]}.

Finally, we use standard interval operations to compute the interval

[

φ, φ
]

= {φ | φ = F (c, α, r, t, x, y, z) for c ∈ [c, c] , α ∈ [α, α] , r ∈ [r, r] ,

t ∈
[

t, t
]

, x ∈ [x, x] , y ∈
[

y, y
]

, and z ∈ [z, z]}.

We then verify that φ < 2(1 − c) ln 4, and this verifies that at every point in
the given intervals the value of F , and therefore f , is smaller than 2(1− c) ln 4.
Repeating this process for every overlapping subinterval

[

y, y
]

⊂ [0, x∗], the
program proves that there exists a constant b with 0.010 < b < 0.055 such that
that the value for f on each interval is smaller than 2(1 − c) ln 4 − b, and this
proves Lemma 26.

These computations are all performed by an interval analysis program speci-
fied in Section A.5. The computation of the interval

[

φ, φ
]

uses standard interval
analysis techniques plus the following observations.

Observation 29 The function Υ(w) has the following form. When w → 0, the
function approaches ln 2, the function has one minimum at w = 1 with value
− ln(e − 2), and the function grows unbounded as w → ∞.

In the cases that z becomes large, we can use the following approximations
for Υ(z). These approximations have reduced dependency errors and will, for
large z, result in a tighter bound than a computation of Υ(z).

Observation 30

Υ(w) =
(ew − 1)w

ew − 1 − w
lnw − ln(ew − 1 − w) ≥ w(lnw − 1).

Observation 31 For w > 2.5,

Υ(w) =
(ew − 1)w

ew − 1 − w
lnw − ln(ew − 1 − w) ≤ w(lnw − 1) + 1.

A.4 The Boundary of the Domain

The final step required for the proof of Lemma 18 is to prove that at every
point on the boundary of the domain, f approaches a limit that is less than
2(1 − c) ln 4.

Lemma 32 Let .67 ≤ c < 1 and let b = b(c) be a positive constant that depends
on c but is independent of α, r, and t. For every point (α1, r1, t1) on the
boundary of the domain of f , lim(α,r,t)→(α1,r1,t1) f(α, r, t) exists and is less than
2(1 − c) ln 4 − b.
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The proof of Lemma 32 is the subject of the remainder of this appendix.
From Observation 17, the limit exists. The boundary of f consists of 7 faces,
the faces intersect at 13 line segments, and the line segments intersect at 8
points.

For each of the 8 points, we take the limit of f as its parameters approach
that point and prove that the limit is smaller than 2(1 − c) ln 4. For each of
the line segments, we determine a function on the line segment which is either
the limit of f as its parameters approach each point of that boundary or an
upper bound on the limit. For the present discussion, we use fB to denote that
function. fB will not have a discontinuity, and so any maximum value of fB
will occur either at the endpoints of the line segment or at a point where the
derivative of fB is 0. As we have already proven that the endpoints are not
global maxima, we can restrict the analysis to the places where the derivative is
0. Similarly, for each of the 7 faces, we define a similar function fB on the face
and evaluate the points where both the partial first derivatives of fB are 0.

The proof of Lemma 32 will also rely on an interval analysis program.
For each boundary, the interval analysis will be performed on the function
FB(c, α, r, t, x, y, z) where FB is defined the same as fB except that x, y, and
z are parameters to FB instead of being defined in terms of α and r, and c
is an explicit parameter of FB. The interval analysis program will verify that
for each c ∈ [.67, 1), for each α, r, and t in the domain of fB, and for each
x, y, and z such that x, y, z > 0 and (22) is satisfied, the maximum value for
FB(c, α, r, t, x, y, z) is smaller than 2(1 − c) ln 4, and the program will report
the smallest difference between 2(1− c) ln 4 and the maximum value for an end
point or stationary point on the boundary. Note that when r = 2α

3c , we re-
place any term of FB involving z with its limit as z tends to 0. Likewise, when

1 − r = 2(1−α)
3c , we replace any term involving y with its limit as y tends to 0.

From Observation 16 and Observation 17, the limit for f exists at those points.
(While we can evaluate FB when c = 2

3 by replacing any term involving x with
its limit as x tends to 0, this approach will run into problem with Cases 24 and
25 below. Specifically, when c = 2

3 , then the entire domain including the global

maximum lies on the boundary r = 2α
3c = 1 − 2(1−α)

3c .)
The program will cover the interval [.67, 1] with overlapping subintervals.

Likewise, for each parameter, α, r, and t, not restricted by the boundary to
a single value, the program will cover the legal values of each parameter with
overlapping subintervals. Given the intervals [c, c], [α, α], and [r, r], we compute
intervals containing the possible values for x, y, and z, if needed. As is done in
Section A.3, we define the function x(c) as the largest solution to

3c =
x(ex − 1)

ex − 1 − x
,

we define the function y(c, α, r) as the largest solution to

3c(1 − r)

1 − α
=

y(ey − 1)

ey − 1 − y
,
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and we define the function z(c, α, r) as the largest solution to

3cr

α
=

z(ez − 1)

ez − 1 − z
.

Let

[x, x] ⊇ {x | x = x(c) for c ∈ [c, c]},
[

y, y
]

⊇ {y | y = y(c, α, r) for c ∈ [c, c] , α ∈ [α, α] , and r ∈ [r, r]}, and

[z, z] ⊇ {z | z = z(c, α, r) for c ∈ [c, c] , α ∈ [α, α] , and r ∈ [r, r]}.

Because x, y, and z are defined implicitly, we use binary search to separately
find upper and lower bounds for the intervals. The technique used to compute
[x, x] is described in Section A.3, and the same technique is used to compute
[

y, y
]

and [z, z]. Lemma 28 gives the initial bounds for x and x, and from the
same reasoning we get the following lemmas that give the initial bounds for y,
y, z and z.

Lemma 33 Let 3c(1−r)
1−α = y(ey−1)

ey−1−y , c ≥ 2
3 , and α < 1. If y > 0 then 3c(1−r)

1−α −
2 < y < 3c(1−r)

1−α .

Lemma 34 Let 3cr
α = z(ez−1)

ez−1−z , c ≥ 2
3 , and α > 0. If z > 0 then 3cr

α − 2 < z <
3cr
α .

Given [c, c], [α, α], [r, r],
[

t, t
]

, [x, x],
[

y, y
]

, and [z, z], if this is a subinterval
of a line or face boundary, the program will compute compute all possible values
for the partial first derivatives on these intervals and verify that these possible
values contain 0. The program will then compute an interval that contains all
possible values for FB on these intervals, it will verify that the upper bound on
this interval is smaller than 2(1−c) ln 4, and it will record the difference between
the maximum possible value for FB and 2(1− c) ln 4. As a result, we know that
f(α, r, t) < 2(1 − c) ln 4 − b for all c, α, r, and t in these intervals. Repeating
this process for all subintervals of

[

2
3 , 1
]

completes the proof of Lemma 32. The
specifics of the program are listed in Section A.5.

The rest of this section gives the specific computations of fB for each bound-
ary.

A.4.1 The Boundary of the Domain of f .

The domain for f is the region bounded by α ∈ (0, 1), r ∈
(

2α
3c , 1 − 2(1−α)

3c

)

,

and t ∈
(

min
{

0, 3r−1
2

}

, r
)

. The boundary of the domain for f has 7 faces:

α = 0; α = 1; r = 2α
3c ; r = 1 − 2(1−α)

3c ;
t = 0; t = 3r−1

2 ; t = r,
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the faces intersect at 13 line segments:

α = 0, t = 0; α = 0, t = r; α = 0, r = 1 − 2(1−α)
3c ;

α = 1, t = 3r−1
2 ; α = 1, t = r; α = 1, r = 2α

3c ;
r = 2α

3c , t = r; r = 2α
3c , t = 3r−1

2 ; r = 2α
3c , t = 0;

r = 1 − 2(1−α)
3c , t = r; r = 1 − 2(1−α)

3c , t = 3r−1
2 ; r = 1 − 2(1−α)

3c , t = 0;
t = 0 = 3r−1

2 ,

and the line segments intersect at 8 points:

α = 0, r = 0, t = 0; α = 0, r = 1 − 2
3c , t = 0;

α = 0, r = 1 − 2
3c , t = 1 − 2

3c ; α = 1, r = 1, t = 1;
α = 1, r = 2

3c , t = 2−c
2c ; α = 1, r = 2

3c , t = 2
3c ;

α = c
2 , r = 1

3 , t = 0; α = 1 − c, r = 1
3 , t = 0.

As we did in Section A.3, we will define Υ with (35) and use it to rewrite f
as

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 + t− 3r) ln 3

+ c(1 − 3r + 2t) ln 2 − α lnα− (1 − α) ln(1 − α)

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y)

where x, y, z > 0 and (22) holds. The following additional observations are used
to both compute the limit of f as its parameters approach a boundary and to
give an upper bound on that limit.

From (22), the maximum value x can have in f is the largest solution to

3 =
x(ex − 1)

ex − 1 − x

or x = 2.1491 . . .. As a result, the largest value of Υ(x) with x > 1 is .60355 . . ..
The following observation follows from this fact plus Observation 29.

Observation 35
Υ(x) ≤ ln 2.

As discussed in Lemma 28, we have limx→0
x(ex−1)
ex−1−x = 2, and x(ex−1)

ex−1−x is an

increasing function of x. We also have limx→∞
x(ex−1)
ex−1−x = ∞. As a result, from

(22), we have that as α → 0, z → ∞, as α → 1, y → ∞, as r → 2α
3c , z → 0, and

as r → 1 − 2(1−α)
3c , y → 0. From these facts and Observation 29, we have the

following observation.
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Observation 36

lim
α→0

αΥ(z) ≥ 0 (39)

lim
r→ 2α

3c

αΥ(z) = α ln 2 (40)

lim
α→1,r→1

αΥ(z) = Υ(x) (41)

lim
α→1

(1 − α)Υ(y) ≥ 0 (42)

lim
r→1− 2(1−α)

3c

(1 − α)Υ(y) = (1 − α) ln 2 (43)

lim
α→0,r→0

(1 − α)Υ(y) = Υ(x) (44)

A.4.2 The Boundary Cases That Are Points

In each case, we take the limit of f as its parameters approach the boundary
point, and we prove that this limit is smaller than 2(1 − c) ln 4. For the first
two cases, the proof is straightforward. For cases 3–6, we bound this limit by
a function of a single variable c. These cases can be verified without interval
analysis. But because we are using an interval analysis program for the later
cases, we will shorten the presentation here by verifying these cases with the
program as well. For cases 7 and 8, the bound on the limit of f includes limits of
Υ(x), Υ(y) and Υ(z) not covered in Observation 36. In these cases, the interval
analysis program will compute bounds on these limits of Υ and use them to
verify that the limit of f is always smaller than 2(1 − c) ln 4.

Case 1: the boundary with α = 0, r = 0, t = 0.

Applying (39) and (44), we get the following.

lim
α→0,r→0

t→0

f(α, r, t) = ln 4 − c ln 4 + ln 3 − 2c ln 3 + c ln 2

+ lim
α→0,r→0

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 12 − c ln 18

< 2(1 − c) ln 4 − ln
4

3

for c ∈ [2/3, 1).

Case 2: the boundary with α = 1, r = 1, t = 1.

Applying (42) and (41), we get the following.

lim
α→1,r→1

t→1

f(α, r, t) = ln 4 − c ln 4 + lim
α→1,r→1

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 − c ln 4

< 2(1 − c) ln 4 − b

for c ∈ [2/3, 1) and where b = b(c) > 0.
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Case 3: the boundary with α = 0, r = 1 − 2
3c , t = 0.

Applying (39), (43), and Observation 35, we get the following.

lim
α→0,r→1− 2

3c
t→0

f(α, r, t) = ln 4 − c ln 4 + ln 3 − (−c + 2) ln 3 + (−2c + 2) ln 2

− (−2c + 2) ln

(

−2 +
2

c

)

− (3c− 2) ln

(

1 − 2

3c

)

+ (3c− 2) ln

(

1 − 2

3c

)

+ 2 ln

(

2

3c

)

+ lim
α→0

r→1− 2
3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln
16

27
− c ln

4

3
− 2c ln c− 2(1 − c) ln(1 − c). (45)

The interval analysis program verifies that (45) is no larger than 2(1 − c) ln 4−
0.005, for all c ∈ [.67, 1).

Case 4: the boundary with α = 0, r = 1 − 2
3c , t = 1 − 2

3c .

Applying (39), (43), and Observation 35, we get the following.

lim
α→0,r→1− 2

3c

t→1− 2
3c

f(α, r, t) = ln 4 − c ln 4 + ln 3 − 4

3
ln 3 +

2

3
ln 2 − 2

3
ln

2

3c

−
(

c− 2

3

)

ln

(

1 − 2

3c

)

+ (3c− 2) ln

(

1 − 2

3c

)

+ 2 ln
2

3c
+ lim

α→0
r→1− 2

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

< ln 16 − 1

3
ln 3 − c ln 36 +

2

3
(3c− 2) ln(3c− 2)

− 2c ln c. (46)

The interval analysis program verifies that (46) is no larger than 2(1 − c) ln 4−
0.046, for all c ∈ [.67, 1).
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Case 5: the boundary with α = 1, r = 2
3c , t = 2

3c .

Applying (42), (40), and Observation 35, we get the following.

lim
α→1,r→ 2

3c

t→ 2
3c

f(α, r, t) = ln 4 − c ln 4 −
(

2c− 4

3

)

ln 3 +

(

c− 2

3

)

ln 2

−
(

c− 2

3

)

ln

(

1 − 2

3c

)

− 2

3
ln

2

3c
+

2

3
ln

2

3

+ (3c− 2) ln

(

1 − 2

3c

)

+ lim
α→1
r→ 2

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ 4

3
ln 12 − c ln 162 +

2

3
(3c− 2) ln(3c− 2)

− 2c ln c. (47)

The interval analysis program verifies that (47) is no larger than 2(1 − c) ln 4−
0.147, for all c ∈ [.67, 1).

Case 6: the boundary with α = 1, r = 2
3c , t = 2−c

2c .

Applying (42), (40), and Observation 35, we get

lim
α→1,r→ 2

3c

t→ 2−c
2c

f(α, r, t) = ln 4 − c ln 4 −
(

2c +
2 − c

2
− 2

)

ln 3

+ (c− 2 + 2 − c) ln 2

− (c− 2 + 2 − c) ln

(

1 − 2

c
+

2 − c

c

)

− (2 − 3(2 − c)) ln

(

2

3c
− 2 − c

2c

)

− 2 − c

2
ln

2 − c

2c
+ 2 ln

2

3c
+ (3c− 2) ln

(

1 − 2

3c

)

+ lim
α→1
r→ 2

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

< ln 16 − c ln 54 +
1

2
(3c− 2) ln(3c− 2)

− 1

2
(2 − c) ln(2 − c) − 2c ln c. (48)

The interval analysis program verifies that (48) is no larger than 2(1 − c) ln 4−
0.071, for all c ∈ [.67, 1).
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Case 7: the boundary with α = c
2 , r = 1

3 , t = 0.

lim
α→ c

2 ,r→ 1
3

t→0

f(α, r, t) = ln 4 − c ln 4 +
(

1 − c

2

)

ln 3 − c ln 3

− c

2
ln

c

2
−
(

1 − c

2

)

ln
(

1 − c

2

)

− c ln
1

3
+ c ln

1

3
+ 2c ln

2

3
+ lim

α→ c
2 ,r→ 1

3

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 24 − c ln 27 − c

2
ln 3 − 1

2
(2 − c) ln(2 − c) − c

2
ln c

+ lim
α→ c

2 ,r→ 1
3

(Υ(x) − αΥ(z) − (1 − α)Υ(y)) . (49)

The interval analysis program verifies that (49) is no larger than 2(1 − c) ln 4−
0.265, for all c ∈ [.67, 1).

Case 8: the boundary with α = 1 − c, r = 1
3 , t = 0.

lim
α→1−c,r→ 1

3
t→0

f(α, r, t) = ln 4 − c ln 4 + c ln 3 − c ln 3 − (1 − c) ln(1 − c)

− c ln c− c ln
1

3
+ c ln

1

3
+ 2c ln

2

3
+ lim

α→1−c,r→ 1
3

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 4 − c ln 9 − (1 − c) ln(1 − c) − c ln c

+ lim
α→1−c
r→ 1

3

(Υ(x) − αΥ(z) − (1 − α)Υ(y)) . (50)

The interval analysis program verifies that (50) is no larger than 2(1 − c) ln 4−
0.292, for all c ∈ [.67, 1).

A.4.3 The Boundary Cases That Are Line Segments

In each case, we rule out the existence of a point on the boundary where f
exceeds 2(1 − c) ln 4. We will compute a function that is either the limit of f as
its parameters approach the boundary or an upper bound on this limit. This
new function will be continuous, and any maximum of this function will occur
either where its first derivative is 0 or at an endpoint of the line segment. Cases
1–8 above evaluate the endpoints, and the analysis that follows will focus on
the points where the first derivative is 0.
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Case 9: the boundary with α = 0, and t = 0.

Using (39), we get

lim
α→0
t→0

f(α, r, t) = ln 4 − c ln 4 + ln 3 − c(2 − 3r) ln 3 + c(1 − 3r) ln 2

− c(1 − 3r) ln(1 − 3r) − c3r ln r + r3c ln r

+ (1 − r)3c ln(1 − r) + lim
α→0

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 12 − c ln 18 + cr ln 27 − cr ln 8 − c(1 − 3r) ln(1 − 3r)

+ 3c(1 − r) ln(1 − r) + Υ(x) − Υ(y) (51)

where r is in the range [0, 1 − 2
3c ].

The derivative of (51) with respect to r is

3c ln 3 − 3c ln 2 + 3c ln(1 − 3r) − 3c ln(1 − r) + 3c ln y,

and setting the derivative to 0 gives the equation

y =
2(1 − r)

3(1 − 3r)
. (52)

The interval analysis program verifies that (51) is no larger than 2(1 − c) ln 4−
.007, at each point of c ∈ [.67, 1) and r ∈

(

0, 1 − 2
3c

)

where (52) holds. This
result plus the results of Case 1 and Case 3 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 0.005.

Case 10: the boundary with α = 0, and t = r.

Using (39), we get

lim
α→0
t→r

f(α, r, t) = ln 4 − c ln 4 + ln 3 − c(2 − 2r) ln 3 + c(1 − r) ln 2

− c(1 − r) ln(1 − r) − cr ln r + r3c ln r + (1 − r)3c ln(1 − r)

+ lim
α→0

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 12 − c ln 18 + cr ln 9 − cr ln 2 + 2c(1 − r) ln(1 − r)

+ 2cr ln r + Υ(x) − Υ(y) (53)

where r is in the range [0, 1 − 2
3c ].

The derivative of (53) with respect to r is

c ln 9 − c ln 2 − 2c ln(1 − r) + 2c ln r + 3c ln y,

and setting the derivative to 0 gives the equation

y3 =
2(1 − r)2

9r2
. (54)

The interval analysis program verifies that (53) is no larger than 2(1 − c) ln 4−
0.423, at each point of c ∈ [.67, 1) and r ∈

(

0, 1 − 2
3c

)

where (54) holds. This
result plus the results of Case 1 and Case 4 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 0.046.
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Case 11: the boundary with α = 0, and r = 1 − 2(1−α)
3c .

Applying (39), (43), and Observation 35, we get the following.

lim
α→0

r→1− 2
3c

f(α, r, t) = ln 4 − c ln 4 + ln 3 − (−c + tc + 2) ln 3

+ (−2c + 2 + 2tc) ln 2

− (−2c + 2 + 2tc) ln

(

−2 +
2

c
+ 2t

)

− (3c− 2 − 3ct) ln

(

1 − 2

3c
− t

)

− ct ln t

+ (3c− 2) ln

(

1 − 2

3c

)

+ 2 ln
2

3c
+ lim

α→0
r→1− 2

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ 2 ln 4 − 3 ln 3 − c ln 4 + c ln 3 − 4ct ln 3

+ (3c− 2) ln(3c− 2) − 2(1 − c + tc) ln(1 − c + tc)

− (3c− 2 − 3tc) ln(3c− 2 − 3tc)

− ct ln t− (2 + t)c ln c, (55)

where t is in the range [0, 1 − 2
3c ].

The derivative of (55) with respect to t is

−4c ln 3 − 2c ln(1 − c + tc) + 3c ln(3c− 2 − 3tc) − c ln t− c ln c,

and setting the derivative to 0 gives the equation

81tc(1 − c + tc)2 = (3c− 2 − 3tc)3. (56)

The interval analysis program verifies that (55) is no larger than 2(1 − c) ln 4−
0.015, at each point of c ∈ [.67, 1) and t ∈

(

0, 1 − 2
3c

)

where (56) holds. This
result plus the results of Case 3 and Case 4 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 0.005.
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Case 12: the boundary with α = 1, and t = 3r−1
2 .

From (42),

lim
α→1

t→ 3r−1
2

f(α, r, t) = ln 4 − c ln 4 − c

(

2 +
3r − 1

2
− 3r

)

ln 3

− 3c

(

r − 3r − 1

2

)

ln

(

r − 3r − 1

2

)

− c
3r − 1

2
ln

3r − 1

2

+ r3c ln r + (1 − r)3c ln(1 − r)

+ lim
α→1

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 − c ln 2 − 3c

2
(1 − r) ln 3 +

3c

2
(1 − r) ln(1 − r)

+ 3cr ln r − c

2
(3r − 1) ln(3r − 1) + Υ(x) − Υ(z) (57)

where r is in the range [ 2
3c , 1].

The derivative of (57) with respect to r is

3c

2
ln 3 − 3c

2
ln(1 − r) + 3c ln r − 3c

2
ln(3r − 1) − 3c ln z,

and setting the derivative to 0 gives the equation

3r2 = z2(1 − r)(3r − 1). (58)

The interval analysis program verifies that (57) is no larger than 2(1 − c) ln 4−
0.015, at each point of c ∈ [.67, 1) and r ∈

(

2
3c , 1

)

where (58) holds. This result
plus the results of Case 2 and Case 6 proves that for each c ∈ [.67, 1) there exists
a positive constant b = b(c) such that each point on this boundary is smaller
that 2(1 − c) ln 4 − b(c).

Case 13: the boundary with α = 1, and t = r.

From (42),

lim
α→1
t→r

f(α, r, t) = ln 4 − c ln 4 + −c(2 − 2r) ln 3 + c(1 − r) ln 2

− c(1 − r) ln(1 − r) − cr ln r + r3c ln r + (1 − r)3c ln(1 − r)

+ lim
α→1

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 − c ln 2 − cr ln 2 − c(1 − r) ln 9 + 2c(1 − r) ln(1 − r)

+ 2cr ln r + Υ(x) − Υ(z) (59)

where r is in the range [ 2
3c , 1].

The derivative of (59) with respect to r is

−c ln 2 + c ln 9 − 2c ln(1 − r) + 2c ln r − 3c ln z,
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and setting the derivative to 0 gives the equation

9r2 = 2z3(1 − r)2. (60)

The interval analysis program verifies that (59) is no larger than 2(1 − c) ln 4−
0.015, at each point of c ∈ [.67, 1) and r ∈

(

2
3c , 1

)

where (60) holds. This result
plus the results of Case 2 and Case 5 proves that for each c ∈ [.67, 1) there exists
a positive constant b = b(c) such that each point on this boundary is smaller
that 2(1 − c) ln 4 − b(c).

Case 14: the boundary with α = 1, and r = 2α
3c .

Applying (42), (40), and Observation 35, we get the following.

lim
α→0
r→ 2

3c

f(α, r, t) = ln 4 − c ln 4 − (2c + tc− 2) ln 3 + (c− 2 + 2tc) ln 2

− (c− 2 + 2tc) ln

(

1 − 2

c
+ 2t

)

− (2 − 3tc) ln

(

2

3c
− t

)

− ct ln t + 2 ln
2

3c
+ (3c− 2) ln

(

1 − 2

3c

)

+ lim
α→1
r→ 2

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 + 4 ln 3 − c ln 2 − 5c ln 3 + ct ln 4 − 2ct ln 9

+ (3c− 2) ln(3c− 2) − (c− 2 + 2tc) ln(c− 2 + 2tc)

− (2 − 3tc) ln(2 − 3tc) − ct ln t− (2 + t)c ln c (61)

where t is in the range [ 2−c
2c , 2

3c ].
The derivative of (61) with respect to t is

c ln 4 − 2c ln 9 − 2c ln(c− 2 + 2tc) + 3c ln(2 − 3tc) − c ln t− c ln c,

and setting the derivative to 0 gives the equation

4(2 − 3tc)3 = 81tc(c− 2 + 2tc)2. (62)

The interval analysis program verifies that (61) is no larger than 2(1 − c) ln 4−
0.220, at each point of c ∈ [.67, 1) and t ∈

(

2−c
2c , 2

3c

)

where (62) holds. This
result plus the results of Case 5 and Case 6 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 0.071.
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Case 15: the boundary with r = 2α
3c , and t = r.

Applying (40), we get the following.

lim
r→ 2α

3c
t→r

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 −
(

2c− 4α

3

)

ln 3

+

(

c− 2α

3

)

ln 2 − α lnα− (1 − α) ln(1 − α)

−
(

c− 2α

3

)

ln

(

1 − 2α

3c

)

− 2α

3
ln

2α

3c
+ 2α ln

2α

3c

+ (3c− 2α) ln

(

1 − 2α

3c

)

+ lim
r→ 2α

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 12 − c ln 162 +
α

3
ln 12 +

a

3
lnα− (1 − α) ln(1 − α)

+
2

3
(3c− 2α) ln(3c− 2α) − 2c ln c

+ Υ(x) − (1 − α)Υ(y) − α ln 2 (63)

where α is in the range [0, 1].
The derivative of (63) with respect to α is

1

3
ln 12 +

1

3
lnα + ln(1 − α) − 4

3
ln(3c− 2α) + 2 ln y − ln(ey − 1 − y) − ln 2,

and setting the derivative to 0 gives the equation

3α(1 − α)3 = 2(3c− 2α)4
(

ey − 1 − y

y2

)3

. (64)

The interval analysis program verifies that (63) is no larger than 2(1 − c) ln 4−
7 × 10−5, at each point of c ∈ [.67, 1) and α ∈ (0, 1) where (64) holds. This
result plus the results of Case 1 and Case 5 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 7 × 10−5.
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Case 16: the boundary with r = 2α
3c , and t = 3r−1

2 .

Applying (40), we get

lim
r→ 2α

3c

t→ 3r−1
2

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 −
(

2c +
2α− c

2
− 2α

)

ln 3

− α lnα− (1 − α) ln(1 − α)

− 3

(

2α

3
− 2α− c

2

)

ln

(

2α

3c
− 2α− c

2c

)

− 2α− c

2
ln

2α− c

2c
+ 2α ln

2α

3c
+ (3c− 2α) ln

(

1 − 2α

3c

)

+ lim
r→ 2α

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 12 − c ln 2 − 3c ln 3 − α ln 3 + 2α ln 2 + α lnα

− (1 − α) ln(1 − α) +
3c− 2α

2
ln(3c− 2α)

− 2α− c

2
ln(2α− c)

− 2c ln c + Υ(x) − (1 − α)Υ(y) − α ln 2 (65)

where α is in the range [ c2 , 1].
The derivative of (65) with respect to α is

− ln 3+ln 4+ln(1−α)+lnα−ln(3c−2α)−ln(2α−c)+2 ln y−ln(ey−1−y)−ln 2,

and setting the derivative to 0 gives the equation

2α(1 − α) = 3(3c− 2α)(2α− c)

(

ey − 1 − y

y2

)

. (66)

The interval analysis program verifies that (65) is no larger than 2(1 − c) ln 4−
0.012, at each point of c ∈ [.67, 1) and α ∈

(

c
2 , 1
)

where (66) holds. This result
plus the results of Case 6 and Case 7 proves that for c ∈ [.67, 1), each point on
this boundary is smaller that 2(1 − c) ln 4 − 0.012.
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Case 17: the boundary with r = 2α
3c , and t = 0.

Applying (40), we get

lim
r→ 2α

3c
t→0

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − (2c− 2α) ln 3 + (c− 2α) ln 2

− α lnα− (1 − α) ln(1 − α) − (c− 2α) ln

(

1 − 2α

c

)

− 2α ln
2α

3c
+ 2α ln

2α

3c
+ (3c− 2α) ln

(

1 − 2α

3c

)

+ lim
r→ 2α

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 12 − c ln 2 − 5c ln 3 + 3α ln 3 − α ln 4 − (1 − α) ln(1 − α)

− α lnα− (c− 2α) ln(c− 2α) + (3c− 2α) ln(3c− 2α)

− 2c ln c + Υ(x) − (1 − α)Υ(y) − α ln 2 (67)

where α is in the range [0, c
2 ].

The derivative of (67) with respect to α is

3 ln 3−ln 4+ln(1−α)−lnα+2 ln(c−2α)−2 ln(3c−2α)+2 lny−ln(ey−1−y)−ln2,

and setting the derivative to 0 gives the equation

27(1 − α)(c− 2α)2 = 8α(3c− 2α)2
(

ey − 1 − y

y2

)

. (68)

The interval analysis program verifies that (67) is no larger than 2(1 − c) ln 4−
2 × 10−4, at each point of c ∈ [.67, 1) and α ∈

(

0, c
2

)

where (68) holds. This
result plus the results of Case 1 and Case 7 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 2 × 10−4.
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Case 18: the boundary with r = 1 − 2(1−α)
3c , and t = r.

From (43), we have

lim
r→1− 2α

3c
t→r

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − 4(1 − α)

3
ln 3 +

2(1 − α)

3
ln 2

− α lnα− (1 − α) ln(1 − α) − 2(1 − α)

3
ln

2(1 − α)

3c

−
(

c− 2(1 − α)

3

)

ln

(

1 − 2(1 − α)

3c

)

+ (3c− 2(1 − α))3c ln

(

1 − 2(1 − α)

3c

)

+ 2(1 − α) ln
2(1 − α)

3c
+ lim

r→1− 2α
3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 4 − c ln 36 + 2(1 − α) ln 2 − 1 − α

3
ln 3 +

1 − α

3
ln(1 − α)

− α lnα +
2

3
(2α + 3c− 2) ln(2α + 3c− 2) − 2c ln c

+ Υ(x) − αΥ(z) − (1 − α) ln 2 (69)

where α is in the range [0, 1].
The derivative of (69) with respect to α is

− ln 4+
1

3
ln 3− 1

3
ln(1−α)− lnα+

4

3
ln(2α+3c−2)−2 ln z+ln(ez−1−z)+ln 2,

and setting the derivative to 0 gives the equation

8(1 − α)α3 = 3(2α + 3c− 2)4
(

ez − 1 − z

z2

)3

. (70)

The interval analysis program verifies that (69) is no larger than 2(1 − c) ln 4−
3 × 10−6, at each point of c ∈ [.67, 1) and α ∈ (0, 1) where (70) holds. This
result plus the results of Case 2 and Case 4 proves that for each c ∈ [.67, 1)
there exists a positive constant b = b(c) such that each point on this boundary
is smaller that 2(1 − c) ln 4 − b(c).

66



Case 19: the boundary with r = 1 − 2(1−α)
3c , and t = 3r−1

2 .

From (43), we have

lim
r→1− 2α

3c

t→ 3r−1
2

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − (1 − α) ln 3 − α lnα

− (1 − α) ln(1 − α) − (1 − α) ln
1 − α

3c

− (c− (1 − α)) ln

(

1 − (1 − α)

c

)

+ (3c− 2(1 − α)) ln

(

1 − 2(1 − α)

3c

)

+ 2(1 − α) ln
2(1 − α)

3c
+ lim

r→1− 2α
3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 4 − 2(α + c− 1) ln 2 − (α + 3c− 1) ln 3 − α lnα

− (c + α− 1) ln(c + α− 1)

+ (3c− 2 + 2α) ln(3c− 2 + 2α) − 2c ln c (71)

+ Υ(x) − αΥ(z) − (1 − α) ln 2 (72)

where α is in the range [1 − c, 1].
The derivative of (72) with respect to α is

− ln 3−2 ln 2− lnα− ln(c+α−1)+2 ln(3c−2+2α)−2 ln z+ln(ez−1−z)+ln 2,

and setting the derivative to 0 gives the equation

6α(c + α− 1) = (3c− 2 + 2α)2
(

ez − 1 − z

z2

)

. (73)

The interval analysis program verifies that (72) is no larger than 2(1 − c) ln 4−
0.034, at each point of c ∈ [.67, 1) and α ∈ (1 − c, 1) where (73) holds. This
result plus the results of Case 2 and Case 8 proves that for each c ∈ [.67, 1)
there exists a positive constant b = b(c) such that each point on this boundary
is smaller that 2(1 − c) ln 4 − b(c).

67



Case 20: the boundary with r = 1 − 2(1−α)
3c , and t = 0.

From (43), we have

lim
r→1− 2α

3c
t→0

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − (−c + 2(1 − α)) ln 3

+ (−2c + 2(1 − α)) ln 2 − α lnα− (1 − α) ln(1 − α)

− (−2c + 2(1 − α)) ln

(

−2 +
2(1 − α)

c

)

− (3c− 2(1 − α)) ln

(

1 − 2(1 − α)

3c

)

+ (3c− 2(1 − α)) ln

(

1 − 2(1 − α)

3c

)

+ 2(1 − α) ln
2(1 − α)

3c
+ lim

r→1− 2α
3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 16 − ln 27 − c ln 4 + c ln 3 − α ln 4 + α ln 27 − α lnα

+ (1 − α) ln(1 − α) − 2(1 − α− c) ln(1 − α− c) − 2c ln c

+ Υ(x) − αΥ(z) − (1 − α) ln 2 (74)

where α is in the range [0, 1 − c].
The derivative of (74) with respect to α is

− ln 4 + ln 27 − lnα− ln(1 − α) + 2 ln(1 − α− c) − 2 ln z + ln(ez − 1 − z) + ln 2,

and setting the derivative to 0 gives the equation

2α(1 − α) = 27(1 − α− c)2
(

ez − 1 − z

z2

)

. (75)

The interval analysis program verifies that (74) is no larger than 2(1 − c) ln 4−
9 × 10−4, at each point of c ∈ [.67, 1) and α ∈ (0, 1 − c) where (75) holds. This
result plus the results of Case 3 and Case 8 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 9 × 10−4.

Case 21: the boundary with t = 0 = 3r−1
2 .

lim
r→ 1

3
t→0

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c ln 3 − α lnα

− (1 − α) ln(1 − α) − c ln
1

3
+ c ln

1

3
+ 2c ln

2

3
+ lim

r→ 1
3

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 12 − c ln 27 − α ln 3 − α lnα− (1 − α) ln(1 − α)

+ lim
r→ 1

3

(Υ(x) − αΥ(z) − (1 − α)Υ(y)) (76)
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where α is in the range [1 − c, c
2 ].

The derivative of (76) with respect to α is

− ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y),

and setting the derivative to 0 gives the equation

1 − α

α
= 3

ey − 1 − y

ez − 1 − z
. (77)

The interval analysis program verifies that (76) is no larger than 2(1 − c) ln 4−
0.130, at each point of c ∈ [.67, 1) and α ∈

(

1 − c, c
2

)

where (77) holds. This
result plus the results of Case 7 and Case 8 proves that for c ∈ [.67, 1), each
point on this boundary is smaller that 2(1 − c) ln 4 − 0.130.

A.4.4 The Boundary Cases That Are Faces

In each case, we rule out the existence of a point on the boundary where f
exceeds 2(1 − c) ln 4. We will compute a function that is either the limit of f
as some parameter approaches the boundary or an upper bound on this limit.
This new function will be continuous, and any maximum of this function will
occur either where both its partial first derivatives are 0 or at an edge of the
face. Cases 9–21 above evaluate the line segments that form the boundaries of
each face, and the analysis that follows will focus on the points on each face
where both partial first derivatives are 0.

Case 22: the boundary with α = 0.

Applying (39), we get

lim
α→0

f(α, r, t) = ln 4 − c ln 4 + ln 3 − c(2 + t− 3r) ln 3 + c(1 − 3r + 2t) ln 2

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ lim
α→0

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 − c ln 4 + ln 3 − c(2 + t− 3r) ln 3 + c(1 − 3r + 2t) ln 2

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − Υ(y) (78)

where r is in the range [0, 1 − 2
3c ], and t is in the range [0, r]. The partial

derivative of (78) with respect to r is

3c ln 3− 3c ln 2 + 3c ln(1 − 3r + 2t)− 3c ln(r− t) + 3c ln r− 3c ln(1− r) + 3c ln y,

and the partial derivative with respect to t is

−c ln 3 + 2c ln 2 − 2c ln(1 − 3r + 2t) + 3c ln(r − t) − c ln t.
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Setting the derivatives to 0 give the equations

2(1 − r)(r − t) = 3yr(1 − 3r + 2t) (79)

3t(1 − 3r + 2t)2 = 4(r − t)3 (80)

which must hold for any assignment that maximizes (78). In addition, solving
(79) for t gives

t =
2(1 − r)r − 3yr(1 − 3r)

2(1 − r) + 6yr
,

and plugging this value into (80) and simplifying gives the equation

9r2y3 = (2(1 − r) − 3y(1 − 3r))(1 − r) (81)

which must also hold at any maximum of (78).
The interval analysis program verifies that (78) is no larger than 2(1−c) ln 4−

5× 10−4, at each point of c ∈ [.67, 1), r ∈
(

0, 1 − 2
3c

)

, and t ∈ (0, r) where (79),
(80), and (81) all hold. This result plus the results of Cases 1, 3, 4, 9, 10,
and 11 proves that for c ∈ [.67, 1), each point on this boundary is smaller that
2(1 − c) ln 4 − 5 × 10−4.

Case 23: the boundary with α = 1.

Applying (42), we get

lim
α→1

f(α, r, t) = ln 4 − c ln 4 − c(2 + t− 3r) ln 3 + c(1 − 3r + 2t) ln 2

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ lim
α→1

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

≤ ln 4 − c ln 4 − c(2 + t− 3r) ln 3 + c(1 − 3r + 2t) ln 2

− c(1 − 3r + 2t) ln(1 − 3r + 2t) − c(3r − 3t) ln(r − t)

− ct ln t + r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − Υ(z) (82)

where r is in the range [ 2
3c , 1], and t is in the range

[

3r−1
2 , r

]

. The partial
derivative of (82) with respect to r is

3c ln 3− 3c ln 2 + 3c ln(1− 3r + 2t)− 3c ln(r− t) + 3c ln r− 3c ln(1− r) − 3c ln z,

and the partial derivative with respect to t is

−c ln 3 + 2c ln 2 − 2c ln(1 − 3r + 2t) + 3c ln(r − t) − c ln t.

Setting the derivatives to 0 give the equations

(1 − r)2z(r − t) = 3r(1 − 3r + 2t) (83)

3t(1 − 3r + 2t)2 = 4(r − t)3. (84)
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which must hold for any assignment that maximizes (82). In addition, solving
(83) for t gives

t =
2(1 − r)rz − 3r(1 − 3r)

2(1 − r)z + 6r
,

and plugging this value into (84) and simplifying gives the equation

9r2 = (2(1 − r)z − 3(1 − 3r))(1 − r)z2 (85)

which must also hold at any maximum of (82).
The interval analysis program verifies that (82) is no larger than 2(1−c) ln 4−

5 × 10−4, at each point of c ∈ [.67, 1), r ∈
(

2
3c , 1

)

, and t ∈
(

3r−1
2 , r

)

where (83),
(84), and (85) all hold. This result plus the results of Cases 2, 5, 6, 12, 13, and
14 proves that for each c ∈ [.67, 1) there exists a positive constant b = b(c) such
that each point on this boundary is smaller that 2(1 − c) ln 4 − b(c).

Case 24: the boundary with r = 2α
3c .

Applying (40), we get

lim
r→ 2α

3c

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − (2c + tc− 2α) ln 3

+ (c− 2α + 2tc) ln 2 − α lnα− (1 − α) ln(1 − α)

− (c− 2α + 2tc) ln

(

1 − 2α

c
+ 2t

)

− (2α− 3tc) ln

(

2α

3c
− t

)

− ct ln t + 2α ln
2α

3c
+ (3c− 2α) ln

(

1 − 2α

3c

)

+ lim
r→ 2α

3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 12 − c ln 18 − c ln 27 + α ln 27 + ct ln 4 − 2ct ln 9

+ α lnα− (1 − α) ln(1 − α) + (3c− 2α) ln(3c− 2α)

− (2α− 3tc) ln(2α− 3tc) − tc ln t

− (c− 2α + 2tc) ln(c− 2α + 2tc) − 2c ln c− ct ln c

+ Υ(x) − α ln 2 − (1 − α)Υ(y) (86)

where α is in the range [0, 1], and t is in the range
[

max
{

0, 2α−c
2c

}

, 2α
3c

]

. The
partial derivative of (86) with respect to α is

ln 27 + lnα + ln(1 − α) − 2 ln(3c− 2α) − 2 ln(2α− 3tc)

+ 2 ln(c− 2α + 2tc) + 2 ln y − ln(ey − 1 − y) − ln 2,

and the partial derivative with respect to t is

c ln 4 − 2c ln 9 + 3c ln(2α− 3tc) − c ln t− 2c ln(c− 2α + 2tc) − c ln c.
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Setting the derivatives to 0 gives the equations

27α(1 − α)(c − 2α + 2tc)2 = 2(3c− 2α)2(2α− 3tc)2
(

ey − 1 − y

y2

)

(87)

4(2α− 3tc)3 = 81tc(c− 2α + 2tc)2 (88)

which must hold at any maximum of (86).
The interval analysis program verifies that (86) is no larger than 2(1−c) ln 4−

1 × 10−9, at each point of c ∈ [.67, 1), α ∈ (0, 1), and t ∈
(

max
{

0, 2α−c
2c

}

, 2α
3c

)

where (87) and (88) both hold. This result plus the results of Cases 1, 5, 6, 7,
14, 15, 16, and 17 proves that for c ∈ [.67, 1), each point on this boundary is
smaller that 2(1 − c) ln 4 − 1 × 10−9.

Case 25: the boundary with r = 1 − 2(1−α)
3c .

Applying (43), we get

lim
r→1− 2(1−α)

3c

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − (−c + tc + 2(1 − α)) ln 3

+ (−2c + 2(1 − α) + 2tc) ln 2 − α lnα

− (1 − α) ln(1 − α)

− (−2c + 2(1 − α) + 2tc) ln

(

−2 +
2(1 − α)

c
+ 2t

)

− (3c− 2(1 − α) − 3tc) ln

(

1 − 2(1 − α)

3c
− t

)

− ct ln t + (3c− 2(1 − α)) ln

(

1 − 2(1 − α)

3c

)

+ 2(1 − α) ln
2(1 − α)

3c
+ lim

r→1− 2(1−α)
3c

(Υ(x) − αΥ(z) − (1 − α)Υ(y))

= ln 4 − c ln 108 + (1 − α) ln
4

27
+ 2c(1 − t) ln 9 − α lnα

+ (1 − α) ln(1 − α) + (3c− 2 + 2α) ln(3c− 2 + 2α)

− (3c(1 − t) − 2 + 2α) ln(3c(1 − t) − 2 + 2α) − ct ln t

− 2(1 − α− c(1 − t)) ln(1 − α− c(1 − t))

− (2 + t)c ln c + Υ(x) − αΥ(z) − (1 − α) ln 2 (89)

where α is in the range [0, 1], and t is in the range
[

min
{

0, α+c−1
c

}

, 1 − 2(1−α)
3c

]

.

The partial derivative of (89) with respect to α is

− ln
4

27
− lnα− ln(1 − α) + 2 ln(3c− 2 + 2α) − 2 ln(3c(1 − t) − 2 + 2α)

+ 2 ln(1 − α− c(1 − t)) − 2 ln z + ln(ez − 1 − z) + ln 2,
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and the partial derivative with respect to t is

−2c ln 9 + 3c ln(3c(1 − t) − 2 + 2α) − c ln t− 2c ln(1 − α− c(1 − t)) − c ln c.

Setting the derivatives to 0 gives the equations

27(3c− 2 + 2α)2(1 − α− c(1 − t))2
(

ez − 1 − z

z2

)

(90)

= 2α(1 − α)(3c(1 − t) − 2 + 2α)2 (91)

(3c(1 − t) − 2 + 2α)3 = 81tc(1 − α− c(1 − t))2 (92)

which must hold at any maximum of (89).
The interval analysis program verifies that (89) is no larger than 2(1−c) ln 4−

7×10−6, at each point of c ∈ [.67, 1), α ∈ (0, 1), and t ∈
(

min
{

0, α+c−1
c

}

, 1 − 2(1−α)
3c

)

where (91) and (92) both hold. This result plus the results of Cases 2, 3, 4, 8,
11, 18, 19, and 20 proves that for each c ∈ [.67, 1) there exists a positive constant
b = b(c) such that each point on this boundary is smaller that 2(1−c) ln 4−b(c).

Case 26: the boundary with t = 0.

lim
t→0

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 − 3r) ln 3 + c(1 − 3r) ln 2

− α lnα− (1 − α) ln(1 − α) − c(1 − 3r) ln(1 − 3r)

− 3cr ln r + r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y)

= ln 4 − c ln 18 + (1 − α) ln 3 + 3rc ln
3

2
− α lnα

− (1 − α) ln(1 − α) − c(1 − 3r) ln(1 − 3r)

+ (1 − r)3c ln(1 − r) + Υ(x) − αΥ(z) − (1 − α)Υ(y) (93)

where α is in the range
[

0, c
2

]

and r is in the range
[

2α
3c ,min

{

1 − 2(1−α)
3c , 1

3

}]

.

The partial derivative of (93) with respect to α is

− ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y),

and with respect to r is

3c ln
3

2
+ 3c ln(1 − 3r) − 3c ln(1 − r) − 3c ln z + 3c ln y.

Setting the partial derivatives to 0 gives the equations

3α(ey − 1 − y) = (1 − α)(ez − 1 − z) (94)

2(1 − r)z = 3(1 − 3r)y (95)

which must hold at any maximum of (93).
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From (22),
ey − 1 − y

ez − 1 − z
· 1 − r

r
=

1 − α

a
· y
z
· ey − 1

ez − 1
,

and plugging in (94) gives

1 − r

r
= 3

y

z
· ey − 1

ez − 1
. (96)

Solving for r in (95) gives

r =
3y − 2z

9y − 3z
,

and thus
1 − r

r
=

6y

3y − 2z
. (97)

Combining (97) with (96) gives the equation

2z(ez − 1) = (3y − 2z)(ez − 1) (98)

that we can use to further restrict the possible values z and y can have at a
maximum for (93).

The interval analysis program verifies that (93) is no larger than 2(1−c) ln 4−
7×10−10, at each point of c ∈ [.67, 1), α ∈

(

0, c
2

)

, and r ∈
(

2α
3c ,min

{

1 − 2(1−α)
3c , 1

3

})

where (94), (95), and (98) all hold. This result plus the results of Cases 1, 3, 7,
8, 9, 17, 20, and 21 proves that for c ∈ [.67, 1), each point on this boundary is
smaller that 2(1 − c) ln 4 − 7 × 10−10.

Case 27: the boundary with t = 3r−1
2 .

lim
t→ 3r−1

2

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c

(

2 +
3r − 1

2
− 3r

)

ln 3

− α lnα− (1 − α) ln(1 − α)

− 3c

(

r − 3r − 1

2

)

ln

(

r − 3r − 1

2

)

− c
3r − 1

2
ln

3r − 1

2

+ r3c ln r + (1 − r)3c ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y)

= ln 4 − c ln 2 + (1 − α) ln 3 − 3

2
(1 − r)c ln 3

− α lnα− (1 − α) ln(1 − α) − c

2
(3r − 1) ln(3r − 1)

+ 3cr ln r +
3

2
c(1 − r) ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y) (99)
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where α is in the range [1−c, 1] and r is in the range
[

max
{

2α
3c ,

1
3

}

, 1 − 2(1−α)
3c

]

.

The partial derivative of (99) with respect to α is

− ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y),

and with respect to r is

3

2
c ln 3 − 3c

2
ln(3r − 1) + 3c ln r − 3c

2
ln(1 − r) − 3c ln z + 3c ln y.

Setting the partial derivatives to 0 gives the equations

3α(ey − 1 − y) = (1 − α)(ez − 1 − z) (100)

3r2y2 = (3r − 1)(1 − r)z2 (101)

which must hold at any maximum of (99).
From (22),

ey − 1 − y

ez − 1 − z
· 1 − r

r
=

1 − α

a
· y
z
· ey − 1

ez − 1
,

and plugging in (100) gives

1 − r

r
= 3

y

z
· ey − 1

ez − 1
. (102)

Solving for r in (101) gives

r =
2z2 ± z

√

z2 − 3y2

3z2 + 3y2
,

and plugging this value into (102) gives two equations for the stationary points
of (99):

3
y

z
· ey − 1

ez − 1
=

3y2 + z2 − z
√

z2 − 3y2

2z2 + z
√

z2 − 3y2
(103)

3
y

z
· ey − 1

ez − 1
=

3y2 + z2 + z
√

z2 − 3y2

2z2 − z
√

z2 − 3y2
. (104)

We will use (103) and (104) in addition to the fact that z2 ≥ 3y2 to restrict the
values y and z can have at a maximum for (99).

However, note that if y = 0, then any value of z will satisfy (103). As
a result, we need additional analysis to rule out cases where y ∈ (0, y2] and
z ∈ [z1, z2]. Consider the two sides of (103).

3y(ey − 1)

z(ez − 1)

3y2 + z2 − z
√

z2 − 3y2

2z2 + z
√

z2 − 3y2
.
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The first derivatives of the two sides with respect to y are

3(ey − 1 + yey)

z(ez − 1)

3y

z
√

z2 − 3y2
,

and the second derivatives are

3ey(y + 2)

z(ez − 1)
(105)

3z

(z2 − 3y2)3/2
. (106)

Note that both sides of (103) and their first derivatives are 0 when y = 0, and
both second derivatives are positive. As a result, if there is no y ∈ (0, y1] and
z ∈ [z1, z2] such that the two second derivatives are equal, then there is no
y ∈ (0, y1] and z ∈ [z1, z3] that satisfy (103).

The interval analysis program verifies that (99) is no larger than 2(1−c) ln 4−
1×10−7, at each point of c ∈ [.67, 1), α ∈ (1 − c, 1), and r ∈

(

max
{

2α
3c ,

1
3

}

, 1 − 2(1−α)
3c

)

where (100), (101), and z2 ≥ 3y2 all hold and either (103) or (104) holds. In
addition, if we are considering an interval for y that has the lower bound equal
to 0, we use the additional test that (105) must equal (106) for some y in that
interval. This result plus the results of Cases 2, 6, 7, 8, 12, 16, 19, and 21 proves
that for each c ∈ [.67, 1) there exists a positive constant b = b(c) such that each
point on this boundary is smaller that 2(1 − c) ln 4 − b(c).

Case 28: the boundary with t = r.

lim
t→r

f(α, r, t) = ln 4 − c ln 4 + (1 − α) ln 3 − c(2 − 2r) ln 3

+ c(1 − r) ln 2 − α lnα− (1 − α) ln(1 − α)

− c(1 − r) ln(1 − r) − cr ln r + r3c ln r

+ (1 − r)3c ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y)

= ln 4 − c ln 4 + (1 − α) ln 3 − c(1 − r) ln
9

2
− α lnα− (1 − α) ln(1 − α)

+ 2cr ln r + 2c(1 − r) ln(1 − r)

+ Υ(x) − αΥ(z) − (1 − α)Υ(y) (107)

where α is in the range [0, 1] and r is in the range
[

2α
3c , 1 − 2(1−α)

3c

]

. The partial

derivative of (99) with respect to α is

− ln 3 − lnα + ln(1 − α) + ln(ez − 1 − z) − ln(ey − 1 − y),
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and with respect to r is

c ln
9

2
+ 2c ln r − 2c ln(1 − r) − 3c ln z + 3c ln y.

Setting the partial derivatives to 0 gives the equations

3α(ey − 1 − y) = (1 − α)(ez − 1 − z) (108)

9r2y3 = 2(1 − r)2z3 (109)

which must hold at any maximum of (107).
From (22),

ey − 1 − y

ez − 1 − z
· 1 − r

r
=

1 − α

a
· y
z
· ey − 1

ez − 1
,

and plugging in (108) gives

1 − r

r
= 3

y

z
· ey − 1

ez − 1
. (110)

Rearranging (109) gives

1 − r

r
=

√

9y3

2z3
. (111)

Combining (111) with (110) gives the equation

ez − 1

ey − 1
=

√

2z

y
(112)

that we can use to further restrict the possible values z and y can have at a
maximum for (107).

In addition, we can see that (112) has exactly two non-negative solutions,
one when z = 0, and one when z is between y

2 and y. As a result, we know
that the positive solution has z < y. Applying z < y to (22) gives r < α, and
applying z < y to (108) gives α < 1

4 . We can use this fact to further reduce the
possible values that must hold at a maximum of (107).

The interval analysis program verifies that (107) is no larger than 2(1 −
c) ln 4−1×10−4, at each point of c ∈ [.67, 1), α ∈ (0, 1), and r ∈

(

2α
3c , 1 − 2(1−α)

3c

)

where (108), (109), (112), and α < 1
4 all hold. This result plus the results of

Cases 1, 2, 4, 5, 10, 13, 15, and 18 proves that for each c ∈ [.67, 1) there exists
a positive constant b = b(c) such that each point on this boundary is smaller
that 2(1 − c) ln 4 − b(c).

A.5 The Interval Analysis Program

The source code for the program is included with this paper on the arXiv.org
site. The program uses and should be compiled with the Profil/BIAS [48] li-
braries for interval algorithms. The Profil/BIAS libraries are available at
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www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.

For the program execution used to verify the cases of Lemma 18, the program
was compiled with version 2.0.8 of the Profil/BIAS libraries. The program was
compiled and executed on an AMD Opteron 2350 processor running the Linux
operating system, kernel version 2.6.27.56, and the program was compiled with
the gcc compiler, version 4.3.
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