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Abstract

Evolutions of the trading landscape lead to the capability to exchange the same financial
instrument on different venues. Because of liquidity issues, the trading firms split large orders
across several trading destinations to optimize their execution. To solve this problem we devised
two stochastic recursive learning procedures which adjust the proportions of the order to be sent
to the different venues, one based on an optimization principle, the other on some reinforcement
ideas. Both procedures are investigated from a theoretical point of view: we prove a.s. conver-
gence of the optimization algorithm under some light ergodic (or “averaging”) assumption on
the input data process. No Markov property is needed. When the inputs are i.i.d. we show that
the convergence rate is ruled by a Central Limit Theorem. Finally, the mutual performances of
both algorithms are compared on simulated and real data with respect to an “oracle” strategy
devised by an ”insider” who a priori knows the executed quantities by every venues.

Keywords Asset allocation, Stochastic Lagrangian algorithm, reinforcement principle, monotone
dynamic system.

2001 AMS classification: 62L20, secondary: 91B32, 62P05

1 Introduction

The trading landscape have seen a large number of evolutions following two regulations: Reg
NMS in the US and MiFID in Europe. One of their consequences is the capability to exchange
the same financial instrument on different trading venues. New trading destinations appeared to
complement the trading capability of primary markets as the NASDAQ and the NYSE in the US,
or EURONEXT, the London Stock Exchange and Xetra in Europe. Such alternative venues are
called “Electronic Communication Network” (ECN) in the US and Multilateral Trading Facilities
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(MTF) in Europe. Each trading venue differentiates from the others at any time because of the
fees or rebate it demands to trade and the liquidity it offers.

As the concerns about consuming liquidity increased with the financial crisis, trading firms use
Smart Order Routers (SOR) as a key element in the process of optimizing their execution of large
orders. Such devices are dedicated to split orders across trading destinations as a complement to
the temporal slicing coming from the well known balance between the need to trade rapidly (to
minimize market risk) and trading slow (to avoid market impact).

If the temporal slicing has been studied since the end of the nineties [1] with recent advances
to adapt it to sophisticated investment strategies [19], this kind of spatial slicing (across trading
destinations) has been mainly studied by economists from the point of view of its global market
efficiency [8] rather than from one investor’s point of view.

The complexity of spreading an order between N trading destinations comes from the fact that
you never knows the quantity Di available on the ith trading venue to execute your order of size
V during a time interval δt at your given price. If the fraction ri V of your order that you sent to
the ith liquidity pool is higher than Di: you will loose time and may loose opportunity to execute
ri V −Di in an another pool; on another hand if ri V is lower than Di: you will loose money if this
pool fees are cheap, and an opportunity to execute more quantity here. The only way to optimize
such a split on real time is to adjust on the fly the proportions (ri)i according to the result of your
previous executions.

This paper is an in depth analysis of the optimal split of orders. The illustrations and most
of the vocabulary come from the “Dark pool” case, where the price S is not chosen by the trader
(it is the market “mid point” price) and the answer of the pool is immediate (i.e. δt = 0). Dark
pools are MTFs that do not publish pre-trade informations, so an efficient use of the results of
the previous executions (namely the realizations of the min(Dt

i , r
t
i V

t) for any i and all t in the
past) is crucial. The results exposed here solve the problem of simultaneously splitting orders and
using the information coming back from the pools to adjust the proportions to send for the next
order, according to a criteria linked to the overall quantity executed (i.e. a linear combination of
the min(Di, ri V )).

The resulting trading strategy (which optimality is proven here) can be considered as an exten-
sion of the one conjectured by Almgren in [2]. It may also be related to the class of multi-armed
bandit recursive learning procedures, recently brought back to light in several papers (see [14, 22],
[15, 16]; which in turn belongs to the wide family of “recursive stochastic algorithms” also known
as “stochastic approximation” and extensively investigated in the applied probability literature
(see [13], [3], [7], etc)).

In fact, we introduce two learning algorithms one based on an optimization under constraints
principle and a second algorithm based on a reinforcement principle for which we establish the
existence of an equilibrium. We extensively investigate the first one, considering successively the
classical – although unrealistic – case where the inputs (requests, answers) are i.i.d. and a setting
in which the input only share some averaging properties. In the i.i.d. setting we establish a.s. con-
vergence of the procedure and a Central Limit Theorem relying on classical results from Stochastic
Approximation Theory. By averaging setting (also referred as ergodic setting), we mean that the
inputs of the procedure has a.s. an averaging property with respect to a distribution ν at a given
rate, say n−β, β > 0, for a wide enough class of Borel functions. Typically, in our problem, these
inputs are the successive N + 1-tuples (V n,Dn

i , i = 1, . . . , N), n ≥ 1. Typically, if we denote this
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input sequence inputs by (Yn)n≥1, we will assume that, for every f ∈ Vβ,p,

1

n

n∑

k=1

f(Yk)−
∫

R
N+1

+

fdν = O(n−β) P-a.s and in Lp(P).

Usually, Vβ,p is supposed to contain at least bounded continuous function g : RN+1
+ → R and

subsequently all bounded ν-a.s. continuous functions. This will be enough for our purpose in this
paper (Stochastic approximation in this general framework is investigate in [17]). But the key point
to be noted here is that no Markov assumption is needed on this input sequence (Yn)n≥1. These
assumptions are hopefully light enough to be satisfied by real data since it can be seen as a kind
of “light” ergodicity at a given rate. In a Markovian framework it could be related to the notion
of “stability” in the literature, see [7].

Thus, this setting includes stationary α-mixing processes (satisfying an Ibragimov condition)
like those investigated in [6] (in [5] weaker dependence assumptions are made in the chapter devoted
to stochastic approximation but the perturbation is supposed to be additive and non causal which
is not at all the case in our problem). As concerns the second procedure for which no Lyapunov
function seems to be (easily) made available, we establish the existence of an equilibrium and
show the ODE related to the algorithm is a competitive system in the terminology of monotonous
differential systems extensively studied by Hirsch et al. (see e.g. [12]). The behaviour of such
competitive systems is known to be the most challenging, even when the equilibrium point is
unique (which is not the case here).

Both procedures are compared in the final section, using simulated and real data. Further
numerical tests and applications are ongoing works in CA Cheuvreux.

The paper is organized as follows: in Section 2, we make precise the modeling of splitting orders
among several venues in the framework of Dark pools, first in static then in a dynamic way. This
leads to an optimization problem under constraints. In Section 3, we study the execution function
of one dark pool and introduce the recursive stochasic algorithm resulting from the optimization
problem. In Section 4 we analyze in depth this algorithm (a.s. convergence and weak rate) when
the “innovations” (data related to the orders, the executed quantities and the market price) are
assumed i.i.d. In Section 5 we extend the a.s. convergence result to a more realistic framework
where these innovations are supposed to share some appropriate averaging properties (e.g. satisfied
by α-mixing processes satisfying Ibragimov’s condition). Section 6 is devoted to the second learning
procedure, based this time on reinforcement principle, introduced in [4]. We make a connexion with
the theory of (competitive) monotonous dynamical systems. Finally, in Section 7, we present several
simulations results on simulated and real data to evaluate the performances of both procedures with
respect to an “oracle” strategy of an “insider” who could know a priori the executed quantities by
every dark pool.

Notations: • For every N ≥ 1, set I
N
:= {1, 2, . . . , N}, P

N
:= {r = (ri)1≤i≤n ∈ RN

+ | ∑N
i=1 ri =

1}. Let 1⊥ := {u∈ RN | ∑i∈I
N
ui = 0}.

• δij denotes the Kronecker symbol.
• 〈 .| .〉 denotes the canonical inner product on Rd and | . | the derived Euclidean norm.
• int(A) denotes the interior of a subset A of Rd.
• δa denotes the Dirac mass at a∈ Rd.
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2 A simple model for the execution of orders by dark pools

2.1 Static modelling

As mentioned in the introduction, we will focus in this paper on the splitting order problem in the
case of (competing) dark pools. The execution policy of a dark pool differs from a primary market:
thus a dark pool proposes bid/ask prices with no guarantee of executed quantity at the occasion
of an over the counter transaction. Usually its bid price is lower than the bid price offered on the
regular market (and the ask price is higher). Let us temporarily focus on a buying order sent to
several dark pools. One can model the impact of the existence of N dark pools (N ≥ 2) on a
given transaction as follows: let V > 0 be the random volume to be executed and let θi∈ (0, 1) be
the discount factor proposed by the dark pool i∈ {1, . . . , N}. We will make the assumption that
this discount factor is deterministic or at least known prior to the execution. Let ri denote the
percentage of V sent to the dark pool i for execution and let Di ≥ 0 be the quantity of securities
that can be delivered (or made available) by the dark pool i at price θiS where S denotes the bid
price on the primary market (this is clearly an approximation since on the primary market, the
order will be decomposed into slices executed at higher and higher prices following the order book).
The rest of the order has to be executed on the primary market, at price S. Then the cost C of
the executed order is given by

C = S

N∑

i=1

θimin(riV,Di) + S

(
V −

N∑

i=1

min(riV,Di)

)

= S

(
V −

N∑

i=1

ρimin(riV,Di)

)

where ρi = 1 − θi > 0, i = 1, . . . , N . At this stage, one may wish to minimize the mean execution
cost C, given the price S. This amounts to solving the following (conditional) maximization problem

max

{
N∑

i=1

ρi E (min(riV,Di) |S) , r∈ P
N

}
. (2.1)

However, none of the agents being insiders, they do not know the price S when the agent decides
to buy the security and when the dark pools answer to their request. This means that one may
assume that (V,D1, . . . ,Dn) and S are independent so that the maximization problem finally reads

max

{
N∑

i=1

ρiE (min(riV,Di)) , r∈ P
N

}
(2.2)

where we assume that all the random variables min(V,D1), . . . , min(V,D
N
) are integrable (other-

wise the problem is meaningless).
An alternative choice could be to include the price S of the security into the optimization which

leads to the mean maximization problem

max

{
N∑

i=1

ρiE (Smin(riV,Di)) , r∈ P
N

}
(2.3)
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(with the appropriate integrability assumption to make the problem consistent). It is then conve-
nient to include the price S into both random variables V and Di by considering Ṽ := V S and
D̃i := DiS instead of V and Di which leads again to the maximization problem (2.2).

If one considers symmetrically a selling order to be executed, the dark pool is supposed to
propose a higher ask price θiS, θi > 1, than the order book. The seller aims at maximizing the
execution global (mean) price of the transaction. This yields to the same formal optimization
problem, this time with ρi = θi − 1, i = 1, . . . , N .

All these considerations lead us to focus on the abstract optimal allocation problem (2.2) which
explains why the price variable S will no longer appear explicitly in what follows.

2.2 The dynamical aspect

In practice, there is no a priori assumption – or information available – on the joint distribution of
(V,D1, . . . ,DN

) under P. So the only reasonable way to provide a procedure to solve this allocation
problem is to devise an on-line learning algorithm based on historical data, namely the results of
former transactions with the dark pools on this security executed in the past. This underlines that
our agent dealing with the dark pools is a financial institution like a bank, a broker or possibly a
large investor which often – that means at least daily – faces some large scale execution problems
on the same securities.

This means that we will have to make some assumptions on the dynamics of these transactions
i.e. on the data input sequence (V n,Dn

1 , . . . ,D
n
N
)n≥1 supposed to be defined on the same probability

space (Ω,A,P).
Our basic assumption on the sequence (Dn

i , V
n, i = 1,≤, N)n≥1 is of statistical – or ergodic –

nature: we ask this sequence to be ν-averaging (a.s. and in Lp(P)), at least on bounded continuous
functions, where ν is a distribution on (RN+1

+ ,Bor(RN+1
+ )). This leads to the following formal

assumption:

(ERG)ν ≡





(i) the sequence (V n,Dn
i , i = 1, . . . , N)n≥1 is averaging i.e.

P-a.s.
1

n

n∑

k=1

δ(V k,Dk
1
,...,Dk

N )

(RN+1

+
)

=⇒ ν,

(ii) supnE(V
n)2 < +∞.

where
(RN+1

+
)

=⇒ denotes the weak convergence of probability measures on R
N+1
+ . For convenience,

we will denote (V,D1, . . . ,DN
) the canonical random vector on R

N+1
+ so that we can write ν =

L(V,D1, . . . ,DN
).

Assumption (ii) on the marginal distribution of the sequence (V n)n≥1 is mainly technical. In
fact standard arguments from weak convergence theory show that combining (i) and (ii) implies

1

n

n∑

k=1

V k −→ EV as n→ ∞

(supnE(V
n)1+ε < +∞ would be enough). An important subcase is the the (IID) setting

(IID) ≡
{

(i) the sequence (V n,Dn
1 , . . . ,D

n
N
)n≥1 is i.i.d. with distribution ν = L(V,D1, . . . ,DN

),
(ii) V ∈ L2(P).
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This more restrictive assumption is undoubtedly less realistic from a modeling point of view
but it remains acceptable as a first approximation. It is the most common framework to apply
the standard Stochastic Approximation machinery (a.s. convergence, asymptotically normal fluc-
tuations, etc). So, its interest may be considered at least as pedagogical. The (ERG) setting is
slightly more demanding in terms of assumptions and needs more specific methods of proof. It
will be investigated as a second step, using some recent results established in [18] which are well
suited to the specificities of our problem (in particular we will not need to assume the existence of
a solution to the Poisson equation related to the procedure like in the reference book [3]).

3 Optimal allocation: a stochastic Lagrangian algorithm

3.1 The mean execution function of a dark pool

In view of the modeling section, we need to briefly describe the precise behaviour of the mean
execution function ϕ : [0, 1] → R+ of a single dark pool.

Let (V,D) be an R2
+-valued random vector defined on a probability space (Ω,A,P) representing

the global volume to be executed and the deliverable quantity (by the dark pool) respectively.
Throughout this paper we will assume the following consistency assumption

V > 0 P-a.s. and P(D > 0) > 0. (3.1)

The a.s. positivity of V means that we only consider true orders. The fact that D is not
identically 0 means that the dark pool does exist in practice. The “rebate” coefficient ρ is specific
to the dark pool.

To define in a consistent way the mean execution function of a dark pool we only need to
assume that V ∈ L1(P) (although more stringent integrability assumptions are made throughout
the paper).

Here the mean execution function ϕ : [0, 1] → R+ of the dark pool is defined by

∀ r∈ [0, 1], ϕ(r) = ρE(min(rV,D)) (3.2)

where ρ > 0. The function ϕ is finite, non-identically 0. It is clearly a concave non-decreasing
bounded function. Furthermore, one easily checks that its right and left derivatives are given at
every r∈ [0, 1] by

ϕ′
l(r) = ρE

(
1{rV≤D}V

)
and ϕ′

r(r) = ρE
(
1{rV <D}V

)
. (3.3)

In particular,
ϕ′(0) = ρE(V 1{D>0}) > 0

and if

the (right continuous) distribution function of D
V is continuous on R+, (3.4)

then
ϕ is everywhere differentiable on the unit interval [0, 1] with ϕ′ = ϕ′

l on (0, 1].

Assumption (3.4) means that the distribution of DV has no atom except possibly at 0. It can be
interpreted as the fact that a dark pool has no “quantized” answer to an order.

More general models of execution functions in which the rebate ρ and the deliverable quantity
D may depend upon the quantity to be executed rV are briefly discussed further on.
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3.2 Design of the stochastic Lagrangian algorithm

Let V be the quantity to be executed by N dark pools. For every dark pool i∈ I
N

the available
quantity Di is defined on the same probability space (Ω,A,P) as V . We assume that all couples
(V,Di) satisfy the consistency assumption (3.1).

To each dark pool i ∈ I
N

is attached a (bounded concave) mean execution function ϕi of
type (3.2), introduced in Section 2.1, or (8.1), (8.3) studied in Section 8.

Then for every r = (r1, . . . , rN )∈ P
N
,

Φ(r1, . . . , rN ) :=

N∑

i=1

ϕi(ri). (3.5)

In order to design the algorithm we will need to extend the mean execution function ϕ (whatever
its form is) as a concave function on the whole real line by setting

ϕ(r) =

(
r − r2

2

)
ϕ′(0) if r < 0 and ϕ(r) = ϕ(1) + ϕ′(1) log r if r > 1. (3.6)

Based on the extension of the functions ϕi defined by (3.6), we can formally extend Φ on the
whole affine hyperplane spanned by P

N
i.e.

H
N
:= {r∈ R

N |
∑

i

ri = 1}.

As announced, we aim at solving the following maximization problem

max
r∈P

N

Φ(r)

but we will also have to deal for algorithmic purpose with the same maximization problem when r
runs over H

N
.

Before stating a rigorous result, let us a have a look at a Lagrangian approach that only takes

into account the affine constraint that is max
r

Φ(r)−λ
∑

i

ri. Straightforward formal computations

suggest that

r∗∈ argmaxP
N
Φ iff ϕ′

i(r
∗
i ) is constant when i runs over IN

or equivalently if

∀ i∈ I
N
, ϕ′

i(r
∗
i ) =

1

N

N∑

j=1

ϕ′
j(r

∗
j ). (3.7)

In fact this statement is not correct in full generality because the Lagrangian method does not
provide a necessary and sufficient condition for a point to be a maximum of a (concave) function;
thus, it does not take into account the case where Φ reaches its maximum on the boundary ∂P

N

where the above condition on the derivatives may fail. So, an additional assumption is necessary
to make it true as established in the proposition below.
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Proposition 3.1 Assume that (V,Di) satisfies the consistency assumptions (3.1) and (3.4) for
every i∈ I

N
.

(a) Assume that the functions ϕi defined by (3.2) satisfy the following assumption

(C) ≡ min
i∈I

N

ϕ′
i(0) ≥ max

i∈I
N

ϕ′
i

(
1

N − 1

)
.

Then argmaxP
N
Φ is a compact convex set and

argmaxP
N
Φ = {r∈ P

N
, |ϕ′

i(ri) = ϕ′
1(r1), i = 1, . . . , N}.

Furthermore argmaxH
N
Φ = argmaxP

N
Φ.

(b) If the functions ϕi satisfy the slightly more stringent assumption,

(C<) ≡ min
i∈I

N

ϕ′
i(0) > max

i∈I
N

ϕ′
i

(
1

N − 1

)
.

then
argmaxH

N
Φ = argmaxP

N
Φ ⊂ int(P

N
).

Remarks. • If N = 2, one checks that Assumption (C) is also necessary to derive the conclusion
of item (a).
• As a by-product of the proof below we have the following more precise result on the optimal
allocation r∗: if r∗∈ argmaxP

N
and I0(r∗) := {i∈ I

N
| r∗i = 0}, then

max
i∈I0(r∗)

ϕ′
i(0) ≤ min

i∈I0(r∗)c
ϕ′
i(0).

Interpretation and comments: • In the case of a “regular” mean execution function, Assump-
tion (C) is a kind of homogeneity assumption on the rebates made by the involved dark pools. If we
assume that P(Di = 0) = 0 for every i∈ I

N
(all dark pools buy or sell at least one security with

the announced rebate), then (C) reads

min
i∈I

N

ρi ≥ max
i∈I

N

(
ρi
EV 1{ V

N−1
≤Di}

EV

)

since ϕ′
i(0) = ρiEV . In particular,

Assumption (C) is always satisfied when all the ρi’s are equal

(all dark pools propose the same rebates).

• Assumption (C) is in fact our main assumption in terms of modeling. It may look somewhat
difficult to satisfy when the rebates are not equal. But the crucial fact in order to preserve the
generality of what follows is that it contains no assumption about the dependence between the volume
V and the “answers” Di from the dark pools.
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Proof. (a) The function Φ is continuous on a compact set hence argmaxP
N
Φ is not empty. Let

r∈ argmaxP
N
Φ and I0(r) := {i∈ I

N
| ri = 0}. Clearly I0(r) 6= I

N
so that card I0(r) ≤ N − 1. Let

u∈ 1⊥ such that ui > 0, i∈ I0(r). Then t 7→ Φ(r + tu) defined on the right neighbourhood of 0
reaches its maximum at 0 so that its derivative at 0 is non-positive. Specifying the vector u yields

∀ i∈ I0(r), ∀ j∈ I0(r)c, ϕ′
i(0) ≤ ϕ′

j(rj).

Now if u∈ 1⊥ with ui = 0, i∈ I0(r), then the t 7→ Φ(r + tu) is defined on a neighbourhood of
0 and reaches its maximum at t = 0 so that its derivative is 0 at 0; specifying the vector u yields

∀ i, j∈ I0(r)c, ϕ′
i(ri) = ϕ′

j(rj).

Now, there exists at least one index i1∈ I0(r)c such that ri1 ≥ 1
|I0(r)c|

≥ 1
N−1 . Hence ϕ

′
i1
(ri1) ≤

ϕ′
i1
( 1
N−1 ) which implies in turn that for every i0 ∈ I0(r), ϕ′

i0
(0) ≤ ϕ′

i1
(ri1) ≤ ϕ′

i1
( 1
N−1). Finally

Assumption (C) implies that these inequalities hold as equalities so that

∀ i∈ I
N
, ϕ′

i(ri) = ϕ′
1(r1).

Conversely, let r ∈ P
N

satisfying the above equalities. Then, for every r′ ∈ P
N
, the function

t 7→ Φ(tr′+(1−t)r) is concave on [0, 1] with a right derivative equal to 0 at t = 0. So it is maximum
at t = 0 i.e. Φ(r) ≥ Φ(r′).

Now we pass to the the maximization over H
N
. Since it is an affine space and Φ is concave, it

is clear, e.g. by considering Φ as a function of (r1, . . . , rN−1), that

argmaxH
N
Φ = {r∈ H

N
, |ϕ′

i(ri) = ϕ′
1(r1), i = 1, . . . , N}

(which is non-empty since it contains at least argmaxP
N
). Now let r∈ H

N
\P

N
. Assume there exists

i0∈ I
N

such that ri0 < 0. Then there always exists an index i1∈ I
N

such that ri1 ≥ 1−ri0
N−1 > 1

N−1 .
Consequently

ϕ′
i0(ri0) = (1− ri0)ϕ

′
i0(0) > ϕ′

i0(0) ≥ min
i
ϕ′
i(0) ≥ max

i
ϕ′
i

(
1

N − 1

)
≥ ϕ′

i1

(
1

N − 1

)
≥ ϕ′

i1(ri1)

which contradicts the equality of these two derivatives. Consequently all ri’s are non-negative so
that r∈ P

N
.

(b) If C< holds, the above proof shows that I0(r) = ∅ so that argmaxP
N
Φ

N
⊂ int(P

N
). �

3.3 Design of the stochastic algorithm

Now we are in position to devise the stochastic algorithm for the optimal allocation among the
dark pools, taking advantage of the characterization of argmaxP

N
Φ. In fact we will simply use

the obvious remark that N numbers a1,. . . , aN
are equal if and only if they are all equal to their

arithmetic mean
a1+···+a

N

N .
We consider the mean execution function as defined by (3.2). We assume from now on that the

continuity assumption (3.4) holds so that the representation (3.3) of its derivative can be taken as
its right or its left derivative on (0, 1] (and its right derivative only at 0).
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Using this representation (3.3) for all the derivatives ϕ′
i yields that, if Assumption (C) is satisfied,

then argmaxH
N
Φ = argmaxP

N
Φ and

r∗∈ argmaxP
N
Φ ⇐⇒ ∀ i∈ {1, . . . , N}, E


V


ρi1{r∗i V≤Di} −

1

N

N∑

j=1

ρj1{r∗j V≤Dj}




 = 0.

However, the set P
N

is not stable for the “naive” zero search algorithm naturally derived from the
above characterization, we are led to devise the procedure on the hyperplane H

N
.

Consequently, this leads to devise the following zero search procedure

rn = rn−1 + γnH(rn−1, V n,Dn
1 , . . . ,D

n
N
), n ≥ 1, r0∈ P

N
, (3.8)

where, for every i∈ I
N
, every r∈ H

N
, every V > 0 and every D1, . . . ,DN

≥ 0,

Hi(r, V,D1, . . . ,DN
) = V

(
ρi1{riV≤Di}∩{ri∈[0,1]} −

1

N

N∑

j=1

ρj1{rjV≤Dj}∩{rj∈[0,1]} (3.9)

+Ri(r, V,D1, . . . ,DN
)
)

and the “innovation” (V n,Dn
1 , . . . ,D

n
N
)n≥1 is a sequence of random vectors with non negative

components such that, for every n ≥ 1, (V n,Dn
i , i = 1,≤, N)

d
= (V,Di, i = 1,≤, N) and the

remainder terms Ri have a mean-reverting effect to pull back the algorithm into P
N
. They are

designed from the extension (3.6) of the derivative functions ϕ′
i outside the unit interval [0, 1]; to

be precise, for every i∈ I
N
,

Ri(r, V,D1, . . . ,DN
) = ρi

(
(1− ri)1{Di>0}∩{ri<0} +

1

ri
1{V≤Di}∩{ri>1}

)

− 1

N

N∑

j=1

ρj

(
(1− rj)1{Dj>0}∩{rj<0} +

1

rj
1{V≤Dj}∩{rj>1}

)
.

3.4 Interpretation and implementability of the procedure

⊲ Implementability. The vector (rni )1≤i≤N in (3.8) represents the dispatching of the orders
among the N dark pools to be sent at time n+1 by the investor. It is computed at time n. On the
other hand V n represents the volume to be executed (or its monetary value if one keeps in mind
that we “plugged” the price into the volume) and the Dn

i the “answer” of dark pool i, still at time
n.

The point is that the investor does have no access to the quantities Dn
i . However, he/she knows

what he/she receives from dark pool i, i.e. min(Dn
i , r

n−1
i V n). As a consequence, the investor has

access to the event
{min(Dn

i , r
n−1
i V n) = rn−1

i V n} = {rn−1
i V n ≤ Dn

i }
which in turn makes possible the updating of the procedure although he/she has no access to the
true value of Dn

i .
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So, except for edge effects outside the simplex P
N
, the procedure as set can be implemented on

real data.

⊲ Interpretation. As long as r is a true allocation vector, i.e. lies in the simplex P
N
, the

interpretation of the procedure is the following: assume first that all the factors ρi are equal (to 1).
Then the dark pools which fully executed the sent orders (riV ≤ Di) are rewarded proportionally to
the numbers of dark pools which did not fully executed the request they received. Symmetrically, the
dark pools which could not execute the whole request are penalized proportionally to the number
of dark pools which satisfied the request.

Thus, if only one dark pool, say dark pool 1, fully executes the request at time n, its pourcentage
will be increased for the request at time n + 1 by γn(1 − 1

N )V n i.e. it will asked to execute
rn1 = rn−1

1 + γn(1− 1
N )V n % of the total order V n+1. The other N − 1 dark pools will be penalized

symmetrically: the pourcentage rni of the total request V n+1 each of them will receive at time n+1
will be reduced by γn

1
N V

n.

If k dark pools totally execute their request at time n and the N−k other fail, the pourcentages
of V n+1 that the “successful” dark pools will receive for execution at time n+ 1 will be increased
by γn(1− k

N )V n, each of the N − k “failing dark pools” being reduced by γn
k
N V

n .

If no dark pool was able to satisfy their received request at time n, none will be penalized and
if all dark pools fully execute the received orders, none will be rewarded.

In short, the dark pools are rewarded or penalized by comparing their mutual performances.
When the “attractivity” coefficents ρi are not equal, the reasoning is the same but weighted by
these attractivities.

⊲ Practical implementation. One may force the above procedure to stay in the simplex P
N

by projecting, once updated, the procedure on P
N

each time it exits the simplex. This amounts to
replace the possibly negative ri by 0, the ri > 1 by 1 and to renormalize the vector r by dividing
it by the sum of its terms.

Furhermore, to avoid that the algorithm leaves too often the simplex, one may simply normalize
the step γn by considering the predictable step

γ̃n = γn ×
n− 1

V 1 + · · ·+ V n−1
≈ γn

EV
.

4 The (IID) setting: a.s convergence and CLT

Theorem 4.1 Assume that (V,D) satisfy (3.1), that V ∈ L2(P) and that Assumption (C) holds.
Assume furthermore that the distribution of D

V satisfies the continuity Assumption (3.4). Let γ :=
(γn)n≥1 be a step sequence satisfying the usual decreasing step assumption

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞.

Let (V n,Dn
1 , . . . ,D

n
N
)n≥1 be an i.d.d. sequence defined on a probability space (Ω,A,P). Then, there

exists an argmaxP
N
Φ-valued random variable r∗ such that

rn −→ r∗ a.s.

If the functions ϕi satisfy (C<) then argmaxP
N
Φ ⊂ int(P

N
).
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Proof of the theorem. In this setting, the algorithm is (non homogenous) Markov discrete time
process with respect to the natural filtration Fn := σ(r0, (V k,Dk

1 , . . . ,D
k
N
), 1 ≤ k ≤ n) with the

following canonical representation

rn+1 = rn + γn+1H(rn, V n+1,Dn+1
1 , . . . ,Dn+1

N
), r0∈ P

N

= rn + γn+1h(r
n) + γn+1∆Mn+1

where, for every r∈ H
N
,

h(r) := EH(r, V,D1, . . . ,DN
) =


ϕ′

i(ri)−
1

N

N∑

j=1

ϕ′
j(rj)




1≤i≤N

is the so-called mean function of the algorithm, and

∆Mn+1 = H(rn, V n+1,Dn+1
1 , . . . ,Dn+1

N
)− E(H(rn, V n+1,Dn+1

1 , . . . ,Dn+1
N

) | Fn)
= H(rn, V n+1,Dn+1

1 , . . . ,Dn+1
N

)− h(rn)

since (V n+1,Dn+1
1 , . . . ,Dn+1

N
) is independent of Fn.

One derives from Proposition 3.1(a) that the mean function h of the algorithm satisfies {h =
0} = argmaxP

N
and that, for every r∈ H

N
\{h = 0} and every r∗∈ {h = 0},

〈h(r) | r − r∗〉 = 〈h(r)− h(r∗) | r − r∗〉 =
N∑

i=1

(ϕ′
i(ri)− ϕ′

i(r
∗
i ))(ri − r∗i )︸ ︷︷ ︸

≤0

< 0 (4.1)

simply because each function ϕ′
i is non-increasing which implies that each term of the sum is non-

positive. The sum is not zero otherwise ϕ′(ri) = ϕ′(r∗i ) as soon as ri 6= r∗i which would imply
h(r) = 0.

The random vector V being square integrable, it is clear that Hi(r, V,D1, . . . ,DN
) satisfies the

linear growth assumption

∀ i∈ I
N
, ∀ r ∈ H

N
, ‖Hi(r, V,D1, . . . ,DN

)‖
2
≤ 2 (max

j
ρj)‖V ‖

2
(N + |r|)

At this stage one may conclude using a simple variant of the standard Robbins-Monro Theorem
(like that established in [20]): there exists a random variable r∗ taking values in {h = 0} such that
rn → r∗. �

4.1 Rate of convergence

Our aim in this section is to show that the assumptions of the regular Central Limit Theorem
(CLT ) for stochastic approximation procedures are fulfilled. For a precise statement, we refer
(among others) to [3] (Theorem 13 p.332). For the sake of simplicity, we will assume that the mean
function h has a single zero denoted r∗. The following lemma provides a simple criterion to ensure
this uniqueness.
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Lemma 4.1 Assume that all the functions ϕi, i∈ I
N
, are decreasing (strictly). Then

{h = 0} = argmaxP
N
Φ = r∗∈ int(P

N
).

Proof. In particular (C<) is satisfied so that argmaxP
N
Φ ⊂ r∗∈ int(P

N
). If r, r′∈ {h = 0}, r 6= r′,

it follows from (4.1) that ϕ′
i(ri) = ϕ′

i(r
′
i) for some index i such that ri 6= r′i. �

The second ingredient needed to establish a CLT will be the Hessian of function Φ. To ensure
its existence we will make one further assumption on a generic random couple (V,D), keeping in
mind that P(D > 0) > 0, but that P(D = 0) may possibly be positive too. Namely, assume that the
distribution function of (V,D) given {D > 0} is absolutely continuous with a probability density
f defined on (0,+∞)2. Furthermore we make the following assmptions on f :





(i) for every v > 0, u 7→ f(v, u) is continuous and positive on (0,∞),

(ii) ∀ ε∈ (0, 1), sup
εV≤u≤V/ε

f(V, u)V 2∈ L1(P).
(4.2)

Note that (ii) is clearly always satisfied when V ∈ L2(P) and f is bounded. The conditional
distribution function of D given {D > 0} and V is given by

F
D
(u |V = v,D > 0) := P(D ≤ u |V = v,D > 0) =

∫ u

0
f(v, u′)du′, u > 0, v > 0,

Lemma 4.2 (a) Assume (V,D) satisfies the above assumption (4.2). Then the mean execution
function ϕ(u) := ρE(min(uV,D)) is concave, twice differentiable on R+ and for every u > 0,

ϕ′′(u) = −ρE
(
V 21{D>0}f(V, uV )

)
< 0.

(b) If (V,Di) satisfies the above assumption (4.2) for every i∈ I
N
, then the function h̃ defined on

RN
+ by h̃(u1, . . . , uN

) =
(
ϕ′
i(ui)− 1

N

∑
1≤j≤N ϕ

′
j(uj)

)
1≤i≤N

is differentiable on (0,∞)N and admits

a continuous extension on RN
+ given by

Dh̃(u) = − 1

N

[
− aj(uj) +Nai(ui) δij

]
1≤i,j≤N

with ai(u) = −ϕ′′
i (u) > 0.

(c) Let A := [−aj + Naiδij ]1≤i,j≤N , a1, . . . , aN
> 0 and let a = mini ai. Its kernel Ker(A) is one

dimensional, A(RN ) = 1⊥ and A
|1⊥ is bijective. Every non-zero eigenvalue λ (with eigenspace Eλ)

satisfies
ℜ(λ) ≥ N × a and Eλ ⊂ 1⊥.

Proof. (a) is a straightforward application of the Lebesgue differentiation Theorem for expectation.

(b) is a consequence of (a).

(c) The transpose At of A has a strict dominating diagonal structure i.e. Atii > 0, Atij < 0, i 6= j
and

∑
j A

t
ij = 0 for every i. Consequently, it follows from Gershgorin’s Lemma (see [9]) that 0 is an

eigenvalue of order 1 of At (with 1 as an eigenvector and that all other eigenvalues have (strictly)
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positive real parts). Consequently Ker(A) is one dimensional. The fact that A(RN ) ⊂ 1⊥ is obvious
so that this inclusion holds as an equality by the dimension formula. Hence all the eigenvectors
not in Ker(A) are in 1⊥. Set ãi − ai − a ≥ 0, i = 1, . . . , N . Then Ãt has a dominating diagonal
structure so that all its eigenvalues have non-negative real parts. Now if λ is an eigenvalue of A, it
is obvious that λ−Na is an eigenvalue of Ã. Consequently ℜ(λ) ≥ Na. �

Theorem 4.2 Assume that the assumptions of Theorem 4.1 holds and that argmaxΦ is reduced
to a single point r∗ ∈ P

N
so that rn → r∗ P-a.s. as n → ∞. Furthermore, suppose that Assump-

tion (4.2) holds for every (V,Di), i∈ I
N

and that V ∈ L2+δ(P), δ > 0. Set

γn =
c

n
, n ≥ 1 with c >

1

2ℜe(λmin)

where λmin denotes the eigenvalue of A∞ := −Dh(r∗)
|1⊥ with the lowest real part. Then

rn − r∗√
γn

L−→ N (0; Σ∞)

where the asymptotic covariance matrix Σ∞ is given by

Σ∞ =

∫ ∞

0
eu(A

∞− Id
2c

)C∞eu(A
∞− Id

2c
)tdu

where

C∞ = E
(
H(r∗, V,D1, . . . ,DN

)H(r∗, V,D1, . . . ,DN
)t
)
|1⊥

and (A∞ − Id
2c )

t stands for the transpose operator of A∞ − Id
2c ∈ L(1⊥).

Remark. The above claim is consistent since u 7→ H(r, v, δ1, . . . , δN )
t u preserves 1⊥.

Proof. First note that, since r∗∈ int(P
N
), the above Lemma 4.2(b) shows that (still making the

confusion between the linear operator Dh(r∗) and its matrix representation in the canonical basis)

Dh(r∗) = − 1

N

[
−aj(r∗j ) +Nai(r

∗
i ) δij

]
1≤i,j≤N

with ai(r) = ρiE(V
21{Di>0}f(V, rV )) > 0

Then, Lemma 4.2 (c) implies that −Dh(r∗)
|1⊥ has eigenvalues with positive real parts, all lower

bounded by mini ai(r
∗
j ) > 0.

At this stage, one can apply the CLT for stochastic algorithms defined on 1⊥ (see e.g. [3],
p.341). �

5 The (ERG) setting: convergence

For the sake of simplicity, although it is not really necessary, we will assume throughout this section
that

argmaxP
N
Φ = {r∗} ⊂ int(P

N
)

possibly because all the execution functions ϕi are decreasing so that, following the former Lemma 4.1.
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So we assume that the sequence (V n,Dn
i , i = 1, . . . , N)n≥1 satisfies (ERG)ν with a limiting

distribution ν such that, for every i ∈ I
N
, its marginal νi = L(V,Di) satisfies the consistency

assumption (3.1) and the continuity assumption (3.4). We will also need to make a specific as-
sumption: there exists ε0 > 0 such that

{
(i) P(V ≥ ε0) > 0

(ii) supp
(
L
(
Di

V , i = 1, . . . , N | {V ≥ ε0}
))

is a neighbourhood of P
N

in RN
+ .

(5.1)

This assumption means that all allocations across the pools lying in the neihbourhood of P
N

can
be executed.

On the other hand, it follows from (ERG)ν and some standard weak convergence arguments
that

∀ i∈ I
N
, ∀u∈ R+,

1

n

n∑

k=1

V k1{uV k≤Dk
i }

− E(V 1{uV≤Di})
a.s.&L2

−→ 0 as n→ ∞,

since the (non-negative) functions fu(v, δ) := v1{uv≤δ}, u > 0, are P(V,Di)-a.s. continuous and O(v)
as v → +∞ by (3.4). Moreover this a.s. convergence holds uniformly on compact sets with respect
to u since u 7→ EV 1{uV≤Di} is continuous, still owing to (3.4). Our specific assumption is to require
a rate in the above a.s. and L2(P)-convergence. Namely, we assume that there exists an exponent
αi∈ (0, 1] such that

∀u∈ R+,
1

n

n∑

k=1

V k1{uV k<Dk
i }

− E(V 1{uV <Di}) = O(n−αi) a.s. and in L2(P). (5.2)

This assumption e.g. from the more general assumption that, for every i ∈ IN , the marginal
νi = L(V,Di) satisfies (3.4) and

(V n,Dn
i ) is νi-averaging at rate αi

on a subspace Vαi,2 containing all the functions fu.
Note that, when the sequence (V n,Dn

i , i = 1, . . . , N)n≥1 is i.i.d. with distribution ν then
elementary martingale arguments show that the whole sequence is ν-averaging at rate 1

2 − η for
every η∈ (0, 1/2) on V 1

2
−η,2 = L2(ν) (and all fu ∈ L2(ν), u > 0, since V ∈ L2(P)). So, the theorem

below almost embodies the a.s. convergence theorem established in the (IID) setting (except for
the integrability assumption on V ).

Now we are in position to state the main convergence result of this section. We rely on the
extension of Robbins-Siegmund Lemma proposed in [18]. For the reader’s convenience it is recalled
in the Appendix.

Theorem 5.1 Let (V n,Dn
1 , . . . ,D

n
N )n≥0 be a sequence of input satisfying (ERG)ν and such that,

for every i∈ I
N
, the marginal distribution νi = L(V,Di) satisfies the consistency assumptions (3.1)

and (3.4). Suppose furthermore that, the sequence (V n,Dn
i )n≥1 satisfies the rate assumption (5.2).

If the step sequence (γn)n≥1 satisfies
∑

n≥1

γn = +∞, γn = o(nα−1) and
∑

n≥1

n1−αmax(γ2n, |γn − γn+1|) <∞

where α := mini∈I
N
αi ∈ (0, 1], then the algorithm defined by (3.9) a.s. converges towards r∗ =

argmaxP
N
Φ.
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technical comment. The above condition on the step sequence (γn)n≥1 is satisfied as soon as
γn = c

nβ with β∈ (1− α, 1].

Proof. Step 1. First, we aim at applying the extended Robbins-Siegmund Lemma established
in [18] (see Appendix, Theorem A.1 for its statement) for stochastic algorithms with ν-averaging
inputs dynamics in presence of a Lyapunov function. We will consider the case p = 2 and β∈ (0, α].
We set G = −H and ∆Mn ≡ 0 and we consider the input Y n = (V n+1,Dn+1

1 , . . . ,Dn+1
N ), n ≥ 0.

Let L(r) = 1
2 |r − r∗|2 be our candidate as a Lyapunov function.

First note that it follows from (3.9) that the function H satisfies the growth assumption (A.4)
since

∀r ∈ Hn, ∀y ∈ R
N+1, |H(r, y)| ≤ CHg(y)(1 + |r|)

where CH > 0 and g(v, δ1, . . . , δN ) = v.
In view of the ergodic assumption (5.2) and the fact that r∗ lies in P

N
, it is clear from its

definition that H(r∗, .)∈ Vβ,2 for every β∈ (0, α].
At this stage it remains to check the “weak local Lyapunov” assumption (A.5) for G = −H.

This fact is obvious since, for every r∈ H
N

and every input y = (v, δ1, . . . , δN )∈ (0,+∞)×RN ,

〈H(r, y) −H(r∗, y)|r − r∗〉 =
N∑

i=1

(H̃i(ri, v, δi)− H̃i(r
∗
i , v, δi))(ri − r∗i ) ≤ 0

where

H̃i(u, v, δi) = ρiv

(
1{uv≤δi}1[0,1](u) + (1− u)1δi>0,u<0 +

1

u
1v≤δi,u>1

)
, i∈ I

N
(5.3)

is clearly non-increasing with respect to u.
At this stage, using that supn≥1E(V

n)2 < +∞, we can apply our extended Robbins-Siegmund
lemma also that

|rn − r∗| a.s.−→ L∞ < +∞ a.s. and
∑

n≥1

γn〈rn − r∗ |G(rn, Y n)−G(r∗, Y n)〉 < +∞ a.s. (5.4)

Step 2. At this stage it suffices to show that r∗ is a.s. a limiting point of (rn)n≥0 since |rn − r∗|
converges to L∞ < +∞ a.s.

Let η denote a positive real number such that, for every i∈ I
N
, [r∗i − η, r∗i + η] ⊂ (0, 1). One

derives from (5.3) and the monotonicity of H̃i(u, v, δ) in u ∈ R that for every i ∈ I
N

and every
r∈ H

N
,

(H̃i(ri, v, δi)− H̃i(r
∗
i , v, δi))(r

∗
i − ri) ≥ ρivη1{ri>r∗i +η}

1{δ/v∈Jη}

where Jη = (r∗i , r
∗
i + η). As a consequence

〈G(r, y) −G(r∗, y) | r − r∗〉 ≥ ε0ρ η1{v≥ε0}1y∈Oη

∑

i∈I
N

1ri>r∗i +η.

where ρ = mini ρi and the open set Oη is defined by

Oη =

{
y = (v, δ1, . . . , δN )∈ (ε0,+∞)×R

N
+ s.t.

δi
v

∈ Jη, i ∈ I
N

}
.
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Now, one derives from (5.4) that

∑

n

γn1Oη(Y
n)
∑

i∈I
N

1rni >r∗i +η < +∞ a.s.

Now Assumption (5.1) implies that ν(Oη) > 0. Furthermore ν(∂Oη) = 0 owing to the continuity
assumption so that (ERG)ν implies

1

n

n∑

k=1

1Oη(Y
k) −→ ν(Oη) > 0 a.s.

An Abel transform and the facts that the sequence γn is non-increasing and
∑

n≥1 γn = +∞
classically implies that ∑

n≥1

γn(1Oη(Y
k)− ν(Oη)) a.s. converge

so that ∑

n

γn1Oη(Y
n) = +∞ a.s.

In turn, this implies that

lim inf
n

∑

i∈I
N

1{rni >r∗i +η} = 0 a.s.

This holds of course for a sequence of real numbers ηℓ decreasing to 0.
Let R∞ be the set of limiting values of the sequence (rn)n≥0. It is is a.s. non-empty since the

sequence (rn)n≥0 is bounded. Then R∞ is a.s. compact and it follows from what precedes that
R∞ ∩∏1≤i≤N (−∞, r∗i + ηℓ] 6= ∅ (and is compact). Hence a decreasing intersection of non-empty
compact sets being a (non-empty) compact set R∞ ∩∏1≤i≤N (−∞, r∗i ] 6= ∅. On the other hand
R∞ ⊂ H

N
since the algorithm is H

N
-valued. But

∏
1≤i≤N (−∞, r∗i ]∩H

N
= {r∗}. Consequently r∗

is a limiting point of the algorithm which implies that it is its true a.s. limit. �

Application to α-mixing stationary data. If (V n,Dn
i , i = 1, . . . , N)n≥1 is a stationary α-

mixing sequence which mixing coefficients (αn)n≥1 satisfy Ibragimov’s condition for some δ > 0:

∑

n≥1

α
2

2+δ
n < +∞

(which is satisfied in case of geometric α-mixing) then the sequence (V n,Dn
i , i = 1, . . . , N)n≥1 is ν-

averaging where ν is the stationary marginal distribution of the sequence (supposed to satisfy (3.1)
and (3.4)) at rate β for every β∈ (0, 1/2). To be precise, L2(ν) ⊂ V0+,2 and

L2+δ(ν) ⊂
⋂

0<β< 1

2

Vβ,2.

In particular, all the functions fu(v, δ) := v1{uv≤δ}, u ≥ 0, lie in every Vβ,2, 0 < β < 1
2 , so that the

rate condition (5.2) is satisfied.
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As concerns the stationary assumption on the input data sequence, it can be considered as
realistic if one think of execution objectives given on a daily basis.

Example: An exponential discrete time Ornstein-Ulhenbeck model for (V n,Dn
1 , . . . ,D

n
N
).

V n = v0eX
n
0 , Dn

i = d0i e
Xn

i , i = 1, . . . , N, n ≥ 1,

where v0, d01, . . . , d0
N

are positive real numbers and the sequence (Xn)n≥1 satisfies the linear
auto-regressive dynamics

Xn+1 = m+AXn +B Ξn+1, n ≥ 1,

with m ∈ RN+1, A∈ M(N+1, N+1,R), |||A||| < 1, B∈ M(N+1,M) with rank(B) = N+1 (≤M)
and (Ξn)n≥1 is an i.i.d. sequence of N (0; IdM )-distributed random variables. We assume that the
sequence is stationary i.e. that the distribution of X1 is the (Gaussian) invariant distribution
(with covariance matrix C solution to the Lyapunov equation C−ACAt = BBt where t stands for
transpose). Then (see [6], p. 99), the sequence (Xn)n≥0 is geometrically α-mixing and subsequently
so is (V n,Dn

1 , . . . ,D
n
N
)n≥1 (with respect to its natural filtration). Furthermore, it is clear that its

distribution ν satisfies the dispersion assumption (5.1) the process (X1
0 ,X

1
i −X1

0 , i = 1, . . . , N) is
a non-degenerate Gaussian distribution over RN since B has full rank N + 1.

6 An alternative procedure based on a reinforcement principle.

Recently, inspired by the discussion developed by Almgren and Harts in [2] about liquidity esti-
mation, Berenstein and Lehalle devised a “smart routing” recursive procedure of requests to be
executed by a pool of N dark pools (see [4]). This procedure is not based on the opimization of a
potential function but on a intuitive reinforcement mechanism. Let Ini be the profit induced by the
execution of the order sent to dark pool i at time n. The proportion rni of the global order V n+1

to be sent to dark pool i for execution at time n+1 is defined as proportional to this profit i.e. by

∀ i∈ I
N
, rni :=

Ini∑
j I

n
j

.

The updating of the random vector In is as follows

∀n ≥ 0, ∀ i∈ I
N
, In+1

i = Ini + ρi min
(
rni V

n+1,Dn+1
i

)
, I0i = 0.

The first equation models the idea of “reinforcement” since the proportion of orders sent for ex-
ecution to dark pool i is proportional to the historical performances of this dark pool since the
beginning of the procedure.

The second equation describes in a standard way – like in the optimization algorithm – the way
dark pools execute orders.

Elementary computations show that the algorithm can be written directly in a recursive way
in terms of a new vector valued variable

Xn =
In

n
, n ≥ 1,

since

Xn+1
i = Xn

i − 1

n+ 1

(
Xn
i − ρi min

(
rni V

n+1,Dn+1
i

))
, i∈ I

N
.
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This is a standard form a stochastic algorithm (with step γn = 1
n).

Furthermore, note that setting ρ := mini ρi,

∑

i∈I
N

Ini ≥ ρmin

(
1

N
V n, min

i∈I
N

Dn
i

)

since rni ≥ 1
N for at least one dark pool i∈ I

N
. Consequently, as soon as the sequence (V n,Dn

1 , . . . ,D
n
N
)

is stationary and ergodic

lim inf
n

∑

i∈I
N

Xn
i ≥ ρ lim

n

1

n

n∑

k=1

min

(
1

N
V k, min

i∈I
N

Dk
i

)
= ρEmin

(
1

N
V, min

i∈I
N

Di

)
a.s.

So if we make the natural assumption that

Emin

(
1

N
V, min

i∈I
N

Di

)
> 0

then, a.s., the algorithm Xn cannot converge to 0.

If we make the additional assumption that the sequence (V n,Dn
1 , . . . ,D

n
N
) is i.i.d. then the

algorithm is a discrete time (non homogenous) Fn-Markov process with respect to the filtration
Fn = σ(V k,Dk

1 , . . . ,D
k
N
, k = 1, . . . , n), n ≥ 0, so that it admits the canonical representation

Xn+1
i = Xn

i − γn+1 (X
n
i − ϕi(r

n
i )) + γn+1∆M

n+1
i i∈ I

N
, n ≥ 0,

where γn = 1
n and

∆Mn
i = ρimin

(
rn−1
i V n,Dn

i

)
− ϕi(r

n−1
i ), i∈ I

N
, n ≥ 1,

is an Fn-martingale increment. Furthermore it is L2-bounded as soon as V ∈ L2.
In fact the specific difficulties induced by this algorithm are more in relation with its mean

function

h : x 7−→
(
xi − ϕi

(
xi∑
j xj

))

1≤i≤N

(6.1)

than with the martingale “disturbance term” γn+1∆M
n+1. Our first task will be to prove under

natural assumptions the existence of a non degenerate equilibrium point. Then we will show why
this induces the existence of many parasitic equilibrium points.

6.1 Existence of an equilibrium

In this section, we will need to introduce a new function associated to a generic order V and a
generic dark pool with characteristics (ρ,D).

ψ(u) :=
ϕ(u)

u
, u > 0, ψ(0) = ϕ′(0) = ρEV 1{D>0}. (6.2)

If Assumption (3.1) holds then ψ(0) < +∞ and ψ is continuous at 0. It follows from the concavity
of ϕ and ϕ(0) = 0 that ψ is non-increasing. It is continuous as soon as ϕ is e.g. if Assumption (3.4)
holds true.
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Proposition 6.1 Let N ≥ 1. Assume that Assumption (3.1) holds for every couple (V,Di), i∈ I
N
.

(a) There exists a x∗∈ RN
+ such that

∑

i∈I
N

x∗i > 0 and ϕi

(
x∗i∑

j∈I
N
x∗j

)
= x∗i , i∈ I

N
. (6.3)

(b) Let ψi be the functions associated to dark pool i∈ I
N

by (6.2). Assume that for every i∈ I
N
,

ψi is (continuous and) decreasing on [0,∞) and that

∑

i∈I
N

ψ−1
i (min

i∈I
N

ϕ′
i(0)) < 1. (6.4)

Then there exists x∗∈ int(P
N
) satisfying (6.3).

Proof. (a) We define for every r = (r1, . . . , rN )∈ P
N

Ψ(r) :=

(
ϕi(ri)∑

j∈I
N
ϕj(rj)

)

i∈I
N

.

This function maps the compact convex set P
N

into itself. Furthermore it is continuous since, on
the one hand, for every i∈ I

N
, ϕi is continuous owing to the fact that (V,Di) satisfies (3.1) and,

on the other hand,
∑

j∈I
N

ϕj(rj) ≥ min
j∈I

N

ϕj

(
1

N

)
> 0.

Indeed, for every i∈ I
N
,

ϕj

(
1

N

)
≥ 1

N
E min(V,Di) > 0

since V > 0 P-a.s. and P(Dj = 0) < 1. Then it follows from the Brouwer Theorem that the
function Ψ has a fixed point r∗. Set for every i∈ I

N
,

x∗i = r∗i
∑

j∈I
N

ϕj(rj).

It follows immediately from this definition that

∀ i∈ I
N
, x∗i = ϕi(r

∗
i )

which in turn implies that
∑

j∈I
N
ϕj(r

∗
j ) =

∑
j∈I

N
x∗j so that r∗i =

x∗i∑
j∈I

N
x∗j
, i∈ I

N
.

(b) For every i∈ I
N
we consider the inverse of ψi defined on the interval (0, ϕ′

i(0)]. This function is
decreasing continuous and limv→0 ψ

−1
i (v) = +∞. Then, let Θ be the continuous function defined

by

∀ θ∈ (0, min
i∈I

N

ϕ′
i(0)], Θ(θ) =

∑

i∈I
N

ψ−1
i (θ).
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We know that limθ→0Θ(θ) = +∞ and we derive from Assumption (6.4) that Θ(mini∈I
N
ϕ′
i(0)) ≤ 1.

So, owing to the (strict) monotonicity of θ, there exists θ∗∈ (0,min∈I
N
ϕ′
i(0)) such that Θ(θ∗) = 1.

Set
r∗i = ψ−1

i (θ∗), i∈ I
N
.

Then r∗ := (r∗1 , . . . , r
∗
N
)∈ int(PN ) since

∑
i r

∗
i = 1 by definition of θ∗. If r∗i0 = 0, then θ∗ = ψi0(0) =

mini∈I
N
ϕ′
i(0) which is impossible. �

Corollary 6.1 Assume that all the functions ψi are continuous and decreasing. If furthermore,
the rebate coefficients ρi are equal (to 1) and if P(Di = 0) = 0 for every i∈ I

N
then there exists an

equilibrium point lying in int(P
N
).

Proof. Under the above assumptions ϕ′
i(0) = EV > 0. Consequently

ψ−1
i (min

i∈I
N

ϕ′
i(0)) = ψ−1

i (ψi(0)) = 0 < 1. �

Comments. Unfortunately there is no hope to prove that all the equilibrium points lie in the
interior of P

N
since one may always adopt an execution strategy which boycotts a given dark

pool or, more generally, N0 dark pools. So it seems hopeless to get uniqueness of the equilibrium
point. To be more precise, under the assumptions of claim (b) of the above Proposition 6.1, there
exists at least one strategy involving a subset of N −N0 dark pools N0 = 0, . . . , N − 1 (one dark
pool is needed at least). Elementary combinatorial arguments show that there are at least 2N − 1
equilibrium points.

So, from a theoretical point of view, we are facing a situation where there may be many parasitic
equilibrium points, some of them being clearly parasitic. However it is quite difficult to decide a
priori, even if we make the unrealistic assumption that we know all the involved distributions,
which equilibrium points are parasitic.

This is a typical situation encountered when dealing with procedures devised from a reinforce-
ment principle.

However, one may reasonably hope that some of them are so-called “traps”, that means equi-
librium points which are repulsive at least in one noisy direction so that the algorithm escapes from
it. Another feature described below suggests that a theoretical study of the convergence behaviour
of this procedure would need a specific extra work.

The next natural question is to wonder whether an equilibrium x∗ of the algorithm – namely
a zero of h – is (at least) a target for the algorithm i.e. is attractive for the companion ODE,
ẋ = −h(x).

Proposition 6.2 An equilibrium x∗ satisfying (6.3) is locally uniformly attractive as soon as

∑

j∈I
N

x∗j
(x̄∗)2

ϕ′
j

(
x∗j
x̄∗

)
< 1− 1

x̄∗
max
i∈I

N

ϕ′

(
x∗i
x̄∗

)

where x̄∗ =
∑

i∈I
N
x∗i .
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Remark. In fact the following inequalities are satisfied by any equilibrium x∗:

1− 1

x̄∗
ϕ′
i

(
x∗i
x̄∗

)
> 0, i∈ I

N
.

This follows from the convexity of the function ξ 7→ ξ − ϕi

(
ξ
x̄∗

)
which is zero at x∗i with positive

derivative. As a consequence, the right hand side in the above sufficient condition is always positive
which makes this criterion more realistic.

Proof. Elementary computations show that the differential Dh(x) of h at x∈ RN
+ is given by

∀ i, j∈ I
N
,

∂hi
∂xj

(x) = δij

(
1− 1

x̄
ϕ′
i

(xi
x̄

))
+
xi
x̄2
ϕ′
i

(xi
x̄

)
.

As a consequence all the diagonal terms of Dh(x∗) are positive. The above condition for all the
eigenvalues of Dh(x) to have positive real parts follows from a standard application of Gershgorin’s
Lemma to the transpose of Dh(x). �

6.2 A competitive system

But once again, even if we could show that all equilibrium points are noisy traps, the convergence
would not follow for free since this algorithm is associated to a so-called competitive system. A
competitive differential system ẋ = h(x) is a system in which the field h : RN → RN is differentiable
and satisfies

∀x∈ R
N , ∀ i, j ∈ I

N
, i 6= j,

∂hi
∂xj

(x) > 0.

As concerns Almgren and Harts’s algorithm, the mean function h is given by (6.1), and under
the standard differentiability assumption on the functions ϕi’s,

∀x∈ R
N ,

∂hi
∂xj

(x) = ϕ′
i

(
xi

x1 + · · ·+ x
N

)
xi

(x1 + · · ·+ x
N
)2
> 0.

These systems are known to have possibly a non converging behaviour even in presence of a
single (attracting) equilibrium. This is to be compared to their cooperative counterparts (with
negative non-diagonal partial derivatives) whose flow converge uniformly on compact sets toward
the single equilibrium in that case. This property can be transferred to the stochastic procedure by
the mean if the so-called ODE method which shows that the algorithm almost behaves like some
trajectories of the Ordinary differential Equation associated to its mean field h (see e.g. [13, 3, 7]
for an introduction). Cooperativeness and competitiveness are in fact some criterions which ensure
some generalized monotonicity properties on the flow of the ODE viewed as a function of its space
variable. For some background on cooperative and competitive systems we refer to [11, 12] and the
references therein.

7 Numerical tests

The aim of this section is to compare the behaviour of both algorithms on different data sets :
simulated i.i.d. data, simulated α-mixing data and (pseudo-)real data.
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Two natural situations of interest can be considered a priori: abundance and shortage. By
“abundance” we mean EV ≤∑N

i=1EDi (in average, the requested volume is lower than the available

one). The ”shortage” setting is the reverse situation where EV >
∑N

i=1EDi.
In fact, in the “abundance” setting, both our procedures (optimization and reinforcement) tend

to remain “frozen” at their starting allocation value (usually uniform allocation) and they do not
provide a significant improvement with respect to more naive approaches. By contrast the shortage
setting is by far more commonly encountered on true markets and turns out to be much more
challenging for our allocation procedures, so from now on we will focus on this situation.

Our first task is to define a reference strategy. To this end, we introduce an “oracle strategy”
devised by an insider who knows all the values V n and Dn

i before making his/her optimal execution
requests to the dark pools. It can be described as follows: assume for simplicity that the rebates
are ordered i.e. ρ1 > ρ2 > · · · > ρN . Then, it is clear that the “oracle” startegy yields the following
cost reduction (CR) of the execution at time n ≥ 1,

CRoracle :=





i0−1∑

i=1

ρiD
n
i + ρi0

(
V n −

i0−1∑

i=1

Dn
i

)
, if

i0−1∑

i=1

Dn
i ≤ V n <

i0∑

i=1

Dn
i

N∑

i=1

ρiD
n
i , if

N∑

i=1

Dn
i < V n.

Now, we introduce indexes to measure the performances of our recursive allocation procedures.

• Relative cost reduction (w.r.t. the regular market): they are defined as the ratios
between the cost reduction of the execution using dark pools and the cost resulting from an
execution on the regular market for the three algorithms, i.e., for every n ≥ 1,

◦ Oracle:
CRoracle

V n

◦ Recursive “on-line” algorithms:
CRalgo

V n
=

∑N
i=1 ρimin (rni V

n,Dn
i )

V n

(with algo = opti, reinf).

• Performances (w.r.t. the oracle): the ratios between the relative cost reductions of our
allocation algorithms and that of the oracle, i.e. for every n ≥ 1

CRopti

CRoracle
and

CRreinf

CRoracle

which seems a more realistic measure of the performance of our allocation procedures since the
oracle strategy cannot be beaten.

Since these relative cost reductions are strongly fluctuating (with variables V n and Dn
i in fact),

we will plot the moving average of these ratios (on the running period of interest) and express them
in pourcentage.

Moreover, when we simulate the data, we have chosen 104 simulations because it corresponds
approximatively to the number of pseudo-real data observed within a day.

The choice of the gain parameter is the following (in the different settings considered below)

γn =
c

n
, n ≥ 1

where c equals to some units.
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7.1 The (IID) setting

We consider here simulated data in the i.i.d. setting, where the quantity V and Di, i ∈ IN , are
log-normal variables and N = 3. The variables V and Di, i ∈ IN , satisfy the assumptions of the
CLT and we have the rate of convergence at least of the optimization algorithm.

The shortage setting is specified as follows:

EV =
3

2

N∑

i=1

EDi

with

EDi = i, 1 ≤ i ≤ N, Var(V ) = 1,Var(Di) = 1, 1 ≤ i ≤ N and ρ =



0.01
0.03
0.05


 .

The running means of the performances are computed from the very beginning for the first 100
data, and by a moving average on a window of 100 data.

The initial value for both algorithms is set at r0i =
1
N , 1 ≤ i ≤ N .
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Figure 1: Shortage setting Case N = 3, mV = 3
2

∑N
i=1mDi

, mDi
= i, σV = 1, σDi

= 1, 1 ≤ i ≤ N .

As expected, the optimization procedure outperforms the reinforcement one and both proce-
dures quickly converge (see Figure 1) with respect to the data set size. Note that the allocation
coefficients (not reproduced here) generated by the two algorithms are significantly different. A
more interesting feature is that the performances of the optimization procedure almost replicate
those of the “oracle”. Further simulations suggest that the optimization algorithm also seems more
robust when the variances of the random variables fluctuate.
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7.2 The (ERG) setting

We consider here simulated data in the ergodic setting, where the quantity V and Di, i ∈ IN , are
exponentials of an Ornstein-Uhlenbeck process, i.e.

Xn+1 = m+AXn +BΞn+1,

where ‖A‖ < 1, BB∗ ∈ GL(d,R) and

m =




m1
...

mN+1


 ∈ R

N+1, Ξn+1 =



Ξn+1
1
...

Ξn+1
N+1


 ∼ N (0, IN+1) i.i.d., eX

n

=




V n

Dn
1
...
Dn
N


 .

We are still interested in the shortage situation. The initial value of the algorithms is r0i =
1
N ,

1 ≤ i ≤ N and we set

ρ =



0.01
0.03
0.05


 , m =



1
...
1


 , A =




0.7 0.01 0.01 0.01
0.01 0.3 0.01 0.01
0.01 0.01 0.2 0.01
0.01 0.01 0.01 0.1


 , B =




0.02 0 0 0
0.01 0.9 0 0
0.01 0.01 0.6 0
0.01 0.01 0.01 0.3


 .

The running means of the performances are computed from the very beginning for the first 100
data, and by a moving average on a window of 100 data.
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Figure 2: Shortage setting : Case N = 3, mV ≥∑N
i=1mDi

, σV = 1.21, σD = (8.21, 3.05, 1.07)
′
.

We observe in this ergodic setting a very similar behaviour to the i.i.d. one, with maybe a more
significant advantage for the optimization approach (see Figure 2 right): the difference between the
performances of both algorithms reaches 11% in favour of the optimization algorithm.
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7.3 The pseudo-real data setting

Firstly we explain how the data have been created. We have considered for V the traded volumes
of a very liquid security – namely the asset BNP – during an 11 day period. Then we selected the
N most correlated assets (in terms of traded volumes) with the original asset. These assets are
denoted Si, i = 1, . . . , N and we considered their traded volumes during the same 11 day period.
Finally, the available volumes of each dark pool i have been modelled as follows using the mixing
function

∀1 ≤ i ≤ N, Di := βi

(
(1− αi)V + αiSi

EV

ESi

)

where αi, i = 1, . . . , N are the mixing coefficients, βi, i = 1, . . . , N some scaling parameters and
EV and ESi stand for the empirical mean of the data sets of V and Si.

The shortage situation corresponds to
∑N

i=1 βi < 1 since it implies E
[∑N

i=1Di

]
< EV .

The simulations presented here have been made with four dark pools (N = 4). Since the data
used here covers 11 days and it is clear that unlike the simulated data, these pseudo-real data are
not stationary: in particular they are subject to daily changes of trend and volatility (at least). To
highlight this resulting changes in the response of the algorithms, we have specified the days by
drawing vertical doted lines. The dark pool pseudo-data parameters are set to

β =




0.1
0.2
0.3
0.2


 and α =




0.4
0.6
0.8
0.2




and the dark pool trading (rebate) parameters are set to

ρ =




0.01
0.02
0.04
0.06


 .

The mean and variance characteristics of the data sets of (V n)n≥1 and (Dn
i )n≥1, i = 1, . . . , 4

are the following:

V D1 D2 D3 D4

Mean 955.42 95.54 191.08 286.63 191.08

Variance 2.01 × 106 9.05 × 103 4.29 × 104 4.73 × 105 5.95 × 104

Firstly, we benchmarked both algorithms on the whole data set (11 days) as though it were
stationary without any resetting (step, starting allocation, etc.). In particular, the running means
of the performances are computed from the very beginning for the first 1500 data, and by a moving
average on a window of 1500 data. As a second step, we proceed on a daily basis by resetting
the parameters of both algorithms (the initial profit for the reinforcement algorithm (i.e. Ii = 0,
1 ≤ i ≤ N) and the step parameter γn of the optimization procedure) at the beginning of every
day. The performances of both algorithms are computed on each day.

⊲ Long-term optimization We observe that, except for the first and the fourth days where
they behave similarly, the optimization algorithm is more performing than the reinforcement one.
Its performance is approximately 30% higher on average (see Figure 3).
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Figure 3: Long term optimization : Case N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2 and r0i = 1/N ,
1 ≤ i ≤ N .

This test confirms that the statistical features of the data are strongly varying from one day
to another (see Figure 3), so there is no hope that our procedures converge in standard sense on a
long term period. Consequently, it is necessary to switch to a short term monitoring by resetting
the parameters of the algorithms on a daily basis as detailed below.

⊲ Daily resetting of the procedure We consider now that we reset each day all the parameters
of the algorithm, namely we reset the step γn at the beginning of each day and the satisfaction
parameters and we keep the allocation coefficients of the precedent day. We obtains the following
results

0 1 2 3 4 5 6 7 8 9 10 11
1

1.5

2

2.5

3

3.5

4

4.5

Days

%
 o

f s
at

is
fa

ct
io

n

  Relative Cost Reductions

 

 
Oracle
Optimization
Reinforcement

0 1 2 3 4 5 6 7 8 9 10 11

50

60

70

80

90

100

110

Days

R
at

io
s 

(%
)

  Performances

 

 
Oracle
Optimization/Oracle
Reinforcement/Oracle

Figure 4: Daily resetting of the algorithms parameters : Case N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2
and r0i = 1/N 1 ≤ i ≤ N .
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We observe (see Figure 4) that the optimization algoritm still significantly outperforms the
reinforcement one, reaching more 95% of the performance of the oracle. Furthermore, although
not represented here, the allocation coefficients look more stable.

8 Provisional remarks

8.1 Toward more general mean execution functions

One natural idea is to take into account that the rebate may depend on the quantity rV sent to
be executed by the dark pool. The mean execution function of the dark pool can be modeled by

∀ r∈ [0, 1], ϕ(r) = E(ρ(rV )min(rV,D)) (8.1)

where the rebate function ρ is a non-negative, bounded, non-decreasing right differentiable function.
For the sake of simplicity, we assume that (V,D) satisfies (3.4). The right derivative of ϕ reads

ϕ′
r(r) = E

(
ρ′r(rV )V min (rV,D)

)
+E

(
ρ(rV )V 1{rV <D}

)
, (8.2)

with in particular ϕ′(0) = ρ(0)E(V 1{D>0}) > 0 as above. The main gap is to specify the function
ρ so that ϕ remains concave which is the key assumption to apply the convergence theorem.
Unfortunately the choice for ρ turns out to strongly depend on the (unknown) distribution of the
random variable D. Let us briefly consider the case where V and D are independent and D has an
exponential distribution E(λ).

First note that the function g defined by g(u) := E(u ∧D), u ≥ 0 is given by

∀u ≥ 0, g(u) =
1− e−uλ

λ

so that, owing to the independence of V and D,

∀ r ≥ 0, ϕ(r) = E(ρ(rV )g(rV )).

At this stage, ϕ will be concave as soon as the function ρ g is so. Among all possible choices,
elementary computations show that a class of possible choices is to consider ρ = gθ with θ∈ (0, λ].
Of course this may appear as not very realistic since the rebate function is a structural feature of
the different dark pools.

However several numerical experiments not reproduced here testify that both algorithms are
robust to a realistic choice for the function ρ e.g. a non-decreasing and stepwise constant.

Another natural extension is to model the fact that the dark pool may take into account the
volume rV to decide which quantity will really executed rather than simply the a priori deliverable
quantity D. One reason for such a behaviour is that the dark pool may wish to preserve the
possibility of future transactions with other clients.

One way to model this phenomenon is to introduce a delivery function ψ : R2
+ → R+, non-

decreasing and concave w.r.t. its first variable and satisfying 0 ≤ ψ(x, y) ≤ y, so that the new
mean execution function is as follows:

ϕ(r) = ρE (min(rV, ψ(rV,D))) . (8.3)
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It is clear that the function ϕ is concave (as the minimum of two concave functions) and bounded.
In this case, the first (right) derivative of ϕ reads

ϕ′
r(r) = ρE

(
V
(
1{rV <ψ(rV,D)} + ψ′

x(rV,D)1{rV≥ψ(rV,D)}

))
(8.4)

where ψ′
x denotes the right derivative with respect to x. In particular ϕ′

r(0) = ρE(V 1{D>0}) > 0.

As concerns the implementations resulting from these new execution functions, the adaptation
is straightforward. Note for the optimization procedure under constraints that, firstly, the “edge”
functions Ri functions are not impacted by the type of the execution function. On the other hand
the definition of the functionsHi or the updating of the variables I

n for the reinforcement procedure
should be adapted in accordance with the representations (8.2) and (8.4) of the new mean execution
function ϕ.

Example: We consider for modelling the quantity delivered by the dark pool i a function where
we can define a minimal quantity required to begin to consum Di, namely

ψi(rV,Di) = Di1{rV >siDi}

where si is a parameter of the dark pool i assumed to be deterministic.

Pseudo-real data setting
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Figure 5: Shortage setting : Case N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2 and r0i = 1/N , 1 ≤ i ≤ N ,

s = (0.3, 0.2, 0.2, 0.3)t.

8.2 Optimization vs reinforcement ?

For practical implementation what conclusions can be drawn from our investigations on both proce-
dures. Both reach quickly a stabilization/convergence phase close to optimality. The reinforcement
algorithm leaves the simplex structurally stable which means the proposed dispatching at each time
step is realistic whereas the stochastic Lagrangian algorithm in its present form sometimes needs
to be corrected from time to time. This can be corrected by adding a projection on the simplex at
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each step. We did not consider this variant from a theoretical point of view to keep our convergence
proofs more elementary.

In a high volatility context, the stochastic Lagrangian algorithm clearly prevails with perfor-
mances that turn out to be significantly better. This optimization procedure also relies on estab-
lished convergence results in a rather general framework (stationary α-mixing input data). However,
given the computational cost of these procedures which is close to zero, a possible strategy is to
implement them in parallel to get a synergistic effect. In particular, one may the reinforcement
algorithm – which step parameter is structurally fixed equal to 1

n – can be used to help tuning the
constant c in the gain parameter γn = c

n of the stochastic Lagrangian. Doing so one may start with
a small constant c, preventing a variance explosion of the procedure. Then based one may increase
slowly this constant until the Lagragian outperforms the reinforcement procedure.
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Appendix

A Robbins-Zygmund with averaging innovation

We consider an algorithm of the following form

θn+1 = θn − γn+1(G(θn, Yn) + ∆Mn+1), n ≥ 0 (A.1)

where G is a Borel function from Rd×Rq to Rd, (Yn)n≥0 is a sequence of Rq-valued random vectors adapted
to a filtration (Fn)n≥1, θ0 is an F0-measurable Rd-valued random vector independent of (Yn)n≥1, all defined
on the same probability space

(
Ω,F ,P

)
, (∆Mn)n≥1 is a sequence of Fn-martingale increments and (γn)n≥1

is a non-increasing sequence of positive real numbers going to 0 as n goes to infinity.

We will say that (Yn)n≥0 is ν-averaging (under P) on a class of functions V0+,p ⊂ Lp(ν) if, for every
p∈ [1,+∞),

∀f ∈ V0+,p,
1

n

n−1∑

k=0

f(Yk) −→
∫

Rq

fdν P-a.s. and in Lp(P). (A.2)

Let β∈ (0, 1), let p ∈ [1,∞). We denote by Vβ,p the class of functions whose convergence rate in (A.2) P-a.s.
and in Lp(P) is O(n−β), namely

Vβ,p =

{
f : Rq → R | 1

n

n∑

k=1

f(Yk)−
∫
fdν

P-a.s. & Lp(P)
= O(n−β)

}
. (A.3)

Now we are in a position to state the convergence theorem.

Theorem A.1 (A Robbins-Zygmund like Lemma) Let G : Rd ×Rq → Rd be a Borel function, let (Yn)n≥0

be an Fn-adapted ν-averaging sequence of Rq-valued random vectors and let (∆Mn)n≥1 be a sequence of
Fn-martingale increments. Assume that there exists a continuously differentiable function L : Rd → R+

satisfying
∇L is Lipschitz continuous and |∇L|2 ≤ C (1 + L) (A.4)

such that the function G satisfies the following local weak mean-reverting assumption:

∀ θ∈ Rd, ∀ y∈ Rq, 〈∇L(θ) | G(θ, y)−G(θ∗, y)〉 ≥ 0. (A.5)
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Suppose there exists β∈ (0, 1), p∈ [1,∞) such that

G(θ∗, ·) ∈ Vβ,p. (A.6)

Moreover, assume that G satisfies the following linear growth assumption

∀θ ∈ Rd, ∀y ∈ Rq, |G(θ, y)| ≤ ϕ(y)(1 + L(θ))
1
2 (A.7)

and
E(|∆Mn+1|2 | Fn) ≤ ϕ2(Yn)(1 + L(θn)) (A.8)

where the function ϕ satisfies supn ‖ϕ(Yn)‖2∨ p

p−1
< +∞ (convention 1

0 = +∞).

Let γ = (γn)n≥1 be a non-negative, non-increasing sequence of gain parameters satisfying

∑

n≥1

γn = +∞, n1−βγn −→ 0, and
∑

k≥1

k1−β max
(
γ2k, |∆γk+1|

)
< +∞. (A.9)

Assume that θ0 is F0-adapted and L(θ0) < +∞, P-a.s. Then, the recursive procedure defined by (A.1)
satisfies

L(θn)
a.s.−→ L∞ < +∞ and

∑

n≥0

γn+1〈∇L(θn) |G(θn, Yn)−G(θ∗, Yn)〉 < +∞ a.s.
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