
SPECTRAL CONDITION NUMBERS OF ORTHOGONAL PROJECTIONS
AND FULL RANK LINEAR LEAST SQUARES RESIDUALS∗

JOSEPH F. GRCAR†

Abstract. A simple formula is proved to be a tight estimate for the condition number of the full rank linear least
squares residual with respect to the matrix of least squares coefficients and scaled 2-norms. The tight estimate reveals
that the condition number depends on three quantities, two of which can cause ill-conditioning. The numerical linear
algebra literature presents several estimates of various instances of these condition numbers. All the prior values
exceed the formula introduced here, sometimes by large factors.
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1. Introduction.

1.1. Purpose. Least squares residuals are quite important numerically. The residuals
measure the quality of fits in regression analysis, and forming orthogonal projections is an
essential step in many iterative algorithms for linear equations or matrix eigenvalues.

This paper determines a tight estimate for the condition number of the residual in full
rank least squares problems. Equivalently, the condition number of orthogonal projections
into the span of linearly independent vectors is also estimated. The condition numbers are
with respect to the matrix of least squares coefficients and with respect to scaled 2-norms. The
condition number of the residual, like the solution, is the value of an optimization problem
that does not have an explicit formula but which does have a tight estimate.

This introduction provides some background material. Section 2 discusses the evaluation
of condition numbers from Jacobian matrices. Section 3 describes the tight estimate of the
condition number and provides an example; this material is appropriate for classroom pre-
sentation. Section 4 proves that the condition number varies from the estimate within a factor
of
√

2; the linear algebra is complicated but straightforward given an identity from a previous
paper (Grcar, 2009). Section 5 compares the results to the literature. Section 6 discusses the
application to projections and to iterative algorithms.

1.2. Prior Work. Conditioning with respect to perturbations of the matrixA is the most
interesting aspect of least squares problems,

x = arg min
u
‖b−Au‖2 r = b−Ax . (1.1)

The condition numbers χx(A), of x with respect to A for various norms, have been studied
in dozens of papers and books since Golub and Wilkinson (1966) discovered the condition
number for 2-norms can depend on the square of the matrix condition number. Thus, it was
equally surprising when Björck (1967, p. 16, eqn. 7.7) discovered the conditioning of the
residual is independent of the square.1 Even so, Björck’s original formula turned out to be an
overestimate. Roughly the same formula is still found in many textbooks (section 5.3).

Wedin (1973, p. 224, eqn. 5.4) derived a perturbation bound for the residual with respect
to A again for 2-norms. This paper shows that Wedin’s bound contains an estimate for χr(A)
that is accurate within a factor of 2. Wedin noted that his perturbation bound could be “almost

∗PLEASE READ AND CITE THE CORRECTED, PUBLISHED ARTICLE THAT CAN BE ACCESSED
THROUGH THE DOI LINK ON THE ARXIV PAGE FOR THIS DOCUMENT.
†6059 Castlebrook Drive, Castro Valley, CA 94552 USA (jfgrcar@comcast.net, or na.grcar@na-net.ornl.gov).

1Björck derived a bound for the sum of condition numbers with respect to A and b, χr(A) + χr(b).
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2 JOSEPH F. GRCAR

attained” (p. 225). However, (p. 226) he also remarked that his paper only demonstrated near
attainment for a perturbation bound on the least squares solution (not the residual). Thus the
published literature has no prior proof of attainment for an error bound of the residual.

Geurts (1982) and Gratton (1996) have used Jacobian matrices to derive condition num-
bers, or estimates of condition numbers, for least squares solutions. Their results and those
of Björck (1967), Malyshev (2003), and Wedin (1973) for the condition number of the solu-
tion are summarized by Grcar (2009). There has been no similar determination of condition
numbers based on Jacobian matrices for the residual. The spectral condition number of the
residual, like the solution, is the value of an optimization problem that does not have an
explicit formula but which does have a tight estimate. No tight estimates for the condition
number of the least squares residual have been established previously.

2. Condition numbers.

2.1. Error bounds and definitions of condition numbers. “Perturbation bounds” are
used in numerical analysis to limit the sensitivity of the solution of a problem to changes in the
initial data. Such bounds are customarily derived using matrix-vector algebra and norms; the
coefficients of the data perturbations in these bounds are sometimes referred to as condition
numbers. For example, in one of the earliest books on rounding error analysis, Wilkinson
(1963, p. 29) wrote “we shall refer to [the coefficients] as condition numbers . . . .” Many
numerical analysts probably agree with Wilkinson in the interest of deriving error bounds, but
the name “condition number” is used sparingly because the coefficients are only upper limits
for condition numbers unless the error bounds are the smallest possible, equivalently, unless
the error bounds are attained. Malyshev (2003, p. 1187) observed, “the bounds are commonly
accepted as condition numbers, and any discussion about their sharpness is usually avoided.”

The oldest way to derive perturbation bounds is by differential calculus. If y = f(x)
is a vector valued function of the vector x whose partial derivatives are continuous, then the
partial derivatives give the best estimate of the change to y for a given change to x

∆y = f(x+ ∆x)− f(x) ≈ Jf (x) ∆x (2.1)

where Jf (x) is the Jacobian matrix of the partial derivatives of y with respect to x. The
magnitude of the error in the first order approximation (2.1) is bounded by Landau’s little
o(‖∆x‖) for all sufficiently small ‖∆x‖.2 Thus Jf (x) ∆x is the unique linear approximation
to ∆y in the vicinity of x.3 Taking norms produces a perturbation bound,

‖∆y‖ ≤ ‖Jf (x)‖ ‖∆x‖+ o(‖∆x‖) . (2.2)

Equation (2.2) is the smallest possible bound on ‖∆y‖ in terms of ‖∆x‖ provided the norm
for the Jacobian matrix is induced from the norms for ∆y and ∆x. In this case for each x
there is some ∆x, which is nonzero but may be chosen arbitrarily small, so the bound (2.2) is
attained to within the higher order term, o(‖∆x‖). There may be many other ways to define
condition numbers, but because equation (2.2) is the smallest possible bound, any definition
of a condition number for use in bounds equivalent to (2.2) must arrive at the same value,
χy(x) = ‖Jf (x)‖.4 The matrix norm may be too complicated to have an explicit formula,
but tight estimates can be derived as in this paper.

2The o(‖∆x‖) agreement is independent of the norm because all norms for finite dimensional spaces are equiv-
alent (Stewart and Sun, 1990, p. 54, thm. 1.7).

3Any other linear function added to Jf (x) ∆x differs from ∆y by O(‖∆x‖) and therefore does not provide a
o(‖∆x‖) approximation.

4A theory of condition numbers in terms of Jacobian matrices was developed by Rice (1966, p. 292, thm. 4).
See also Trefethen and Bau (1997, p. 90) for the present definition.
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2.2. One or separate condition numbers. Many problems depend on two parameters
u, v which may consist of the entries of a matrix and a vector (for example). In principle it is
possible to treat the parameters altogether.56 A condition number for y with respect to joint
changes in u and v requires a common norm for perturbations to both. Such a norm is

max
{
‖∆u‖, ‖∆v‖

}
. (2.3)

A single condition number then follows that appears in an optimal error bound,

‖∆y‖ ≤ ‖Jf (u, v)‖ max
{
‖∆u‖, ‖∆v‖

}
+ o

(
max

{
‖∆u‖, ‖∆v‖

})
. (2.4)

The Jacobian matrix Jf (u, v) contains the partial derivatives of y = f(u, v) with respect to
the entries of both u and v. The value of the condition number is again χy(u, v) = ‖Jf (u, v)‖
where the matrix norm is induced from the norm for ∆y and the norm in equation (2.3).

Because u and v may enter into the problem in much different ways, it is customary to
treat each separately. This approach recognizes that the Jacobian matrix is a block matrix

Jf (u, v) =
[
Jf1(u) Jf2(v)

]
where the functions f1(u) = f(u, v) and f2(v) = f(u, v) have v and u fixed, respectively.
The first order differential approximation (2.1) is unchanged but is rewritten with separate
terms for u and v,

∆y ≈ Jf1(u) ∆u+ Jf2(v) ∆v , (2.5)

and a perturbation bound is obtained by applying the triangle inequality,

‖∆y‖ ≤ ‖Jf1(u)∆u+ Jf2(v)∆v‖+ o
(
max

{
‖∆u‖, ‖∆v‖

})
≤ ‖Jf1(u)‖ ‖∆u‖+ ‖Jf2(v)‖ ‖∆v‖+ o

(
max

{
‖∆u‖, ‖∆v‖

})
. (2.6)

The coefficients χy(u) = ‖Jf1(u)‖ and χy(v) = ‖Jf2(v)‖ are the separate condition num-
bers of y with respect to u and v, respectively.

These two different approaches lead to error bounds (2.4, 2.6) that differ by at most a
factor of 2. This fact is a property of induced norms. Consider a p× (m+ n) block matrix

y =
[
A B

] [ u
v

]
and suppose norms are given for Rp, Rm and Rn as spaces of column vectors. A norm can
be defined for Rm+n as ∥∥∥∥[ uv

]∥∥∥∥ = max
{
‖u‖, ‖v‖

}
.

These norms for Rp, Rm, Rn, and Rm+n induce norms for A, B, and [ A B ],

‖A‖ = max
u6=0

‖Au‖
‖u‖

, ‖B‖ = max
v 6=0

‖Au‖
‖v‖

,
∥∥[ A B

]∥∥ = max
u6=0 or v 6=0

‖Au+Bv‖
max

{
‖u‖, ‖v‖

} .
5As will be discussed, Gratton (1996) derived a joint condition number of the least squares solution with respect

to a Frobenius norm of the matrix and vector that define the problem.
6Gratton (1996) derived a joint condition number of the least squares solution with respect to a Frobenius norm

of the matrix and vector that define the problem.
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The norm of the block matrix has a simple upper bound,∥∥[ A B
]∥∥ = max

u 6=0 or v 6=0

‖Au+Bv‖
max

{
‖u‖, ‖v‖

}
≤ max
u 6=0 or v 6=0

‖Au‖
max

{
‖u‖, ‖v‖

} + max
u6=0 or v 6=0

‖Bv‖
max

{
‖u‖, ‖v‖

}
= max

u 6=0

‖Au‖
‖u‖

+ max
v 6=0

‖Bv‖
‖v‖

= ‖A‖+ ‖B‖ , (2.7)

and a simple lower bound,

‖A‖ = max
u 6=0

‖Au‖
‖u‖

= max
u6=0 and v=0

‖Au+Bv‖
max

{
‖u‖, ‖v‖

}
≤ max
u6=0 or v 6=0

‖Au+Bv‖
max

{
‖u‖, ‖v‖

} =
∥∥[ A B

]∥∥ , (2.8)

and similarly ‖B‖ ≤ ‖[ A B ]‖. Altogether, from equations (2.7, 2.8),

‖A‖+ ‖B‖
2

≤ max
{
‖A‖, ‖B‖

}
≤
∥∥[ A B

]∥∥ ≤ ‖A‖+ ‖B‖ (2.9)

which means that ‖A‖ + ‖B‖ overestimates ‖[ A B ]‖ by at most a factor of 2. Returning
to the Jacobian matrices A = Jf1(u), B = Jf2(v), and [ A B ] = Jf (u, v), equation (2.9)
can be rewritten

χy(u) + χy(v)

2
≤ χy(u, v) ≤ χy(u) + χy(v) . (2.10)

Thus, for the purpose of deriving tight estimates of joint condition numbers, it suffices to
consider χy(u) and χy(v) separately.

3. Conditioning of the least squares residual.

3.1. Reason for considering full rank problems. For any matrix A and any similarly
sized column vector b, the linear least squares problem (1.1) need not have an unique solution
x, but it always has an unique residual r = b − Ax = (I − P )b where P = AA† is the
orthogonal projection into the column space ofA, col(A), and where A† is the pseudoinverse
of A. If A has full column rank, then P = A(AtA)−1At. Changes to A affect r differently
when A does not have full column rank. In that case, b ∈ col(A + bzt) for every nonzero
right null vector z, so small changes to A can produce large changes to r. In other words, a
condition number of r with respect to rank deficient A does not exist or is “infinite.” Pertur-
bation bounds in the rank deficient case can be found by restricting changes to the matrix, for
which see Björck (1996, p. 30, eqn. 1.4.27) and Stewart and Sun (1990, pp. 136–162). That
theory is beyond the scope of the present discussion.

3.2. The condition numbers. This section summarizes the results and presents an ex-
ample. Proofs are in section 4. It is assumed that A has full column rank and neither the
solution x nor the residual r of the least squares problem are zero. The residual is proved to
have a condition number χr(A) with respect to A within the limits,

1√
2

κ2

√
1 +

(
cot(θ)

V

)2

≤ χr(A) ≤ κ2

√
1 +

(
cot(θ)

V

)2

. (3.1)
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The quantities κ2, θ, and V are written bold to emphasize they are the only quantities affecting
the tight estimate of the condition number; they are defined below. There is also a condition
number with respect to b,

χr(b) = csc(θ) . (3.2)

These are condition numbers when the following scaled 2-norms are used to measure the
perturbations to A, b, and x,

‖∆A‖2
‖A‖2

,
‖∆b‖2
‖b‖2

,
‖∆r‖2
‖r‖2

. (3.3)

Like equation (2.6), the two condition numbers appear in error bounds of the form,7

‖∆r‖2
‖r‖2

≤ χr(A)
‖∆A‖2
‖A‖2

+ χr(b)
‖∆b‖2
‖b‖2

+ o

(
max

{
‖∆A‖2
‖A‖2

,
‖∆b‖2
‖b‖2

})
, (3.4)

where r + ∆r is the residual of the perturbed problem,

x+ ∆x = arg min
u
‖(b+ ∆b)− (A+ ∆A)u‖2 . (3.5)

The quantities in the formulas (3.1, 3.2) are

κ2 =
‖A‖2
σmin

, cot(θ) =
‖Ax‖2
‖r‖2

V =
‖Ax‖2
‖x‖2 σmin

, (3.6)

where κ2 is the spectral matrix condition number of A (σmin is the smallest singular value of
A), V is van der Sluis’s ratio between 1 and κ2,8 and θ is the angle between b and col(A).

1. κ2 depends only on the extreme singular values of A.
2. θ depends only on the “angle of attack” of b with respect to col(A).
3. If A is fixed, then V depends on the orientation of b to col(A) but not on θ.9

Please refer to Figure 3.1 as needed. If col(A) is fixed, then κ2 and θ are separate sources
of ill-conditioning for the residual. The ratio V can never cause ill-conditioning because it
only appears in the denominator of equation (3.1) and V is always at least 1. Indeed, if Ax
has comparatively large components in singular vectors corresponding to the largest singular
values, then V ≈ κ2 and V might lessen the ill-conditioning caused by a small θ.

3.3. Conditioning example. This example illustrates the effects of κ2, V, and θ on
χr(A). It is based on the example of Golub and Van Loan (1996, p. 238). Let

A =

 1 0
0 α
0 0

 , b =

 β cos(φ)
β sin(φ)

1

 , ∆A =

 0 0
0 0
−ε −ε

 ,
where 0 < ε� α, β, and α < 1. In this example,

x =

[
β cos(φ)
β
α sin(φ)

]
, r =

 0
0
1

 , ∆r =

 1
1
α

β cos(φ) + β
α sin(φ)

 ε+O(ε2) .

7The constant denominators ‖A‖2 and ‖b‖2 could be discarded from the o terms because only the order of
magnitude of the terms is pertinent.

8Van der Sluis (1975, p. 251) introduced no notation. The Greek letters that look and sound like English v are
ν and β, respectively, so it seems best to choose Roman V for van der Sluis.

9Because A has full column rank, Ax and x can only vary proportionally when their directions are fixed.



6 JOSEPH F. GRCAR

FIG. 3.1. Schematic of the least squares problem, the projection Ax, and the angle θ between Ax and b.

The three terms in the condition number are

κ2 =
1

α
, V =

1√
[α cos(φ)]2 + [sin(φ)]2

, cot(θ) = β .

These values can be manipulated by choosing α, β and φ. The tight upper bound on the
condition number with respect to A is

χr(A) ≤ 1

α

√
1 + [αβ cos(φ)]2 + [β sin(φ)]2 .

The relative change to the residual,

‖∆r‖2
‖r‖2

=
1

α

√
1 + α2 + [αβ cos(φ) + β sin(φ)]2 ε+O(ε2) ,

can made be close to the bound on χr(A) times ‖∆A‖2/‖A‖2 =
√

2 ε. These formulas have
been verified using Mathematica (Wolfram, 2003), as have formulas throughout the paper.

4. Derivation of the condition number estimates.

4.1. Choice of Norms. In theoretical numerical analysis especially for least squares
problems the 2-norm is preferred because for it the matrix condition number of AtA is the
square of the matrix condition number of A. The norms used in this paper and in many other
papers are defined as,

‖vec(∆A)‖A =
‖∆A‖2
A

, ‖∆b‖B =
‖∆b‖2
B

, ‖∆r‖R =
‖∆r‖2
R

, (4.1)

where the choice of scale factors is left open. The scaling makes the size of the changes
relative to the particular problem of interest. The scaling used in equations (3.1–3.3) is

A = ‖A‖2 , B = ‖b‖2 , R = ‖r‖2 . (4.2)

Some authors prefer to measure the residual relative to b by choosing R = ‖b‖2. Other
authors have no scaling, A = B = R = 1. All of these cases are accommodated by the
notation in equation (4.1). The effect of the choice forR is discussed in section 6.1.

4.2. Notation. The formula for the Jacobian matrix Jr(b) of the residual r = [I −
A(AtA)−1At]b with respect to b is clear.10 For derivatives with respect to the entries of A,

10The notation of section 2.2 would introduce a name, f2, for the function by which r varies with b when A is
held fixed, r = f2(b), so that the notation for the Jacobian matrix is then Jf2 (b). This pedantry will be discarded
here to write Jr(b) for the matrix of partial derivatives of r with respect to b with A held fixed.
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it is necessary to use the “vec” construction to order the matrix entries into a column vector;
vec(B) is the column of entries Bi,j with i, j in co-lexicographic order.11 The first order
approximation (2.5) is then

∆r = Jr[vec(A)] vec(∆A) + Jr(b) ∆b+ higher order terms in ∆A and ∆b (4.3)

and upon taking norms

‖∆r‖R ≤ ‖Jr[vec(A)] vec(∆A)‖R + ‖Jr(b) ∆b‖R + o (. . . )

≤ ‖Jr[vec(∆A)]‖︸ ︷︷ ︸
χr(A)

‖∆A‖A + ‖Jr(b)‖︸ ︷︷ ︸
χr(b)

‖∆b‖B + o (. . . ) (4.4)

where the norms of the two Jacobian matrices are induced from ‖ · ‖R, ‖ · ‖A and from ‖ · ‖R,
‖ · ‖B, respectively. The high order term in equation (4.4) is o(max{‖∆A‖A, ‖∆b‖B})
because from equation (2.2) the norm max{‖ · ‖A, ‖ · ‖B} has been given to the space that
jointly consists of matrices A and vectors b.

4.3. Condition number of r with respect to b. For the orthogonal projection P defined
in section 3.1, from r = (I − P )b follows Jr(b) = I − P , hence

‖Jr(b)‖ = max
∆b

‖Jr(b) ∆b‖R
‖∆b‖B

= max
∆b

(
‖(I − P )∆b‖2

R

)
(
‖∆b‖2
B

) =
B
R
, (4.5)

which is equation (3.2) for the choice of scale factors in equation (4.2).

4.4. Condition number of r with respect to A. Evaluating the condition number of the
residual requires a formula for the Jacobian matrix Jr[vec(A)]. Differentiating the entries of

r =
[
I −A

(
AtA

)−1
At
]
b

by those of A seems to be a daunting task. Instead, Jr[vec(A)] is constructed from the total
differential of the identity, [

I A
At 0

] [
r
x

]
−
[
b
0

]
= 0 .

Assuming b is fixed because it already has been treated in section 4.3, the total differential is[
I A
At 0

] [
dr
dx

]
+

[
x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]
vec(dA) = 0 ,

where xi is the i-th entry of x and where ei is the i-th column of the n × n identity matrix.
Hence [

dr
dx

]
= −

[
I A
At 0

]−1 [
x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]
vec(dA)

= −
[

I − P A(AtA)−1

(AtA)−1At −(AtA)−1

] [
x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]
vec(dA)

=

[
Jr[vec(A)]
Jx[vec(A)]

]
vec(dA) (4.6)

11The alternative to placing the entries of matrices into column vectors is to use more general linear spaces and
the Fréchet derivative. That approach seems unnecessarily abstract because the spaces have finite dimension.
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in which P = A(AtA)−1At is the orthogonal projection into the column space of A. The
two matrix blocks in equation (4.6) are the Jacobian matrices of r and x as functions of the
entries of A with b held fixed.

4.5. Transpose formula for condition numbers. The desired condition number is the
norm induced from the norms in equation (4.1).

‖Jr[vec(A)]‖ = max
∆A

‖Jr[vec(A)] vec(∆A)‖R
‖vec(∆A)‖A

=
A
R

max
∆A

‖Jr[vec(A)] vec(∆A)‖2
‖∆A‖2

The numerator and denominator are vector and matrix 2-norms, respectively. IfA is anm×n
matrix, then this maximization is a large problem with mn degrees of freedom. The identity
for the norm of the transposed operator can be applied to reduce the degrees to m,

‖Jr[vec(A)]‖ =
A
R

max
∆r

‖Jr[vec(A)]t∆r‖∗2
‖∆r‖∗2

. (4.7)

Here, the identical norm for the transposed Jacobian matrix is induced from the duals of the
2-norms for matrices and vectors. The vector 2-norm is its own dual. The dual of the matrix
2-norm is determined in Grcar (2009) to be the sum of the singular values of the matrix,
including multiplicities. This norm is sometimes called the nuclear norm or the trace norm.

4.6. Condition number of r with respect to A, continued. The application of equation
(4.7) requires the evaluation of the matrix-vector product in the numerator. Note that for any
vectors r′ and x′, [

x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]t [
r′

x′

]
= vec[r′xt + r (x′)t] .

With this identity it is now possible to compute, from equation (4.6),

{Jr[vec(A)]}t∆r =

[
Jr[vec(A)]
Jx[vec(A)]

]t [
∆r
0

]
= −

[
x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]t [
I − P A(AtA)−1

(AtA)−1At −(AtA)−1

] [
∆r
0

]

= −
[
x1I x2I · · · xnI
e1r

t e2r
t · · · enrt

]t [
(I − P )∆r

(AtA)−1At ∆r

]
= vec(u1v

t
1 + u2v

t
2) ,

in which

u1 = (I − P )∆r v1 = x

u2 = r v2 = (AtA)−1At ∆r .
(4.8)

Thus equation (4.7) is the following optimization,

‖Jr[vec(A)]‖ =
A
R

max
∆r

‖u1v
t
1 + u2v

t
2‖∗2

‖∆r‖2
.

=
A
R

max
‖∆r‖2=1

‖u1v
t
1 + u2v

t
2‖∗2 . (4.9)
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For ease of notation, let g(∆r) be the objective function in equation (4.9). In Grcar
(2009) it is shown that

g(∆r) =√
‖u1‖22 ‖v1‖22 + ‖u2‖22 ‖v2‖22 + 2 ‖u1‖2 ‖v1‖2 ‖u2‖2 ‖v2‖2 cos(θu − θv) ,

(4.10)

where θu is the angle between u1 and u2, and θv is the angle between v1 and v2, and both
angles should be taken from 0 to π. Evaluating the maximum has two parts.

The first step shows ∆r can be restricted so that cos(θu − θv) ≥ 0. The vector ∆r
always could be decomposed into a component in col(A) and a component orthogonal to
this subspace. Let the component inside col(A) be a′. Further, the component outside can
be decomposed into components parallel to r and orthogonal to r, say γr + r′ for some
coefficient γ. With these choices to express ∆r,

∆r = γr + r′ + a′ where a′ ∈ col(A), r′ ⊥ col(A), r′ ⊥ r

the vectors in equation (4.8) are

u1 = γr + r′ v1 = x

u2 = r v2 = (AtA)−1Ata′

and the angles are

cos(θu) =
ut1u2

‖u1‖2 ‖u2‖2
=

γ‖r‖2√
γ2‖r‖22 + ‖r′‖22

cos(θv) =
vt1v2

‖v1‖2 ‖v2‖2
=

xt(AtA)−1Ata′

‖x‖2 ‖(AtA)−1Ata′‖2

Thus the sign of γ affects only the angle θu in equation (4.10), so it can be chosen to place θu
in the same quadrant as θv (either from 0 to π/2, or from π/2 to π) and hence cos(θu−θv) ≥
0. This means the maximum of equation (4.7) can be restricted to those ∆r for which

L(∆r) =√
‖u1‖22 ‖v1‖22 + ‖u2‖22 ‖v2‖22 ≤ g(∆r) ≤ ‖u1‖2 ‖v1‖2 + ‖u2‖2 ‖v2‖2

= U(∆r) .

(4.11)

The second step chooses ∆r to maximize the upper bound U(∆r). As before, the vector
∆r always can be decomposed into a component in col(A) and a component in the orthogonal
complement. Without loss of generality, assume ∆r = cos(φ)r′′ + sin(φ)a′′ where a′′ and
r′′ are unit vectors in col(A) and the complement, respectively, and where the coefficients
are determined by an angle φ between 0 and π/2.12 The vectors in equation (4.8) for this
representation of ∆r are

u1 = cos(φ)r′′ v1 = x

u2 = r v2 = sin(φ)(AtA)−1Ata′′ .

12The coefficients cos(φ) and sin(φ) are non-negative so the choice of φ does not affect the choice of sign
needed for equation (4.11).
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The largest ‖v2‖2 occurs when a′′ is a left singular vector for the smallest singular value of
A, σmin, in which case v2 = (sin(φ)/σmin) a′′; altogether

U(∆r) = cos(φ) ‖x‖2 + sin(φ)
‖r‖2
σmin

.

The maximum of this formula with respect to φ determines an optimal ∆rbnd where the upper
bound is

U(∆rbnd) =

√(
‖r‖2
σmin

)2

+ ‖x‖22 . (4.12)

The maximum has been verified using Mathematica (Wolfram, 2003).
The formula in equation (4.12) is the maximum of the upper bounds, which is not to say

it is the maximum of equation (4.7). The objective function g and the lower and upper bounds
L and U , when evaluated at ∆rbnd and ∆rmax, must be arranged as follows,

L(∆rbnd)
a
≤ g(∆rbnd)

b
≤ g(∆rmax)

c
≤ U(∆rmax)

d
≤ U(∆rbnd) .

These inequalities have the following justifications: (a) equation (4.11), (b) choice of ∆rmax,
(c) equation (4.12), and (d) choice of ∆rbnd. Therefore equation (4.12) is an upper bound for
the maximum. From the formula for L(∆r) in equation (4.11), the upper bound is at most√

2 times larger than a lower bound for the maximum. Note that to complete the limits and
the condition number, these values must be scaled by the coefficient A/R in equation (4.7).

4.7. Summary of condition numbers.
THEOREM 4.1 (SPECTRAL CONDITION NUMBERS). For the full rank linear least

squares problem with solution x = (AtA)−1Atb and residual r = b − Ax, and for the
scaled norms in equation (4.1) with scale factors A, B, andR,

χr(b) =
B
R
,

1√
2

A
R

√(
‖r‖2
σmin

)2

+ ‖x‖22 ≤ χr(A) ≤ A
R

√(
‖r‖2
σmin

)2

+ ‖x‖22 ,

(4.13)

where σmin is the smallest singular value of A. These formulas simplify to those in section
3.2 for the choice of scale factors in equation (4.2).

Proof. Section 4.3 derives χr(b), and sections 4.4–4.6 derive the bounds on χr(A).

5. Comparison with published bounds.

5.1. The estimate of Wedin. Table 5.1 lists the condition number estimates in some
textbook error bounds for the least squares residual. All the values exceed the upper estimate
of theorem 4.1 to varying degrees.

The very early formula of Wedin (1973, p. 224, eqn 5.4) is also reported in the more
recent textbook of Björck (1996, p. 30, eqn. 1.4.27). It is for perturbations only to A, that is
for the choice ∆b = 0, and for the choice of scale factors A = R = 1. The value exceeds
the estimate in theorem 4.1 by at most the factor

√
2, so it is at most double the condition

number. The other two values in Table 5.1 can be severe overestimates.
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TABLE 5.1
Condition number estimates in textbook error bounds for the least squares residual. The full rank least squares

problem is minx ‖b − Ax‖2, the solution is x, the residual is r, the smallest nonzero singular value of A is σmin,
the condition number of A is κ2 = ‖A‖2/σmin.

norms and scale factors maximum overestimation factor

source data residual estimate for χr(A)∗∗

Wedin (1973, p. 224,
eqn. 5.4), Björck (1996,
p. 30, eqn. 1.4.27)

‖∆A‖2
A = 1

∆b = 0
‖∆r‖2
R = 1

‖r‖2
σmin

+ ‖x‖2 2

Stewart (1977, p. 655),
Stewart and Sun (1990,
p. 160, sec. 5.2)

‖∆A‖2
A = 1

∆b = 0
‖∆r‖2
R = 1

‖b‖2
σmin

√
2κ2

Golub and Van Loan
(1996, p. 242, eqn.
5.3.9), Higham (2002,
p. 382, eqn. 20.2)∗∗

max

{
‖∆A‖2
‖A‖2

,
‖∆b‖2
‖b‖2

}
A = ‖A‖2 B = ‖b‖2

‖∆r‖2
‖b‖2

R = ‖b‖2
2
‖A‖2
σmin

+ 1∗∗ κ2

Theorem 4.1,
equation (4.13)

‖∆A‖2
A ∆b = 0

‖∆r‖2
R

A
R

√(
‖r‖2
σmin

)2

+ ‖x‖22
√

2

∗∗ The formula of Golub and van Loan and of Higham amounts to an estimate for χr(A) + χr(b)
and is compared against the sum of χr(b) and the tight estimate for χr(A). See section 5.3.

5.2. The estimate of Stewart. The value of Stewart (1977, p. 655) is also reported by
Stewart and Sun (1990, p. 160, sec. 5.2). It again is for choices ∆b = 0 and A = R = 1.
Some assembly is required. Let B = A + ∆A be the perturbed matrix. Assume ‖∆A‖2 <
σmin so that B also has full rank.

For any matrix M , let PM = MM† be the orthogonal projection into the column space
of M . With ∆b = 0 the difference between the residuals of the original and the perturbed
problems (1.1, 3.5) is ∆r = (I − PB)b− (I − PA)b so it is always true that

‖∆r‖2 ≤ ‖PA − PB‖2 ‖b‖2 . (5.1)

Stewart (1977, p. 655) remarks that ‖PA−PB‖2 is to be bounded by applying an earlier result.
He does not intend ‖PA − PB‖2 < 1 (p. 651, eqn. 4.1) which converts equation (5.1) into
the useless ‖∆r‖2 < ‖b‖2. Stewart means a complicated expression that introduces ‖∆A‖2
into the bound. This expression requires some preparation that is more easily followed in the
presentation of Stewart and Sun (1990, pp. 160, 153, 148, 137).

Continuing the assembly of the bound, let the singular value decomposition of A be

[
U1 U2

]t
AV =

[
A1

0

]
where [U1, U2] and V are square orthonormal matrices and where A1 is the square diagonal
matrix of singular values. Let the corresponding factorization of ∆A be (Stewart and Sun,
1990, p. 137)

[
U1 U2

]t
∆AV =

[
E1

E2

]
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where ‖Ei‖2 ≤ ‖∆A‖2 for i = 1, 2. Stewart and Sun (1990, p. 148) define

κ̂ = ‖A‖2 ‖(A1 + E1)−1‖2 .

From the triangle inequality and from the Neumann series expansion for (A1 + E1)−1,∣∣ ‖A−1
1 ‖2 − ‖(A1 + E1)−1‖2

∣∣ ≤ ‖A−1
1 − (A1 + E1)−1‖2 ≤ O(‖∆A‖22) .

These last two equations combine to

κ̂ = ‖A‖2 σ−1
min +O(‖∆A‖22) . (5.2)

The final step applies a bound that requires some further hypotheses. For any matrix
M , similar to PM = MM†, let RM = PMt = (M†M)t be the orthogonal projection
into the row space of M (viewing the rows as column vectors). Since B† = (BtB)−1Bt

is a continuous function of ∆A, therefore both BB† − AA† and B†B − A†A converge to
0 as ∆A approaches 0.13 If ‖∆A‖2 is sufficiently small that both ‖PA − PB‖2 ≤ 1 and
‖RA −RB‖2 ≤ 1, then it can be shown (Stewart and Sun, 1990, p. 153, eqn. 4.1)

‖PA − PB‖2 ≤
κ̂ ‖E2‖2/‖A‖2

[1 + (κ̂ ‖E2‖2/‖A‖2)2]
1/2

. (5.3)

Altogether, combining equations (5.1–5.3) leaves

‖∆r‖2 ≤
‖b‖2
σmin

‖∆A‖2 +O(‖∆A‖22) , (5.4)

which is the bound from which the condition estimate in table 5.1 is taken.
The estimate for χr(A) in equation (5.4) can be obtained from theorem 4.1 by increasing

the second term in the upper bound (4.13) by the factor V2,√(
‖r‖2
σmin

)2

+ ‖x‖22 ≤

√(
‖r‖2
σmin

)2

+ V2‖x‖22 =

√
‖r‖22 + ‖Ax‖22

σ2
min

=
‖b‖2
σmin

.

Consequently, Stewart and Sun’s value can overestimate the upper bound for χr(A) by as
much as V depending on circumstances. The worst situation is illustrated by the example of
section 3.3 with φ = 0 and β � 1/α,

‖b‖2
σmin√(

‖r‖2
σmin

)2

+ ‖x‖22

=

√
1 + β2

α√
1

α2
+ β2 cos2(φ) +

β2

α2
sin2(φ)

=

√
1 + β2√

1 + α2β2
≈ 1

α
= κ2 .

5.3. The estimate of Golub and Van Loan and of Higham. The condition estimate of
Golub and Van Loan (1996, p. 242, eqn. 5.3.9) and of Higham (2002, p. 382, eqn. 20.2) is for
the choices ∆A 6= 0 and ∆b 6= 0 with the scale factors A = ‖A‖2 andR = B = ‖b‖2. They
take the approach of equation (2.4) that uses a single quantity, ε, to measure the perturbations
to A and b,

‖∆A‖2 ≤ ε‖A‖2
‖∆b‖2 ≤ ε‖b‖2

}
equivalently ε = max

{
‖∆A‖2
‖A‖2

,
‖∆b‖2
‖b‖2

}
. (5.5)

13Specific bounds on the norms of these differences can be derived from Wedin (1973, p. 221, thm. 4.1).
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Since B = R, this approach can transform the bound (4.4) as follows,

‖∆r‖2
B

≤ ‖Jr[vec(A)]‖ A
B
‖∆A‖2
A

+ ‖Jr(b)‖
‖∆b‖
B

+ o(ε)

≤
[
‖Jr[vec(A)]‖ A

B
+ ‖Jr(b)‖

]
ε+ o(ε)

=
[
χr(A) + χr(b)

]
ε+ o(ε) . (5.6)

From theorem 4.1 with the choicesR = B = ‖b‖2,

χr(A) + χr(b) ≤

‖A‖2‖b‖2

√(
‖r‖2
σmin

)2

+ ‖x‖22

+ 1

≤

‖A‖2‖b‖2

√(
‖r‖2
σmin

)2

+ V2‖x‖22

+ 1 = κ2 + 1 . (5.7)

Golub and Van Loan and Higham state a larger value, 2κ2 + 1.14 Since these formulas
can be derived from the sum χr(A) + χr(b) they are not joint condition numbers in the
sense of equation (2.4). Moreover, the derivation inserts V into equation (5.7), so the result
can overestimate the sum by as much as a factor of κ2. Close to the worst situation for the
specific value 2κ2 + 1 of Golub, Van Loan and Higham is again illustrated by the example
of section 3.3 with φ = 0 and β � 1/α,

2κ2 + 1‖A‖2‖b‖2

√(
‖r‖2
σmin

)2

+ ‖x‖22

+ 1

=

2

α
+ 1{

1√
1 + β2

√
1

α2
+ β2

}
+ 1

≈ 1

α
= κ2 .

Note the bound (5.7) is not sensitive to the angle θ between r and col(A) because of the
choice for the scale factorR = ‖b‖2. Choices forR are discussed in section 6.1.

6. Discussion.

6.1. Measuring perturbations to r relative to b. As mentioned in section 4.1, scaled
changes to the residual are typically measured by choosingR = ‖r‖2 or ‖b‖2. The two cases
are contrasted in Table 6.1. The choice R = ‖b‖2 makes it appear that θ is not a source of
ill-conditioning because the sensitivity of r toA is masked by measuring changes to r against
the always larger vector b. The choiceR = ‖r‖2 measures perturbations relatively. The next
section 6.2 describes a situation when the relative measure is appropriate.

6.2. Significance for iterative methods. Many iterative methods proceed by building
orthogonal bases from the residuals of least squares projections. For example, for a symmetric
matrix A and a unit vector v1, the Lanczos iteration

βj+1vj+1 = Avj − αjvj − βjvj−1

produces a sequence of orthonormal vectors v1, v2, v3, . . . . This algorithm can be viewed as
repeatedly evaluating a residual rj+1 = βj+1vj+1 for either of two orthogonal projections:

14Their value resembles the
√

2κ2 + 1 that was originally stated by Björck (1967, p. 16, eqn. 7.7).
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TABLE 6.1
Effect of scaling on condition numbers for the least squares residual. The full rank least squares problem is

minx ‖b−Ax‖2, the solution is x, the residual is r, κ2 = ‖A‖2/σmin is the spectral matrix condition number of
A, σmin is the smallest singular value of A, V = ‖Ax‖2/(‖x‖2 σmin) is van der Sluis’s ratio between 1 and κ2,
and θ is the angle between b and col(A).

norms and scale factors condition numbers

‖∆A‖2
A

‖∆b‖2
B

‖∆r‖2
R tight estimate for χr(A) χr(b)

A = ‖A‖2 B = ‖b‖2 R = ‖r‖2 κ2

√
1 +

(
cot(θ)

V

)2

csc(θ)

A = ‖A‖2 B = ‖b‖2 R = ‖b‖2 κ2

√
sin2(θ) +

(
cos(θ)

V

)2

1

(1) the projection of Avj into the span of vj−1 and vj , or (2) the orthogonal projection of
Ajv1 into the Krylov subspace spanned by v1, Av1, . . . , Aj−1v1.

The appropriate scale factor for measuring perturbations to rj+1 is R = ‖rj+1‖2. The
relative error in rj+1 becomes the absolute error in the normalized vector, vj+1, which con-
tinues the Lanczos iteration. In ideal circumstances the vectors vj−1 and vj are close to
orthonormal. If A = [vj−1, vj ] is an orthonormal matrix, then κ2 = V = 1 so the tight
estimate in Table 6.1 simplifies to χr(A) ≈ csc(θ) = χr(b) where θ is the angle between
b = Avj and col(A). Thus rj+1 is ill-conditioned when θ is small.

6.3. Condition numbers of orthogonal projections. In the least squares problem, the
condition number of the orthogonal projection Ax is essentially that of the residual. In addi-
tion to equations (4.1, 4.2), it is necessary to specify the scaled norm for the projection:

‖∆(Ax)‖ =
‖∆(Ax)‖2
P

where P = ‖Ax‖2 .

From Ax = Pb follows JAx(b) = P hence χAx(b) = B/P . Since Ax = b− r so JAx(A) =
−Jr(A). With P replacing R in the formulas, the condition numbers of the orthogonal
projection are

χAx(b) = sec(θ) ,

1√
2
κ2

√
tan2(θ) +

1

V2
≤ χAx(A) ≤ κ2

√
tan2(θ) +

1

V2
.

Both κ2 and θ are independent sources of ill-conditioning.

6.4. Column transformations. The linear least squares residual is invariant with re-
spect to transformations of the matrix columns, so there is reason to seek changes to the
columns that might reduce the condition number of the residual. If A is replaced by AM
for some nonsingular matrix M that makes AM an orthonormal matrix, then with the scale
factors of equation (4.2) it has been noted in section 6.2 that the tight estimate is χr(AM) ≈
csc(θ) which leaves only θ as a source of ill-conditioning.

A less costly transformation is M = D for a diagonal matrix D. Two reasons suggest
choosing D to equilibrate the columns of AD. First, least squares problems typically are
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solved using the QR factorization. The errors of that calculation can be accounted for by
backward rounding errors whose relative size in each column is roughly the same across all
columns (Higham, 2002, p. 385, thm. 20.3). Second, equilibrating the columns is approx-
imately the optimal column scaling to reduce the matrix condition number (van der Sluis,
1969). Nevertheless, even if κ2(AD) ≤ κ2(A), the scaling also alters van der Sluis’s ratio
in equation (3.6), so it is unclear whether the net change to the condition number in equation
(3.1) is for the better.

Acknowledgements. I thank the editor Prof. D. O’Leary and the three referees for cor-
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