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Abstract

The system of algebraic equations given by

n
∑

j=0, j 6=i

sgn(xi − xj)

|xi − xj |a
= 1, i = 1, 2, . . . , n,

x0 = 0,

appears in dislocation theory in models of dislocation pile-ups. Specifically, the case

a = 1 corresponds to the simple situation where n dislocations are piled up against a

locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up

against a locked dipole.

We present a general analysis of systems of this type for a > 0 and n large. In

the asymptotic limit n → ∞, it becomes possible to replace the system of discrete

equations with a continuum equation for the particle density. For 0 < a < 2, this takes

the form of a singular integral equation, while for a > 2 it is a first-order differential

equation. The critical case a = 2 requires special treatment but, up to corrections of

logarithmic order, it also leads to a differential equation.

The continuum approximation is only valid for i not too small nor too close to

n. The boundary layers at either end of the pile-up are also analysed, which requires

matching between discrete and continuum approximations to the main problem.
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1 Introduction

Dislocations are line defects in the crystal structure of a metal or similar crystalline material.

They are of practical interest to material scientists and engineers because their motions and

interactions are associated with important macroscopic phenomena such as plasticity, work-

hardening and crack propagation. When a dislocation source is located near an obstacle,

pile-ups of dislocations can form [3]. A dislocation pile-up in equilibrium can be modelled

by considering the balance between the forces of repulsion between dislocations and other

externally-applied forces. Although models of this form have a long history in dislocation

mechanics (see, for example, the discussion in Hirth and Lothe [3]), it is only recently that

the asymptotic analysis of a pile-up of a large number of dislocations has been considered.

Most notably, Voskoboinikov and coworkers [4, 5, 6] have used asymptotic techniques to

analyse pile-ups against locked dislocations and against bimetallic interfaces.

Similar to these pile-ups of dislocation monopoles, it is possible to observe ‘ladders’ of dis-

location dipoles in some materials [1]. A pile-up of a large number of dislocation dipoles

against a locked dipole leads to a system of equations that is very similar to the system of

equations for a pile-up of dislocation monopoles, the only difference being that the repulsive

force between dipoles is inversely proportional to the cube of distance while the repulsive

force between monopoles is inversely proportional to distance. The asymptotic analysis of

a pile-up of dipoles is, however, qualitatively very different from the analysis of a pile-up

of monopoles. Monopole pile-ups are dominated by non-local effects, leading to a singular

integral equation for the monopole density. In contrast, dipole pile-ups are dominated by

short-range repulsion, leading to a differential equation for the dipole density.

In this paper, we consider a pile-up of n particles where the force of repulsion between them

is inversely proportional to the a-th power of distance. From this analysis, we can construct a

mathematical bridge between the asymptotic behaviour of a pile-up of dislocation monopoles

and a pile-up of dislocation dipoles.
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2 Problem statement

We consider the following system of n algebraic equations for unknowns xi:

n
∑

j=0, j 6=i

sgn(xi − xj)

|xi − xj|a
= 1, i = 1, 2, . . . , n, (1a)

subject to the condition

x0 = 0. (1b)

The solutions {xi} to this system can be thought of as representing the locations of n

mutually-repelling particles held in equilibrium by a constant external force with the particle

at x0 = 0 being fixed. We are interested in the asymptotic behaviour of the solution to (1) in

the limit as n → ∞. In particular, it is of interest to determine the locations of the particles

nearest x0 = 0 and the location of the final particle, xn.

For large n, we expect that it will be appropriate to consider an averaged particle density

rather than trying to find the location of each individual particle. However, the total space

occupied by the particles will increase as n increases and we need to take this into account

before we can define a density function. Suppose there exists q(a) such that xn ∼ nq as

n → ∞. Thus, we define a rescaled spatial variable, ξ, so that x = ξ nq and we write

xi = ξi n
q. All definitions of particle density will be given in terms of ξ, but we still need to

determine the dependence of q on a. We also define ξ∗ so that

ξ∗ = lim
n→∞

ξn = lim
n→∞

xn

nq
. (2)

Using the rescaled spatial variable, the system in (1) takes the form

n−aq

n
∑

j=0, j 6=i

sgn(ξi − ξj)

|ξi − ξj|a
= 1, i = 1, 2, . . . , n, (3a)

ξ0 = 0. (3b)

We now proceed on the assumption that the gaps between neighbouring particles do not
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vary rapidly with i, except possibly near the ends of the pile-up. Hence, it is appropriate

to propose a smooth particle density function to represent the distribution of the particles.

We assume that this density function, ρ(ξ; n), will satisfy the following conditions. Firstly,

ρ(ξ; n) will be defined for all ξ > 0 with ρ(ξ; n) > 0 for 0 < ξ < ξn and ρ(ξ; n) = 0 for

ξ ≥ ξn. As we will consider Taylor series representations of ρ(ξ; n) on (0, ξn), we require ρ

to be analytic on this domain and as smoothly varying as possible; specifically, we exclude

oscillations or other rapid changes in ρ or its derivatives. Most importantly, we require that

∫ ξi+1

ξi

ρ(ξ; n) dξ =
1

n
, i = 0, 1, . . . , n − 1. (4)

For any given value of n, there will be a family of functions ρ(ξ; n) that satisfy the conditions

stated above. However, as long as all the conditions are satisfied, it will be possible to recover

the solutions of (3) from ρ(ξ; n) by using (4). Moreover, we expect that the particle density

function will converge to some well-defined limit as n → ∞; this will be the leading-order

asymptotic density, ρ0(ξ). From equations (2) and (4), we note that

∫ ξ∗

0

ρ0(ξ) dξ = 1, (5a)

and that

ρ0(ξ
∗) = 0. (5b)

Unless necessary for clarity, we will omit the dependence on n and write ρ(ξ; n) as ρ(ξ).

From (4), it follows that
∫ ξi+k

ξi

ρ(ξ) dξ =
k

n
.

Proposing a Taylor series for ρ(ξ) around ξi and expressing ξi+k as a series in reciprocal

powers of n, this can be used to obtain the following formula:

ξi+k − ξi =
k

ρ(ξi)
n−1 −

k2 ρ′(ξi)

2 ρ3(ξi)
n−2 + O

(

k3

n3

)
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Similarly, we find that

ξi − ξi−k =
k

ρ(ξi)
n−1 +

k2 ρ′(ξi)

2 ρ3(ξi)
n−2 + O

(

k3

n3

)

These can be combined to yield the important result that

1

(ξi − ξi−k)a
−

1

(ξi+k − ξi)a
= −

a ρ′(ξi) ρa−2(ξi)

ka−1
na−1 + O

(

na−2

ka−2

)

. (6)

We will make extensive use of this result in the following sections.

3 Leading-order asymptotic analysis

3.1 Case 1: 0 < a < 2

In the case where 0 < a < 2, we can rearrange (3a) to recover, at leading order, an integral

equation. To see this, we first split the sum into two parts:

n−aq

i−1
∑

j=0

1

(ξi − ξj)a
− n−aq

n
∑

j=i+1

1

(ξj − ξi)a
= 1

Applying the Euler-Maclaurin summation formula [2], this yields

n1−aq

(
∫ ξi−1

0

ρ(ξ′)

(ξi − ξ′)a
dξ′ −

∫ ξn

ξi+1

ρ(ξ′)

(ξ′ − ξi)a
dξ′
)

+ n−aq

(

1

2 ξi
a +

1

2 (ξi − ξi−1)a
−

1

2 (ξi+1 − ξi)a
−

1

2 (ξn − ξi)a
+ . . .

)

∼ 1. (7)

Using (6), it follows that

n−aq

(

1

2 (ξi − ξi−1)a
−

1

2 (ξi+1 − ξi)a

)

∼ −a
ρ′(ξi)

2 ρ2−a(ξi)
na−aq−1 + O

(

na−aq−2
)

.
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Assuming (ξi)
−a and (ξn − ξi)

−a to be order-one terms, we thus find that

n1−aq

(
∫ ξi−1

0

ρ(ξ′)

(ξi − ξ′)a
dξ′ −

∫ ξn

ξi+1

ρ(ξ′)

(ξ′ − ξi)a
dξ′
)

+ O (nr) = 1, (8)

where r = max [a − 1 − aq, −aq]. Note that (ξi)
−a and (ξn − ξi)

−a will not be order one if

i is close to zero or close to n, leading us to expect boundary layers at both ends of our

domain.

When 0 < a < 2, we find that it is only by taking q = 1
a

that we achieve a leading-order

balance in (7) between the integral terms on the left-hand side and the constant term on the

right-hand side. As a − 1 − aq = a − 2 is negative in this case, the O (nr) terms in (8) can

always be treated as a small correction. Moreover, we find the boundary layers occur when

ξ ∼ n− 1

a and when (ξ∗ − ξ) ∼ n− 1

a .

As n → ∞, the leading-order equation for the particle density is given by

lim
ǫ→0

[
∫ ξ−ǫ

0

ρ0(ξ
′)

(ξ − ξ′)a
dξ′ −

∫ ξ∗

ξ+ǫ

ρ0(ξ
′)

(ξ′ − ξ)a
dξ′
]

= 1, 0 < ξ < ξ∗,

or equivalently,

−

∫ ξ∗

0

sgn(ξ − ξ′)

|ξ − ξ′|a
ρ0(ξ

′) dξ′ = 1, 0 < ξ < ξ∗, (9)

where the integral is interpreted in the normal sense for 0 < a < 1, as a Cauchy principal

value integral for a = 1 and as a Hadamard finite part integral for 1 < a < 2.

When a = 1, equation (9) is the Cauchy integral equation discussed by Voskoboinikov et

al. [6] for a pile-up of dislocation monopoles. This integral equation has a closed-form

solution, but we have not been able to find closed-form solutions for the case of general

a ∈ (0, 2).

If a ≥ 2, however, the terms of relative order n−(2−a) in (7) are no longer negligible. Im-

portantly, it can be shown that all the non-integral terms in the Euler-Maclaurin series are

of this size, with the result that we cannot terminate the series at any point to obtain the

leading-order equation.
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3.2 Case 2: a > 2

When a > 2, we find that the dominant contribution to the force on a particle comes from

its nearest neighbours. However, the left-hand neighbour and right-hand neighbour push in

opposite directions with almost equal force, making it useful to pair them instead of treating

them separately. In order to obtain the equation for a > 2, we therefore rearrange the sum

in (3a) by taking the particles around ξi in pairs until a boundary is reached. Without loss

of generality, let i ≤ n
2
; then, (3a) becomes

n−aq

i
∑

k=1

(

1

(ξi − ξi−k)a
−

1

(ξi+k − ξi)a

)

− n−aq

n
∑

j=2i+1

1

(ξj − ξi)a
= 1. (10)

From (6), we find that

n−aq

i
∑

k=1

(

1

(ξi − ξi−k)a
−

1

(ξi+k − ξi)a

)

=
i
∑

k=1

−a ρ′(ξi) ρa−2(ξi)

ka−1
na−1−aq + O

(

na−2−aq is
)

,

(11)

where s = max [0, 3 − a]. This indicates that the appropriate balance will only be achieved

when q = a−1
a

. Moreover, we note that the finite sum in (11) can be approximated with an

infinite one, yielding

i
∑

k=1

−a ρ′(ξi) ρa−2(ξi)

ka−1
= −a ζ(a − 1) ρ′

0(ξ) ρ0
a−2(ξ) + O

(

i−(a−2)
)

. (12)

The other sum in (10) can be approximated using Euler-Maclaurin series. Thus,

n−(a−1)

n
∑

j=2i+1

1

(ξj − ξi)a
= n−(a−2)

∫ ξn

ξ2i+1

ρ(ξ′)

(ξ′ − ξi)a
dξ′ + O

(

n i−a
)

. (13)

These terms will be negligible when i is large, but they cannot be ignored for particles near

the boundary. Thus, (13) indicates that we expect boundary layer behaviour when i ∼ n
1

a

(that is, when ξ ∼ n−a−1

a ).
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For ξi away from the boundary layer, we ultimately find that (11), (12) and (13) combine to

give

− a ζ(a − 1) ρ′
0(ξi) ρ0

a−2(ξi) + O (nu) = 1, (14)

where u = max [−1,−(a − 2)].

In the limit n → ∞, we then recover the leading-order density equation:

− a ζ(a − 1) ρ′
0(ξ) ρ0

a−2(ξ) = 1. (15)

Using (5) to supply the needed boundary condition, (15) yields

ξ∗ =
a ζ(a − 1)

1

a

a − 1
, (16)

and thus,

ρ0(ξ) =

(

1

ζ(a − 1)
a−1

a

−
a − 1

a ζ(a − 1)
ξ

)
1

a−1

(17)

Note that (15) will not be valid in the boundary layers where i ∼ n
1

a or (n− i) ∼ n
1

a . These

will be considered in Section 5.

3.3 Case 3: a = 2

By combining the 0 < a < 2 and a > 2 approaches, it is possible to obtain an equation for

the leading-order particle density when a = 2. Firstly, we note that the scaling x = ξ n
1

a

was appropriate when 0 < a < 2, while the scaling x = ξ n
a−1

a was appropriate when a > 2.

This suggests that the correct scaling for a = 2 will be x = ξ n
1

2 . Although we will find that

this is not entirely correct, x = ξ n
1

2 can be used as a starting point in our attempt to find

the leading-order density equation.

Taking a = 2 and q = 1
2
, we split the sum in (3a) into a term arising from particles in the
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neighbourhood of ξi and other terms representing more distant particles. Thus,

n−1

M−1
∑

k=1

(

1

(ξi − ξi−k)2
−

1

(ξi+k − ξi)2

)

+ n−1

i−M
∑

j=0

1

(ξi − ξj)2
− n−1

n
∑

j=i+M

1

(ξj − ξi)2
= 1,

where M(i; n) represents the size of the neighbourhood being treated as the local contribu-

tion to the force balance and is yet to be specified. We note, however, that M ≤ min [i, n − i].

Using (6) to simplify the first term and using Euler-Maclaurin series to simplify the other

sums, we find that

− 2 ρ′(ξi)
M−1
∑

k=1

1

k
+

∫ ξi−M

0

ρ(ξ′)

(ξi − ξ′)2
dξ′ −

∫ ξn

ξi+M

ρ(ξ′)

(ξ′ − ξi)2
dξ′

+ n−1

(

1

2 ξi
2 +

1

2 (ξi − ξi−M)2
−

1

2 (ξi+M − ξi)2
−

1

2 (ξn − ξi)2
+ . . .

)

+ O
(

M n−1
)

= 1.

(18)

We now combine the integrals in (18) by defining the singular integral

−

∫ ξ∗

0

sgn(x0 − x)

(x0 − x)2
φ(x) dx

= lim
ǫ→0

[
∫ x0−ǫ

0

φ(x)

(x0 − x)2
dx −

∫ ξ∗

x0+ǫ

φ(x)

(x0 − x)2
dx − 2 φ′(x0) log ǫ + 2 φ′(x0)

]

.

Hence,

∫ ξi−M

0

ρ(ξ′)

(ξi − ξ′)2
dξ′ −

∫ ξn

ξi+M

ρ(ξ′)

(ξ′ − ξi)2
dξ′

= −

∫ ξn

0

sgn(ξi − ξ′)

(ξi − ξ′)2
ρ(ξ′) dξ′ + 2 ρ′(ξi) log

(

M

n ρ(ξi)

)

− 2ρ′(ξi) + O
(

M n−1
)

. (19)

Also, we can use (6) to show that

n−1

(

1

2 (ξi − ξi−M)2
−

1

2 (ξi+M − ξi)2

)

= O
(

M−1
)

. (20)
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Lastly, we note that

n−1 1

2 ξi
2 = O

(

n i−2
)

, (21)

with a similar result holding for ξn − ξi. In the outer region where i ∼ n, these terms will

both be O (n−1). However, they indicate that we expect to see boundary layers when i ∼ n
1

a

or (n − i) ∼ n
1

a .

Substituting (19) to (21) into (18) and using the fact that

M−1
∑

k=1

1

k
= log(M) + γ + O

(

M−1
)

,

we find that the minimum error is obtained when M ∝ n
1

2 and that

− 2 γ ρ′(ξi) + −

∫ ξn

0

sgn(ξi − ξ′)

(ξi − ξ′)2
ρ(ξ′) dξ′ − 2 ρ′(ξi) log n − 2 ρ′(ξi) log(ρ(ξi))

− 2ρ′(ξi) + O
(

n− 1

2

)

= 1. (22)

Unfortunately, the log n term always dominates the left-hand side of (22), which means that

we have not used the correct scaling for ξ. However, if we were to take −2 ρ′(ξ) log n = 1

to be the leading-order equation arising from (22), we could easily obtain a solution subject

to the boundary conditions from (5). This indicates that ξn ∼ (log n)
1

2 with the current

scaling. Hence, in order for ξn to tend to a finite limit as n → ∞, the correct rescaling is

ξ = ξ̃ (log n)
1

2 , or equivalently, x = ξ̃ (n log n)
1

2 .

Applying this rescaling to the original problem and writing ξ̃ as ξ, we find that

− 2 ρ′(ξi) +
1

log n

[

−2 γ ρ′(ξi) + −

∫ ξn

0

sgn(ξi − ξ′)

(ξi − ξ′)2
ρ(ξ′) dξ′ − 2 ρ′(ξi) log(ρ(ξi)) − 2ρ′(ξi)

]

+ O
(

n− 1

2

)

= 1. (23)

In the limit n → ∞, this gives

− 2 ρ′
0(ξ) = 1, (24)
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and, using (5),

ρ0(ξ) = 1 −
1

2
ξ. (25)

From this, we find that ξ∗ = 2 for a = 2. In Section 4, these results will be compared with

numerical solutions for the full problem.

4 Numerical solution to the original system

The original system in (1) can be solved numerically using Newton’s method. For a ≥ 2, it

is possible to integrate (17) or (25) to obtain asymptotic expressions for xi that would work

well as starting points for this method. However, we wish to develop a numerical scheme

that is valid for all a.

Hence, to obtain an initial guess for xi we consider the simplified problem given by

1

(xi − xi−1)a
−

1

(xi+1 − xi)a
= 1, i = 1, 2, . . . , n − 1, (26a)

1

(xi − xi−1)a
= 1, i = n. (26b)

This corresponds to the case where each particle is only affected by its nearest neighbours.

The system in (26) can be solved explicitly to give

xi − xi−1 = (n + 1 − i)−
1

a ,

which we use as our starting point all values of a. The solver is constructed so that the

unknown variables are ∆xi = xi − xi−1 rather than xi; this leads to a better-conditioned

system.

The numerical solutions obtained for xi can be rescaled to give ξi. Given these solutions, we

seek particle density functions, ρ(ξ; n), that are comparable with the leading-order asymp-

totic solution. Taking ρ(ξ; n) to be a piecewise constant function in (4), we note that

ρ(ξ; n) ≈ (ξi − ξi−1)
−1 n−1,
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where ξ ∈ (ξi−1, ξi). Hence, we can approximate ρ(ξ; n) by plotting (ξi − ξi−1)
−1 n−1 against

1
2
(ξi + ξi−1). This is illustrated in Figures 1 and 2 for a = 3 and a = 2 respectively.
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Figure 1: Numerically calculated particle densities for a = 3 compared with the leading-order
asymptotic density (dashed). From top to bottom, the continuous curves represent n = 10, n =
40 and n = 200. In each case, the numerical density is given by (ξi − ξi−1)

−1 n−1, while the
corresponding ξ coordinate is given by (ξi + ξi−1)/2.

Figures 1 and 2 clearly show that the numerical solution from the particle density deviates

from the asymptotic prediction when ξ is close to zero. This is the boundary layer that we

expect since (15) and (23) are invalid for i ∼ n
1

a . Although this boundary layer is more

dramatic for a = 2 than it is for a = 3, we will see in Section 5 that the left-hand boundary

layer has the same structure for all a ≥ 2.

It is interesting to note that we also expect to see a boundary layer near ξ∗, but that it is not

immediately apparent from Figures 1 and 2. One visible effect of the right-hand boundary

layer is that ξn is always considerably less than the theoretical ξ∗ obtained from equation

(16). This is illustrated in Figure 3 and we will analyse this boundary layer further in Section

5.3.
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Figure 2: Numerically calculated particle densities for a = 2 compared with the leading-order
asymptotic density (dashed). From top to bottom, the continuous curves represent n = 10, n =
40 and n = 200. In each case, the numerical density is given by (ξi − ξi−1)

−1 n−1, while the
corresponding ξ coordinate is given by (ξi + ξi−1)/2.
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Figure 3: Ratio of numerically obtained final particle location, ξn, to predicted final particle
location, ξ∗ for varying values of n. The results for a = 2 are shown as a dashed line, while the
solid lines (from bottom to top) represent a = 2.5, a = 3, a = 3.5 and a = 4. In each case, ξn/ξ∗

should tend to 1 as n tends to infinity, but this happens quite slowly. Improved results can be
obtained by considering the boundary layer near ξ∗.
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Lastly, we note that the numerical densities obtained when a = 2 show more marked differ-

ences from the leading-order asymptotic density than those for a = 3. This is to be expected,

as the corrections to (24) are only logarithmically small, while those to (15) are algebraically

small. Indeed, it can also be seen that the accuracy of (15) gets worse as a ց 2.

5 Boundary layers

Regardless of the value of a, the solution to (3) exhibits boundary layer behaviour at both

ends of the domain of solution. However, the boundary layer near ξ = 0 is very different

from the boundary layer near ξ = ξ∗ and the boundary layers change in character as a

increases through two. Here, we present a detailed analysis of three of these different cases:

the boundary layer near ξ = 0 for 0 < a < 2, the boundary layer near ξ = 0 for a > 2 and

the boundary layer near ξ = ξ∗ for a > 2.

We leave the problem of boundary layer analysis for a = 2 as an open problem. In this case,

(23) suggests that an expansion for ρ(ξ) in powers of 1
log n

is appropriate. When using Van

Dyke’s matching rule, these are all taken to be order-one terms and it would be necessary

to find them before attempting to match between the outer problem and the inner problem.

Interestingly, we can use (23) to obtain the first correction to (25). This indicates that ρ(ξ)

has a logarithmic singularity at ξ = 0 and that ρ′(ξ) has a logarithmic singularity at ξ = ξ∗.

As a result of these, it is not even straightforward to determine the appropriate rescaling in

these boundary layers.

5.1 Boundary layer near ξ = 0 for 0 < a < 2

The fact that we do not have a general closed-form solution to the integral equation (9) also

makes it difficult to analyse the boundary layers when 0 < a < 2. However, useful results can

still be obtained by making appropriate assumptions about the form of the outer solution

and exploiting certain features of (1).
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When a = 1, Voskoboinikov et al. [6] found that the solution of (9) gives ρ(ξ) ∼ ξ−
1

2 as

ξ → 0. Similarly, it is reasonable to expect that the density will become singular at ξ = 0

when 0 < a < 2. Thus, we propose

ρ = A ξ−κ + o
(

ξ−κ
)

, (27)

for some κ and A to be determined with 0 < κ < 1. Integrating (27) and using (4), we find

that

A

∫ ξi

0

ξ−κ dξ = i n−1 + o
(

ξ1−κ
)

,

and hence

ξi = B i
1

1−κ n− 1

1−κ + o
(

n− 1

1−κ

)

, (28)

where B =
(

1−κ
A

)
1

1−κ . Thus, it is appropriate to rescale our problem in the inner region by

introducing a new spatial variable, η, such that ξ = η n− 1

1−κ and hence x = η n
1

a
− 1

1−κ .

Now, it is useful to determine κ before we consider the leading-order inner problem in greater

depth. To find κ, we first add all n equations in (1a) together. This yields the interesting

result that
n
∑

i=1

1

xi
a

= n. (29)

This is true for all a and it can be interpreted as giving the total ‘force’ experienced by the

particle at x = 0 due to repulsion from other particles.

Taking (29), we now split the sum into two sums, one in which the inner scaling is appropriate

and a second in which the outer scaling is appropriate. As in any problem involving matched

asymptotic expansions, there will be no such abrupt transition from the inner region to the

outer region; instead, we choose our transition point, xK , to be somewhere in the intermediate

(or overlap) region where 1 ≪ xK ≪ n
1

a . Thus,

n
a

1−κ
−1

K
∑

i=1

1

ηi
a

+ n−1

n
∑

i=K+1

1

ξi
a = n. (30)

The second sum in (30) can be replaced by an integral. Noting that ξK ∼ K
1

1−κ n− 1

1−κ , we
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obtain

n−1

n
∑

i=K+1

1

ξi
a =

∫ ξn

ξK+1

ρ(ξ)

ξa
dξ + O

(

K− a

1−κ n
a

1−κ
−1
)

. (31)

Assuming a+κ > 1, the dominant contribution to this integral will come from a region near

ξ = ξK+1. Using (27) to approximate ρ in this area, we ultimately find that

n−1

n
∑

i=K+1

1

ξi
a =

1 − κ

a + κ − 1
B−a K1− a

1−κ n
a

1−κ
−1 + o

(

n
a

1−κ
−1
)

.

Substituting this into (30) yields

n
a

1−κ
−1

K
∑

i=1

1

ηi
a

+
1 − κ

a + κ − 1
B−a K1− a

1−κ n
a

1−κ
−1 + o

(

n
a

1−κ
−1
)

= n. (32)

As both terms on the left-hand side must be positive, we find that balance is only achieved

when κ = 1 − a
2
. This is consistent with the observation that ρ ∼ ξ−

1

2 when a = 1. If we

had taken a + κ < 1 above, we would have found that the integral in (31) is an order-one

term. This would again lead to κ = 1 − a
2
, in contradiction with the assumption a + κ < 1.

Given κ = 1 − a
2
, the correct rescaling for the inner region is given by η = ξ n

2

a = x n
1

a . To

obtain the leading-order problem in the inner region, we take (1) and split the sum at K as

before. This yields

n

K
∑

j=0, i6=j

sgn(ηi − ηj)

|ηi − ηj|a
− n−1

n
∑

j=K+1

1

(ξj − ηi n
− 2

a )a
= 1. (33a)

η0 = 0. (33b)

Note that this system will only be valid in a region where ξ ∼ n− 1

a and hence i ∼ n
1

2 .

We now repeat the process described by Voskoboinikov et al. [6] for a = 1. Approximating

the second sum in (33a) with an integral, we obtain

n

K
∑

j=0, i6=j

sgn(ηi − ηj)

|ηi − ηj|a
−

∫ ξn

ξK+1

ρ(ξ′)

(ξ′ − ηi n
− 2

a )a
dξ′ = 1 + o (1) .
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Using (9), this implies

n

K
∑

j=0, i6=j

sgn(ηi − ηj)

|ηi − ηj|a
= −

∫ ξK+1

0

sgn(ξ′ − ηi n
− 2

a )

(ξ′ − ηi n
− 2

a )a
ρ(ξ′) dξ′ + o (1) . (34)

Since ρ = A ξ−(1−a

2
) + o

(

ξ−(1−a

2
)
)

, we find that

−

∫ ξK+1

0

sgn(ξ′ − ηi n
− 2

a )

(ξ′ − ηi n
− 2

a )a
ρ(ξ′) dξ′ ∼ A−

∫ ξK+1

0

sgn(ξ′ − ηi n
− 2

a )

(ξ′ − ηi n
− 2

a )a
(ξ′)−(1−a

2
) dξ′

∼ A n−

∫ ξK+1 n
2
a

0

sgn(η′ − ηi)

(η′ − ηi)a
(η′)−(1−a

2
) dη′.

This integral can be expressed exactly in terms of hypergeometric functions. Given that

ξK+1 n
2

a ≫ ηi, we ultimately find that

−

∫ ξK+1 n
2
a

0

sgn(η′ − ηi)

(η′ − ηi)a
(η′)−(1−a

2
) dη′ = O

(

(ξK+1)
v n

2 v

a

)

,

where v = max
[

−(1 − a
2
),−a

2

]

.

Thus, (34) becomes
K
∑

j=0, i 6=j

sgn(ηi − ηj)

|ηi − ηj|a
= O

(

K
2 v

a

)

and, in the limit n → ∞ (and hence K → ∞), we find that the leading-order system for

{ηi} is

∞
∑

j=0, i 6=j

sgn(ηi − ηj)

|ηi − ηj|a
= 0,

η0 = 0.

Like the system investigated by Voskoboinikov et al. [6], this system is scale invariant and

it is necessary to use a discrete-continuous analogue of Van Dyke’s matching condition to

supply the additional information required. As the outer solution near ξ = 0 is given by
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(28), we find that our complete inner problem takes the form

∞
∑

j=0, i 6=j

sgn(ηi − ηj)

|ηi − ηj|a
= 0, (35a)

subject to

η0 = 0, (35b)

ηi → B i
2

a as i → ∞. (35c)

From Voskoboinikov et al. [6], we find that B = π2

8
when a = 1. However, we have so far

been unable to construct an expression for B that is valid for general a ∈ (0, 2); this would

be easily obtained if a closed-form solution to (9) were known. Instead, we define {η̂i} to be

the solution to the normalised inner problem,

∞
∑

j=0, i 6=j

sgn(η̂i − η̂j)

|η̂i − η̂j|a
= 0, (36a)

subject to

η̂0 = 0, (36b)

η̂i → i
2

a as i → ∞. (36c)

It follows that

ηi = B η̂i, (37)

and thus xi n
1

a ≈ B η̂i, for small i and large n.

Substituting (37) into (32) and taking K → ∞, we find that

∞
∑

i=1

1

η̂a
i

= Ba. (38)

Importantly, this means that we can easily use the solution to (36) to obtain B.
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We have only been able to solve (36) numerically. To obtain numerical solutions, we truncate

the system at some large value i = P and assume that all particles beyond η̂P are spaced so

that

η̂P+k − η̂P = (P + k)
2

a − P
2

a .

Thus, we effectively replace equations (36a) and (36c) with

P
∑

j=0, i6=j

sgn(η̂i − η̂j)

|η̂i − η̂j|a
−

R
∑

k=1

1
(

(P + k)
2

a − P
2

a + η̂P − η̂i

)a = 0, (39)

where R is a suitably large number. We solve this system using a Newton iteration scheme

with a starting condition of η̂i = i
2

a .

Importantly, the system in (35) is independent of n. Hence, (36) only needs to be solved once

for any given value of a in order to obtain approximate locations of the first few particles in

the boundary layer. As shown in Figure 4, these asymptotic results compare well with the

particle positions obtained by rescaling the solutions to the full problem in (1).

5.2 Boundary layer near ξ = 0 for a > 2

We now consider the boundary layer near ξ = 0 for a > 2. In this case, the fact that the

leading-order density in (17) remains order-one as ξ → 0 implies that ξi+1 − ξi ∼ O
(

n−1
)

throughout the inner region. Hence, we introduce our inner spatial variable, η, so that

η = ξ n = x n
1

a .

Returning to the original system of equations in (1), we again split the sum at some K

chosen so that n
1

a ≪ K ≪ n and hence xK lies in the intermediate matching region. Thus,

n

K
∑

j=0, i 6=j

sgn(ηi − ηj)

|ηi − ηj|a
− n−(a−1)

n
∑

j=K+1

1

(ξj − ηi n−1)a
= 1, (40)
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Figure 4: Rescaled locations of the first five particles obtained from numerical solution of the full
problem compared with solutions to the asymptotic problem in (36) for a = 0.8, a = 1, a = 1.2,
a = 1.4, a = 1.6 and a = 1.8. In each case, the asymptotic solution is shown as +, the numerical
solution for n = 20 is shown as �, the numerical solution for n = 50 is shown as ©, and the
numerical solution for n = 100 is shown as ×. Note that the value of B is obtained using (38).
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for all i ∼ n
1

a . Approximating the second sum using an integral, we obtain

n

K
∑

j=0, i 6=j

sgn(ηi − ηj)

|ηi − ηj|a
− n−(a−2)

∫ ξn

ξK+1

ρ(ξ′)

(ξ′ − ηi n−1)a
dξ′

+ n−(a−1)

(

1

2 (ξK+1 − ηi n−1)a +
1

2 (ξn − ηi n−1)a
+ . . .

)

= 1. (41)

Since K ≫ n
1

a , we find that

n−(a−1)

(

1

2 (ξK+1 − ηi n−1)a

)

∼ o (1) .

Moreover, the dominant contribution to the integral in (41) will come from its lower bound

and will also be of this size. Hence, (41) yields

K
∑

j=0, i6=j

sgn(ηi − ηj)

|ηi − ηj|p
= O

(

n−1
)

.

In the limit as n (and hence K) tends to infinity, this means that the leading-order inner

problem again takes the form

∞
∑

j=0, j 6=i

sgn(ηi − ηj)

|ηi − ηj|a
= 0, i = 1, 2, . . . , (42a)

η0 = 0. (42b)

As above, (42) is scale-invariant and we use a discrete-continuous analogue of Van Dyke’s

matching condition to supply the additional information required. Noting from (17) that

lim
ξ→0

ρ0(ξ) = ζ(a − 1)−
1

a ,
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we ultimately find that the full system to be solved is

∞
∑

j=0, j 6=i

sgn(ηi − ηj)

|ηi − ηj|a
= 0, i = 1, 2, . . . , (43a)

subject to the conditions

η0 = 0, (43b)

lim
i→∞

[ηi+1 − ηi] = ζ(a − 1)
1

a . (43c)

As before, we have only been able to solve this system numerically. To obtain numerical

solutions, we truncate the system at some large value i = P and assume that all particles

beyond ηP are evenly spaced in accordance with condition (43c). Thus, we effectively replace

(43a) and (43c) with

P
∑

j=0, j 6=i

sgn(ηi − ηj)

|ηi − ηj|a
−

∞
∑

k=1

1
(

ηP + ζ(a − 1)
1

a k − ηi

)a = 0, i = 1, 2, . . . , P.

As with the full problem, Newton iteration is used to solve this system of algebraic equations;

in this case, we use a starting condition in which the particles are evenly spaced at intervals

of ζ(a − 1)
1

a .

As before, the system in (43) is independent of n and hence it only needs to be solved once

for any given value of a. In Figure 5, we see that there is again good agreement between

this asymptotic solution and numerical solutions to the full problem in (1).

5.3 Boundary layer near ξ = ξ∗ for a > 2

There are some interesting differences between the boundary layer near ξ∗ and the boundary

layer near zero. As for the boundary layer near ξ = 0 for a < 2, it is necessary to integrate
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Figure 5: Rescaled locations of the first six particles obtained from numerical solution of the full
problem compared with solutions to the asymptotic problem in (43) for a = 2.5, a = 3, a = 3.5
and a = 4. In each case, the asymptotic solution is shown as +, the numerical solution for n = 20
is shown as �, the numerical solution for n = 50 is shown as ©, and the numerical solution for
n = 100 is shown as ×.
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the solution to the outer probem in order to obtain the correct scaling. In this case,

(

a − 1

a ζ(a − 1)

)
1

a−1
∫ ξ∗

ξn−i

(ξ∗ − ξ)
1

a−1 dξ =
i

n

(

1 + O (nu)
)

,

where u = max [−1,−(a − 2)] as before. Hence,

ξ∗ − ξn−i =
a ζ(a − 1)

1

a i
a−1

a

a − 1
n−a−1

a

(

1 + O (nu)
)

. (44)

This leads us to introduce a rescaled spatial variable, χ, so that

χ = (ξ∗ − ξ) n
a−1

a = ξ∗ n
a−1

a − x.

We also renumber the particles so that χi corresponds to the same particle as ξn−i.

As before, we choose some K so that n
1

a ≪ K ≪ n and thus xn−K lies in the intermediate

region. Applying the inner scaling for j ≤ K and considering i ∼ O
(

n
1

a

)

, we split the sum

in (1a) to obtain

−

K
∑

j=0, j 6=i

sgn(χi − χj)

|χi − χj|a
+ n−(a−1)

n
∑

j=K+1

1

(ξ∗ − χi n
−a−1

a − ξn−j)a
= 1. (45)

Since K ≫ n
1

a , we find that

n−(a−1)

n
∑

j=K+1

1

(ξ∗ − χi n
−a−1

a − ξn−j)a
= o (1) .

In the limit n → ∞, (45) therefore yields

∞
∑

j=0, j 6=i

sgn(χi − χj)

|χi − χj|a
= −1, i = 0, 1, 2, . . . (46)

The system in (46) is translation-invariant and we can supply the missing information using

Van Dyke’s matching rule. This is an interesting contrast from the scale-invariant equations

encountered in the boundary layer near ξ = 0. Using (44), we ultimately find that our full
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problem for the boundary layer near ξ∗ is

∞
∑

j=0, j 6=i

sgn(χi − χj)

|χi − χj|a
= −1, i = 0, 1, 2, . . . (47a)

subject to

χi →
a

a − 1
ζ(a − 1)

1

a i
a−1

a , as i → ∞. (47b)

As with the earlier systems, we have only been able to solve (47) numerically. Again, this

requires us to truncate the system at some large value i = P , yielding

P
∑

j=0, j 6=i

sgn(χi − χj)

|χi − χj|a
+

∞
∑

j=P+1

1
(

a
a−1

ζ(a − 1)
1

a j
a−1

a − χi

)a = −1, i = 0, 1, 2, . . . , P. (48)

A Newton iteration scheme with a starting condition of χi = a
a−1

ζ(a − 1)
1

a i
a−1

a gives the

results shown in Figure 6, where comparisons are made between ξn

ξ∗
from the full problem

and asymptotic approximations based on

ξn ∼ ξ∗ − χ0 n−a−1

a .

It is interesting to note that the method described in this section should also be applicable

to the boundary layer near ξ = ξ∗ for 0 < a < 2. If a solution to (9) were known, it could

be integrated to obtain the correct scaling near ξ = ξ∗. Repeating the process above would

then yield an infinite system and associated matching condition similar to (47).

6 Discussion

One of the most interesting features of this problem is the transition between the singular

integral equation for 0 < a < 2 and the differential equation for a > 2. When a is small,

the repulsive effect of each particle decreases slowly with distance. As a result, each particle

effectively feels every other particle and the particle density at equilibrium is dominated
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by nonlocal effects. This leads to a singular integral equation for the particle density, (9).

In contrast, when a is large, the repulsion from each particle drops off very rapidly as a

function of distance. Hence, each particle only feels its nearest neighbours and the density

at equilibrium is dominated by the local environment of each particle. This gives rise to a

differential equation in which the density far from any given point is no longer important.

Although these observations explain the transition between the two equations in broad terms,

it is interesting to consider why the change occurs at a = 2. At first, it might be expected that

the transition should occur at a = 1 because this corresponds to a non-integrable singularity

appearing in the integral equation. However, the transition point is shifted by the fact that

the ability to define a density function implies that the particles are almost evenly spaced.

As a result, the highest-order local effects of a particle’s nearest neighbours cancel each other

out. This can be seen in the derivation of the 0 < a < 2 equation through the fact that we

were able to combine two opposed terms from the Euler-Maclaurin error expression in (7) to

give an error term that was O
(

n−(2−a)
)

instead of O(n−(1−a)
)

. Similarly, the even spacing

allowed us to pair particles in the derivation of the a > 2 and a = 2 equations, yielding

terms that were O
(

na−1−aq
)

instead of O
(

na−aq
)

.

This counterintuitive result reveals the importance of approaching this problem from the

discrete system in (1). An alternative would have been to start from the force function,

F (x), which represents the force experienced by a hypothetical particle inserted into the

system at the point x. This is defined as

F (x) = −1 +
n
∑

j=0

sgn(x − xj)

|x − xj|a
.

Rescaling x with xn to get ξ, it would appear appropriate to approximate F (x) with an

integral over the particle density, ρ(ξ), and then take the regular part of this integral to be

zero throughout the domain of interest. Effectively, this is the method used by Voskoboinikov

et al. [5, 4] in their investigation of a dislocation pile-up against a bimetallic interface.

Although this is appropriate when a = 1, it makes it difficult to see the transition to a

differential equation as a increases. Indeed, a näıve use of this method struggles to recover

the correct equation when a > 1 because it is hard to see that the transition between regimes

occurs at a = 2 rather than a = 1.



Asymptotic analysis of a system of algebraic equations 29

A further interesting feature of the transition between the integral equation and the differ-

ential equation is that (23), the equation for a = 2, is quite different from both (9) and

(15). In order to elucidate the connection between these three distinct cases, consider the

following sum, representing a generalised harmonic number:

Hb(n) =
n
∑

i=1

1

ib
.

As described in Appendix A, this sum is characterised by different asymptotic behaviour

for n → ∞ depending on whether b is greater or less than one and depending on whether

|b − 1| log n is large or small.

In much the same way, our problem can be separated into three different cases depending

on whether a is greater or less than two and on whether |a− 2| log n is large or small. To see

this last distinction, we note that the correction term to both (9) and (15) is O
(

n−|a−2|
)

;

thus, these equations are inappropriate as a → 2 if |a − 2| log n is small.

In Appendix A, we show that a perturbation around b = 1 can be used to construct a

mathematical bridge between the three types of asymptotic behaviour for the generalised

harmonic numbers. Proposing an expansion in powers of (b − 1) log n, we find that these

terms combine to form a term that is exponentially large when b < 1 and exponentially

small when b > 1. Similarly, we can perturb around a = 2 in our main problem to obtain

corrections to (24) in powers of (a − 2) log n. We conjecture that taking infinitely many of

these terms may enable us to build a similar connection between the three types of behaviour

observed.

7 Conclusions

We have presented an asymptotic analysis of an elementary problem involving the equilibrium

of a large number of mutually-repelling particles. In practical applications, these ‘particles’

could be any one of a variety of physical entities, including dislocation monopoles, dislocation

dipoles, line charges, point charges etc. In each case, the essential feature is that the repulsion

between particles is inversely proportional to some power of the distance between particles.
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If the repulsion drops off very quickly with distance, local effects dominate, leading to a

differential equation for the particle density. Alternatively, if the repulsion decreases slowly,

non-local effects are important and we obtain an integral equation. The transition between

these two regimes occurs at a = 2 (i.e. inverse square repulsion between particles), and this

case needs to be treated carefully. For all values of a, boundary layers are observed and it is

necessary to use matched asymptotic techniques to go from the continuous problem in the

outer region to discrete problems near the boundaries.

Several open problems still remain to be resolved. Most notably, we have been unable to

obtain a closed-form solution to the integral equation in (9) nor have we characterised the

boundary layers for a = 2. Also, we observe that some of the methods described are only

relevant to one-dimensional problems; it would be interesting to investigate the techniques

required to construct continuum approximations of higher-dimensional equivalents of the

system studied here.
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A Asymptotic behaviour of generalised harmonic num-

bers

The generalised harmonic numbers, Hb(n) are defined by

Hb(n) =
n
∑

i=1

1

ib
. (A.1)

for all n ∈ N and b ∈ R.

We are interested in the asymptotic behaviour of Hb(n) for large n. Clearly, this undergoes

an important change at b = 1, as the series goes from being divergent to being convergent

as n → ∞. Hence, we will focus on the case where n → ∞ and b → 1.

In this case, we find that there are three different domains of asymptotic behaviour. When

b < 1 and |b − 1| log n is large, Hb(n) can be approximated by using an Euler-Maclaurin

series. This yields

Hb(n) ∼
n1−b

1 − b
−

1

1 − b
+ O (1) .

Alternatively, when b > 1 and |b− 1| log n is large, the sum can be approximated by starting

from the convergent infinite sum and subtracting off the terms from i = n+1 onwards. This
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yields

Hb(n) ∼ ζ(b) +
n−(b−1)

b − 1
+ O

(

n−b
)

.

Lastly, if |b − 1| log n is small, it is appropriate to expand the sum as follows:

Hb(n) =
n
∑

i=1

1

ib

=
n
∑

i=1

1

i
e−(b−1) log i. (A.2)

Expanding this exponential function as a Taylor series, we find that

Hb(n) ∼
n
∑

i=1

1

i
(1 − (b − 1) log i + . . .)

∼ log n + γ −
(b − 1)(log n)2

2
− (b − 1) γ1 + O

(

(b − 1)2(log n)3,
1

n

)

. (A.3)

Just as the asymptotic behaviour of the full problem depends on whether |a−2| log n is large

or small, we find that the behaviour of this toy problem depends on whether |b − 1| log n is

large or small. Interestingly, despite the fact that the connection between the three regimes

is not immediately obvious, the toy problem has the advantage that we can construct an

asymptotic series that is uniformly valid for all b.

To do this, we expand the exponential in (A.2) as an infinite series and change the order of

summation. This yields

Hb(n) =
∞
∑

j=0

n
∑

i=1

(−(b − 1) log i)j

j! i
.

Using Euler-Maclaurin series to find asymptotic expressions for

n
∑

i=1

(log i)j

i
,
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we ultimately obtain the result that

Hb(n) ∼ ζ(b) −
n−(b−1)

b − 1
−

∞
∑

k=1

Bk

k!
(b)k−1 n−(b−1+k), (A.4)

where Bk is the kth Bernoulli number and (b)k−1 = b·(b+1) · · · (b+k−2) is the Pochhammer

symbol. Note that this reduces to Bernoulli’s formula when b is a negative integer.

It is interesting to observe that the n−(b+1+k) terms in (A.4) arose from recombining series

of logarithmic terms. When b > 1, these give rise to terms that are exponentially small in

|b − 1| log n, while when b < 1 they yield terms that are exponentially large in |b − 1| log n.

In the full problem, we expect something similar to happen. A perturbation around a = 2 will

yield various terms in powers of |a− 2| log n. As |a− 2| log n grows larger, some of these will

combine to create exponentially large terms, whle others will combine to create exponentially

small terms. In this manner, we should see that the singular integral contribution is largest

when a < 2 while the differential operator contribution is largest when a > 2, thus giving rise

to the three domains observed. Further work is needed in order to confirm this conjecture.
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