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Abstract. We present in this paper two different classes of general K-splitting algorithms for solving finite-dimensional

convex optimization problems. Under the assumption that the function being minimized has a Lipschitz continuous gradient,

we prove that the number of iterations needed by the first class of algorithms to obtain an ǫ-optimal solution is O(1/ǫ). The

algorithms in the second class are accelerated versions of those in the first class, where the complexity result is improved to

O(1/
√
ǫ) while the computational effort required at each iteration is almost unchanged. To the best of our knowledge, the

complexity results presented in this paper are the first ones of this type that have been given for splitting and alternating

direction type methods. Moreover, all algorithms proposed in this paper are parallelizable, which makes them particularly

attractive for solving certain large-scale problems.
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1. Introduction. Many convex optimization problems that arise in practice take the form of a sum of

convex functions. Often one function is an energy that one wants to minimize and the other functions are

regularization terms to make the solution have certain properties. For example, Tikhonov regularization [28]

is usually applied to ill-conditioned inverse problems to make them well-posed, compressed sensing [4, 8] uses

ℓ1 regularization to obtain sparse solutions, and problems arising from medical imaging adopt both ℓ1 and

total variation (TV) as regularization terms [20]. In this paper, we propose and analyze splitting/alternating

direction algorithms for solving the following convex optimization problem:

min
x∈Rn

F (x) ≡
K
∑

i=1

fi(x),(1.1)

where fi : R
n → R, i = 1, . . . ,K, are convex functions. When the functions fi’s are well-structured, a well

established way to solve problem (1.1) is to split the variable x into K variables by introducing K − 1 new

variables and then apply an augmented Lagrangian method to solve the resulting problem. Decomposition of

the augmented Lagrangian function can then be accomplished by applying an alternating direction method

(ADM) to minimize it.

Problem (1.1) is closely related to the following inclusion problem:

0 ∈ T1(x) + · · ·+ TK(x),(1.2)

where T1, . . . , TK are set-valued maximal monotone operators. The goal of problem (1.2) is to find a zero of

the sum of K maximal monotone operators. Note that the optimality conditions for (1.1) are

0 ∈
K
∑

i=1

∂fi(x);
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hence, these conditions can be satisfied by solving a problem of the form (1.2).

In the extensive literature on splitting and ADM algorithms, the case K = 2 predominates. The algo-

rithms for solving (1.2) when K = 2 are usually based on operator splitting techniques. Important operator

splitting algorithms include the Douglas-Rachford [9, 10, 7], Peaceman-Rachford [26], double-backward [6]

and forward-backward class [13, 29] of algorithms. Alternating direction methods (ADM) within an aug-

mented Lagrangian framework for solving (1.1) are optimization analogs/variants of the Douglas-Rachford

and Peaceman-Rachford splitting methods. These algorithms have been studied extensively for the case of

K = 2, and were first proposed in the 1970s for solving optimization problems arising from numerical PDE

problems [14, 15]. We refer to [16] and the references therein for more information on splitting and ADM

algorithms for the case of K = 2.

Although there is an extensive literature on operator splitting methods, very few convergence results have

been published on methods for finding a zero of a sum of more than two maximal monotone operators. The

principal exceptions, are the Jacobi-like method of Spingarn [27] and more recently, the general projective

splitting methods of Eckstein and Svaiter [11]. The algorithm addressed in [27] first reduces problem (1.2)

to the sum of two maximal monotone operators by defining new subspaces and operators, and then applies

a Douglas-Rachford splitting algorithm to solve the new problem. The projective splitting methods in [11]

do not reduce problem (1.2) to the case K = 2. Instead, by using the concept of an extended solution set,

it is shown in [11] that solving (1.2) is equivalent to finding a point in the extended solution set, and a

separator-projection algorithm is given to do this.

Global convergence results for variable splitting ADMs and operator splitting algorithms for the case of

K = 2 have been proved under various assumptions. However, except for the fairly recently proposed gradient

methods in [25] and related iterative shrinkage/thresholding algorithms in [2] and the alternating linearization

methods in [16], complexity bounds for these methods had not been established. These complexity results

are extensions of the seminal results of Nesterov [22, 23], who first showed that certain first-order methods

that he proposed could obtain an ǫ-optimal solution of a smooth convex programming problem in O(1/
√
ǫ)

iterations. Moreover, he showed that his methods were optimal in the sense that this iteration complexity

was the best that could be obtained using only first-order information. Nesterov’s optimal gradient methods

are accelerated gradient methods that use a combination of previous points to compute the new point at

each iteration. By combining these methods with smoothing techniques, optimal complexity results were

obtained for solving nonsmooth problems in [24, 30].

In this paper, we propose two classes of multiple variable-splitting algorithms based on alternating

direction and alternating linearization techniques that can solve problem (1.1) for general K(K ≥ 2) and we

present complexity results for them. (Note that the complexity results in [25, 2, 16] are only for problem

(1.1) when K = 2). The algorithms in the first class can be viewed as alternating linearization methods

in the sense that at each iteration these algorithms perform K minimizations of an approximation to the

original objective function F by keeping one of the functions fi(x) unchanged and linearizing the other

K − 1 functions. An alternating linearization method for minimizing the sum of two convex functions was

studied by Kiwiel et al. [18]. However, our algorithms differ greatly from the one in [18] in the way that the

proximal terms are chosen. Moreover, our algorithms are more general as they can solve general problems

with K(K ≥ 2) functions. Furthermore, we prove that the iteration complexity of this class of splitting

algorithms is O(1/ǫ) for an ǫ-optimal solution. To the best of our knowledge, this is the first complexity

result of this type for splitting/alternating direction type algorithms. The algorithms in our second class are

accelerated versions of the algorithms in our first class and have O(1/
√
ǫ) iteration complexities. This class
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of splitting algorithms is also new as are the complexity results.

Our new algorithms have, in addition, several practical advantages. First, they are all parallelizable.

Thus, although at each iteration we solve K subproblems, the CPU time required should be approximately

equal to the time required to solve the most difficult of the subproblems if we haveK processors that can work

in parallel. Second, since every function fi is minimized once at each iteration, it is likely that our algorithms

will need fewer iterations to converge than operator splitting algorithms such as FPC [17, 19],TVCMRI [20],

ISTA and FISTA [2]. The numerical results in [1] for the case of K = 2 support this conclusion.

The rest of this paper is organized as follows. In Section 2 we propose a class of splitting algorithms based

on alternating direction and alternating linearization methods for solving (1.1) and prove that they require

O(1/ǫ) iterations to obtain an ǫ-optimal solution. In Section 3 we propose accelerated splitting algorithms

for solving (1.1) and prove they have O(1/
√
ǫ) complexities. We discuss how to apply our algorithms for

solving nonsmooth problems by using smoothing techniques in Section 4. Numerical results are presented

in Section 5. Finally, we summarize our results in Section 6.

2. A class of multiple splitting algorithms. By introducing new variables, i.e., splitting variable x

into K different variables, problem (1.1) can be rewritten as:

min
K
∑

i=1

fi(x
i)

s.t. xi = xi+1, i = 1, . . . ,K − 1.

(2.1)

In Sections 2 and 3, we focus on splitting and ADM algorithms for solving (2.1) and their complexity results.

We make the following assumptions throughout Sections 2 and 3.

Assumption 2.1.

• fi(·) : Rn → R, i = 1, . . . ,K is a smooth convex function of the type C1,1, i.e. continuously differen-

tiable with Lipschitz continuous gradient:

‖∇fi(x)−∇fi(y)‖ ≤ L(fi)‖x− y‖, ∀x, y ∈ R
n,

where L(fi) is the Lipschitz constant.

• Problem (1.1) is solvable, i.e., X∗ := argminF 6= ∅.
We define the term ǫ-optimal as follows.

Definition 2.2. Suppose x∗ is an optimal solution to the following problem

min{f(x) : x ∈ C}.(2.2)

x ∈ C is called an ǫ-optimal solution to (2.2) if f(x)− f(x∗) ≤ ǫ holds.

The following notation is adopted throughout Sections 2 and 3.

Definition 2.3. We define f̃i(u, v) as the linear approximation to fi(u) at a point v plus a proximal

term:

f̃i(u, v) := fi(v) + 〈∇fi(v), u − v〉+ 1

2µ
‖u− v‖2,

where µ is a penalty parameter. We use Qi(v
1, . . . , vi−1, u, vi+1, . . . , vK) to denote the following approxima-
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tion to the function F (u):

Qi(v
1, . . . , vi−1, u, vi+1, . . . , vK) := fi(u) +

K
∑

j=1,j 6=i

f̃j(u, v
j),

i.e., Qi is an approximation to the function F , where the i-th function fi is unchanged but the other functions

are approximated by a linear term plus a proximal term. We use pi(v
1, . . . , vi−1, vi+1, . . . , vK) to denote the

minimizer of Qi(v
1, . . . , vi−1, u, vi+1, . . . , vK) with respect to u, i.e.,

pi(v
1, . . . , vi−1, vi+1, . . . , vK) := argmin

u
Qi(v

1, . . . , vi−1, u, vi+1, . . . , vK).(2.3)

With the above notation, we have the following lemma which follows from a fundamental property of a

smooth function in the class C1,1; see e.g., [3].

Lemma 2.4. For f̃i defined as in Definition 2.3 and µ ≤ 1/max1≤i≤K L(fi), we have for i = 1, . . . ,K,

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+ L(fi)

2
‖x− y‖2 ≤ f̃i(x, y), ∀x, y ∈ R

n.

The following key lemma is crucial for the proofs of our complexity results. Our proofs of this lemma

and most of the results that follow in this and the remaining sections of the paper closely follow proofs given

in [2] for related lemmas and theorems.

Lemma 2.5. For any i = 1, . . . ,K, u, v1, . . . , vi−1, vi+1, . . . , vK ∈ R
n and µ ≤ 1/max1≤i≤K L(fi), we

have,

2µ(F (u)− F (p)) ≥
K
∑

j=1,j 6=i

(

‖p− u‖2 − ‖vj − u‖2
)

,(2.4)

where p := pi(v
1, . . . , vi−1, vi+1, . . . , vK).

Proof. From Lemma 2.4 we know that F (p) ≤ Qi(v
1, . . . , vi−1, p, vi+1, . . . , vK) holds for all i and

v1, . . . , vi−1, vi+1, . . . , vK ∈ R
n. Thus, for any u ∈ R

n we have,

F (u)− F (p) ≥ F (u)−Qi(v
1, . . . , vi−1, p, vi+1, . . . , vK)(2.5)

= fi(u)− fi(p) +
K
∑

j=1,j 6=i

(

fj(u)− fj(v
j)−

〈

∇fj(v
j), p− vj

〉

+
1

2µ
‖p− vj‖2

)

≥ 〈∇fi(p), u − p〉+
K
∑

j=1,j 6=i

(

〈

∇fj(v
j), u − vj

〉

−
〈

∇fj(v
j), p− vj

〉

+
1

2µ
‖p− vj‖2

)

= 〈∇fi(p), u − p〉+
K
∑

j=1,j 6=i

(

〈

∇fj(v
j), u − p

〉

+
1

2µ
‖p− vj‖2

)

=

K
∑

j=1,j 6=i

(〈

− 1

µ
(p− vj), u− p

〉

− 1

2µ
‖p− vj‖2

)

,

where the second inequality is due to the convexity of the functions fj, j = 1, . . . ,K and the last equality is
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from the first-order optimality conditions for problem (2.3), i.e.,

∇fi(p) +

K
∑

j=1,j 6=i

(

∇fj(v
j) +

1

µ
(p− vj)

)

= 0.(2.6)

Then using the identity

‖a− c‖2 − ‖b− c‖2 = ‖a− b‖2 + 2〈a− b, b− c〉,(2.7)

we get the following inequality:

2µ(F (u)− F (p)) ≥
K
∑

j=1,j 6=i

(〈

−2(p− vj), u − p
〉

− ‖p− vj‖2
)

=

K
∑

j=1,j 6=i

(

‖p− u‖2 − ‖vj − u‖2
)

.

Our multiple splitting algorithms (MSA) for solving (2.1) are outlined in Algorithm 1, where D(k) ∈
R

K×K is a doubly stochastic matrix, i.e.,

D
(k)
ij ≥ 0,

K
∑

j=1

D
(k)
ij = 1,

K
∑

i=1

D
(k)
ij = 1, ∀i, j = 1, . . . ,K.

One natural choice of D(k) is to take all of its components equal to 1/K. In this case, all wi
(k), i = 1, . . . ,K

Algorithm 1: A Class of Multiple Splitting Algorithms (MSA)

Set x0 = x1
(0) = . . . = xK

(0) = w1
(0) = . . . = wK

(0) and µ ≤ 1/max1≤i≤K L(fi).

for k = 0, 1, · · · do

• for each i = 1, . . . ,K, compute xi
(k+1) := pi(w

i
(k), . . . , w

i
(k)),

• compute

(

w1
(k+1), . . . , w

K
(k+1)

)

:=
(

x1
(k+1), . . . , x

K
(k+1)

)

D(k+1).

are equal to
∑K

i=1 x
i
(k)/K, i.e., the average of the current K iterates.

At iteration k, Algorithm 1 computes K points xi
(k), i = 1, . . . ,K by solving K subproblems. For many

problems in practice, these K subproblems are expected to be very easy to solve. Another advantage of the

algorithm is that it is parallelizable since given wi
(k), i = 1, . . . ,K, the K subproblems in Algorithm 1 can

be solved simultaneously. Algorithm (1) can be viewed as an alternating linearization method since at each

iteration, K subproblems are solved, and each subproblem corresponds to minimizing a function involving

linear approximations to some of the functions. Although Algorithm 1 assumes the Lipschitz constants are

known, and hence that µ is known, this assumption can be relaxed by using the backtracking technique in

[2] to estimate µ at each iteration.

We prove in the following that the number of iterations needed by Algorithm 1 to obtain an ǫ-optimal
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solution is O(1/ǫ).

Theorem 2.6. Suppose x∗ is an optimal solution to problem (2.1). For any choice of µ ≤ 1/max1≤i≤K L(fi),

the sequence {xi
(k), w

i
(k)}Ki=1 generated by Algorithm 1 satisfies:

min
i=1,...,K

F (xi
(k))− F (x∗) ≤ (K − 1)‖x0 − x∗‖2

2µk
.(2.8)

Thus, the sequence {mini=1,...,K F (xi
(k))} produced by Algorithm 1 converges to F (x∗). Moreover, if µ ≥

β/maxi{L(fi)} where 0 < β ≤ 1, the number of iterations needed to obtain an ǫ-optimal solution is at most

⌈C/ǫ⌉, where C = (K−1)maxi{L(fi)}‖x0−x∗‖2

2β .

Proof. In (2.4), by letting u = x∗, vj = wi
(n), j = 1, . . . ,K, j 6= i, we have p = xi

n+1 and

2µ(F (x∗)− F (xi
(n+1))) ≥

K
∑

j=1,j 6=i

(

‖xi
(n+1) − x∗‖2 − ‖wi

(n) − x∗‖2
)

(2.9)

= (K − 1)
(

‖xi
(n+1) − x∗‖2 − ‖wi

(n) − x∗‖2
)

.

Using the definition of wi
(n) in Algorithm 1, we have

K
∑

i=1

‖wi
(n+1) − x∗‖2 =

K
∑

i=1

∥

∥

∥

∥

∥

∥

K
∑

j=1

D
(n+1)
ji xj

(n+1) − x∗

∥

∥

∥

∥

∥

∥

2

(2.10)

=
K
∑

i=1

∥

∥

∥

∥

∥

∥

K
∑

j=1

D
(n+1)
ji (xj

(n+1) − x∗)

∥

∥

∥

∥

∥

∥

2

≤
K
∑

i=1

K
∑

j=1

D
(n+1)
ji ‖xj

(n+1) − x∗‖2

=

K
∑

j=1

‖xj

(n+1) − x∗‖2,

where the second and the last equalities are due to the fact that D(n+1) is a doubly stochastic matrix and

the inequality is due to the convexity of the function ‖ · ‖2.

Thus by summing (2.9) over i = 1, . . . ,K we obtain

2µ

(

KF (x∗)−
K
∑

i=1

F (xi
(n+1))

)

≥ (K − 1)

(

K
∑

i=1

‖xi
(n+1) − x∗‖2 −

K
∑

i=1

‖wi
(n) − x∗‖2

)

(2.11)

≥ (K − 1)

(

K
∑

i=1

‖wi
(n+1) − x∗‖2 −

K
∑

i=1

‖wi
(n) − x∗‖2

)

,

where the last inequality is due to (2.10).
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Summing (2.11) over n = 0, 1, . . . , k − 1, and using the fact that wi
(0) = x0, i = 1, . . . ,K, yields

2µ

(

kKF (x∗)−
k−1
∑

n=0

K
∑

i=1

F (xi
(n+1))

)

≥ (K − 1)

K
∑

i=1

(

‖wi
(k) − x∗‖2 − ‖wi

(0) − x∗‖2
)

(2.12)

≥ −K(K − 1)‖x0 − x∗‖2.

In (2.4), by letting u = vj = wi
(n), j = 1, . . . ,K, j 6= i, we get p = xi

(n+1) and

2µ
(

F (wi
(n))− F (xi

(n+1))
)

≥
K
∑

j=1,j 6=i

‖xi
(n+1) − wi

(n)‖2 ≥ 0.(2.13)

From the way we compute wi
(n), i = 1, . . . ,K, and the facts that F is convex and D(n) is a doubly stochastic

matrix, we get

K
∑

i=1

F (wi
(n)) =

K
∑

i=1

F





K
∑

j=1

D
(n)
ji xj

(n)



(2.14)

≤
K
∑

i=1

K
∑

j=1

D
(n)
ji F (xj

(n))

=
K
∑

j=1

F (xj

(n)).

Now summing (2.13) over i = 1, . . . ,K and using (2.14), we obtain

2µ

(

K
∑

i=1

F (xi
(n))−

K
∑

i=1

F (xi
(n+1))

)

≥ 0.(2.15)

This shows that the sums
∑K

i=1 F (xi
(n)) are non-increasing as n increases. Hence,

k−1
∑

n=0

K
∑

i=1

F (xi
(n+1)) ≥ k

K
∑

i=1

F (xi
(k)).(2.16)

Finally, combining (2.12) and (2.16) yields

2µ

(

kKF (x∗)− k

K
∑

i=1

F (xi
(k))

)

≥ −K(K − 1)‖x0 − x∗‖2.

Hence,

min
1,...,K

F (xi
(k))− F (x∗) ≤ 1

K

K
∑

i=1

F (xi
(k))− F (x∗) ≤ (K − 1)‖x0 − x∗‖2

2µk
.

It then follows that mini=1,...,K F (xi
(k))− F (x∗) ≤ ǫ, if k ≥ ⌈C/ǫ⌉, where C = (K−1)maxi{L(fi)}‖x0−x∗‖2

2β ,

and hence that for any k ≥ ⌈C/ǫ⌉, x(k) := argmin{xi
(k)|F (xi

(k)), i = 1, . . . ,K} is an ǫ-optimal solution.

Remark 2.7. If in the original problem (1.1), x is subject to a convex constraint x ∈ C, where C is
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a convex set, we can impose this constraint in every subproblem in MSA and obtain the same complexity

result. The only changes in the proof are in Lemma 2.5. If there is a constraint x ∈ C, then (2.4) and (2.5)

hold for any u ∈ C and the last equality in (2.5) becomes a “≥” inequality due to the fact that the optimality

conditions (2.6) become

〈

∇fi(p) +

K
∑

j=1,j 6=i

(

∇fj(v
j) +

1

µ
(p− vj)

)

, u− p

〉

≥ 0, ∀u ∈ C.

Unfortunately, this extension is not very practical, since for it to be useful, adding the constraint in every

subproblem would most likely make most of these subproblems difficult to solve.

3. A class of fast multiple splitting algorithms. In this section, we give a class of fast multiple

splitting algorithms (FaMSA) for solving problem (2.1) that require at most O(1/
√
ǫ) iterations to obtain

an ǫ-optimal solution while requiring a computational effort at each iteration that is roughly the same as

Algorithm 1. Our fast multiple splitting algorithms are outlined in Algorithm 2, where D(k) ∈ R
K×K is a

doubly stochastic matrix.

Algorithm 2: A Class of Fast Multiple Splitting Algorithms (FaMSA)

Set x0 = xi
(0) = ŵi

(0) = wi
(1), i = 1, . . . ,K, t1 = 1, and choose µ ≤ 1/max1≤i≤K L(fi)

for k = 1, 2, · · · do

• for i = 1, . . . ,K, compute xi
(k) = pi(w

i
(k), . . . , w

i
(k))

• compute
(

ŵ1
(k), . . . , ŵ

K
(k)

)

:=
(

x1
(k), . . . , x

K
(k)

)

D(k)

• compute tk+1 = (1 +
√

1 + 4t2k)/2

• for i = 1, . . . ,K, compute wi
(k+1) := ŵi

(k) +
1

tk+1

(

tk(x
i
(k) − ŵi

(k−1))− (ŵi
(k) − ŵi

(k−1))
)

.

To establish the O(1/
√
ǫ) iteration complexity of FaMSA, we need the following lemma.

Lemma 3.1. Suppose x∗ is an optimal solution to problem (2.1). For any choice of µ ≤ max1≤i≤K L(fi),

the sequence {xi
(k), w

i
(k), ŵ

i
(k)}Ki=1 generated by Algorithm 2 satisfies:

2µ(t2kvk − t2k+1vk+1) ≥ (K − 1)

K
∑

i=1

(

‖ui
k+1‖2 − ‖ui

k‖2
)

,(3.1)

where vk :=
∑K

i=1 F (xi
(k))−KF (x∗) and ui

k := tkx
i
(k) − (tk − 1)ŵi

(k−1) − x∗, i = 1, . . . ,K.

Proof. In (2.4), by letting u = ŵi
(k), v

j = wi
(k+1), j = 1, . . . ,K, j 6= i, we get p = xi

(k+1) and

2µ
(

F (ŵi
(k))− F (xi

(k+1))
)

≥
K
∑

j=1,j 6=i

(

‖xi
(k+1) − ŵi

(k)‖2 − ‖wi
(k+1) − ŵi

(k)‖2
)

(3.2)

= (K − 1)
(

‖xi
(k+1) − ŵi

(k)‖2 − ‖wi
(k+1) − ŵi

(k)‖2
)

.

Summing (3.2) over i = 1, . . . ,K, and using the facts that F is convex and D(k) is a doubly stochastic
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matrix, we get

2µ

(

K
∑

i=1

F (xi
(k))−

K
∑

i=1

F (xi
(k+1))

)

≥ 2µ

(

K
∑

i=1

F (ŵi
(k))−

K
∑

i=1

F (xi
(k+1))

)

≥ (K − 1)
K
∑

i=1

(

‖xi
(k+1) − ŵi

(k)‖2 − ‖wi
(k+1) − ŵi

(k)‖2
)

,

i.e.,

2µ(vk − vk+1) ≥ (K − 1)

K
∑

i=1

(

‖xi
(k+1) − ŵi

(k)‖2 − ‖wi
(k+1) − ŵi

(k)‖2
)

.(3.3)

In (2.4), by letting u = x∗, vj = wi
(k+1), we get p = xi

(k+1) and

2µ
(

F (x∗)− F (xi
(k+1))

)

≥
K
∑

j=1,j 6=i

(

‖xi
(k+1) − x∗‖2 − ‖wi

(k+1) − x∗‖2
)

(3.4)

= (K − 1)
(

‖xi
(k+1) − x∗‖2 − ‖wi

(k+1) − x∗‖2
)

.

Summing (3.4) over i = 1, . . . ,K we obtain

−2µvk+1 ≥ (K − 1)

K
∑

i=1

(

‖xi
(k+1) − x∗‖2 − ‖wi

(k+1) − x∗‖2
)

.(3.5)

Now multiplying (3.3) by t2k and (3.5) by tk+1, adding the resulting two inequalities, using the relation

t2k = tk+1(tk+1 − 1), and the identity (2.7), we get

2µ(t2kvk − t2k+1vk+1)(3.6)

≥(K − 1)
K
∑

i=1

tk+1(tk+1 − 1)
(

‖xi
(k+1) − ŵi

(k)‖2 − ‖wi
(k+1) − ŵi

(k)‖2
)

+ (K − 1)

K
∑

i=1

tk+1

(

‖xi
(k+1) − x∗‖2 − ‖wi

(k+1) − x∗‖2
)

=(K − 1)

K
∑

i=1

tk+1(tk+1 − 1)
(

‖xi
(k+1) − wi

(k+1)‖2 + 2
〈

xi
(k+1) − wi

(k+1), w
i
(k+1) − ŵi

(k)

〉)

+ (K − 1)

K
∑

i=1

tk+1

(

‖xi
(k+1) − wi

(k+1)‖2 + 2
〈

xi
(k+1) − wi

(k+1), w
i
(k+1) − x∗

〉)

=(K − 1)
K
∑

i=1

(

t2k+1‖xi
(k+1) − wi

(k+1)‖2 + 2tk+1

〈

xi
(k+1) − wi

(k+1), tk+1w
i
(k+1) − (tk+1 − 1)ŵi

(k) − x∗
〉)

=(K − 1)

K
∑

i=1

(

‖tk+1x
i
(k+1) − (tk+1 − 1)ŵi

(k) − x∗‖2 − ‖tk+1w
i
(k+1) − (tk+1 − 1)ŵi

(k) − x∗‖2
)

.
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From the way we compute wi
(k+1) in Algorithm 2, i.e.,

wi
(k+1) := ŵi

(k) +
1

tk+1

(

tk(x
i
(k) − ŵi

(k−1))− (ŵi
(k) − ŵi

(k−1))
)

,

it follows that

tk+1w
i
(k+1) − (tk+1 − 1)ŵi

(k) − x∗ = tkx
i
(k) − (tk − 1)ŵi

(k−1) − x∗.

Thus, from (3.6) and the definition of ui
k it follows that

2µ(t2kvk − t2k+1vk+1)

≥(K − 1)
K
∑

i=1

(

‖tk+1x
i
(k+1) − (tk+1 − 1)ŵi

(k) − x∗‖2 − ‖tkxi
(k) − (tk − 1)ŵi

(k−1) − x∗‖2
)

=(K − 1)

K
∑

i=1

(

‖ui
k+1‖2 − ‖ui

k‖2
)

.

This completes the proof.

Before proving our main complexity theorem to Algorithm 2, we note that the sequence {tk} generated

by Algorithm 2 clearly satisfies tk+1 ≥ tk +
1
2 , and hence tk ≥ (k + 1)/2 for all k ≥ 1 since t1 = 1.

Theorem 3.2. Suppose x∗ is an optimal solution to problem (2.1). For any choice of µ ≤ max1≤i≤K L(fi),

the sequence {xi
(k), w

i
(k), ŵ

i
(k)}Ki=1 generated by Algorithm 2 satisfies:

min
i=1,...,K

F (xi
(k))− F (x∗) ≤ 2(K − 1)‖x0 − x∗‖2

µ(k + 1)2
.(3.7)

Thus, the sequence {mini=1,...,K F (xi
(k))} produced by Algorithm 2 converges to F (x∗). Moreover, if µ ≥

β/maxi{L(fi)} where 0 < β ≤ 1, the number of iterations needed to obtain an ǫ-optimal solution is at most

⌊
√

C/ǫ⌋, where C = 2(K − 1)maxi{L(fi)}‖x0 − x∗‖2/β.

Proof. By rewriting (3.1) as

2µt2k+1vk+1 + (K − 1)

K
∑

i=1

‖ui
k+1‖2 ≤ 2µt2kvk + (K − 1)

K
∑

i=1

‖ui
k‖2,
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we get

2µ

(

k + 1

2

)2

vk ≤ 2µt2kvk + (K − 1)

K
∑

i=1

‖ui
k‖2

≤ 2µt21v1 + (K − 1)
K
∑

i=1

‖ui
1‖2

= 2µv1 + (K − 1)

K
∑

i=1

‖xi
(1) − x∗‖2

≤ (K − 1)

K
∑

i=1

‖wi
(1) − x∗‖2

= K(K − 1)‖x0 − x∗‖2,

where the first inequality is due to tk ≥ (k + 1)/2, the first equality is from the facts that t1 = 1 and

ui
1 = xi

(1)−x∗, the third inequality is from letting k = 0 in (3.5) and the last equality is due to wi
(1) = x0, i =

1, . . . ,K.

Thus, from vk =
∑K

i=1 F (xi
(k))−KF (x∗) we get

K
∑

i=1

F (xi
(k))−KF (x∗) ≤ 2K(K − 1)‖x0 − x∗‖2

µ(k + 1)2
,

which implies that

min
i=1,...,K

F (xi
(k))− F (x∗) ≤ 1

K

K
∑

i=1

F (xi
(k))− F (x∗) ≤ 2(K − 1)‖x0 − x∗‖2

µ(k + 1)2
,

i.e., (3.7) holds.

Moreover, it follows that if C/(k + 1)2 ≤ ǫ, i.e., k ≥ ⌊
√

C/ǫ⌋, then mini=1,...,K F (xi
(k)) − F (x∗) ≤

ǫ, where C = 2(K − 1)maxi{L(fi)}‖x0 − x∗‖2/β. This implies that for any k ≥ ⌊
√

C/ǫ⌋, x(k) :=

argmin{xi
(k)|F (xi

(k)), i = 1, . . . ,K} is an ǫ-optimal solution.

Remark 3.3. Although we have assumed that the Lipschitz constants L(fi) are known, and hence that µ

is chosen in Algorithm 2 to be smaller than 1/max1≤i≤K{L(fi)}, this can be relaxed by using the backtracking

technique in [2] that chooses a µ at each iteration that is smaller than the µ used at the previous iteration

and for which F (p) ≤ Qi(w
i
(k), . . . , w

i
(k), p, w

i
(k), . . . , w

i
(k)) for all i.

3.1. A variant of the fast multiple splitting algorithm. In this section, we present a variant of the

fast multiple splitting algorithm (Algorithm 2) that is much more efficient and requires much less memory

than Algorithm 2 for problems in which K is large. This variant uses D(k) := 1/Kee⊤, where e is the

n-dimensional vector with all ones, and replaces xi
(k) in the last line of Algorithm 2 by ŵi

(k); i.e., in the last

line of Algorithm 2, we compute wi
(k+1) for i = 1, . . . ,K by the formula:

wi
(k+1) := ŵi

(k) +
tk − 1

tk+1
(ŵi

(k) − ŵi
(k−1)).

It is easy to see that in this variant, the ŵi
(k), i = 1, . . . ,K are all the same and the wi

(k+1), i = 1, . . . ,K are

all the same. We call this variant FaMSA-s, where s refers to the fact that this variant computes a “single”
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vector ŵk and a single vector w(k+1) at the k-th iteration. It is given below as Algorithm 3.

Algorithm 3: A variant of FaMSA (FaMSA-s)

Set x0 = xi
(0) = ŵ(0) = w(1), i = 1, . . . ,K, t1 = 1, and choose µ ≤ 1/max1≤i≤K L(fi)

for k = 1, 2, · · · do

• for i = 1, . . . ,K, compute xi
(k) = pi(w(k), . . . , w(k))

• compute ŵ(k) :=
1
K

∑K
i=1 x

i
(k)

• compute tk+1 = (1 +
√

1 + 4t2k)/2
• for i = 1, . . . ,K, compute w(k+1) := ŵ(k) +

tk−1
tk+1

(ŵ(k) − ŵ(k−1)).

It is easy to verify that the following analog of Lemma 3.1 applies to Algorithm FaMSA-s.

Lemma 3.4. Suppose x∗ is an optimal solution to problem (2.1). The sequence {w(k), ŵ(k)} generated

by Algorithm FaMSA-s satisfies:

2µ(t2kvk − t2k+1vk+1) ≥ (K − 1)

K
∑

i=1

(

‖uk+1‖2 − ‖uk‖2
)

,

where vk := K(F (ŵ(k))− F (x∗)) and uk := tkŵ(k) − (tk − 1)ŵ(k−1) − x∗.

Proof. The proof is very similar to the proof of Lemma 3.1; hence, we leave it to the reader. The main

difference is that instead of using the inequality
∑K

i=1 F (ŵi
(k)) ≤

∑K
i=1 F (xi

(k)) to replace the sum involving

ŵi
(k), we use the fact that KF (ŵk+1) ≤

∑K
i=1 F (xi

(k+1)) to replace the sum involving xi
(k+1) in the proof.

From Lemma 3.4, Theorem 3.2 with ŵi
(k) and wi

(k), respectively, for i = 1, . . . ,K replaced by ŵ(k) and

w(k) follows immediately for FaMSA-s.

4. Multiple splitting algorithms for nonsmooth problems. Although for the above results we

required all functions to be in the class of C1,1, our algorithms can still be applied to solve nonsmooth

problems by first smoothing all nonsmooth functions. One of the most important smoothing techniques is the

one proposed by Nesterov [24]. We use the ℓ1-norm function as an example to show how Nesterov’s smoothing

technique works. Note that the ℓ1 function f(x) := ‖x‖1 can be rewritten as ‖x‖1 = max{〈x, u〉 : u ∈ U},
where U := {u : ‖u‖∞ ≤ 1}. Since U is a bounded convex set, we can define a prox-function d(u) for the

set U , where d(u) is continuous and strongly convex on U with convexity parameter σ > 0. For U defined

as above, a natural choice for d(u) is d(u) := 1
2‖u‖22 and thus σ = 1. Hence, we have the following smooth

approximation for f(x) = ‖x‖1:

fρ(x) := max{〈x, u〉 − ρd(u) : u ∈ U},

where ρ is a positive smoothness parameter. It can be shown that fρ(x) is well defined and is in the class of

C1,1 and its gradient is Lipschitz continuous with constant Lρ = 1
ρσ

(see Theorem 1 in [24]). Also, it is easy

to show that the following relations hold for f(x) and fρ(x):

fρ(x) ≤ f(x) ≤ fρ(x) + ρD,

where D := max
u

{d(u) : u ∈ U}. Therefore, to get an ǫ-optimal solution to a problem involving the ℓ1-

norm function f(x), we can replace f(x) with f ǫ
2D

(x) to get a smooth problem, and then apply our splitting

algorithms to the new problem to get an ǫ
2 -optimal solution, which will be ǫ-optimal to the original nonsmooth
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problem. Since L ǫ
2D

is O(1/ǫ), our fast O(1/
√
ǫ) algorithms require O(1/ǫ) iterations to compute an ǫ-optimal

solution.

For nonsmooth problems in imaging, data analysis, and machine learning, etc. with regularization terms

that involve total variation and the nuclear norm, we can use similar smoothing techniques to smooth these

nonsmooth functions, and then apply our multiple splitting algorithms to solve them.

5. Numerical experiments. We present some preliminary numerical experiments in this section.

Specifically, we apply our MSA and FaMSA algorithms to solve the Fermat-Weber problem and a total

variation and wavelet based image deblurring problem. All numerical experiments were run in MATLAB

7.3.0 on a Dell Precision 670 workstation with an Intel Xeon(TM) 3.4GHZ CPU and 6GB of RAM.

5.1. The Fermat-Weber problem. The Fermat-Weber (F-W) problem can be cast as:

minF (x) ≡
K
∑

i=1

‖x− ci‖,(5.1)

where ci ∈ R
n, i = 1, . . . ,K are K given points. Problem (5.1) can be reformulated as a second-order cone

programming (SOCP) problem and thus solved in polynomial time by an interior-point method. Since there

are K cones, the size of a standard form SOCP formulation for this problem is quite large for large K and

n. Since fi(x) = ‖x− ci‖, i = 1, . . . ,K are not smooth, to apply our MSA and FaMSA algorithms, we need

to smooth them first. Here we adopt the smoothing technique discussed in section 4; we approximate fi(x)

by the smooth function

fρ
i (x) := max{〈x− ci, y〉 − ρ

2
‖y‖2 : ‖y‖ ≤ 1},(5.2)

where ρ > 0 is a smoothness parameter. The gradient of fρ
i , ∇fρ

i (x) = y∗i , where y
∗
i is the optimal solution to

the optimization problem in (5.2). It is easy to show that y∗i = x−ci

max{ρ,‖x−ci‖} . Moreover, ∇fρ
i (x) is Lipschitz

continuous with constant L(fρ
i ) = 1/ρ. Now we can apply MSA, FaMSA and FaMSA-s to solve

min

K
∑

i=1

fρ
i (x).(5.3)

The i-th subproblem in all of these algorithms corresponds to solving the following problem:

pi(w
i
(k), . . . , w

i
(k)) := argmin

u
fρ
i (u) +

K
∑

j=1,j 6=i

(

fρ
j (w

i
(k)) + 〈∇fρ

j (w
i
(k)), u− wi

(k)〉+
1

2µ
‖u− wi

(k)‖2
)

.(5.4)

It is easy to check that the optimal solution to problem (5.4) is given by

u∗ :=















ci +
ρ(K − 1)

µ+ ρ(K − 1)
(zi(k) − ci), if ‖zi(k) − ci‖ ≤ ρ+ µ

K−1

ci +
(K − 1)‖zi(k) − ci‖ − µ

(K − 1)‖zi(k) − ci‖ (zi(k) − ci), if ‖zi(k) − ci‖ > ρ+ µ
K−1 ,
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where

zi(k) := wi
(k) −

µ

K − 1

K
∑

j=1,j 6=i

wi
(k) − cj

max{ρ, ‖wi
(k) − cj‖} .

If we choose the doubly stochastic matrix D(k) to be D(k) := 1/Kee⊤ in MSA as we do in FaMSA-s,

all wi
(k)’s are the same in MSA as they are in FaMSA-s. Hence, computing xi

(k), for i = 1, . . . ,K in both

algorithms can be done efficiently as follows.



















ẑ(k) =
∑K

j=1

w(k)−cj

max{ρ,‖w(k)−cj‖}

zi(k) = w(k) − µ
K−1(ẑ −

w(k)−ci

max{ρ,‖w(k)−ci‖} ), ∀i = 1, . . . ,K

xi
(k) = ci + (1− µ

max{(K−1)‖zi
(k)

−ci‖,µ+ρ(K−1)}
)(zi(k) − ci), ∀i = 1, . . . ,K

(5.5)

We compared the performance of MSA and FaMSA-s with the classical gradient method (Grad) and

Nesterov’s accelerated gradient method (Nest) for solving (5.3). The classical gradient method for solving

(5.3) with step size τ > 0 is:

xk+1 = xk − τ

K
∑

j=1

∇fρ
j (x

k).

The variant of Nesterov’s accelerated gradient method that we used is the following:

{

xk = yk−1 − τ
∑K

j=1 ∇fρ
j (y

k−1)

yk = xk − k−1
k+2 (x

k − xk−1).

We created random problems to test the performance of MSA, FaMSA-s, Grad and Nest as follows.

Vectors ci ∈ R
n, i = 1, . . . ,K were created with i.i.d. Gaussian entries from N (0, n). The seed for generating

random numbers in MATLAB was set to 0. We set the smoothness parameter ρ equal to 10−3. The

initial points xi, i = 1, . . . ,K were set to the average of all of the ci’s, i.e., xi
(0) = 1

K

∑K
i=1 c

i. We chose

D
(k)
ij = 1/K, i, j = 1, . . . ,K for all k in MSA. To compare the number of iterations needed by MSA and

FaMSA-s, we first solved (5.1) by Mosek [21] after converting it into an SOCP problem to get the optimal

solution x∗, and then terminated MSA, FaMSA-s, Grad and Nest when the relative error of the objective

function value at the k-th iterate,

relerr :=
|mini=1,...,K F (xi

(k))− F (x∗)|
F (x∗)

,

was less than 10−6. We tested the performance of these four solvers for different choices of τ , which is the

step size for Grad and Nest. Note that since the wi’s are the same in MSA with D(k) = 1
K
ee⊤ for all k

and in FaMSA-s, these two methods can be viewed as linearization methods in which the single function
∑K

j=1,j 6=i fj(x) is linearized at the point w with only one proximal term K−1
2µ ‖x−w‖ in the i-th subproblem.

So the step size for MSA and FaMSA-s is µ/(K − 1). Hence, the parameter µ for MSA and FaMSA-s was

set to µ = τ(K − 1) in our numerical tests.

Our results are presented in Table 5.1. The CPU times reported are in seconds. These results show

that for the F-W problem, our implementations of MSA and FaMSA-s take roughly between two and three
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times as much time to solve each problem as taken by Grad and Nest, respectively. This is not surprising

since it is clear that the computation of each set of K vectors zi(k) and xi
(k) for i = 1, . . . ,K in (5.5) is

roughly comparable to a single computation of the gradient, i.e., the K gradients of fρ
i (x), for i = 1, . . . ,K.

Moreover, for the simple F-W objective function, not much is gained by minimizing only one out of the K

individual functions fρ
i (x), i = 1, . . . ,K, when K is large as it is in our tests. Note that the number of

iterations required by MSA and Grad were exactly the same on our set of test problems. When K is of a

moderate size and the individual functions are more complicated, MSA should require fewer iterations than

Grad.

Table 5.1

Comparison of MSA, FaMSA-v, Grad and Nest on solving Fermat-Weber problem (5.3)

Problem Mosek MSA FaMSA-s Grad Nest

n K time iter relerr time iter relerr time iter relerr time iter relerr time

τ = 0.001

50 50 0.85 500 4.1e-05 0.73 107 8.4e-07 0.17 500 4.1e-05 0.21 109 9.0e-07 0.05

50 100 3.40 500 5.6e-06 1.44 69 9.9e-07 0.21 500 5.6e-06 0.42 72 8.5e-07 0.07

50 200 0.96 427 9.9e-07 2.44 47 8.8e-07 0.28 427 9.9e-07 0.69 49 8.6e-07 0.09

100 100 1.78 500 8.9e-06 1.68 94 9.8e-07 0.33 500 8.9e-06 0.51 97 9.1e-07 0.10

100 200 4.48 500 1.6e-06 3.35 60 9.2e-07 0.42 500 1.6e-06 1.00 62 9.2e-07 0.13

100 400 9.40 198 1.0e-06 2.68 34 9.5e-07 0.47 198 1.0e-06 0.79 36 9.2e-07 0.15

200 200 22.22 500 2.3e-06 4.36 75 9.9e-07 0.67 500 2.3e-06 1.39 77 9.9e-07 0.22

200 400 45.55 275 1.0e-06 4.81 41 9.9e-07 0.73 275 1.0e-06 1.54 43 9.8e-07 0.25

200 800 100.15 41 1.0e-06 1.44 15 9.7e-07 0.54 41 1.0e-06 0.46 16 9.8e-07 0.18

300 300 102.64 419 1.0e-06 6.73 52 9.9e-07 0.85 419 1.0e-06 2.22 54 9.9e-07 0.29

300 600 194.99 24 1.0e-06 0.79 11 9.9e-07 0.37 24 1.0e-06 0.26 12 9.9e-07 0.14

300 1200 401.54 1 5.8e-07 0.08 1 5.8e-07 0.08 1 5.8e-07 0.03 1 5.8e-07 0.03

τ = 0.01

50 50 0.84 238 9.9e-07 0.36 32 8.3e-07 0.06 238 9.9e-07 0.11 34 7.5e-07 0.02

50 100 3.36 93 9.9e-07 0.29 20 9.6e-07 0.07 93 9.9e-07 0.08 22 7.6e-07 0.03

50 200 0.96 42 9.9e-07 0.26 13 9.2e-07 0.09 42 9.9e-07 0.07 15 5.9e-07 0.03

100 100 1.78 160 1.0e-06 0.55 28 9.0e-07 0.11 160 1.0e-06 0.17 30 8.1e-07 0.04

100 200 4.48 62 9.8e-07 0.43 17 9.2e-07 0.13 62 9.8e-07 0.13 19 7.5e-07 0.05

100 400 9.46 20 9.5e-07 0.28 9 9.1e-07 0.13 20 9.5e-07 0.09 10 9.2e-07 0.05

200 200 22.37 91 1.0e-06 0.81 22 9.2e-07 0.21 91 1.0e-06 0.26 23 1.0e-06 0.07

200 400 45.56 28 9.7e-07 0.50 11 9.9e-07 0.21 28 9.7e-07 0.16 13 8.4e-07 0.08

200 800 99.38 4 1.0e-06 0.16 4 8.6e-07 0.16 4 1.0e-06 0.05 4 9.4e-07 0.05

300 300 100.48 42 9.9e-07 0.69 15 9.3e-07 0.26 42 9.9e-07 0.23 16 9.5e-07 0.09

300 600 194.88 3 9.7e-07 0.11 3 9.4e-07 0.11 3 9.7e-07 0.04 3 9.6e-07 0.04

300 1200 402.16 1 5.4e-07 0.08 1 5.4e-07 0.08 1 5.4e-07 0.03 1 5.4e-07 0.03

τ = 0.1

50 50 0.84 23 9.5e-07 0.05 9 3.4e-07 0.03 23 9.4e-07 0.02 10 5.4e-07 0.01

50 100 3.41 9 7.7e-07 0.04 5 6.1e-07 0.03 9 7.7e-07 0.02 6 5.1e-07 0.01

50 200 0.95 4 5.3e-07 0.04 3 2.9e-07 0.03 4 5.2e-07 0.01 3 1.0e-06 0.01

100 100 1.80 16 8.6e-07 0.07 8 3.6e-07 0.04 16 8.6e-07 0.02 9 4.1e-07 0.02

100 200 4.48 6 8.3e-07 0.05 4 7.2e-07 0.04 6 8.3e-07 0.02 5 5.2e-07 0.02

100 400 9.40 2 6.4e-07 0.04 2 4.2e-07 0.04 2 6.4e-07 0.02 2 6.4e-07 0.02

200 200 22.25 9 9.4e-07 0.09 6 5.8e-07 0.07 9 9.3e-07 0.03 6 9.4e-07 0.02

200 400 45.61 3 7.9e-07 0.07 3 5.0e-07 0.07 3 7.9e-07 0.02 3 6.9e-07 0.03

200 800 99.77 1 5.0e-07 0.05 1 5.0e-07 0.05 1 5.0e-07 0.02 1 5.0e-07 0.02

300 300 100.37 4 9.9e-07 0.08 4 6.7e-07 0.08 4 9.9e-07 0.03 4 8.4e-07 0.03

300 600 197.72 1 7.0e-07 0.05 1 7.0e-07 0.05 1 7.0e-07 0.02 1 7.0e-07 0.02

300 1200 412.49 1 2.1e-07 0.08 1 2.1e-07 0.08 1 2.1e-07 0.03 1 2.1e-07 0.03
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The purpose of this set of tests was not to demonstrate any advantage that our algorithms might have

over gradient methods. Rather, they were performed to validate our algorithms and show that the accelerated

variants like algorithm Nest can reduce the number of iterations required to solve problems of the form (1.1).

This is quite clear from the results reported in Table 5.1. We further note that FaMSA-s often takes one to

three fewer iterations than Nest. Note that for some problems, the multiple splitting algorithm took only

one iteration to converge. The reason was that for these problems, the number of points was much larger

than the dimension of the space. Therefore, the points were very compact and fairly uniformly distributed

around the initial point; hence that point was quite likely to be very close to the optimal solution.

5.2. An image deblurring problem. In this section, we report the results of applying our multiple

splitting algorithms to a benchmark total variation and wavelet-based image deblurring problem from [12].

In this problem, the original image is the well-known Cameraman image of size 256× 256 and the observed

image is obtained after imposing a uniform blur of size 9×9 (denoted by the operator A) and Gaussian noise

(generated by the function randn in MATLAB with a seed of 0 and a standard deviation of 0.56). Since the

vector of coefficients of the wavelet transform of the image is sparse in this problem and the total variation

norm of the image is expected to be small, one can try to reconstruct the image x from the observed image

b by solving the problem:

min αTV(x) + β‖Φx‖1 +
1

2
‖Ax− b‖22,(5.6)

where TV(x) :=
∑

ij

√

(xi+1,j − xij)2 + (xij − xi,j+1)2 is the total variation of x, Φ is the wavelet transform,

A denotes the deblurring kernel and α > 0, β > 0 are weighting parameters. Problem (5.6) involves

minimizing the sum of three convex functions with f1(x) = αTV(x), f2(x) = β‖Φx‖1 and f3(x) =
1
2‖Ax−b‖22.

To apply our multiple splitting algorithms to solve (5.6), our theory requires all the functions to be

smooth functions. So we needed to smooth the TV and the ℓ1 functions first. We adopted the following way

to smooth the TV function, widely used in the literature for doing this:

f δ
1 (x) := α

∑

ij

√

(xi+1,j − xij)2 + (xij − xi,j+1)2 + δ.

The ℓ1 function was smoothed in the way described in Section 4:

fσ
2 (x) := βmax

u
{〈Φx, u〉 − σ

2
‖u‖2 : ‖u‖∞ ≤ 1}.

Thus, the smooth version of problem (5.6) was:

min
x

f δ
1 (x) + fσ

2 (x) + f3(x).(5.7)

However, when we applied our multiple splitting algorithms to (5.7), we actually performed the following

computation on the k-th iteration:























xk+1 := argminx f1(x) + 〈∇fσ
2 (w

k), x− wk〉+ 1
2µ‖x− wk‖2 + 〈∇f3(w

k), x− wk〉+ 1
2µ‖x− wk‖2

yk+1 := argminy f
σ
2 (y) + 〈∇f δ

1 (w
k), y − wk〉+ 1

2µ‖y − wk‖2 + 〈∇f3(w
k), y − wk〉+ 1

2µ‖y − wk‖2
zk+1 := argminz f3(z) + 〈∇f δ

1 (w
k), z − wk〉+ 1

2µ‖z − wk‖2 + 〈∇fσ
2 (w

k), z − wk〉+ 1
2µ‖z − wk‖2

wk+1 := (xk+1 + yk+1 + zk+1)/3.

(5.8)

16



Note that in (5.8), when we linearized the TV function, we used the smoothed TV function f δ
1 (·), i.e., we

computed the gradient of f δ
1 (·). But when we solved the first subproblem, we used the nonsmooth TV

function f1(·), because there are efficient algorithms for solving this nonsmooth problem. Specifically, this

subproblem can be reduced to:

xk+1 := argmin
x

αµ

2
TV(x) +

1

2
‖x−

(

wk − µ(∇fσ
2 (w

k) +∇f3(w
k)
)

/2)‖2,

which is a standard TV-denoising problem. In our tests, we perform 10 iterations of the algorithm proposed

by Chambolle in [5] to approximately solve this problem. The second subproblem in (5.8) can be reduced

to:

yk+1 := argmin
y

µ

2
fσ
2 (y) +

1

2
‖y − (wk − µ

(

∇f δ
1 (w

k) +∇f3(w
k)
)

/2)‖2.(5.9)

It is easy to check that the solution of (5.9) is given by:

yk+1 := Φ⊤

(

Φw̄k − µβ

2
w̃k

)

where (w̃k)j = max{−1,min{1, 2(Φw̄k)j
2σ+βµ

}} and w̄k = wk−µ
(

∇f δ
1 (w

k) +∇f3(w
k)
)

/2. The third subproblem

in (5.8) corresponds to solving the following linear system:

(A⊤A+ 2/µI)z = A⊤b−∇f δ
1 (w

k) + 2/µwk −∇f δ
2 (w

k).

Solving this linear system is easy since the operator A has a special structure and thus (A⊤A + 2/µI) can

be inverted efficiently.

In our tests, we set α = 0.001, β = 0.035 and used smoothing parameters δ = σ = 10−4. The initial

points were all set equal to 0. We compared the performance of MSA, FaMSA, FaMSA-s and Grad for

different µ and step sizes τ . In these comparisons, we simply terminated the codes after 500 iterations. The

objective function value and the improvement signal noise ratio (ISNR) at different iterations are reported

in Table 5.2. The ISNR is defined as ISNR := 10 log10
‖x−b‖2

‖x−x̄‖2 , where x is the reconstructed image and

x̄ is the true image. As we did for F-W problem, we always used µ = τ(K − 1) and since there were

three functions in this problem, we used µ = 2τ . For large µ, we did not report the results for all of the

iterations since the comparisons are quite clear from the selected iterations. See Figure 5.1 for additional

and more complete comparisons. We make the following observations from Table 5.2. For µ = 0.1, FaMSA-s

achieved the best objective function value in about 200 iterations and 152 CPU seconds. The best ISNR

was also achieved by FaMSA-s, in about 300 iterations and 227 seconds. MSA and Grad were not able to

obtain an acceptable solution in 500 iterations. In fact, they were only able to reduce the objective function

to twice the near-optimal value of 3.86 × 104 achieved by FaMSA-s. For µ = 0.5, FaMSA-s achieved the

best objective function value and ISNR in 100 iterations and 76 seconds and 125 iterations and 94 seconds,

respectively. Again, MSA and Grad did not achieve acceptable results even after 500 iterations. For µ = 1,

MSA achieved the best objective function value, 3.73× 104, after 500 iterations and 349 CPU seconds, while

the best ISNR was achieved by FaMSA-s in 80 iterations and 61 seconds. Also, the best objective function

value achieved by FaMSA-s was at the 60-th iteration after only 47 CPU seconds. We also note that for

µ = 0.1, 0.5 and 1, MSA was always better than Grad and FaMSA-s was always slightly better than FaMSA.

Another observation was that MSA always decreased the objective function value for µ = 0.1, 0.5 and 1,
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while FaMSA and FaMSA-s always achieved near-optimal results in a relatively small number of iterations

and then started getting worse. However, in practice, one would always terminate FaMSA and FaMSA-s

once the objective function value started increasing. For µ = 5, MSA gave very good results while the other

three solvers diverged immediately. Specifically, the best objective function value 3.73× 104 was achieved by

MSA in 120 iterations and 80 CPU seconds, and the best ISNR was achieved by MSA in 200 iterations and

132 CPU seconds. Thus, based on these observations, we conclude that FaMSA-s attains a nearly optimal

solution very quickly for small µ while MSA is more stable for large µ.

We also plotted some figures to graphically illustrate the performance of these solvers. Figures (a), (b)

and (c) in Figure 5.1 plot the objective function value versus the iteration number for µ = 0.1, 0.5 and 1,

respectively. Figures (d), (e) and (f) in Figure 5.1 plot ISNR versus the iteration number for µ = 0.1, 0.5

and 1. We did not plot graphs for µ = 5, since FaMSA, FaMSA-s and Grad diverged from the very first

iteration. From Figure 5.1 we can see the comparisons clearly. Basically, these figures show that FaMSA

and FaMSA-s achieve a nearly optimal solution very quickly. We can also see from (b), (c), (e) and (f) that

FaMSA-s is always slightly better than FaMSA and MSA is always better than Grad.

We also tested setting D(k) to the identity matrix in MSA and FaMSA, but this choice, as expected, did

not give as good results.

To see how MSA performed for the deblurring problem (5.7), we show the original (a), blurred (b) and

reconstructed (c) cameraman images in Figure 5.2. The reconstructed image (c) is the one that was obtained

by applying MSA with µ = 5 after 200 iterations. The ISNR of the reconstructed image is 5.3182. From

Figure 5.2 we see that MSA was able to recover the blurred image very well.

6. Conclusions. In this paper, we proposed two classes of multiple splitting algorithms based on alter-

nating directions and optimal gradient techniques for minimizing the sum ofK convex functions. Complexity

bounds on the number of iterations required to obtain an ǫ-optimal solution for these algorithms were de-

rived. Our algorithms are all parallelizable, which is attractive for practical applications involving large-scale

optimization problems.

Acknowledgement. We would like to thank the anonymous referee for making several very helpful

suggestions.
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Table 5.2

Comparison of MSA, FaMSA, FaMSA-s and Grad on solving TV-deblurring problem

MSA FaMSA FaMSA-s Grad

Iter obj ISNR obj ISNR obj ISNR obj ISNR

µ = 0.1, τ = 0.05

100 3.42e+005 0.9311 4.67e+004 3.6310 4.66e+004 3.6332 3.36e+005 0.9344

200 1.55e+005 1.5340 3.89e+004 4.9693 3.86e+004 4.9821 1.55e+005 1.5341

300 1.13e+005 1.9057 3.98e+004 5.2695 3.94e+004 5.2989 1.13e+005 1.9043

400 9.25e+004 2.1905 4.30e+004 4.6587 4.26e+004 4.7075 9.28e+004 2.1871

500 7.97e+004 2.4235 4.76e+004 3.3881 4.70e+004 3.4500 8.02e+004 2.4175

µ = 0.5, τ = 0.25

25 2.41e+005 1.1343 7.70e+004 2.4777 7.69e+004 2.4784 2.36e+005 1.1408

50 1.29e+005 1.7359 4.31e+004 3.9343 4.28e+004 3.9416 1.29e+005 1.7376

75 9.66e+004 2.1260 3.92e+004 4.7122 3.88e+004 4.7324 9.67e+004 2.1250

100 7.96e+004 2.4243 3.90e+004 5.1257 3.84e+004 5.1638 8.00e+004 2.4198

125 6.92e+004 2.6659 3.97e+004 5.2558 3.90e+004 5.3160 6.98e+004 2.6569

150 6.21e+004 2.8682 4.12e+004 5.0880 4.04e+004 5.1737 6.30e+004 2.8538

175 5.71e+004 3.0416 4.33e+004 4.6478 4.23e+004 4.7576 5.82e+004 3.0207

200 5.34e+004 3.1928 4.58e+004 3.9964 4.46e+004 4.1258 5.48e+004 3.1646

225 5.06e+004 3.3266 4.86e+004 3.2006 4.73e+004 3.3442 5.22e+004 3.2902

250 4.85e+004 3.4463 5.18e+004 2.3223 5.03e+004 2.4758 5.03e+004 3.4009

275 4.67e+004 3.5545 5.54e+004 1.4132 5.37e+004 1.5723 4.88e+004 3.4991

300 4.54e+004 3.6529 5.93e+004 0.5078 5.74e+004 0.6705 4.76e+004 3.5869

500 3.99e+004 4.2186 9.74e+004 -5.2730 9.43e+004 -5.1193 4.38e+004 4.0416

µ = 1, τ = 0.5

20 1.53e+005 1.5382 6.35e+004 2.7991 6.33e+004 2.8006 1.51e+005 1.5443

40 9.23e+004 2.1927 4.10e+004 4.2214 4.05e+004 4.2361 9.22e+004 2.1932

60 7.09e+004 2.6220 3.91e+004 4.9205 3.84e+004 4.9591 7.13e+004 2.6158

80 5.99e+004 2.9413 3.96e+004 5.2175 3.86e+004 5.2890 6.08e+004 2.9258

100 5.34e+004 3.1933 4.10e+004 5.1371 3.98e+004 5.2488 5.47e+004 3.1664

120 4.93e+004 3.4003 4.33e+004 4.6922 4.19e+004 4.8439 5.10e+004 3.3597

140 4.64e+004 3.5751 4.62e+004 3.9649 4.45e+004 4.1489 4.85e+004 3.5186

160 4.44e+004 3.7258 4.94e+004 3.0524 4.75e+004 3.2595 4.68e+004 3.6515

180 4.29e+004 3.8578 5.32e+004 2.0449 5.10e+004 2.2668 4.57e+004 3.7637

200 4.18e+004 3.9748 5.74e+004 1.0116 5.50e+004 1.2419 4.49e+004 3.8592

220 4.09e+004 4.0795 6.20e+004 -0.0045 5.93e+004 0.2311 4.44e+004 3.9407

240 4.02e+004 4.1741 6.70e+004 -0.9780 6.41e+004 -0.7394 4.40e+004 4.0103

260 3.96e+004 4.2602 7.22e+004 -1.8951 6.90e+004 -1.6561 4.37e+004 4.0695

280 3.92e+004 4.3388 7.77e+004 -2.7506 7.43e+004 -2.5136 4.36e+004 4.1197

300 3.88e+004 4.4111 8.34e+004 -3.5436 7.97e+004 -3.3102 4.35e+004 4.1620

500 3.73e+004 4.9042 1.35e+005 -8.5246 1.29e+005 -8.3127 4.47e+004 4.2742

µ = 5, τ = 2.5

20 2.54e+007 -2.7911 1.10e+023 -157.9048 8.53e+018 -116.7985 5.63e+015 -84.9895

40 4.91e+005 3.7130 1.37e+040 -328.8532 8.05e+031 -246.5444 6.03e+022 -155.2917

60 4.69e+004 4.4065 3.59e+057 -503.0389 1.68e+045 -379.7479 6.55e+029 -225.6465

80 3.80e+004 4.6991 1.29e+075 -678.5934 4.93e+058 -514.4122 7.15e+036 -296.0278

100 3.74e+004 4.9027 5.53e+092 -854.9100 1.74e+072 -649.8897 7.84e+043 -366.4253

120 3.73e+004 5.0513 2.65e+110 -1031.7135 6.92e+085 -785.8864 8.61e+050 -436.8334

140 3.73e+004 5.1600 1.37e+128 -1208.8552 2.99e+099 -922.2437 9.47e+057 -507.2490

160 3.74e+004 5.2373 7.52e+145 -1386.2455 1.37e+113 -1058.8660 1.04e+065 -577.6699

180 3.76e+004 5.2888 4.31e+163 -1563.8262 6.62e+126 -1195.6913 1.15e+072 -648.0947

200 3.78e+004 5.3182 2.55e+181 -1741.5574 3.31e+140 -1332.6769 1.27e+079 -718.5224

500 4.27e+004 4.4523 Inf -Inf Inf -Inf 5.70e+184 -1775.0426
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