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The last fraction of a fractional conjecture

Frantǐsek Kardoš∗ Daniel Král’† Jean-Sébastien Sereni‡

Abstract

Reed conjectured that for every ε > 0 and every integer ∆, there
exists g such that the fractional total chromatic number of every graph
with maximum degree ∆ and girth at least g is at most ∆ + 1 + ε.
The conjecture was proven to be true when ∆ = 3 or ∆ is even. We
settle the conjecture by proving it for the remaining cases.

1 Introduction

Fractional graph theory has led to many elegant and deep results in the
last three decades, broadening the range of applications of graph theory and
providing partial results and insights to many hard problems. In this paper,
we are interested in fractional total colorings of graphs. Total colorings form
an extensively studied topic—see the monograph by Yap [11]—with the Total
Coloring Conjecture of Behzad [1] and Vizing [10] being one of its grails.

Conjecture 1 (Total Coloring Conjecture). The total chromatic number of
every graph with maximum degree ∆ is at most ∆+ 2.
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The most important partial result toward the Total Coloring conjecture
to date is the following theorem proved by Molloy and Reed [7] in 1998.

Theorem 2. The total chromatic number of every graph with maximum
degree ∆ is at most ∆+ 1026.

As is often the case, the fractional analogue of Conjecture 1 turns out
to be easier to approach. Kilakos and Reed [5] proved in 1993 the following
fractional analogue of the Total Coloring Conjecture.

Theorem 3. The fractional total coloring number of every graph with max-
imum degree ∆ is at most ∆+ 2.

The graphs achieving the bound given in Theorem 3 have been identified
by Ito, Kennedy and Reed [2]: they are the complete graphs of even order
and the complete bipartite graphs with equal part sizes. Inspired by these
results, Reed [8] conjectured the following.

Conjecture 4. For every ε > 0 and every integer ∆, there exists g such that
the fractional total chromatic number of every graph with maximum degree
∆ and girth at least g is at most ∆+ 1 + ε.

Conjecture 4 was proven to be true when ∆ ∈ {3} ∪ {4, 6, 8, 10, . . .} by
Kaiser, Krá ’l and King [3] in the following stronger form.

Theorem 5. Let ∆ ∈ {3} ∪ {4, 6, 8, 10, . . .}. There exists g such that the
fractional total chromatic number of every graph with maximum degree ∆
and girth at least g is ∆+ 1.

The purpose of our work is to settle Conjecture 4 by proving that it also
holds for odd values of ∆. Our main theorem reads as follows.

Theorem 6. For every ε > 0 and every odd integer ∆ ≥ 5, there exists an
integer g such that for the fractional total chromatic number of every graph
with maximum degree ∆ and girth at least g is at most ∆+ 1 + ε.

The approach we use also yields a proof for the case where ∆ is even, and
thus a full proof of Conjecture 4. However, we restrict ourselves to the case
of odd ∆ ≥ 5, since a stronger result, Theorem 5, has been established [3].
Kaiser et al. [3] also conjectured that the statement of Theorem 5 also holds
for odd values of ∆.

Conjecture 7. Let ∆ ≥ 5 be an odd integer. There exists g such that the
fractional total chromatic number of every graph with maximum degree ∆
and girth at least g is ∆+ 1.

However, we were not able to settle this stronger conjecture.
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2 Definitions and notation

Let us start by defining the relevant concepts. For X ⊆ R, we define µ(X)
to be the Lebesgue measure of X . If G is a graph, then V (G), E(G) and
∆(G) are its vertex-set, edge-set and maximum degree, respectively. The
total graph T (G) of G is the graph with vertex-set V (G) ∪ E(G), where
two vertices are adjacent if and only if the corresponding elements of G are
adjacent or incident. In other words, xy ∈ E(T (G)) if and only if

• x, y ∈ V (G) and xy ∈ E(G), or

• x, y ∈ E(G) and x and y share a vertex in G, or

• x ∈ V (G), y ∈ E(G) and y is incident to x in G.

A total independent set of G is an independent set of T (G). Let Φ(G) be the
set of all total independent sets of G.

Consider a function w : Φ(G) → [0, 1] and let x ∈ V (T (G)). We define
w[x] to be the sum of w(I) over all I ∈ Φ(G) containing x. The mapping w
is a fractional k-total coloring of G if and only if

•
∑

I∈Φ(G) w(I) ≤ k; and

• w[x] ≥ 1 for every x ∈ V (T (G)).

Observe that G has a fractional k-total coloring if and only if there exists a
function c : V (T (G)) → 2[0,k] such that

• µ(c(x)) ≥ 1 for every x ∈ V (T (G)); and

• c(x) ∩ c(y) = ∅ for every edge xy ∈ E(T (G)).

Notice that the second condition is the same as to require that µ(c(X) ∩
c(Y )) = 0 whenever x and y are adjacent in T (G), since we consider only
finite graphs. The fractional total chromatic number of G is the infimum
of all positive real numbers k for which G has a fractional k-total coloring.
As is well-known, the fractional total chromatic number of a finite graph is
always a rational number and the infimum is actually a minimum.

A mapping w : Φ(G) → [0, 1] such that

•
∑

I∈Φ(G) w(I) = 1; and

• w[x] ≥ α for every x ∈ V (T (G))
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is a weighted α-total coloring of G. Observe that every fractional k-total
coloring yields a weighted 1

k
-total coloring w such that w[x] ≥ 1/k for every

x ∈ V (T (G)). Conversely, one can derive a fractional 1
α
-total coloring from

a weighted α-total coloring of G. There are many equivalent definitions of
a fractional coloring of a graph, and we refer to the book by Scheinerman
and Ullman [9] for further exposition about fractional colorings (and, more
generally, fractional graph theory).

We now introduce some additional notation. Two functions f, g : X → Y
agree on Z ⊆ X if the restrictions of f and g to Z are equal. Let G be a
graph and v ∈ V (G). For a spanning subgraph F of G, the degree of the
vertex v in F is degF (v). A spanning subgraph of G with maximum degree
at most 2 is a sub-2-factor of G. An ℓ-decomposition of G is a partition
of the edges of G into ⌈ℓ/2⌉ sub-2-factors, one of which is required to be a
matching if ℓ is odd.

Given a connected graph G, an edge-cut F of G is a subset of edges such
that the removal of F disconnects G. Note that removing a minimal edge-cut
splits G into exactly two connected components. An edge-cut F is cyclic if
every connected component of G− F contains a cycle. A graph is cyclically
k-connected if it has more than k edges and no cyclic edge-cut of size less
than k.

We also use the following terminology from [4]. Let H be a subgraph of
a connected graph G. A path P of G is an H-path if both end-vertices of P
belong to H but no internal vertex and no edge of P belongs to H . Given an
integer d, the subgraph H is d-closed if the length of every H-path is greater
than d. The d-connector of H in G is the smallest d-closed subgraph of G
that contains H . The neighborhood N(H) of H is the subgraph of G spanned
by all the edges of G with at least one end-vertex in H . We end this section
by citing a lemma of Kaiser et al. [4, Lemma 8] about connectors.

Lemma 8. Let d > ℓ ≥ 1. Suppose that H is a subgraph of G with at most
ℓ edges and no isolated vertices. If the girth of G is greater than (d + 1)ℓ,
then the neighborhood of the d-connector of H is a forest.

3 The cyclically ∆-edge-connected case

We find a fractional (∆ + 1 + ε)-total coloring of a given cyclically ∆-edge-
connected graph G with odd maximum degree ∆ ≥ 5 in the following way:
first, we decompose G into a matching and a set of sub-2-factors, we then
search for suitable weighted colorings corresponding to the factors and com-
bine them into a weighted 1

∆+1+ε
-total coloring of G.
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To find the decomposition, we use the following proposition [4, Proposi-
tion 1].

Proposition 9. Every cyclically ∆-edge-connected graph with maximum de-
gree ∆ has a ∆-decomposition.

For the next step, we need the following lemma.

Lemma 10. Fix a positive real number ε and a positive integer ∆ ≥ 4. There
is an integer g such that for every graph G with maximum degree ∆ and girth
at least g, and for every sub-2-factor F of G such that ∆(G − F ) ≤ ∆− 2,
there exists a weighted total coloring w of G such that

• ∀v ∈ V (G), w[v] ≥ 1
∆+ε

; and

• ∀f ∈ E(F ), w[f ] ≥ ∆−1
2(∆+ε)

.

Actually, Lemma 10 is implicit in [3]. More precisely, the following is
proven.

Lemma 11 ([3, Lemma 18]). Let ∆ ≥ 4. For every ε0 > 0, there exist
g ∈ N and α, β, γ ∈ R

+ satisfying (∆ − 2)α + β + 2γ = 1, α < ε0 such
that for every graph with maximum degree ∆ and girth at least g, and every
2-factor F of G, there exists a function w : Φ(G) → [0, 1] such that for every
x ∈ V (G) ∪ E(G)

w[x] =





β if x ∈ V (G),

γ if x ∈ E(F ),

α otherwise.

Actually, in Lemma 18, the parameter α is upper-bounded by 4/3ℓ, with
ℓ depending only on the girth of G; hence, it suffices to take g sufficiently
large to obtain the inequality stated in Lemma 11.

As a crucial observation, Kaiser et al. [3, Proposition 19] proved that in
Lemma 11 (Lemma 18 in [3]), the parameter β can be chosen to be any value
from the interval (ε0, Q(1)) for a function Q defined in [3]. A more careful
upper bound of one of the parameters in the proof of their Proposition 19
allows us to ensure that β can be chosen to be 1

∆+ε
: it suffices to prove that

Q(1) ≥ 1
∆
. For ∆ ∈ {4, 5, 6} it can be checked directly, and for ∆ ≥ 7 we

have

Q(1) =
1− F (1)2

2
where F (1) ≤ 1−

1

∆− 2
.

Since it holds that

1−
1

∆− 2
≤

√
1−

2

∆
,
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the inequality Q(1) ≥ 1
∆

follows.
We are now ready to explain how to derive Lemma 10 from Lemma 11.

Proof of Lemma 10. Set ε0 :=
ε

(∆−2)(∆+ε)
, and let g, α, β, γ be the constants

given by Lemma 11. Let G be a graph with maximum degree ∆ and girth
at least g, and F be a sub-2-factor of G. We first build an auxiliary graph
Ĝ as follows.

Set k :=
∑

v∈V (G)(2−degF (v)). We view G as the subgraph of the multi-

graph G′ obtained by adding to G a new vertex v0 and, for each v ∈ V (G),
adding 2 − degF (v) edges between v0 and v. Thus, degG′(v0) = k and every
other vertex of G′ has degree at most ∆, since ∆(G − F ) ≤ ∆ − 2. Let H
be a k-regular graph of girth at least g. The existence of such a graph is
well-known, consult, e.g., the book by Lovász [6, Solution of Problem 10.12].
Replace every vertex x of H by a copy Gx of G and identify the k edges
incident with x in H with the k edges of G′ incident with v0. Let Ĝ be the
obtained graph. For x ∈ V (H), let Fx be the set of edges of Gx corresponding

to the edges of G that are in F . Define F̂ to be the union of
⋃

x∈V (H) Fx and

the edges corresponding to those of H ; thus F̂ is a 2-factor of Ĝ.
By the construction, Ĝ has maximum degree ∆ and girth at least g. Thus,

Lemma 11 ensures the existence of a weighted total coloring w of Ĝ such that
α ≤ ε0, the weight of the vertices is β = 1

∆+ε
and the weight of the edges in

F̂ is

γ =
1

2
(1− (∆− 2)α− β) ≥

1

2

(
1−

ε

∆+ ε
−

1

∆ + ε

)
=

∆− 1

2(∆ + ε)
.

This yields the conclusion since Ĝ contains G as a subgraph and F̂ contains
F .

We conclude the section by proving Theorem 6 restricted to cyclically
∆-edge-connected graphs of maximum degree ∆.

Lemma 12. Let ∆ be an odd integer and ε a positive real. There exists g
such that the fractional total chromatic number of every cyclically ∆-edge-
connected graph with maximum degree ∆ and girth at least g is at most
∆+ 1 + ε.

Proof. We may assume that ∆ ≥ 5. Set k := ⌊∆/2⌋ and ε′ := ε/2. Let g be
large enough so that Lemma 10 holds for the fixed values of ∆ and ε′.

By Proposition 9, the graph G has a ∆-decomposition M,F1, F2, . . . , Fk

where M is a matching. In particular, ∆(G−Fi) ≤ ∆− 2 for i ∈ {1, . . . , k}.
For every i ∈ {1, 2, . . . , k}, let w′

i be a weighted total coloring of G given
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by Lemma 10 applied to G and Fi with respect to ∆ and ε′. Further, let
w′

0 be the weighted total coloring of G that assigns 1 to the set M and 0
to every other total independent set of G. Finally, set wi :=

2k+1
2k(k+1)

· w′

i for

i ∈ {1, 2 . . . , k} and w0 :=
1

2k+2
· w′

0.
A weighted 1/(∆ + 1 + ε)-coloring w : Φ(G) → R is defined by setting

w :=
∑k

i=0wi. Note that w is a weighted total coloring of G since it is a
convex combination of weighted total colorings of G.

It remains to show that w[x] is at least 1
∆+1+ε

= 1
2k+2+ε

for every x ∈

V (T (G)). Let v ∈ V (G). Then, wi[v] ≥ 1
∆+ε′

= 2
2(2k+1)+ε

for each i ∈

{1, 2, . . . , k}, and hence

w[v] ≥
k∑

i=1

wi[v]

≥ k ·
2k + 1

2k(k + 1)
·

2

2(2k + 1) + ε

=
1

(k + 1) ·
(
2 + ε

2k+1

)

>
1

2k + 2 + ε
.

Now, let e ∈ E(G). If e ∈ M , then w[e] ≥ w0(M) = 1
2k+2

. Otherwise, there
exists a unique i ∈ {1, 2, . . . , k} such that e ∈ E(Fi). Then,

w[e] ≥ wi[e] ≥
2k + 1

2k(k + 1)
·

2k

2(2k + 1 + ε′)
=

1

(k + 1) ·
(
2 + ε

2k+1

) >
1

2k + 2 + ε
.

This concludes the proof.

4 The general case

We start with an auxiliary lemma regarding recoloring of trees.

Lemma 13. Fix ε > ε′ > 0 and a positive integer ∆. There exists an integer
d such that the following holds.

• For every tree T rooted at a leaf r, with maximum degree ∆ and depth
d,

• for every fractional (∆ + 1 + ε′)-total coloring c0 of T with colors con-
tained in [0,∆+ 1 + ε′], and

7



I1 I2 Ik Ik+1 Is I0

K1 K2 Kk Jk

Kk+1

K1 K2 Kk Jk+1 Kk+1

Jk

K1 K2 Kk Kk+1 Jk+1

π2k

π2k+1

π2k+2

σ2k+1

σ2k+2

Figure 1: An illustration of the actions of the isometries π2k+1 and π2k. The
colors in Kk+1 are not used on level 2k + 1, and the colors in Jk+1 are not
used on level 2k + 2. Moreover, π2k and π agree on I1 ∪ . . . ∪ Ik.

• for every pair of disjoint sets X, Y ⊂ [0,∆+ 1 + ε] each of measure 1,

there exists a fractional (∆ + 1 + ε)-total coloring c of T such that

1. c(r) = X and c(rr′) = Y where r′ is the unique neighbor of r in T , and

2. c agrees with c0 on all leaves and edges incident with leaves that are at
distance d from r.

Proof. Without loss of generality, we may assume that T is ∆-regular, i.e.,
every vertex of T has degree either 1 or ∆, and all leaves are at distance d
from r. Set δ := ε − ε′, s :=

⌈
∆+1+ε′

δ

⌉
and d := 2s + 1. We partition the

vertices and edges of T into levels regarding their distance (in the total graph
of T ) from r. More precisely, the root r has level d, and for every i ≥ 0, the
level of a vertex at distance i (in T ) from r is d − i. Thus, the leaves of T
distinct from r have level 0. The level of an edge that joins a vertex of level
i with a vertex of level i+ 1 is i.

We fix an isometry π of [0,∆ + 1 + ε] such that π(c0(r)) = X and
π(c0(rr

′)) = Y . This is possible since µ(c0(r)) = µ(c0(rr
′)) = µ(X) =

µ(Y ) = 1 and c0(r) ∩ c0(rr
′) = ∅ = X ∩ Y . Let I1, . . . , Is be a partition of

[0,∆ + 1 + ε′] into sets of measure δ, except Is which may have a smaller
measure; let I0 = (∆+1+ε′,∆+1+ε]. We set Kk := π(Ik) for k ∈ {1, . . . , s}.

Let π0 be the identity mapping of [0,∆+1+ε]. We use a finite induction
to define a sequence π1, . . . , π2d of isometries of [0,∆ + 1 + ε] such that for
each k, the isometries π2k and π agree on the sets I1, . . . , Ik. The definition
may be better digested with a look at Figure 1.
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Let k ∈ {0, . . . , s−2} and assume that π2k is an isometry of [0,∆+1+ ε]
such that

∀i ∈ {1, . . . , k}, ∀t ∈ Ii, π2k(t) = π(t) .

Let Jk := π2k(I0), so J0 = I0.
In the odd step, we fix an isometry σ2k+1 : Jk → Kk+1 such that the

restriction of σ2k+1 to Jk∩Kk+1 is the identity mapping. The isometry π2k+1

of [0,∆+ 1 + ε] is defined by

π2k+1(t) :=





σ2k+1(π2k(t)) if t ∈ π−1
2k (Jk) = I0,

σ−1
2k+1(π2k(t)) if t ∈ π−1

2k (Kk+1),

π2k(t) otherwise.

For i ∈ {1, . . . , k}, if t ∈ Ii then t /∈ π−1
2k (Kk+1) since π2k(t) = π(t) ∈ Ki, and

t /∈ I0 since I0 ∩ Ii = ∅. Therefore,

∀i ∈ {1, . . . , k}, ∀t ∈ Ii, π2k+1(t) = π2k(t) = π(t) .

Note that π2k+1(I0) = Kk+1. Let Jk+1 := π2k+1(Ik+1). Since π2k+1 is an
isometry, Jk+1 ∩Ki = ∅ for all i ∈ {1, . . . , k + 1}.

In the even step, we first define the isometry σ2k+2 : Jk+1 → Kk+1 by the
condition σ2k+2(π2k+1(t)) = π(t) for every t ∈ Ik+1. Next, the isometry π2k+2

of [0,∆+ 1 + ε] is defined by

π2k+2(t) :=





σ2k+2(π2k+1(t)) if t ∈ Ik+1,

σ−1
2k+2(π2k+1(t)) if t ∈ I0,

π2k+1(t) otherwise.

It follows directly from the definition of π2k+2 that

∀i ∈ {1, . . . , k + 1}, ∀t ∈ Ii, π2k+2(t) = π(t) .

Notice that π2k+2(I0) = Jk+1.
When k = s − 1, the set Kk+1 = Ks can have measure smaller than

δ. We partition Js−1 := π2s−2(I0) into two sets J ′

s−1 and J ′′

s−1 such that
µ(J ′

s−1) = µ(Ks). We then continue in the same manner and define an
isometry π2s−1 that agrees with π on all the sets Ii with i ∈ {1, . . . , s − 1}
and π2s−1(I0) = Ks ∪ J ′′

s−1. Finally, we define an isometry π2s that agrees
with π on [0,∆+ 1 + ε′].

Let us now define a coloring c : V (T ) ∪ E(T ) → 2[0,∆+1+ε] as follows:

c(x) :=

{
πi(c0(x)) if x has level i ∈ {0, . . . , 2s},

X if x = r.
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Since πi is an isometry for i ∈ {0, . . . , 2s} and c0 is a fractional total
coloring of T , we have µ(c(x)) ≥ 1 for all x ∈ V (T ) ∪ E(T ). To prove
that c is a fractional (∆ + 1 + ε)-total coloring of T it suffices to prove that
c(x) ∩ c(y) = ∅ if x and y are adjacent or incident in T . The levels of x
and y can differ by at most 1. If the levels of x and y are the same, then
c0(x) ∩ c0(y) = ∅ since c0 is a fractional total coloring of T . Hence,

c(x) ∩ c(y) = πi(c0(x)) ∩ πi(c0(y)) = ∅ .

Let x be a vertex or an edge of level i and let y be a vertex or an edge
adjacent to x of level i+ 1, with i ∈ {0, . . . , 2s− 1}. Since c0(x)∩ c0(y) = ∅,
we have πi(c0(x)) ∩ πi(c0(y)) = ∅ as well. Since c0 uses only colors from the
interval [0,∆+ 1 + ε′], we also have πi(c0(x)) ∩ πi(I0) = ∅. The isometry σi

interchanges (some of the) colors from πi(I0) (not used in the level i) with
some of the other colors, and hence, c(y) = πi+1(c0(y)) ⊆ πi(c0(y)) ∪ πi(I0).
Therefore,

c(x) ∩ c(y) ⊆ (πi(c0(x)) ∩ πi(c0(y))) ∪ (πi(c0(x)) ∩ πi(I0)) = ∅ .

If x has level 2s and y has level 2s+1, then y = r and c(y) = X = π(c0(r)).
On the other hand, c(x) = π2s(c0(x)) = π(c0(x)). Therefore, the sets are
disjoint. To conclude, notice that c(x) = c0(x) for all vertices and edges of
level 0 and that c(rr′) = π2s(c0(rr

′)) = π(c0(rr
′)) = Y .

We are now ready to prove Theorem 6.

Proof of Theorem 6. Fix ε′ ∈ (0, ε). Let d be large enough so that Lemma 13
holds for the values of ∆, ε′ and ε. Set d0 := 2d+2 and let g be greater than
(d0 + 1) ·∆ and such that Lemma 12 holds for ∆ and ε′.

We proceed by induction on |E(G)|, the conclusion being trivial when
|E(G)| ≤ ∆. Now, if G is cyclically ∆-edge-connected, then Lemma 12
yields the result (since ε > ε′). So, we assume that G is not cyclically ∆-
edge-connected. Let F be a (minimal) cyclic edge-cut of G such that |F | < ∆
and G−F is composed of two connected components A and B such that |B|
is minimized.

Let F ′ be the d0-connector of F in the subgraph GX of G induced by
B ∪ F . We now show that the subgraph GA of G induced by A∪N(F ′) has
less edges than G. By Lemma 8, we know that N(F ′) is a forest. On the
other hand, B contains a cycle and hence |E(N(F ′)) \ F | < |E(B)| (since
N(F ′) is contained in GX and the subgraph induced by F is acyclic by the
girth requirement). Hence, GA has less edges than G, maximum degree at
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most ∆ and girth at least g. Therefore, there exists a fractional (∆+ 1+ ε)-
total coloring cA of GA: if the maximum degree of GA is ∆, then this follows
from the induction hypothesis, and otherwise it follows from Theorem 3.

Let GB be the graph obtained from G by contracting A into a single
vertex w, and then subdividing ⌊g/2⌋ times each edge incident with w; thus
the distance between w and B in GB is greater than ⌊g/2⌋. Hence, the girth
of GB is at least g. Since GB contains more than ∆ edges, GB is cyclically
∆-edge-connected, because any cyclic edge-cut of GB yields a cyclic edge-
cut of G of at most the same order, and whose removal splits G into two
components one of which is smaller than B. Consequently, Lemma 12 ensures
the existence of a fractional (∆ + 1 + ε′)-total coloring cB of GB.

Let E be the set of edges xy of G with x ∈ V (F ′) and y ∈ V (B) \ V (F ′),
i.e., e is in N(F ′) but not in F ′. For every e = xy ∈ E with x ∈ V (F ′),
let T0(y) be the subgraph of GX − V (F ′) induced by the vertices at distance
at most d from y. Let T (e) be the graph obtained from T0(y) by adding x
and the edge e = xy. Observe that T (e) is a tree, because the girth g of G
is greater than 2d + 2. Moreover, if e′ = x′y′ ∈ E is distinct from e (and
x′ ∈ V (F ′)), then T (e) and T (e′) are vertex-disjoint unless x = x′ and then
x is the unique common vertex of T (e) and T (e′), because F ′ is d0-closed.

Now, for every edge e = xy ∈ E , we apply Lemma 13 to the tree T (e)
with c0 := cB, r := x, X := cA(x) and Y := cA(e). This yields a fractional
(∆ + 1 + ε)-total coloring ce of T (e), which agrees with cB on all the leaves
and edges incident to a leaf that are at distance d from x, if any.

The property of disjointness of the trees ensures that cB along with all
the colorings ce for e ∈ E yield a fractional (∆ + 1 + ε)-total coloring c′ of
the subgraph B′ of G spanned by B − F ′ and E .

Since GA ∪ B′ = G and the colorings cA and c′ agree on all the edges in
E and all the vertices of F ′ that are incident to an edge in E , we obtain a
fractional (∆ + 1 + ε)-total coloring of G, as wanted.
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