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Abstract

Monotone operators are of basic importance in optimization as they generalize simultaneously subdif-
ferential operators of convex functions and positive semidefinite (not necessarily symmetric) matrices.
In 1970, Asplund studied the additive decomposition of a maximal monotone operator as the sum of a
subdifferential operator and an “irreducible” monotone operator. In 2007, Borwein and Wiersma [SIAM

J. Optim. 18 (2007), pp. 946–960] introduced another additive decomposition, where the maximal mono-
tone operator is written as the sum of a subdifferential operator and a “skew” monotone operator. Both
decompositions are variants of the well-known additive decomposition of a matrix via its symmetric and
skew part.

This paper presents a detailed study of the Borwein-Wiersma decomposition of a maximal mono-
tone linear relation. We give sufficient conditions and characterizations for a maximal monotone linear
relation to be Borwein-Wiersma decomposable, and show that Borwein-Wiersma decomposability im-
plies Asplund decomposability. We exhibit irreducible linear maximal monotone operators without full
domain, thus answering one of the questions raised by Borwein and Wiersma. The Borwein-Wiersma
decomposition of any maximal monotone linear relation is made quite explicit in Hilbert space.
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Keywords: Adjoint, Asplund decomposition, Borwein-Wiersma decomposition, convex function, irreducible
operator, linear operator, linear relation, maximal monotone operator, monotone operator, skew operator,
subdifferential operator, symmetric operator, subdifferential operator.

1 Introduction

Monotone operators play important roles in convex analysis and optimization [18, 24, 19, 16, 30, 23, 9, 6]. In
the current literature, there are two decompositions for maximal monotone operators: the first was introduced
by Asplund in 1970 [1] and the second by Borwein and Wiersma in 2007 [7]. These decompositions express
a maximal monotone operator as the sum of the subdifferential operator of a convex function and a singular
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part (either irreducible or skew), and they can be viewed as analogues of the well known decomposition of
a matrix into the sum of a symmetric and a skew part. They provide intrinsic insight into the structure of
monotone operators and they have the potential to be employed in numerical algorithms (such as proximal
point algorithms [10, 20]). It is instructive to study these decompositions for monotone linear relations to
test the general theory and include linear monotone operators as interesting special cases [17, 2]. Our goal in
this paper is to study the Borwein-Wiersma decomposition of a maximal monotone linear relation. It turns
out that a complete and elegant characterization of Borwein-Wiersma decomposability exists and that the
Borwein-Wiersma decomposition can be made quite explicit (see Theorem 5.1 and Example 6.4).

The paper is organized as follows. After presenting auxiliary results in Sections 2, we show in Section 3 that
Borwein-Wiersma decomposability always implies Asplund decomposability, and we present some sufficient
conditions for a maximal monotone linear relation to be Borwein-Wiersma decomposable. Section 4 is
devoted to the uniqueness of the Borwein-Wiersma decomposition, and we characterize those linear relations
that are subdifferential operators of proper lower semicontinuous convex functions. In Section 5, it is shown
that a maximal monotone linear relation A is Borwein-Wiersma decomposable if and only if the domain of
A is a subset of the domain of its adjoint A∗. This is followed by examples illustrating neither A nor A∗ may
be Borwein-Wiersma decomposable. Moreover, it can happen that A is Borwein-Wiersma decomposable,
whereas A∗ is not. Residing in a Hilbert space either ℓ2 or L2[0, 1], our examples are irreducible linear
maximal monotone operators without full domain, and they are utilized to provide an answer to Borwein and
Wiersma’s [7, Question (4) in Section 7]. In Section 6, we give more explicit Borwein-Wiersma decompositions
in Hilbert spaces. The paper is concluded by a summary in Section 7.

We start with some definitions and terminology. Throughout this paper, we assume that

X is a reflexive real Banach space, with topological dual space X∗, and pairing 〈·, ·〉.

Let A be a set-valued operator from X to X∗. Then A is monotone if
(

∀(x, x∗) ∈ graA
)(

∀(y, y∗) ∈ graA
)

〈x− y, x∗ − y∗〉 ≥ 0,

where graA :=
{

(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax
}

; A is said to be maximal monotone if no proper enlargement
(in the sense of graph inclusion) of A is monotone. The inverse operator A−1 : X∗ ⇒ X is given by
graA−1 :=

{

(x∗, x) ∈ X∗ ×X | x∗ ∈ Ax
}

; the domain of A is domA :=
{

x ∈ X | Ax 6= ∅
}

, and its range is
ranA := A(X). Note that A is said to be a linear relation if graA is a linear subspace of X ×X∗ (see [12]).
We say A is a maximal monotone linear relation if A is a maximal monotone operator and graA is a linear
subspace of X ×X∗. The adjoint of A, written A∗, is defined by

graA∗ :=
{

(x, x∗) ∈ X ×X∗ | (x∗,−x) ∈ (graA)⊥
}

,

where, for any subset S of a reflexive Banach space Z with continuous dual space Z∗, S⊥ :=
{

z∗ ∈ Z∗ |

z∗|S ≡ 0
}

. Let A be a linear relation from X to X∗. We say that A is skew if 〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA;
equivalently, if graA ⊆ gra(−A∗). Furthermore, A is symmetric if graA ⊆ graA∗; equivalently, if 〈x, y∗〉 =
〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA. By saying A : X ⇒ X∗ at most single-valued, we mean that for every
x ∈ X , Ax is either a singleton or empty. In this case, we follow a slight but common abuse of notation and
write A : domA → X∗. Conversely, if T : D → X∗, we may identify T with A : X ⇒ X∗, where A is at
most single-valued with domA = D. We define the symmetric part and the skew part of A via

(1) A+ := 1
2A+ 1

2A
∗ and A◦ := 1

2A− 1
2A

∗,

respectively. It is easy to check that A+ is symmetric and that A◦ is skew.

Let x ∈ X and C∗ ⊆ X∗. We write 〈x,C∗〉 := {〈x, c∗〉 | c∗ ∈ C∗}. If 〈x,C∗〉 = {a} for some constant
a ∈ R, then we write 〈x,C∗〉 = a for convenience. For a monotone linear relation A : X ⇒ X∗ it will be very
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useful to define the extended-valued quadratic function (which is actually a special case of Fitzpatrick’s last
function [6] for the linear relation A)

(2) qA : x 7→

{

1
2 〈x,Ax〉, if x ∈ domA;

+∞, otherwise.

When A is linear and single-valued with full domain, we shall use the well known fact (see, e.g., [17]) that

(3) ∇qA = A+.

For f : X → ]−∞,+∞], set dom f := {x ∈ X | f(x) < +∞} and let f∗ : X∗ → [−∞,+∞] : x∗ 7→
supx∈X(〈x, x∗〉 − f(x)) be the Fenchel conjugate of f . We denote by f the lower semicontinuous hull of
f . Recall that f is said to be proper if dom f 6= ∅. If f is convex, ∂f : X ⇒ X∗ : x 7→

{

x∗ ∈ X∗ |

(∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)
}

is the subdifferential operator of f . For a subset C of X , C stands for
the closure of C in X . Write ιC for the indicator function of C, i.e., ιC(x) = 0, if x ∈ C; and ιC(x) = +∞,
otherwise. It will be convenient to work with the indicator mapping IC : X → X∗, defined by IC(x) = {0},
if x ∈ C; IC(x) = ∅, otherwise.

The central goal of this paper is to provide a detailed analysis of the following notion in the context of
maximal monotone linear relations.

Definition 1.1 (Borwein-Wiersma decomposition [7]) The set-valued operator A : X ⇒ X∗ is
Borwein-Wiersma decomposable if

(4) A = ∂f + S,

where f : X → ]−∞,+∞] is proper lower semicontinuous and convex, and where S : X ⇒ X∗ is skew and
at most single-valued. The right side of (4) is a Borwein-Wiersma decomposition of A.

Note that every single-valued linear monotone operator A with full domain is Borwein-Wiersma decompos-
able, with Borwein-Wiersma decomposition

(5) A = A+ +A◦ = ∇qA +A◦.

Definition 1.2 (Asplund irreducibility [1]) The set-valued operator A : X ⇒ X∗ is irreducible (some-
times termed “acyclic” [7]) if whenever

A = ∂f + S,

with f : X → ]−∞,+∞] proper lower semicontinuous and convex, and S : X ⇒ X∗ monotone, then
necessarily ran(∂f)|domA is a singleton.

As we shall see in Section 3, the following decomposition is less restrictive.

Definition 1.3 (Asplund decomposition [1]) The set-valued operator A : X ⇒ X∗ is Asplund decom-
posable if

(6) A = ∂f + S,

where f : X → ]−∞,+∞] is proper, lower semicontinuous, and convex, and where S is irreducible. The
right side of (6) is an Asplund decomposition of A.
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2 Auxiliary results on monotone linear relations

In this section, we gather some basic properties about monotone linear relations, and conditions for them to
be maximal monotone. These results are used frequently in the sequel. We start with properties for general
linear relations.

Fact 2.1 (Cross) Let A : X ⇒ X∗ be a linear relation. Then the following hold.

(i) A0 is a linear subspace of X∗.

(ii) Ax = x∗ +A0, ∀x∗ ∈ Ax.

(iii) (∀(α, β) ∈ R2 r {(0, 0)}) (∀x, y ∈ domA) A(αx + βy) = αAx + βAy.

(iv) domA∗ =
{

x ∈ X | 〈x,A(·)〉 is single-valued and continuous on domA
}

.

(v) (A∗)−1 = (A−1)∗.

(vi) (∀x ∈ domA∗)(∀y ∈ domA) 〈A∗x, y〉 = 〈x,Ay〉 is a singleton.

(vii) If graA is closed, then A∗∗ = A.

(viii) If domA is closed, then domA∗ is closed.

Proof. (i): See [12, Corollary I.2.4]. (ii): See [12, Proposition I.2.8(a)]. (iii): See [12, Corollary I.2.5]. (iv):
See [12, Proposition III.1.2]. (v): See [12, Proposition III.1.3(b)]. (vi): See [12, Proposition III.1.2]. (vii):
See [12, Exercise VIII.1.12]. (viii): See [12, Corollary III.4.3(a), Proposition III.4.9(i)(ii), Theorem III.4.2(a)
and Corollary III.4.5]. �

Additional information is available when dealing with monotone linear relations.

Fact 2.2 Let A : X ⇒ X∗ be a monotone linear relation. Then the following hold.

(i) domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥.

(ii) The function domA → R : y 7→ 〈y,Ay〉 is well defined and convex.

(iii) For every x ∈ (A0)⊥, the function domA → R : y 7→ 〈x,Ay〉 is well defined and linear.

(iv) If A is maximal monotone, then domA∗ = domA = (A0)⊥ and A0 = A∗0 = A+0 = A◦0 = (domA)⊥.

(v) If domA is closed, then: A is maximal monotone ⇔ (domA)⊥ = A0.

(vi) If A is maximal monotone and domA is closed, then domA∗ = domA.

(vii) If A is maximal monotone and domA ⊆ domA∗, then A = A++A◦, A+ = A−A◦ , and A◦ = A−A+.

Proof. (i): See [3, Proposition 2.2(i)]. (ii): See [3, Proposition 2.3]. (iii): See [3, Proposition 2.2(iii)].
(iv): By [3, Theorem 3.2], we have A0 = A∗0 = (domA)⊥ = (domA∗)⊥ and domA = domA∗. Hence
(A0)⊥ = (domA)⊥⊥ = domA. By Fact 2.1(i), A0 is a linear subspace of X∗. Hence A+0 = (A0 +
A∗0)/2 = (A0 + A0)/2 = A0 and similarly A◦0 = A0. (v): See [3, Corollary 6.6]. (vi): Combine (iv) with
Fact 2.1(viii). (vii): We show only the proof of A = A++A◦ as the other two proofs are analogous. Clearly,
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domA+ = domA◦ = domA ∩ domA∗ = domA. Let x ∈ domA, and x∗ ∈ Ax and y∗ ∈ A∗x. We write

x∗ = x∗+y∗

2 + x∗−y∗

2 ∈ (A+ +A◦)x. Then, by Fact 2.1(ii), Ax = x∗ +A0 = x∗ +(A+ +A◦)0 = (A+ +A◦)x.
Therefore, A = A+ +A◦. �

Proposition 2.3 Let S : X ⇒ X∗ be a linear relation such that S is at most single-valued. Then S is skew
if and only if 〈Sx, y〉 = −〈Sy, x〉, ∀x, y ∈ domS.

Proof. “⇒”: Let x, y ∈ domS. Then 0 = 〈S(x + y), x + y〉 = 〈Sx, x〉 + 〈Sy, y〉 + 〈Sx, y〉 + 〈Sy, x〉 =
〈Sx, y〉 + 〈Sy, x〉. Hence 〈Sx, y〉 = −〈Sy, x〉. “⇐”: Indeed, for x ∈ domS, we have 〈Sx, x〉 = −〈Sx, x〉 and
so 〈Sx, x〉 = 0. �

Fact 2.4 (Brézis-Browder) (See [8, Theorem 2].) Let A : X ⇒ X∗ be a monotone linear relation such
that graA is closed. Then the following are equivalent.

(i) A is maximal monotone.

(ii) A∗ is maximal monotone.

(iii) A∗ is monotone.

Fact 2.5 (Phelps-Simons) (See [17, Corollary 2.6 and Proposition 3.2(h)].) Let A : X → X∗ be monotone
and linear. Then A is maximal monotone and continuous.

Remark 2.6 Fact 2.5 also holds in locally convex spaces, see [28, Proposition 23].

Proposition 2.7 Let A : X ⇒ X∗ be a maximal monotone linear relation. Then A is symmetric ⇔ A = A∗.

Proof. “⇒”: Assume that A is symmetric, i.e., graA ⊆ graA∗. Since A is maximal monotone, so is A∗ by
Fact 2.4. Therefore, A = A∗. “⇐”: Obvious. �

Fact 2.2(v) provides a characterization of maximal monotonicity for certain monotone linear relations.
More can be said in finite-dimensional spaces. We require the following lemma, where dimF stands for the
dimension of a subspace F of X .

Lemma 2.8 Suppose that X is finite-dimensional and let A : X ⇒ X∗ be a linear relation. Then
dim(graA) = dim(domA) + dimA0.

Proof. We shall construct a basis of graA. By Fact 2.1(i), A0 is a linear subspace. Let {x∗
1, . . . , x

∗
k}

be a basis of A0, and let {xk+1, . . . , xl} be a basis of domA. From Fact 2.1(ii), it is easy to show
{(0, x∗

1), . . . , (0, x
∗
k), (xk+1, x

∗
k+1), . . . , (xl, x

∗
l )} is a basis of graA, where x∗

i ∈ Axi, i ∈ {k + 1, . . . , l}. Thus
dim(graA) = l = dim(domA) + dimA0. �

Lemma 2.8 allows us to get a satisfactory characterization of maximal monotonicity of linear relations in
finite-dimensional spaces.

Proposition 2.9 Suppose that X is finite-dimensional, set n = dimX, and let A : X ⇒ X∗ be a monotone
linear relation. Then A is maximal monotone if and only if dimgraA = n.
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Proof. Since linear subspaces of X are closed, we see from Fact 2.2(v) that

(7) A is maximal monotone ⇔ domA = (A0)⊥.

Assume first that A is maximal monotone. Then domA = (A0)⊥. By Lemma 2.8, dim(graA) =
dim(domA) + dim(A0) = dim((A0)⊥) + dim(A0) = n. Conversely, let dim(graA) = n. By Lemma 2.8, we
have that dim(domA) = n − dim(A0). As dim((A0)⊥) = n− dim(A0) and domA ⊆ (A0)⊥ by Fact 2.2(i),
we have that domA = (A0)⊥. By (7), A is maximal monotone. �

3 Borwein-Wiersma decompositions

The following fact, due to Censor, Iusem and Zenios [11, 15], was previously known in Rn. Here we give a
different proof and extend the result to Banach spaces.

Fact 3.1 (Censor, Iusem and Zenios) The subdifferential operator of a proper lower semicontinuous
convex function f : X → ]−∞,+∞] is paramonotone, i.e., if

(8) x∗ ∈ ∂f(x), y∗ ∈ ∂f(y),

and

(9) 〈x∗ − y∗, x− y〉 = 0,

then x∗ ∈ ∂f(y) and y∗ ∈ ∂f(x).

Proof. By (9),

(10) 〈x∗, x〉+ 〈y∗, y〉 = 〈x∗, y〉+ 〈y∗, x〉.

By (8),
f∗(x∗) + f(x) = 〈x∗, x〉, f∗(y∗) + f(y) = 〈y∗, y〉.

Adding them, followed by using (10), yields

f∗(x∗) + f(y) + f∗(y∗) + f(x) = 〈x∗, y〉+ 〈y∗, x〉,

[f∗(x∗) + f(y)− 〈x∗, y〉] + [f∗(y∗) + f(x)− 〈y∗, x〉] = 0.

Since each bracketed term is nonnegative, we must have f∗(x∗)+ f(y) = 〈x∗, y〉 and f∗(y∗)+ f(x) = 〈y∗, x〉.
It follows that x∗ ∈ ∂f(y) and that y∗ ∈ ∂f(x). �

The following result provides a powerful criterion for determining whether a given operator is irreducible
and hence Asplund decomposable.

Theorem 3.2 Let A : X ⇒ X∗ be monotone and at most single-valued. Suppose that there exists a dense
subset D of domA such that

〈Ax −Ay, x− y〉 = 0 ∀x, y ∈ D.

Then A is irreducible and hence Asplund decomposable.
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Proof. Let a ∈ D and D′ := D−{a}. Define A′ : domA−{a} → A(·+ a). Then A is irreducible if and only
if A′ is irreducible. Now we show A′ is irreducible. By assumptions, 0 ∈ D′ and

〈A′x−A′y, x− y〉 = 0 ∀x, y ∈ D′.

Let A′ = ∂f + R, where f is proper lower semicontinuous and convex, and R is monotone. Since A′ is
single-valued on domA′, we have that ∂f and R are single-valued on domA′ and that

R = A′ − ∂f on domA′.

By taking x∗
0 ∈ ∂f(0), rewriting A′ = (∂f − x∗

0) + (x∗
0 + R), we can and do suppose ∂f(0) = {0}. For

x, y ∈ D′ we have 〈A′x−A′y, x− y〉 = 0. Then for x, y ∈ D′

0 ≤ 〈R(x) −R(y), x− y〉 = 〈A′x−A′y, x− y〉 − 〈∂f(x)− ∂f(y), x− y〉 = −〈∂f(x)− ∂f(y), x− y〉.

On the other hand, ∂f is monotone, thus,

〈∂f(x)− ∂f(y), x− y〉 = 0, ∀x, y ∈ D′.(11)

Using ∂f(0) = {0},

〈∂f(x)− 0, x− 0〉 = 0, ∀x ∈ D′.(12)

As ∂f is paramonotone by Fact 3.1, ∂f(x) = {0} so that x ∈ argminf . This implies that D′ ⊆ argminf
since x ∈ D′ was chosen arbitrarily. As f is lower semicontinuous, argminf is closed. Using that D′ is dense
in domA′, it follows that domA′ ⊆ D′ ⊆ argmin f . Since ∂f is single-valued on domA′, ∂f(x) = {0}, ∀x ∈
domA′. Hence A′ is irreducible, and so is A. �

Remark 3.3 In Theorem 3.2, the assumption that A be at most single-valued is important: indeed, let L
be a proper subspace of Rn. Then ∂ιL is a linear relation and skew, yet ∂ιL = ∂ιL + 0 is not irreducible.

Theorem 3.2 and the definitions of the two decomposabilities now yield the following.

Corollary 3.4 Let A : X ⇒ X∗ be maximal monotone such that A is Borwein-Wiersma decomposable.
Then A is Asplund decomposable.

We proceed to give a few sufficient conditions for a maximal monotone linear relation to be Borwein-
Wiersma decomposable. The following simple observation will be needed.

Lemma 3.5 Let A : X ⇒ X∗ be a monotone linear relation such that A is Borwein-Wiersma decomposable,
say A = ∂f +S, where f : X → ]−∞,+∞] is proper, lower semicontinuous, and convex, and where S : X ⇒

X∗ is at most single-valued and skew. Then the following hold.

(i) ∂f + IdomA : x 7→

{

∂f(x), if x ∈ domA;

∅, otherwise
is a monotone linear relation.

(ii) domA ⊆ dom∂f ⊆ dom f ⊆ (A0)⊥.

(iii) If A is maximal monotone, then domA ⊆ dom ∂f ⊆ dom f ⊆ domA.

(iv) If A is maximal monotone and domA is closed, then dom∂f = domA = dom f .

7



Proof. (i): Indeed, on domA, we see that ∂f = A− S is the difference of two linear relations.

(ii): Clearly domA ⊆ dom∂f . As S0 = 0, we have A0 = ∂f(0). Thus, ∀x∗ ∈ A0, x ∈ X ,

〈x∗, x〉 ≤ f(x)− f(0).

Then σA0(x) ≤ f(x)−f(0), where σA0 is the support function of A0. If x 6∈ (A0)⊥, then σA0(x) = +∞ since
A0 is a linear subspace, so f(x) = +∞, ∀x 6∈ (A0)⊥. Therefore, dom f ⊆ (A0)⊥. Altogether, (ii) holds.

(iii): Combine (ii) with Fact 2.2(iv). (iv): This is clear from (iii). �

Fact 3.6 (See [29, Proposition 3.3].) Let A : X ⇒ X∗ be a monotone linear relation such that A is
symmetric. Then the following hold.

(i) qA is convex and qA + ιdomA = qA.

(ii) graA ⊆ gra ∂qA.

(iii) If A is maximal monotone, then A = ∂qA.

Theorem 3.7 Let A : X ⇒ X∗ be a maximal monotone linear relation such that domA ⊆ domA∗. Then
A is Borwein-Wiersma decomposable via

A = ∂qA + S,

where S is an arbitrary linear single-valued selection of A◦. Moreover, ∂qA = A+ on domA.

Proof. From Fact 2.4, A∗ is monotone, so A+ is monotone. By Fact 2.1(vi), qA+
= qA, using Fact 3.6(ii),

graA+ ⊆ gra∂qA+
= gra∂qA. Let S : domA → X∗ be a linear selection of A◦ (the existence of which

is guaranteed by a standard Zorn’s lemma argument). By Fact 2.1(vi), S is skew. Then, by Fact 2.2(vii),
we have A = A+ + S ⊆ ∂qA + S. Since A is maximal monotone, A = ∂qA + S, which is the announced
Borwein-Wiersma decomposition. Moreover, on domA, we have ∂qA = A− S = A+. �

Corollary 3.8 Let A : X ⇒ X∗ be a maximal monotone linear relation such that A is symmetric. Then
A and A−1 are Borwein-Wiersma decomposable, with decompositions A = ∂qA + 0 and A−1 = ∂q∗A + 0,
respectively.

Proof. Using Proposition 2.7 and Fact 2.1(v), we obtain A = A∗ and A−1 = (A∗)−1 = (A−1)∗. Hence,
Theorem 3.7 applies; in fact, A = ∂qA and A−1 = ∂qA−1 = ∂q∗A. �

Corollary 3.9 Let A : X ⇒ X∗ be a maximal monotone linear relation such that domA is closed, and let
S be a single-valued linear selection of A◦. Then qA = qA, A+ = ∂qA is maximal monotone, and A and A∗

are Borwein-Wiersma decomposable, with decompositions A = A+ + S and A∗ = A+ − S, respectively.

Proof. Fact 2.1(vii) and Fact 2.2(vi) imply that A∗∗ = A and that domA∗ = domA. By Fact 2.4, A∗ is
maximal monotone. In view of Fact 2.2(vii), A = A++A◦ and A∗ = (A∗)++(A∗)◦ = A+−A◦. Theorem 3.7
yields the Borwein-Wiersma decomposition A = ∂qA + S. Hence domA ⊆ dom ∂qA ⊆ dom qA ⊆ domA =
domA. In turn, since domA = domA+ and qA = qA+

, this implies that domA+ = dom ∂qA+
= dom qA+

.
In view of Fact 3.6(i)&(ii), qA+

= qA+
and graA+ ⊆ gra∂qA+

. By Theorem 3.7, A+ = ∂qA on domA.
Since domA = domA+ = dom∂qA and qA = qA+

= qA+
= qA, this implies that A+ = ∂qA = ∂qA

everywhere. Therefore, A+ is maximal monotone. Since A+ = (A∗)+ and −S is a single-valued linear
section of (A∗)◦ = −A◦, we obtain similarly the Borwein-Wiersma decomposition A∗ = A+ − S. �
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Theorem 3.10 Let A : X ⇒ X∗ be a maximal monotone linear relation such that A is skew, and let S be
a single-valued linear selection of A. Then A is Borwein-Wiersma decomposable via ∂ιdomA + S.

Proof. Clearly, S is skew. Fact 2.1(ii) and Fact 2.2(iv) imply that A = A0+S = (domA)⊥+S = ∂ιdomA+S,
as announced. Alternatively, by [26, Lemma 2.2], domA ⊆ domA∗ and now apply Theorem 3.7. �

Under a mild constraint qualification, the sum of two Borwein-Wiersma decomposable operators is also
Borwein-Wiersma decomposable and the decomposition of the sum is the corresponding sum of the decom-
positions.

Proposition 3.11 (sum rule) Let A1 and A2 be maximal monotone linear relations from X to X∗. Sup-
pose that A1 and A2 are Borwein-Wiersma decomposable via A1 = ∂f1 + S1 and A2 = ∂f2 + S2, respec-
tively. Suppose that domA1 − domA2 is closed. Then A1 + A2 is Borwein-Wiersma decomposable via
A1 +A2 = ∂(f1 + f2) + (S1 + S2).

Proof. By Lemma 3.5(iii), domA1 ⊆ dom f1 ⊆ domA1 and domA2 ⊆ dom f2 ⊆ domA2. Hence domA1 −
domA2 ⊆ dom f1 − dom f2 ⊆ domA1 − domA2 ⊆ domA1 − domA2 = domA1 − domA2. Thus, dom f1 −
dom f2 = domA1 − domA2 is a closed subspace of X . By [24, Theorem 18.2], ∂f1 + ∂f2 = ∂(f1 + f2);
furthermore, S1 + S2 is clearly skew. The result thus follows. �

4 Uniqueness results

The main result in this section (Theorem 4.8) states that if a maximal monotone linear relation A is Borwein-
Wiersma decomposable, then the subdifferential part of its decomposition is unique on domA. We start by
showing that subdifferential operators that are monotone linear relations are actually symmetric, which is a
variant of a well known result from Calculus.

Lemma 4.1 Let f : X → ]−∞,+∞] be proper, lower semicontinuous, and convex. Suppose that the
maximal monotone operator ∂f is a linear relation with closed domain. Then ∂f = (∂f)∗.

Proof. Set A := ∂f and Y := dom f . Since domA is closed, [24, Theorem 18.6] implies that dom f = Y =
domA. By Fact 2.2(vi), domA∗ = domA. Let x ∈ Y and consider the directional derivative g = f ′(x; ·),
i.e.,

g : X → [−∞,+∞] : y 7→ lim
t↓0

f(x+ ty)− f(x)

t
.

By [30, Theorem 2.1.14], dom g =
⋃

r≥0 r ·(dom f−x) = Y . On the other hand, f is lower semicontinuous on
X . Thus, since Y = dom f is a Banach space, f |Y is continuous by [30, Theorem 2.2.20(b)]. Altogether, in
view of [30, Theorem 2.4.9], g|Y is continuous. Hence g is lower semicontinuous. Using [30, Corollary 2.4.15]
and Fact 2.1(vi), we now deduce that (∀y ∈ Y ) g(y) = sup〈∂f(x), y〉 = 〈Ax, y〉 = 〈x,A∗y〉. We thus have
verified that

(13) (∀x ∈ Y )(∀y ∈ Y ) f ′(x; y) = 〈Ax, y〉 = 〈x,A∗y〉.
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In particular, f |Y is differentiable. Now fix x, y, z in Y . Then, using (13), we see that

〈Az, y〉 = lim
s↓0

〈A(x + sz), y〉 − 〈Ax, y〉

s
= lim

s↓0

f ′(x+ sz; y)− f ′(x; y)

s
(14)

= lim
s↓0

lim
t↓0

(f(x+ sz + ty)− f(x+ sz)

st
−

f(x+ ty)− f(x)

st

)

.

Set h : R → R : s 7→ f(x + sz + ty) − f(x + sz). Since f |Y is differentiable, so is h. For s > 0, the Mean
Value Theorem thus yields rs,t ∈ ]0, s[ such that

f(x+ sz + ty)− f(x+ sz)

s
−

f(x+ ty)− f(x)

s
=

h(s)

s
−

h(0)

s
= h′(rs,t)(15)

= f ′(x+ rs,tz + ty; z)− f ′(x+ rs,tz; z)

= t〈Ay, z〉.

Combining (14) with (15), we deduce that 〈Az, y〉 = 〈Ay, z〉. Thus, A is symmetric. The result now follows
from Proposition 2.7. �

To improve Lemma 4.1, we need the following “shrink and dilate” technique.

Lemma 4.2 Let A : X ⇒ X∗ be a monotone linear relation, and let Z be a closed subspace of domA. Set
B = (A+ IZ) + Z⊥. Then B is maximal monotone and domB = Z.

Proof. Since Z ⊆ domA and B = A+ ∂ιZ it is clear that B is a monotone linear relation with domB = Z.
By Fact 2.2 (i), we have

Z⊥ ⊆ B0 = A0 + Z⊥ ⊆ (domA)⊥ + Z⊥ ⊆ Z⊥ + Z⊥ = Z⊥.

Hence B0 = Z⊥ = (domB)⊥. Therefore, by Fact 2.2(v), B is maximal monotone. �

Theorem 4.3 Let f : X → ]−∞,+∞] be proper, lower semicontinuous, and convex, and let Y be a linear
subspace of X. Suppose that ∂f + IY is a linear relation. Then ∂f + IY is symmetric.

Proof. Put A = ∂f + IY . Assume that (x, x∗), (y, y∗) ∈ graA. Set Z = span{x, y}. Let B : X ⇒ X∗ be
defined as in Lemma 4.2. Clearly, graB ⊆ gra∂(f + ιZ). In view of the maximal monotonicity of B, we see
that B = ∂(f + ιZ). Since domB = Z is closed, it follows from Lemma 4.1 that B = B∗. In particular, we
obtain that 〈x∗, y〉 = 〈y∗, x〉. Hence, 〈∂f(x), y〉 = 〈∂f(y), x〉 and therefore ∂f + IY is symmetric. �

Lemma 4.4 Let A : X ⇒ X∗ be a maximal monotone linear relation such that A is Borwein-Wiersma
decomposable. Then domA ⊆ domA∗.

Proof. By hypothesis, there exists a proper lower semicontinuous and convex function f : X → ]−∞,+∞]
and an at most single-valued skew operator S such that A = ∂f+S. Hence domA ⊆ domS, and Theorem 4.3
implies that (A− S) + IdomA is symmetric. Let x and y be in domA.

〈Ax− 2Sx, y〉 = 〈Ax − Sx, y〉 − 〈Sx, y〉 = 〈Ay − Sy, x〉 − 〈Sx, y〉

= 〈Ay, x〉 − 〈Sy, x〉 − 〈Sx, y〉 = 〈Ay, x〉,

which implies that (A− 2S)x ⊆ A∗x. Therefore, domA = dom(A− 2S) ⊆ domA∗. �
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Remark 4.5 We can now derive part of the conclusion of of Proposition 3.11 differently as follows. Since
domA1 − domA2 is closed, [25, Theorem 5.5] or [27] implies that A1 +A2 is maximal monotone; moreover,
[5, Theorem 7.4] yields (A1 + A2)

∗ = A∗
1 + A∗

2. Using Lemma 4.4, we thus obtain dom(A1 + A2) =
domA1 ∩ domA2 ⊆ domA∗

1 ∩ domA∗
2 = dom(A∗

1 + A∗
2) = dom(A1 +A2)

∗. Therefore, A1 +A2 is Borwein-
Wiersma decomposable by Theorem 3.7.

Theorem 4.6 (characterization of subdifferential operators) Let A : X ⇒ X∗ be a monotone linear
relation. Then A is maximal monotone and symmetric ⇔ there exists a proper lower semicontinuous convex
function f : X → ]−∞,+∞] such that A = ∂f .

Proof. “⇒”: Fact 3.6(iii). “⇐”: Apply Theorem 4.3 with Y = X . �

Remark 4.7 Theorem 4.6 generalizes [17, Theorem 5.1] of Simons and Phelps.

Theorem 4.8 (uniqueness of the subdifferential part) Let A : X ⇒ X∗ be a maximal monotone lin-
ear relation such that A is Borwein-Wiersma decomposable. Then on domA, the subdifferential part in the
decomposition is unique and the skew part must be a linear selection of A◦.

Proof. Let f1 and f2 be proper lower semicontinuous convex functions from X to ]−∞,+∞], and let S1 and
S2 be at most single-valued skew operators from X to X∗ such that

(16) A = ∂f1 + S1 = ∂f2 + S2.

Set D = domA. Since S1 and S2 are single-valued on D, we have A − S1 = ∂f1 and A − S2 = ∂f2 on D.
Hence ∂f1 + ID and ∂f2 + ID are monotone linear relations with

(17) (∂f1 + ID)(0) = (∂f2 + ID)(0) = A0.

By Theorem 4.3, ∂f1 + ID and ∂f2 + ID are symmetric, i.e.,

(∀x ∈ D)(∀y ∈ D) 〈∂f1(x), y〉 = 〈∂f1(y), x〉 and 〈∂f2(x), y〉 = 〈∂f2(y), x〉.

Thus,

(18) (∀x ∈ D)(∀y ∈ D) 〈∂f2(x)− ∂f1(x), y〉 = 〈∂f2(y)− ∂f1(y), x〉.

On the other hand, by (16), (∀x ∈ D) S1x−S2x ∈ ∂f2(x)−∂f1(x). Then by Fact 2.2(iii) and Proposition 2.3,

(∀x ∈ D)(∀y ∈ D) 〈∂f2(x) − ∂f1(x), y〉 = 〈S1x− S2x, y〉(19)

= −〈S1y − S2y, x〉

= −〈∂f2(y)− ∂f1(y), x〉.

Now fix x ∈ D. Combining (18) and (19), we get (∀y ∈ D) 〈∂f2(x) − ∂f1(x), y〉 = 0. Using Fact 2.2(iv), we
see that

∂f2(x)− ∂f1(x) ⊆ D⊥ = (domA)⊥ = A0.

Hence, in view of Lemma 3.5(i), (17), and Fact 2.1(ii),

∂f1 + ID = ∂f2 + ID.

Furthermore, combining (18) and (19) gives (∀y ∈ D) 〈S2x− S1x, y〉 = 0; thus,

S2x− S1x ∈ D⊥ = (domA)⊥ = A0.

Now Lemma 4.4 implies that domA ⊆ domA∗. In turn, Theorem 3.7 allows us to consider the case when
S1 is a linear selection of A◦ on domA◦ = domA. Using Fact 2.2(iv), we obtain Then S2x ∈ S1x + A0 =
S1x+A◦0 = A◦x. Therefore, S2 must be a linear selection of A◦ on domA as well. �
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Remark 4.9 In a Borwein-Wiersma decomposition, the skew part need not be unique: indeed, assume that
X = R2, set Y := R× {0}, and let S be given by graS =

{(

(x, 0), (0, x)
)

| x ∈ R
}

. Then S is skew and the
maximal monotone linear relation ∂ιY has two distinct Borwein-Wiersma decompositions, namely ∂ιY + 0
and ∂ιY + S.

Proposition 4.10 Let A : X ⇒ X∗ be a maximal monotone linear relation. Suppose that A is Borwein-
Wiersma decomposable, with subdifferential part ∂f , where f : X → ]−∞,+∞] is proper, lower semicontin-
uous and convex. Then there exists a constant α ∈ R such that the following hold.

(i) f = qA + α on domA.

(ii) If domA is closed, then f = qA + α = qA + α on X.

Proof. Let S be a linear single-valued selection of A◦. By Lemma 4.4, domA ⊆ domA∗. In turn, Theorem 3.7
yields

A = ∂qA + S.

Let {x, y} ⊂ domA. By Theorem 4.8, ∂f + IdomA = ∂qA + IdomA. Now set Z = span{x, y}, apply
Lemma 4.2 to the monotone linear relation ∂f + IdomA = ∂qA+ IdomA, and let B be as in Lemma 4.2. Note
that graB = gra(∂qA + ∂ιZ) ⊆ gra∂(qA + ιZ) and that graB = gra(∂f + ∂ιZ) ⊆ gra∂(f + ιZ). By maximal
monotonicity of B, we conclude that B = ∂(qA + ιZ) = ∂(f + ιZ). By [22, Theorem B], there exists α ∈ R
such that f + ιZ = qA + ιZ + α. Hence α = f(x)− qA(x) = f(y)− qA(y) and repeating this argument with
y ∈ (domA)r {x}, we see that

(20) f = qA + α on domA

and (i) is thus verified. Now assume in addition that domA is closed. Applying Lemma 3.5(iv) with both
∂f and ∂qA, we obtain

dom qA = dom ∂qA = domA = dom∂f = dom f.

Consequently, (20) now yields f = qA + α. Finally, Corollary 3.9 implies that qA = qA. �

5 Characterizations and examples

The following characterization of Borwein-Wiersma decomposability of a maximal monotone linear relation
is quite pleasing.

Theorem 5.1 (characterization of Borwein-Wiersma decomposability) Let A : X ⇒ X∗ be a max-
imal monotone linear relation. Then the following are equivalent.

(i) A is Borwein-Wiersma decomposable.

(ii) domA ⊆ domA∗.

(iii) A = A+ +A◦.

Proof. “(i)⇒(ii)”: Lemma 4.4. “(i)⇐(ii)”: Theorem 3.7. “(ii)⇒(iii)”: Fact 2.2(vii). “(ii)⇐(iii)”: This is
clear. �
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Corollary 5.2 Let A : X ⇒ X∗ be a maximal monotone linear relation. Then both A and A∗ are Borwein-
Wiersma decomposable if and only if domA = domA∗.

Proof. Combine Theorem 5.1, Fact 2.4, and Fact 2.1(vii). �

We shall now provide two examples of a linear relation S to illustrate that the following do occur:

• S is Borwein-Wiersma decomposable, but S∗ is not.

• Neither S nor S∗ is Borwein-Wiersma decomposable.

• S is not Borwein-Wiersma decomposable, but S−1 is.

Example 5.3 (See [4].) Suppose that X is the Hilbert space ℓ2, and set

S : domS → X : y 7→

(

1
2yn +

∑

i<n

yi

)

,(21)

with

domS :=

{

y = (yn) ∈ X

∣

∣

∣

∣

∑

i≥1

yi = 0,

(

∑

i≤n

yi

)

∈ X

}

.

Then

S∗ : domS∗ → X : y 7→

(

1
2yn +

∑

i>n

yi

)

(22)

where

domS∗ =

{

y = (yn) ∈ X

∣

∣

∣

∣

(

∑

i>n

yi

)

∈ X

}

.

Then S can be identified with an at most single-valued linear relation such that the following hold. (See [17,
Theorem 2.5] and [4, Proposition 3.2, Proposition 3.5, Proposition 3.6, and Theorem 3.9].)

(i) S is maximal monotone and skew.

(ii) S∗ is maximal monotone but not skew.

(iii) domS is dense in ℓ2, and domS $ domS∗.

(iv) S∗ = −S on domS.

In view of Theorem 5.1, S is Borwein-Wiersma decomposable while S∗ is not. However, both S and S∗ are
irreducible and Asplund decomposable by Theorem 3.2. Because S∗ is irreducible but not skew, we see that
the class of irreducible operators is strictly larger than the class of skew operators.

Example 5.4 (inverse Volterra operator) (See [4, Example 4.4 and Theorem 4.5].) Suppose that X is
the Hilbert space L2[0, 1], and consider the Volterra integration operator (see, e.g., [14, Problem 148]), which
is defined by

(23) V : X → X : x 7→ V x, where V x : [0, 1] → R : t 7→

∫ t

0

x,
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and set A = V −1. Then

V ∗ : X → X : x 7→ V ∗x, where V ∗x : [0, 1] → R : t 7→

∫ 1

t

x,

and the following hold.

(i) domA =
{

x ∈ X
∣

∣ x is absolutely continuous, x(0) = 0, and x′ ∈ X
}

and

A : domA → X : x 7→ x′.

(ii) domA∗ =
{

x ∈ X
∣

∣ x is absolutely continuous, x(1) = 0, and x′ ∈ X
}

and

A∗ : domA∗ → X : x 7→ −x′.

(iii) Both A and A∗ are maximal monotone linear operators.

(iv) Neither A nor A∗ is symmetric.

(v) Neither A nor A∗ is skew.

(vi) domA 6⊆ domA∗, and domA∗ 6⊆ domA.

(vii) Y := domA ∩ domA∗ is dense in X .

(viii) Both A+ IY and A∗ + IY are skew.

By Theorem 3.2, both A and A∗ are irreducible and Asplund decomposable. On the other hand, by The-
orem 5.1, neither A nor A∗ is Borwein-Wiersma decomposable. Finally, A−1 = V and (A∗)−1 = V ∗ are
Borwein-Wiersma decomposable since they are continuous linear operators with full domain.

Remark 5.5 (an answer to a question posed by Borwein and Wiersma) The operators S, S∗, A,
and A∗ defined in this section are all irreducible and Asplund decomposable, but none of them has full
domain. This provides an answer to [7, Question (4) in Section 7].

6 When X is a Hilbert space

Throughout this short section, we suppose that X is a Hilbert space. Recall (see, e.g., [13, Chapter 5] for
basic properties) that if C is a nonempty closed convex subset of X , then the (nearest point) projector PC

is well defined and continuous. If Y is a closed subspace of X , then PY is linear and PY = P ∗
Y .

Definition 6.1 Let A : X ⇒ X be a maximal monotone linear relation. We define QA by

QA : domA → X : x 7→ PAxx.

Note that QA is monotone and a single-valued selection of A because (∀x ∈ domA) Ax is a nonempty closed
convex subset of X .

Proposition 6.2 (linear selection) Let A : X ⇒ X be a maximal monotone linear relation. Then the
following hold.
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(i) (∀x ∈ domA) QAx = P(A0)⊥(Ax), and QAx ∈ Ax.

(ii) QA is monotone and linear.

(iii) A = QA +A0.

Proof. Let x ∈ domA = domQA and let x∗ ∈ Ax. Using Fact 2.1(ii) and Fact 2.2(i), we see that

QAx = PAxx = Px∗+A0x = x∗ + PA0(x− x∗) = x∗ + PA0x− PA0x
∗ = PA0x+ P(A0)⊥x

∗

= P(A0)⊥x
∗.

Since x∗ ∈ Ax is arbitrary, we have thus verified (i). Now let x and y be in domA, and let α and β be in R.
If α = β = 0, then, by Fact 2.1(i), we have QA(αx+ βy) = QA0 = PA00 = 0 = αQAx+ βQAy. Now assume
that α 6= 0 or β 6= 0. By (i) and Fact 2.1(iii), we have

QA(αx + βy) = P(A0)⊥A(αx + βy) = αP(A0)⊥(Ax) + βP(A0)⊥(Ay) = αQAx+ βQAy.

Hence QA is a linear selection of A and (ii) holds. Finally, (iii) follows from Fact 2.1(ii). �

Example 6.3 Let A : X ⇒ X be maximal monotone and skew. Then A = ∂ιdomA + QA is a Borwein-
Wiersma decomposition.

Proof. By Proposition 6.2(ii), QA is a linear selection of A. Now apply Theorem 3.10. �

Example 6.4 Let A : X ⇒ X be a maximal monotone linear relation such that domA is closed. Set
B := PdomAQAPdomA and f := qB + ιdomA. Then the following hold.

(i) B : X → X is continuous, linear, and maximal monotone.

(ii) f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper.

(iii) A = ∂ιdomA +B.

(iv) ∂f +B◦ is a Borwein-Wiersma decomposition of A.

Proof. (i): By Proposition 6.2(ii), QA is monotone and a linear selection of A. Hence, B : X → X is
linear; moreover, (∀x ∈ X) 〈x,Bx〉 = 〈x, PdomAQAPdomAx〉 = 〈PdomAx, QAPdomAx〉 ≥ 0. Altogether,
B : X → X is linear and monotone. By Fact 2.5, B is continuous and maximal monotone.

(ii): By (i), qB is thus convex and continuous; in turn, f is convex, lower semicontinuous, and proper.

(iii): Using Proposition 6.2(i) and Fact 2.2(iv), we have (∀x ∈ X) (QAPdomA)x ∈ (A0)⊥ = domA =
domA. Hence, (∀x ∈ domA) Bx = (PdomAQAPdomA)x = QAx ∈ Ax. Thus, B + IdomA = QA. In view of
Proposition 6.2(iii) and Fact 2.2(iv), we now obtain A = B + IdomA +A0 = B + ∂ιdomA.

(iv): It follows from (iii) and (5) that A = B + ∂ιdomA = ∇qB + ∂ιdomA +B◦ = ∂(qB + ιdomA) + B◦ =
∂f +B◦. �

Proposition 6.5 Let A : X ⇒ X be such that domA is a closed subspace of X. Then A is a maximal
monotone linear relation ⇔ A = ∂ιdomA +B, where B : X → X is linear and monotone.

Proof. “⇒”: This is clear from Example 6.4(i)&(iii). “⇐”: Clearly, A is a linear relation. By Fact 2.5, B is
continuous and maximal monotone. Using Rockafellar’s sum theorem [21], we conclude that ∂ιdomA +B is
maximal monotone. �
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7 Conclusion

The original papers by Asplund [1] and by Borwein and Wiersma [7] concerned the additive decomposition
of a maximal monotone operator whose domain has nonempty interior. In this paper, we focused on max-
imal monotone linear relations and we specifically allowed for domains with empty interior. All maximal
monotone linear relations on finite-dimensional spaces are Borwein-Wiersma decomposable; however, this
fails in infinite-dimensional settings. We presented characterizations of Borwein-Wiersma decomposability
of maximal monotone linear relations in reflexive Banach spaces and provided a more explicit decomposition
in Hilbert spaces.

The characterization of Asplund decomposability and the corresponding construction of an Asplund de-
composition remain interesting unresolved topics for future explorations, even for maximal monotone linear
operators whose domains are proper dense subspaces of infinite-dimensional Hilbert spaces.
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[30] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, 2002.

17


	Introduction
	Auxiliary results on monotone linear relations
	Borwein-Wiersma decompositions
	Uniqueness results
	Characterizations and examples
	When X is a Hilbert space
	Conclusion

