ON CHEBYSHEV POLYNOMIALS OF MATRICES

VANCE FABER*, JORG LIESEN', AND PETR TICHY?

Abstract. The mth Chebyshev polynomial of a square matrix A is the monic polynomial that
minimizes the matrix 2-norm of p(A) over all monic polynomials p(z) of degree m. This polynomial
is uniquely defined if m is less than the degree of the minimal polynomial of A. We study general
properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations
of well known properties of Chebyshev polynomials of compact sets in the complex plane. We also
derive explicit formulas of the Chebyshev polynomials of certain classes of matrices, and explore the
relation between Chebyshev polynomials of one of these matrix classes and Chebyshev polynomials
of lemniscatic regions in the complex plane.
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1. Introduction. Let A € C™"*" be a given matrix, let m > 1 be a given integer,
and let M,, denote the set of complex monic polynomials of degree m. We consider
the approximation problem

i Al 1.1
Jin [lp(A)] (1.1)
where | - || denotes the matrix 2-norm (or spectral norm). As shown by Greenbaum

and Trefethen [11, Theorem 2] (also cf. [13, Theorem 2.2]), the problem (1.1) has a
uniquely defined solution when m is smaller than d(A), the degree of the minimal
polynomial of A. This is a nontrivial result since the matrix 2-norm is not strictly
convex, and approximation problems in such norms are in general not guaranteed to
have a unique solution; see [13, pp. 853-854] for more details and an example. In this
paper we assume that m < d(A), which is necessary and sufficient so that the value
of (1.1) is positive, and we denote the unique solution of (1.1) by T/4(z). Note that if
A € R™*™ then the Chebyshev polynomials of A have real coefficients, and hence in
this case it suffices to consider only real monic polynomials in (1.1).

It is clear that (1.1) is unitarily invariant, i.e., that T/2(z) = TY AV(z) for any
unitary matrix U € C"*". In particular, if the matrix A is normal, i.e., unitarily
diagonalizable, then

. O — \
oin. [p(A)l Jmin - max Ip(N)],

where A(A) denotes the set of the eigenvalues of A. The (uniquely defined) mth
degree monic polynomial that deviates least from zero on a compact set 2 in the
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complex plane is called the mth Chebyshev polynomial' of the set Q. We denote this
polynomial by T5(z).

The last equation shows that for a normal matrix A the matrix approximation
problem (1.1) is equal to the scalar approximation problem of finding 7AW (z), and in
fact TA(2) = T (z). Because of these relations, the problem (1.1) can be considered
a generalization of a classical problem of mathematics from scalars to matrices. As a
consequence, Greenbaum and Trefethen [11] as well as Toh and Trefethen [25] have
called the solution 74(z) of (1.1) the mth Chebyshev polynomial of the matriz A
(regardless of A being normal or not).

A motivation for studying the problem (1.1) and the Chebyshev polynomials of
matrices comes from their connection to Krylov subspace methods, and in particular
the Arnoldi method for approximating eigenvalues of matrices [2]. In a nutshell, after
m steps of this method a relation of the form AV, = V,,H,, + rnel is computed,
where H,, € C"™*™ is an upper Hessenberg matrix, r,, € C" is the mth “residual” vec-
tor, e,, is the mth canonical basis vector of C™, and the columns of V,,, € C"**™ form
an orthonormal basis of the Krylov subspace K., (A4, v1) = span{vy, Avy, ..., A" tog }.
The vector v; € C™ is an arbitrary (nonzero) initial vector. The eigenvalues of H,,
are used as approximations for the eigenvalues of A. Note that r,, = 0 if and only
if the columns of V,,, span an invariant subspace of A, and if this holds, then each
eigenvalue of H,, is an eigenvalue of A.

As shown by Saad [15, Theorem 5.1], the characteristic polynomial ¢, of H,,
satisfies

m(A = mi A)vy||. 1.2
lom(AJorll = min [p(A)vn] (1.2)

An interpretation of this result is that the characteristic polynomial of H,, solves the
Chebyshev approximation problem for A with respect to the given starting vector v;.
Saad pointed out that (1.2) “seems to be the only known optimality property that
is satisfied by the [Arnoldi] approximation process in the nonsymmetric case” [16,
p. 171]. To learn more about this property, Greenbaum and Trefethen [11, p. 362]
suggested “to disentangle [the] matrix essence of the process from the distracting
effects of the initial vector”, and hence study the “idealized” problem (1.1) instead of
(1.2). They referred to the solution of (1.1) as the mth ideal Arnoldi polynomial of A
(in addition to the name mth Chebyshev polynomial of A).

Greenbaum and Trefethen [11] seem to be the first who studied existence and
uniqueness of Chebyshev polynomials of matrices. Toh and Trefethen [24] derived
an algorithm for computing these polynomials based on semidefinite programming;
see also Toh’s PhD thesis [21, Chapter 2]. This algorithm is now part of the SDPT3
Toolbox [23]. The paper [24] as well as [21] and [26, Chapter 29] give numerous
computed examples for the norms, roots, and coefficients of Chebyshev polynomials
of matrices. It is shown numerically that the lemniscates of these polynomials tend
to approximate pseudospectra of A. In addition, Toh has shown that the zeros of
TA(z) are contained in the field of values of A [21, Theorem 5.10]. This result is
part of his interesting analysis of Chebyshev polynomials of linear operators in infinite
dimensional Hilbert spaces [21, Chapter 5]. The first explicit solutions for the problem

IPafnuti Lvovich Chebyshev (1821-1894) determined the polynomials 75} (2) of Q = [—a, a] (a real
interval symmetric to zero) in his 1859 paper [5], which laid the foundations of modern approximation
theory. We recommend Steffens’ book [18] to readers who are interested in the historical development
of the subject.
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(1.1) for a nonnormal matrix A we are aware of have been given in [13, Theorem 3.4].
It is shown there that T4(z2) = (z — \)™ if A = Jy, a Jordan block with eigenvalue
A € C. Note that in this case the Chebyshev polynomials of A are independent of the
size of A.

The above remarks show that the problem (1.1) is a mathematically interesting
generalization of the classical Chebyshev problem, which has an important appli-
cation in the area of iterative methods. Yet, our survey of the literature indicates
that there has been little theoretical work on Chebyshev polynomials of matrices (in
particular when compared with the substantial work on Chebyshev polynomials for
compact sets). The main motivation for writing this paper was to extend the existing
theory of Chebyshev polynomials of matrices. Therefore we considered a number of
known properties of Chebyshev polynomials of compact sets, and tried to find matrix
analogues. Among these are the behavior of T4 (z) under shifts and scaling of A,
a matrix analogue of the “alternation property”, as well as conditions on A so that
TA(2) is even or odd (Section 2). We also give further explicit examples of Chebyshev
polynomials of some classes of matrices (Section 3). For a class of block Toeplitz ma-
trices, we explore the relation between their Chebyshev polynomials and Chebyshev
polynomials of lemniscatic regions in the complex plane (Section 4).

All computations in this paper have been performed using MATLAB [20]. For
computing Chebyshev polynomials of matrices we have used the DSDP software pack-
age for semidefinite programming [3] and its MATLAB interface.

2. General results. In this section we state and prove results on the Chebyshev
polynomials of a general matrix A. In later sections we will apply these results to
some specific examples.

2.1. Chebyshev polynomials of shifted and scaled matrices. In the fol-
lowing we will write a complex (monic) polynomial of degree m as a function of the

variable 2 and its coefficients. More precisely, for = [x¢, ..., Zm_1]7 € C™ we write
m—1

p(zyz) = ;2 € My, (2.1)
7=0

Let two complex numbers, « and 3, be given, and define § = § — . Then

p(B+zx) =p((B—a)+ (a+2);2) = (0 + (a+ 2)) mzf;cjwr (o +2))
j=0
i( >5m Ha+z) — ng;i%@)éjf(mrz)f
=(a+2)"+ 7:_: ((T) M (a+ 2) - ;i% (‘2) 6 (a + z)é>
(a+ 2) :1 T: <E>5fﬂu— @) 5™ | (o + 2)? (2.2)
= <a+z>m—7_:yj<a+z>f
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A closer examination of (2.2) shows that the two vectors y and x in the identity
pla+ z;y) = p(B + z;x) are related by

" OF @ @ o (T m L
Y1 B (1)5 (1)6 ( 1 )‘5m 1 B (1)6m
Ym-1 (mo1)0° Tm—1 (am1)0"
We can write this as
y = hs(x), where hs(x)= Msx — vs. (2.3)

The matrix Ms € C™*™ is an invertible upper triangular matrix; all its diagonal
elements are equal to 1. Thus, for any § € C,

hs : ©+— Msz — vs

is an invertible affine linear transformation on C™. Note that if § = 0, then Mg =TI
(the identity matrix) and vs = 0, so that y = x.

The above derivation can be repeated with af, 8I, and A replacing «, 3, and z,
respectively. This yields the following result.

LEMMA 2.1. Let A C"*", € C™, a € C, and B € C be given. Then for any
monic polynomial p of the form (2.1),

p(BI + Ajz) = p(al + A; hs(z)), (2.4)
where 6 = — «, and hs is defined as in (2.3).
The assertion of this lemma is an ingredient in the proof of the following theorem.

THEOREM 2.2. Let A € C"*", a € C, and a positive integer m < d(A) be given.
Denote by TA(2) = p(z;x.) the mth Chebyshev polynomial of A. Then the following
hold:

' A+al)|| = mi A TAYAL () = p(z: h_ o (24 2.
nin. [p(A+ al) nin. (A, m (2) = p(zshoa(d)),  (2.5)

where h_,, is defined as in (2.3), and

Jnin |p(ad)]| = |a™ min [[p(A)], m’ (2) = p(2; Daws) (2.6)
where D, = diag(a™,a™ 1, ... ).

Proof. We first prove (2.5). Equation (2.4) with 8 = 0 shows that p(A;x) =
p(A+ al;h_q(z)) holds for any x € C™. This yields

in [p(A+al)| = min [[p(A+al;2)| = min [[p(A+al;h_q
Jmin lp(A+al)|l = min |lp(A+al;2)| = min |p(A+al;h_o(@))]

— i _A; — i _A
Jnin [[p(A; z)l| = min [[p(A)]

(here we have used that the transformation h_,, is invertible). To see that the poly-
nomial p(z;h_q(2.)) is indeed the mth Chebyshev polynomial of A + al, we note
that

Ip(A+ alihoa(@))]| = [p(Aiz)] = min [p(4)] = min [p(4+al)].
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The equations in (2.6) are trivial if & = 0, so we can assume that o # 0. Then
the matrix D, is invertible, and a straightforward computation yields

min [|jp(ad)]| = min [p(ad;z)| =la|™ min |p(A; Dy'2)] = |a™ min |p(4;2)]

«|/™ min A)ll.
o™ win [lp(4)]

Furthermore,

A: Dozl = o™ [Ip(A; 2.)]| = [o|™ mi Al = mi A,
[p(ad; Doz )|l = [ ™ [Ip(A; 2.) || = |e] min. p(A)l min. [p(cA)]|

so that p(z; Dyx.) is the mth Chebyshev polynomial of the matrix aA. O

The fact that the “true” Arnoldi approximation problem, i.e., the right hand side
of (1.2), is translation invariant has been mentioned previously in [11, p. 361]. Hence
the translation invariance of the problem (1.1) shown in (2.5) is not surprising. The
underlying reason is that the monic polynomials are normalized “at infinity”.

The result for the scaled matrices in (2.6), which also may be expected, has
an important consequence that is easily overlooked: Suppose that for some given
A € C"*™ we have computed the sequence of norms of the problem (1.1), i.e., the
quantities

T A T AL 1T A -

If we scale A by « € C, then the norms of the Chebyshev approximation problem for
the scaled matriz aA are given by

e 1T A, ol 175 A, ol T3 A, -

A suitable scaling can therefore turn any given sequence of norms for the problem
with A into a strictly monotonically decreasing (or, if we prefer, increasing) sequence
for the problem with aA. For example, the matrix

1 2 3
A=|4 5 6
7T 8 9
yields

ITsH (A =1, IT{H(A)]| ~ 11.4077, T3} (A)]| =9,

cf. [26, p. 280] (note that by definition T§'(z) = 1 for any matrix A). The correspond-
ing norms for the scaled matrices % - A and 12 - A are then (approximately) given
by

1, 0.95064, 0.0625, and 1, 136.8924, 1296,

respectively. In general we expect that the behavior of an iterative method for solving
linear systems or for approximating eigenvalues is invariant under scaling of the given
matrix. In particular, by looking at the sequence of norms of the problem (1.1) alone
we cannot determine how fast a method “converges”. In practice, we always have
to measure “convergence” in some relative (rather than absolute) sense. Note that
the quantity minpeaq,, [|[P(A)||/||A™] is independent of a scaling of the matrix A, and
hence in our context it may give relevant information. We have not explored this
topic further.
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2.2. Alternation property for block diagonal matrices. It is well known
that Chebyshev polynomials of compact sets €2 are characterized by an alternation
property. For example, if Q = [a,b] is a finite real interval, then p(z) € M,, is the
unique Chebyshev polynomial of degree m on € if and only if p(2) assumes its extreme
values +max,cq [p(z)| with successively alternating signs on at least m + 1 points
(the “alternation points”) in Q; see, e.g., [4, Section 7.5]. There exist generalizations
of this classical result to complex as well as to finite sets {; see, e.g., [6, Chapter 3]
and [4, Section 7.5]. The following is a generalization to block-diagonal matrices.

THEOREM 2.3. Consider a block-diagonal matriz A = diag(Ay, ..., Ap), let k =
maxi<;<p d(A;), and let £ be a given positive integer such that k- € < d(A).
Then the matriz T, (A) = diag(T, (A1), ..., T, (Ar)) has at least £ + 1 diagonal
blocks T, (A;) with norm equal to | T, (A)].

Proof. The assumption that k - £ < d(A) implies that T},(2) is uniquely defined.
For simplicity of notation we denote B = T{,(A) and B; = T¢,(4;), 5 = 1,...,h.

Without loss of generality we can assume that |B|| = ||B1]| = -+ > || Bx]|-
Suppose that the assertion is false. Then there exists an integer i, 1 < i < /|
so that |[B]| = [Bill = - = |Bill > [Bisall. Let 6 = |[BJ — | Biall > 0, and let

g;(2) € My, be a polynomial with ¢;(A;) =0, 1 < j < h. Define the polynomial

4
t(z) =[] ¢i(2) € Mpe
Jj=1

Let € be a positive real number with

]

€< .
0 t(A;
+ max (A,

Then 0 < € < 1, and hence
re(z) = (1— )T, (2) + €t(z) € My
Note that [[re(A)[| = maxi<j<n [[re(4;)]-

For 1 < j <1, we have [[rc(4;)[| = (1 —¢) [|Bjl| = (1 —¢) [ B|| < | B]]-
For i +1 < j < h, we have

[l7e(A5)ll

I(1 =€) Bj +et(4;)]]

) IBjl + ellt(A;)ll

€) | Biyall +€l[t(A;)]]

) (1Bl = 8) + el[t(A))]

) IBIl + € (6 + [[E(Az)]) — 0.

(
(
(
(

[VANVAN

™

(
1
1
1
1

Since € (0 + ||t(A4;)]|) — d < 0 by the definition of €, we see that ||r.(4;)|| < ||B|| for
i+1 < j < h. But this means that ||r.(A)|| < || BJ|, which contradicts the minimality
of the Chebyshev polynomial of A. O

The numerical results shown in Table 2.1 illustrate this theorem. We have used
a block diagonal matrix A with 4 Jordan blocks of size 3 x 3 on its diagonal, so that
k = 3. Theorem 2.3 then guarantees that Tg%(A), {=1,2,3, has at least /41 diagonal
blocks with the same maximal norm. This is clearly confirmed for £ = 1 and ¢ = 2
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TABLE 2.1
Numerical illustration of Theorem 2.3: Here A = diag(A1, Az, Az, Ay), where each Aj = J/\j
is a 3 X 3 Jordan block. The four eigenvalues are —3, —0.5, 0.5, 0.75.

m | 1 Ta (A | 1Ta (Al | 173 (As)] | 1T (Aa)]
1 2.6396 1.4620 2.3970 2.6396
2 4.1555 4.1555 3.6828 4.1555
3 9.0629 5.6303 7.6858 9.0629
4| 14.0251 | 14.0251 | 11.8397 |  14.0251
5| 223872 | 20.7801 | 17.6382 |  22.3872
6 | 22.6857 | 22.6857 | 20.3948 |  22.6857

(it also holds for £ = 3). For these ¢ we observe that exactly ¢ + 1 diagonal blocks
achieve the maximal norm. Hence in general the lower bound of £+ 1 blocks attaining
the maximal norm in step m = k - £ cannot be improved. In addition, we see in
this experiment that the number of diagonal blocks with the same maximal norm is
not necessarily a monotonically increasing function of the degree of the Chebyshev
polynomial.

Now consider the matrix

11
A = ding(Ar o) = |
N
Then for p(z) = 22 — az — f € Ma we get
1—(a+B) 2 -«
_ 1—(a+p)
p(4) = I—(@th) —2-a
1—(a+p)

For oo = 0 and any S € R we will have ||p(4)|| = ||[p(A1)|| = ||p(Az2)||. Hence there are
infinitely many polynomials p € My for which the two diagonal blocks have the same
maximal norm. One of these polynomials is the Chebyshev polynomial T5!(2) = 22+1.
As shown by this example, the condition in Theorem 2.3 on a polynomial p € M.,
that at least £ 4+ 1 diagonal blocks of p(A) have equal maximal norm is in general
necessary but not sufficient so that p(z) = T2,(2).

Finally, as a special case of Theorem 2.3 consider a matrix A = diag(A1,...,An)
with distinct diagonal elements A1,..., A\, € C. If m < n, then there are at least
m + 1 diagonal elements \; with |T2(\;)| = |[TA(A)| = maxi<i<, [TA(N\;)|. Note
that T/2(2) in this case is equal to the mth Chebyshev polynomial of the finite set
{A1,..., A} C C. This shows that the Chebyshev polynomial of degree m of a set in
the complex plane consisting of n > m 4+ 1 points attains its maximum value at least
at m 4+ 1 points.

2.3. Chebyshev polynomials with known zero coefficients. In this section
we study properties of a matrix A so that its Chebyshev polynomials have known
zero coefficients. An extreme case in this respect is when T4(2) = 2™, i.e., when all
coefficients of T2(z), except the leading one, are zero. This happens if and only if

A7 = min [lp(a)].
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Equivalently, this says that the zero matrix is the best approximation of A™ from the
linear space span{l, 4,..., A~} (with respect to the matrix 2-norm). To charac-
terize this property, we recall that the dual norm to the matrix 2-norm || - || is the
trace norm (also called energy norm or ¢;-norm),

M= oy(M), (2.7)
j=1
where o1(M),...,0.(M) denote the singular values of the matrix M € C"*™ with
rank(M) = r. For X € C"*" and Y € C"*" we define the inner product (X,Y) =
trace(Y*X). We can now adapt a result of Zigtak [28, p. 173] to our context and
notation.

THEOREM 2.4. Let A € C™*" and a positive integer m < d(A) be given. Then
TA(z) = 2™
if and only if there exists a matriz Z € C**™ with ||| Z ||| = 1, such that
(z2,A¥y =0, k=0,...,m—1, and  Re (Z,A™) = || A™]. (2.8)

As shown in [13, Theorem 3.4], the mth Chebyshev polynomial of a Jordan block
Jy with eigenvalue A € C is given by (z — A\)™. In particular, the mth Chebyshev
polynomial of Jy is of the form 2™. A more general class of matrices with T4 (z) = 2™
is studied in Section 3.1 below.

It is well known that the Chebyshev polynomials of real intervals that are sym-
metric with respect to the origin are alternating between even and odd, i.e., every
second coefficient (starting from the highest one) of T “*(z) is zero, which means
that T “(2) = (=1)T}, **(=2). We next give an analogue of this result for
Chebyshev polynomials of matrices.

THEOREM 2.5. Let A € C"*"™ and a positive integer m < d(A) be given. If there
exists a unitary matriz P such that either P*AP = —A, or P*AP = — A", then

T (2) = (=1)" T (). (2.9)

Proof. We only prove the assertion in case P* AP = —A; the other case is similar.
If this relation holds for a unitary matrix P, then

I(=1)" T (=)l = IT (P*AP)|| = [|P* T (A)PI| = | T (A)] = ,in lp(A)],

and the result follows from the uniqueness of the mth Chebyshev polynomial of A. O

As a special case consider a normal matrix A and its unitary diagonalization
U*AU = D. Then TA(z) = T2 (z), so we may only consider the Chebyshev polyno-
mial of the diagonal matrix D. Since D = DT, the conditions in Theorem 2.5 are
satisfied if and only if there exists a unitary matrix P such that P*DP = —D. But
this means that the set of the diagonal elements of D (i.e., the eigenvalues of A) must
be symmetric with respect to the origin (i.e., if ; is an eigenvalue, —J; is an eigen-
value as well). Therefore, whenever a discrete set  C C is symmetric with respect
to the origin, the Chebyshev polynomial T5}(z) is even (odd) if m is even (odd).
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As an example of a nonnormal matrix, consider

1 €
-1 1/e
1 € ’
-1

which has been used by Toh [22] in his analysis of the convergence of the GMRES
method. He has shown that PT AP = — A, where

1
-1
P= 1
-1
is an orthogonal matrix.
For another example consider
J)\ nxn
C= I | Ir, Jor € C* A eC. (2.10)

It is easily seen that
J_x = —IFJ\I*, where It =diag(l,—1,1,...,(-1)" ) e R™™".  (2.11)

Using the symmetric and orthogonal matrices

P{I I], Q{Ii [i},

we receive QPCPQ = —C.
The identity (2.11) implies that

1T (=)l = I1T5 (=TI = 1T ()],

i.e., the Chebyshev polynomials of C' attain the same norm on each of the two diagonal
blocks. In general, we can shift and rotate any matrix consisting of two Jordan blocks
of the same size and with respective eigenvalues A, u € C into the form (2.10). It
then can be shown that the Chebyshev polynomials 74 (z) of A = diag(Jy, J,,) satisfy
the “norm balancing property” || T:4(Jy)| = |T/4(J,)||. The proof of this property is
rather technical and we skip it for brevity.

2.4. Linear Chebyshev polynomials. In this section we consider the linear
Chebyshev problem

min ||A — o]
aeC

Work related to this problem has been done by Friedland [8], who characterized solu-
tions of the problem min,eg ||A—aB||, where A and B are two complex, and possibly
rectangular matrices. This problem in general does not have a unique solution. More
recently, Afanasjev et al. [1] have studied the restarted Arnoldi method with restart
length equal to 1. The analysis of this method involves approximation problems of
the form minyec ||(A — al)v1| (cf. (1.2)), whose unique solution is o = v Avy.
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THEOREM 2.6. Let A € C™*™ be any (nonzero) matriz, and denote by X(A) the
span of the right singular vectors of A corresponding to the maximal singular value
of A. Then T{ (z) = z if and only if there exists a vector w € L(A) with w* Aw = 0.

Proof. If T{*(z) = z, then ||A|| = mingec ||A — al||. According to a result of
Greenbaum and Gurvits [10, Theorem 2.5], there exists a unit norm vector w € C”,
so that?

min ||A — of|| = min ||(A — al)w]].
aeC acC

The unique solution of the problem on the right hand side is o, = w*Aw. Our
assumption now implies that w* Aw = 0, and the equations above yield | A|| = || Aw]|,
which shows that w € X(A).

On the other hand, if there exists a vector w € X (A) such that w*Aw = 0.
Without loss of generality we can assume that |jw| = 1. Then

[All > min [|A — al|| = min ||Aw — cwl| = min (| Aw|| + [[aw]]) = || Aw]|.
aeC aeC a€eC

In the first equality we have used that w* Aw = 0, i.e., that the vectors w and Aw are
orthogonal. The assumption w € X(A) implies that ||Aw|| = ||A]|, and thus equality
must hold throughout the above relations. In particular, ||A| = min,ec ||A — ]|,
and hence T{*(z) = z follows from the uniqueness of the solution. O

An immediate consequence of this result is that if zero is outside the field of values
of A, then || T{*(A)|| < ||A||. Note that this also follows from [21, Theorem 5.10], which
states that the zeros of T4(z) are contained in the field of values of A.

We will now study the relation between Theorem 2.4 for m = 1 and Theorem 2.6.
Let w € ¥(A) and let u € C™ be a corresponding left singular vector, so that Aw =
||A]|w and A*u = ||Al|w. Then the condition w* Aw = 0 in Theorem 2.6 implies that
w*u = 0. We may assume that ||w|| = ||u|| = 1. Then the rank-one matrix Z = uw*
satisfies |||Z]]| = 1,

0=w'u=Y Wu; =trace(Z) = (Z,1) = (Z,A°)

i=1

and

(Z, A) = trace(A*uw™) = ||Al| trace(ww™) = || A]] Zwi@i =||A4].
i=1

Hence Theorem 2.6 shows that T7'(z) = z if and only if there exists a rank-one matrix
Z satistying the conditions (2.8).

Above we have already mentioned that T7'(z) = z holds when A is a Jordan
block with eigenvalue zero. It is easily seen that, in the notation of Theorem 2.6,
the vector w in this case is given by the last canonical basis vector. Furthermore,
T{(2) = z holds for any matrix A that satisfies the conditions of Theorem 2.5, i.e.,
P*AP = —A or P*AP = — AT for some unitary matrix P.

2Greenbaum and Curvits have stated this result for real matrices only, but since its proof mainly
involves singular value decompositions of matrices, a generalization to the complex case is straight-
forward.
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An interesting special case of Theorem 2.5 arises when the matrix A is normal,
so that
min [|A — al||=min max |\ — al.
aeC a€C N eA(A)
It is well known that the unique solution v, of this problem is given by the center of
the (closed) disk of smallest radius in the complex plane that contains all the complex
numbers Aq, ..., A3,
For nonnormal matrices this characterization of a, is not true in general. For

example, if
A= {Jﬁ‘h — } Jp € RY,

then the smallest circle that encloses all eigenvalues of A is centered at zero, but the
solution of mingec ||[A — || is given by a, =~ —0.4545, and we have ||T7(A)|| =~
1.4545 < || A| ~ 1.8794.

3. Special classes of matrices. In this section we apply our previous general
results to Chebyshev polynomials of special classes of matrices.

3.1. Perturbed Jordan blocks. Our first class consists of perturbed Jordan
blocks of the form

A= B =v(JH" 1t + gy € Cv (3.1)
o

v 0
where v € C is a complex parameter. Matrices of this form have recently been studied
by Greenbaum in her analysis of upper and lower bounds for the norms of matrix
functions [9]. Note that for v = 0 the matrix A is a Jordan block with eigenvalue
zero (and hence A is not diagonalizable), while for v = 1 the matrix A is unitary (and
hence unitarily diagonalizable), and has the nth roots of unity as its eigenvalues. We
have d(A) = n for any v € C.

THEOREM 3.1. If A is as in (3.1), where v € C is given, then, for 1 <m <n-—1,

A™ = 1/(JOT)”_m + J3*,  [JA™]] = max{1,|v|}, and Tn‘g(z) =2,

Proof. For simplicity of notation we use J = Jy in this proof. Consider an
integer s, 0 < s < n — 2. Then a simple computation yields
(JT)n—IJs + J(JT)n—s _ (JT)n—(s-‘rl) (JT)SJS + JJT(JT)n—(s-i-l)
= (JT)"= D diag(0,...,0,1,...,1) +
——
S
diag (1,...,1,0) (JT)n=(+D

= (JT)n=(s+D), (3.2)
3The problem of finding this disk, which is uniquely determined either by two or by three of the

numbers, was first posed by Sylvester in [19]. This “paper” consists solely of the following sentence:
“It is required to find the least circle which shall contain a given set of points in a plane.”
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We prove the first identity inductively. For m = 1 the statement is trivial. Suppose
now that the assertion is true for some m, 1 < m <n — 2. Then

Am+1 (V(JT)nfl —|—J) (V(JT>nfm+Jm)
_ VQ(JT)Zn—m—l + y((]T)"_ljm + J(JT)TL—WL) 4 Jm-&-l

_ Z/(JT)n—(m-i-l) + Jm+17

where in the last equality we have used (3.2).
To prove the second identity it is sufficient to realize that each row and column of
A™ contains at most one nonzero entry, either v or 1. Therefore, ||A™| = max{1, |v|}.
Finally, note that the matrices I, 4, ..., A»~! have non-overlapping nonzero pat-
terns. Therefore, for any p € M,,, 1 < m < n— 1, at least one entry of p(A4) is 1 and
at least one entry is v, so ||p(A)|| > max{1,|v|}. On the other hand, we know that
| A™|| = max{1,|v|}, and uniqueness of T/2(z) implies that 72 (z) = z™. O

3.2. Special bidiagonal matrices. Let positive integers ¢ and h, and ¢ complex

numbers A1, ..., \; (not necessarily distinct) be given. We consider the matrices
A1
D= Az ceC™ E=JDH e R (3.3)
1
A¢

and form the block Toeplitz matrix
D FE
B= Do e Clhxth, (3.4)
D
Matrices of the form (3.4) have been used by Reichel and Trefethen [14], who related
the pseudospectra of these matrices to their symbol fg(z) = D + zE. Chebyshev

polynomials for examples of such matrices have been studied numerically in [21, 24, 26]
(cf. our examples following Theorem 3.3).

LEMMA 3.2. In the notation established above, xp(B) = J§, where xp(z) =
(z = A1) ... (2= A\p) is the characteristic polynomial of D.

Proof. Let eq,...,en, denote the canonical basis vectors of C*", and let ey =
e_1 = --- = e_gy1 = 0. It then suffices to show that xp(B)e; = ej_y, for j =
1,2,...,¢- h, or, equivalently, that

XD(B)ek.eJrj :6(k_1).g+j, kZO,L...,h—L j:172,...,£. (35)
To prove these relations, note that
Xp(B)=(B—=XMI)-...-(B—=XI),

where the factors on the right hand side commute. Consider a fixed j between 1 and ¢.
Then it follows directly from the structure of the matrix B — \;I, that

(B—)\jl)ek.g+j = epeyj—1, k=0,1,...,h -1
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Consequently, for k =0,1,...,h—1,and j =1,2,...,¢,

XD(B) egorj =B —=Xjt1l)-...- (B=XI)- (B=XMI)-...-(B=M\I)eko4;
=(B—-Xj1l)-...-(B=XAd)eps
=(B—=XNjgl) ... (B = XNel)eo—1)040
= €(k—1)-£+j>

which is what we needed to show. O

This lemma allows us to derive the following result on the Chebyshev polynomials
of the matrix B.

THEOREM 3.3. Let B be defined as (3.4), and let xp(z) be the characteristic
polynomial of D. Then TP, (2) = (xp(2))* fork=1,2,...,h — 1.

Proof. Let M,; denote the entry at position (¢, j) of the matrix M. A well known
property of the matrix 2-norm is || M|| > max; ; |M;;|. For any p € My, we therefore
have

Ip(B)Il = max [p(B)ij| Z [p(B)rke4a] = 1.
On the other hand, Lemma 3.2 implies that

1o BY* = 157l = 1.

Hence the polynomial (xp(z))™ attains the lower bound on ||p(B)]| for all p € My.,.
The uniqueness of the Chebyshev polynomial of B now implies the result. O

In case £ = 1, i.e. B =Jy, € C"™", the theorem shows that (z — A1)™ is the mth
Chebyshev polynomial of B, m = 1,...,n — 1. As mentioned above, this result was
previously shown in [13, Theorem 3.4]. The proof in that paper, however, is based on
a different approach, namely a characterization of matrix approximation problems in
the 2-norm obtained by Zietak [27, 28].

As a further example consider a matrix B of the form (3.4) with

D:H _H (3.6)

This matrix B has been studied numerically in [25, Example 6] and [21, Example 6].
The minimal polynomial of D is given by (z —1)(z + 1) = 2? — 1, and hence T4 (z) =
(22 —1)F for k =1,2,...,h — 1. However, there seems to be no simple closed formula
for the Chebyshev polynomials of B of odd degree. Our numerical experiments show
that these polynomials (on the contrary to those of even degree) depend on the size
of the matrix. Table 3.1 shows the coefficients of T.2(z) for m = 1,2,...,7 for an
(8 x 8)-matrix B (i.e., there are four blocks D of the form (3.6) on the diagonal of
B). The coeflicients in the rows of the table are ordered from highest to lowest. For
example, TP (z) = 2* — 222 + 1.

It is somewhat surprising that the Chebyshev polynomials change significantly
when we reorder the eigenvalues on the diagonal of B. In particular, consider

B = [ o B ] e R (3.7)
J_1
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TABLE 3.1
Coefficients of TE(z) for an (8 x 8)-matriz B of the form (3.4) with D as in (3.6).

m

1110

2 11101 -1.000000

3 |11]0] 0876114 | O

4 |10 -2.000000 | 0| 1.000000

5 | 1|0 -1.757242 | 0 | 0.830598 | O

6 | 1|0 |-3.000000 | 0| 3.000000 | 0| -1.000000

7 | 1]0]-2918688 | 0 | 2.847042 | 0 | 0.927103 | O
TABLE 3.2

Coefficients of TE () for an (8 x 8)-matriz B of the form (8.7).

m
111]0

2 | 110 |-1.595438

3 11]0|-1.975526 | 0

4 1110 -2.858055 | 0| 2.463968

5 | 110 |-3.125673 | 0 | 2.608106 | O

6 | 1|0 |-3.771773 | 0 | 4.945546 | 0 | -1.863541
7|10 -4.026082 | 0 | 5.922324 | 0 | -3.233150 | O

where E = (JI)t~1 € R, The coefficients of T2 (2), m = 1,2,...,7, for an (8 x 8)-
matrix of the form (3.7) are shown in Table 3.2.

Note that the matrices B based on (3.6) and B in (3.7) are similar (when they
are of the same size). Another matrix similar to these two is the matrix C in (2.10)
with ¢ = 1. The coefficients of Chebyshev polynomials of such a matrix C of size
8 x 8 are shown in Table 3.3. It can be argued that the 2-norm condition number of
the similarity transformations between B, B and C is of order 2¢ (we skip details for
brevity of the presentation). Hence this transformation is far from being orthogonal,
which indicates that the Chebyshev polynomials of the respective matrices can be very
different — and in fact they are. We were unable to determine a closed formula for
any of the nonzero coefficients of the Chebyshev polynomials of B and C' (except, of
course the leading one). Numerical experiments indicate that these in general depend
on the sizes of the respective matrices.

In Figure 3.1 we show the roots of the Chebyshev polynomials of degrees m =5
and m = 7 corresponding to the examples in Tables 3.1-3.3. Each figure contains
three sets of roots. All the polynomials are odd, and therefore all of them have one
root at the origin.

4. Matrices and sets in the complex plane. In this section we explore the
relation between Chebyshev polynomials of matrices and of compact sets €2 in the
complex plane. Recall that for each m = 1,2,... the problem

,nin max Ip(2)]

has a unique solution T5}(z), that is called the mth Chebyshev polynomial of Q (cf.
our Introduction). Similarly to the matrix case, Chebyshev polynomials of sets are
known explicitly only in a few special cases. One of these cases is a disk in the
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TABLE 3.3
Coefficients of TS, () for an (8 x 8)-matriz C of the form (2.10) with A = 1.

m

1 110

2 110 -1.763931

3| 11]10]-2.194408 | 0

4 1 1|0 -2.896537 | 0 | 2.502774

5 | 1|0 -3.349771 | 0 | 3.696082 | O

6 | 1]0]-3.799998 | 0 | 5.092302 | 0 | -1.898474

7 1110 -4.066665 | 0 | 6.199999 | 0 | -4.555546 | O
0.5r 0.5F . .
0.4t 0.4h
o3 ) 03f * x
02 y 02h
01t © o 01l

or ® Ooe x oo ® oO X e

-0.1p o o -0.1f © ©
—02f " * _o02}
-03f -03f x
04 © * -0.4f
-0.5¢ -0.5¢ . .
-15 1 05 0 05 1 15 -15 1 05 0 05 1 15

FIG. 3.1. Roots of TE(2) (blue circles), T,]S(z) (red crosses) and TS, () (black points) of degrees
m =15 (left) and m =7 (right) corresponding to the examples in Tables 3.1-8.3.

complex plane centered at the point A € C, for which the mth Chebyshev polynomial
is (z — A\)™; see, e.g., [17, p. 352]. Kamo and Boronin [12] allow us to generate more
examples of Chebyshev polynomials.

THEOREM 4.1. Let T} be the kth Chebyshev polynomial of the infinite compact
set Q C C, let p(z) = apz’ + -+ a1z + ag, ag # 0, be a polynomial of degree £, and
let

U =plQ) ={zeC:pkr) e}

be the pre-image of Q) under the polynomial map p. Then T,;I,'e, the Chebyshev polyno-
mial of degree m =k - £ of the set U, is given by

TY(2) = 12 2(p(2).

This result has been shown also by Fischer and Peherstorfer [7, Corollary 2.2],
who applied it to obtain convergence results for Krylov subspace methods. Similar
ideas can be used in our context. For example, let Sy = [a,b] with 0 < a < b and
p(2) = 2%, Then

SB = pil(SA) = [7\/>a 7\/5] U [\/av \/Z;]a

and Theorem 4.1 implies that T57 (z) = TS4(2%). Such relations are useful when
studying two normal matrices A and B, whose spectra are contained in the sets Sa
and Sp, respectively.
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For an application of Theorem 4.1 that to our knowledge has not been considered
before, consider a given polynomial p = (z—A1)-...-(z—A¢) € M, and the lemniscatic
region

L(p)={z€C : p()] < 1}. (4.1)

Note that £(p) is the pre-image of the unit disk under the polynomial map p. Since
the kth Chebyshev polynomial of the unit disk is the polynomial z*, Theorem 4.1
implies that

L
T = ((2)".
Using these results and Theorem 3.3 we can now formulate the following.

THEOREM 4.2. Let A1,..., ¢ € C and an integer h > 1 be given. Then for
p(z)=(z—=A1) ...- (2= X)) E My, and each k =1,2,...,h—1,

()" = TEP () = T, (2),

where the lemniscatic region L(p) is defined as in (4.1), and the matriz B is of the
form (3.4). Moreover,

L(p) B
max |71 2)| = ||1:2,(B)]|].
z€£(p)| k-l (2)] T3 (Bl

This theorem connects Chebyshev polynomials of lemniscatic regions of the form
(4.1) to Chebyshev polynomials of matrices B of the form (3.4). The key observation
is the analogy between Theorems 3.3 and 4.1. We believe that it is possible to generate
further examples along these lines.

5. Concluding remarks. We have shown that Chebyshev polynomials of ma-
trices and Chebyshev polynomials of compact sets in the complex plane have a number
of common or at least related properties. Among these are the polynomials’ behavior
under shifts and scalings (of matrix or set), and certain “alternation” and even/odd
properties. Progress on the theory of Chebyshev polynomials of matrices can certainly
be made by studying other known characteristics of their counterparts of sets in the
complex plane. Furthermore, we consider it promising to further explore whether the
Chebyshev polynomials of a matrix can be related to Chebyshev polynomials of a set
and vice versa (see Theorem 4.2 for an example). This may give additional insight
into the question where a matrix “lives” in the complex plane.

Acknowledgments. We thank two anonymous referees for helpful comments
and suggestions that improved the paper, and particulary led to a simplification of
our original proof of Theorem 3.1.
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